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Abstract

In this paper, we study distance one surgeries between lens spaces L(p, 1) with p ≥ 5
prime and lens spaces L(n, 1) for n ∈Z and band surgeries from T (2, p) to T (2, n). In
particular, we prove that L(n, 1) is obtained by a distance one surgery from L(5, 1) only if
n = ±1, 4, ±5, 6 or ±9, and L(n, 1) is obtained by a distance one surgery from L(7, 1) if
and only if n = ±1, 3, 6, 7, 8 or 11.

2020 Mathematics Subject Classification: 57K10, 57K18 (primary); 57K31, 57R58,
57M12 (secondary)

1. Introduction

Dehn surgery is a fundamental operation in 3-manifold topology that enables one to
modify the shape of 3-manifolds. An outstanding conjecture by Berge, which was recently
(partially) solved by Greene [3], lists all the possible lens spaces that can be obtained by a
Dehn surgery along a knot in the 3-sphere. Instead of the 3-sphere, a natural generalisation
of the above theorem is to list all the possible lens spaces that can be obtained by a Dehn
surgery from other lens spaces. The celebrated cyclic surgery theorem says that if the knot
complement of a knot K in a lens space is not a Seifert fiber space and K admits another
lens space surgery, then it must be a distance one surgery, that is, the surgery slope intersects
the meridian of K geometrically once. As Seifert fibered structures in lens spaces are well
understood, we thus focus on distance one surgery between lens spaces.

In this paper, we are specifically concerned with distance one surgeries between the lens
space L(p, 1) with p ≥ 5 prime and lens spaces of type L(n, 1) for n ∈Z. This question is
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268 ZHONGTAO WU AND JINGLING YANG

also motivated from DNA topology. Recall that in biology, circular DNA can be modeled as
a knot or link, and torus knots or links T (2, n) are a family of DNA knot or link occurring
frequently in biological experiments. Additionally, there exist enzymatic complexes that
mediate DNA recombination, during which strands of DNA are exchanged and the topology
of the DNA molecule may be altered in the process. To better understand the mechanism
of DNA recombination, band surgery is used to model these enzymatic actions. Here band
surgery on a knot or link L is defined as follows: embed an unit square I × I into S3 by b :
I × I → S3 such that L ∩ (I × I ) = b(∂ I × I ), then replace L by L ′ = (L − b(∂ I × I )) ∪
b(I × ∂ I ). A fruitful technique of studying band surgery between knots or links is by lifting
to their double branched covers. The double branched cover of T (2, n) is the lens space
L(n, 1). As a consequence of the Montesinos trick, band surgeries on knots and links lift
to distance one Dehn surgeries in their double branched covers. This explains the biological
motivation to study distance one surgeries between lens spaces of type L(n, 1). Finally, we
remark that it is due to technical reasons that we only consider surgeries from L(p, 1) with
prime number p: In such cases, any homologically essential knot K in L(p, 1) is primitive,
which makes Spinc(L(p, 1), K ) easier to study.

Now, we list our main results. The first theorem gives a complete answer when n is even.

THEOREM 1·1. The lens space L(n, 1) with n even is obtained from a distance one
surgery along a knot in L(p, 1) with p ≥ 5 prime if and only if n is p + 1 or p − 1.

The case for an odd integer n is more challenging. Recall that H1(L(p, 1)) =Z/p.
Although every nonzero element is a generator of this cyclic group, there is a special ele-
ment [c] in Z/p that is given by the core of the either solid torus in the standard genus-1
Heegaard splitting of L(p, 1). Our theorem is divided into 3 parts according to the different
homology classes that K represents.

THEOREM 1·2. Let K be a knot in Y = L(p, 1) with p ≥ 5 prime.

(i) Suppose K is null-homologous. The lens space L(n, 1) with n odd is obtained by a
distance one surgery along K if and only if n = p, or p = 5 and n = −5.

(ii) Suppose K is a homologically essential knot in Y with [K ] = 1 · [c] ∈ H1(Y ). The
lens space L(n, 1) with n odd is obtained by a distance one surgery along K only if
n = ±1 or p = 5 and n = −9.

(iii) Suppose K is a homologically essential knot in Y with [K ] = k · [c] ∈ H1(Y ) and
k > 1. If L(n, 1) with n odd is obtained by a distance one surgery along K , then the
slope is (mμ + λ) and m < k + 3.

As the crossing numbers of DNA knots or links are often small, we also give some results
about the lens spaces L(5, 1) and L(7, 1).

THEOREM 1·3.

(i) The lens space L(n, 1) is obtained by a distance one surgery from L(5, 1) only if
n = ±1, 4, ±5, 6 or ±9.

