Prove all the following statements.

1. (Kühnel Ch.2 Q.4) A regular curve between two points p, q in \mathbb{R}^n with minimal length is necessarily the line segment from p to q. Hint: Consider the Schwarz inequality $\langle X, Y \rangle \leq \|X\| \cdot \|Y\|$ for the tangent vector and the difference vector $q - p$.

2. (Kühnel Ch.2 Q.1) The curvature and the torsion of a Frenet curve $c(t)$ in \mathbb{R}^3 are given by the formulas
 \[
 \kappa(t) = \frac{\|\dot{c} \times \ddot{c}\|}{\|\dot{c}\|^3} \quad \text{and} \quad \tau(t) = \frac{\text{Det}(\dot{c}, \ddot{c}, \dddot{c})}{\|\dot{c} \times \ddot{c}\|^2}
 \]
 for an arbitrary parametrization. For a plane curve we have
 \[
 \kappa(t) = \frac{\text{Det}(\dot{c}, \dddot{c})}{\|\dot{c}\|^3}.
 \]

3. (Kühnel Ch.2 Q.9-11) Let a plane curve be given in polar coordinates (r, φ) by $r = r(\varphi)$. Using the notation $r' = \frac{dr}{d\varphi}$, the arc length in the interval $[\varphi_1, \varphi_2]$ can be calculated as
 \[
 s = \int_{\varphi_1}^{\varphi_2} \sqrt{r'^2 + r^2} d\varphi,
 \]
 and the curvature is given by
 \[
 \kappa(\varphi) = \frac{2r'^2 - rr'' + r^2}{(r'^2 + r^2)^{3/2}}.
 \]
 Calculate the curvature of the curve given by $r(\varphi) = a\varphi$ (a is a constant), the so-called Archimedean spiral, see Figure 2.12. Moreover, show that (i) The length of the curve given in polar coordinates by $r(t) = \exp(t), \varphi(t) = at$ with a constant a (the logarithmic spiral) in the interval $(-\infty, t]$ is proportional to the radius $r(t)$, see Figure 2.12. (ii) The position vector of the logarithmic spiral has a constant angle with the tangent vector.
4. (Kühnel Ch.2 Q.6) If a circle of unit radius is rolled along a line (without friction), then a fixed point on that circle has its trajectory the so-called cycloid, see Figure 2.11. Find the arc-length parametrization \(c(s) : [0, L] \to \mathbb{R}^2 \) for one complete arch of the cycloid. Calculate its curvature \(\kappa(s) \).

![Figure 2.11. Cycloid](image)

5. (Kühnel Ch.2 Q.3) Let \(c(s) \) be a regular curve parametrized by arc length. If \(\kappa(s) \neq 0 \) for all \(s \), then the evolute of \(c \) is defined to be the curve

\[
\gamma(s) := c(s) + \frac{1}{\kappa(s)} e_2(s)
\]

where \(\{e_1(s), e_2(s)\} \) is the Frenet frame of \(c(s) \) and \(\kappa(s) \) is the (signed) curvature. Show that \(\gamma \) is regular precisely where \(\kappa'
eq 0 \), and that the tangent to \(\gamma \) at the point \(s = s_0 \) intersects the curve \(c \) at \(s = s_0 \) perpendicularly. Moreover, prove that the evolute of a cycloid (see Problem 4 above) is also a cycloid.

6. (Kühnel Ch.2 Q.7) Find the unique (up to rigid motions) arc-length parametrized plane curve \(c(s) : (0, \infty) \to \mathbb{R}^2 \) whose curvature is given by \(\kappa(s) = s^{-1/2} \).

Suggested Exercises

1. (Kühnel Ch.2 Q.2) At every point \(p \) of a regular plane curve \(c \) with \(c''(p) \neq 0 \) (or, equivalently, \(\kappa(p) \neq 0 \)) there is a parabola which has a point of third order contact with the curve at \(p \). The point of contact is the vertex of the parabola if and only if \(\kappa'(p) = 0 \).

2. (Kühnel Ch.2 Q.5) If all tangent vectors to the curve \(c(t) = (3t, 3t^2, 2t^3) \) are drawn from the origin, then their endpoints are on the surface of a circular cone with axis be the line \(x - z = y = 0 \).

3. (Kühnel Ch.2 Q.8) The Frenet two-frame of a plane curve with given curvature function \(\kappa(s) \) can be described by the exponential series for the matrix

\[
\begin{pmatrix}
0 & \int_0^s \kappa(t)dt \\
-\int_0^s \kappa(t)dt & 0
\end{pmatrix}
\]

It follows that

\[
\begin{pmatrix}
e_1(s) \\
e_2(s)
\end{pmatrix} = \sum_{i=0}^{\infty} \frac{1}{i!} \left(\begin{pmatrix}0 & \int_0^s \kappa \\
\int_0^s \kappa & 0
\end{pmatrix} \right)^i.
\]