(ii) The lens space L(n, 1) is obtained by a distance one surgery from L(7, 1) if and only
if n = ±1, 3, 6, 7, 8 or 11.
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Fig. 1. Examples of band surgeries, which lift to distance one surgery in double branched covers.

The above theorems about distance one surgeries plus the band surgeries we construct
in Figure 1 readily imply the following corollaries about band surgeries once we lift to the
double branched covers.

COROLLARY 1·4.

(i) The torus link T (2, n) is obtained by a band surgery from T (2, 5) only if n = ±1, 4,
±5, 6 or ±9.

(ii) The torus link T (2, n) is obtained by a band surgery from T (2, 7) if and only if
n = ±1, 3, 6, 7, 8 or 11.

(iii) The torus link T (2, n) with n even is obtained from T (2, p) with p ≥ 5 prime by a
band surgery if and only if n is p + 1 or p − 1.

We now explain the connection and compare the methods of our paper with the existing
ones in this direction. In [5], Lidman, Moore and Vazquez classified distance one surgeries
on L(3, 1) and the corresponding band surgeries on trefoil knot T (2, 3). A knot in L(3, 1)

is either null-homologous or homologically essential. For null-homologous knots, they sim-
ply need to apply the d-invariant surgery formula essentially due to [7]. For homologically
essential knots, they have to work harder to first deduce a d-invariant surgery formula for
L(3, 1) and then apply it to obstruct distance one surgeries between L(3, 1) and L(n, 1). In
our paper, we further generalize their d-invariant surgery formula for homologically essen-
tial knots in L(3, 1) to a knot in L(p, 1) with p ≥ 5 prime. Then we use our new d-invariant
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270 ZHONGTAO WU AND JINGLING YANG

surgery formula for homologically essential knots and the old formula for null-homologous
knots to obstruct those pairs of lens spaces that are not arisen from the double branch cover
of the knot pairs related by band surgeries exhibited in Figure 1.

Like the proof of the d-invariant surgery formula for S3, the key points to deduce the
d-invariant surgery formula for homologically essential knots in L(p, 1) are: (1) choose a
special (relative) Spinc structure so that we can find the element of minimal grading in the
mapping cone; (2) use a knot with simple knot Floer complex to fix the grading shift of the
mapping cone. For (1), we choose the same relative Spinc structure ξ0 as in [5], which has
a nice symmetric property shown in Lemma 4·7. With this property, we can easily trace the
place where the minimal grading is supported. For (2), there are multiple homology classes
of knots in L(p, 1) instead of a single nontrivial class in L(3, 1) up to symmetry. For each of
these homology classes, we use a so-called simple knot in L(p, 1) to fix the grading shift
of the mapping cone. In many cases, surgeries along simple knots in L(p, 1) produce a
Seifert fiber space instead of a lens space, so we also need to deal with the computation of
d-invariants of a Seifert fiber space, which is a substantial amount of extra work compared
to [5].

This paper is structured as follows: Section 2 provides some preliminaries including
homological analysis and basic properties of the d-invariant. Section 3 introduces the
d-invariant surgery formula for null-homologous knots and uses this formula to study dis-
tance one surgery along null-homologous knots in L(p, 1). In Section 4, we deduce the
d-invariant surgery formula for homologically essential knots in L(p, 1) from the mapping
cone formula. In Section 5, we use our d-invariant surgery formula to study distance one
surgeries along homologically essential knots in L(p, 1). Finally, we study distance one
surgeries on the lens spaces L(5, 1) and L(7, 1) in Section 6.

2. Preliminaries

2·1. Homological analysis

We adopt the convention that the lens space L(p, q) is obtained from p/q-surgery of
the unknot in S3. Let K be a knot in Y = L(p, 1) with p ≥ 5 prime. Then the homology
class of K in Y is either trivial or a generator of H1(Y ). In the former case K is called
null-homologous, and in the latter case K is called homologically essential.

When K is null-homologous, there is a canonical way to fix the meridian and the lon-
gitude of K . Denote by Ym(K ) the manifold obtained from m-surgery along K . We have
H1(Ym(K )) =Z/p ⊕Z/m.

When K is homologically essential, there are (p − 1)/2 different homology classes of K
in H1(Y ) =Z/p up to symmetry. We represent Y by a Kirby diagram with an unknot U with
framing p in S3; hence Y = V0 ∪ V1 where V0 denotes the solid torus that is the complement
of U , and V1 denotes the solid torus that is glued on. Fix an orientation of the unknot U .
Let c be the core of V0, and we fix an orientation of c such that the linking number of c and
U equals 1. Then we can choose an orientation of K such that [K ] = k[c] ∈ H1(L(p, 1))

for some integer 1 ≤ k ≤ p − 1/2. We call this k the mod p-winding number, or simply the
winding number of K . By possibly handlesliding K over U in the Kirby diagram, which
is equivalent to isotopying K in Y over the meridian of V1, we may further assume that
the linking number of K and U is exactly k. We fix our meridian μ and longitude λ for K
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Fig. 2. The intersection form of X ∪ W and the plumbing diagram of X .

by regarding K as a component of the link consisting of K and U in S3. Also we fix the
meridian μ0 and longitude λ0 for the unknot U . Then the first homology

H1(S3 − U − K ) =Z〈μ0〉 ⊕Z〈μ〉 and

{
[λ0] = k · [μ]
[λ] = k · [μ0] .

Therefore, the first homology of the knot complement Y − K is

H1(Y − K ) = H1(S3 − U − K )/〈pμ0 + λ0〉 = H1(S3 − U − K )/〈pμ0 + kμ〉.
Let θ = p′μ0 + k ′μ, where pk ′ − kp′ = 1, then H1(Y − K ) =Z〈θ〉. One may check that

[μ] = p[θ] ∈ H1(Y − K ), (2·1)

[λ] = −k2[θ] ∈ H1(Y − K ). (2·2)

Since we are interested in distance one surgery, we only consider (m · μ + λ)-surgery.
Denote by Ym·μ+λ(K ) the surgered manifold of (m · μ + λ)-surgery along K . Then the first
homology

H1(Ym·μ+λ(K )) =Z/|pm − k2|. (2·3)

For simplicity, we will also refer the above surgery as the m-surgery along K with the
understanding that μ and λ are chosen as just described.

The lemma below will be repeatedly used in the later sections.

LEMMA 2·1. Let Y ′ be the manifold obtained by a distance one surgery from Y = L(p, 1)

with p ≥ 5 prime, and let W : Y → Y ′ be the associated cobordism. Then |H1(Y ′)| is even if
and only if W is Spin.

Proof. We will make use of the fact that a 4-manifold whose first homology has no 2-torsion
is Spin if and only if its intersection form is even. Consider a plumbed 4-manifold X with
the plumbing diagram depicted in Figure 2, and ∂ X = L(p, 1). As X is simply-connected
and has even intersection form, it is a Spin 4-manifold. Attach the cobordism W to X along
L(p, 1). Then the simply-connected 4-manifold X ∪ W is Spin if and only if W is Spin,
since L(p, 1) is a Z/2 homology sphere, H1(W ) has no 2-torsion and X is Spin. We thus
compute the intersection form of X ∪ W , Q X∪W in Figure 2, where m represents the surgery
coefficient on the knot K and ai ’s are some integers.
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272 ZHONGTAO WU AND JINGLING YANG

We claim that det(Q X∪W ) is even if and only if m is even. We show this by expanding
along the last row and then along the last column of the matrix Q X∪W . To this effect, let
Qi denote the (p − 1) × (p − 1) matrix obtained by removing the i th column and the last
row from Q X∪W , and Qi, j denote the (p − 2) × (p − 2) matrix obtained by removing the
j th row and the last column from Qi . Then,

det(Q X∪W ) ≡
p−1∑
i=1

(ai · det Qi ) + m · det Q p

≡
p−1∑
i=1

⎛⎝ai ·
⎛⎝ p−1∑

j=1

a j · det Qi, j

⎞⎠⎞⎠ + m · det Q p

≡
p−1∑
i=1

(a2
i · det Qi,i) + m · det Q p

≡ m (mod 2),

where the third equality follows from the symmetric property det Qi, j = det Q j,i for all i, j ,
and the last equality follows from the fact that det Q p = p is odd and det Qi,i is even for
1 ≤ i ≤ p − 1.

Hence, we see that |H1(Y ′)| = det(Q X∪W ) is even if and only if m is even if and only
if Q X∪W is even if and only if X ∪ W is Spin. Therefore |H1(Y ′)| is even if and only if
W is Spin.

2·2. d-invariant

For a rational homology sphere Y equipped with a Spinc structure t, the d-invariant, or
correction term, denoted by d(Y, t), is the minimal Q-grading of the image of H F∞(Y, t)
in H F+(Y, t). We refer the reader to Ozsváth–Szabó [8] for details and cite the following
recursive formula for the d-invariant of a lens space.

THEOREM 2·2. Let p > q > 0 be relatively prime integers. Then there exists an identifi-
cation Spinc(L(p, q)) ∼=Z/p such that

d(L(p, q), i) = −1

4
+ (2i + 1 − p − q)2

4pq
− d(L(q, r), j), (2·4)

where r and j are the reductions of p and i (mod q) respectively.

Under the identification Spinc(L(p, q)) ∼=Z/p in Theorem 2·2, the self-conjugate Spinc

structures on L(p, q) correspond to the integers amongst
p + q − 1

2
and q − 1/2. For a

lens space L(n, 1) with n > 0, if n is odd, then there exists only one self-conjugate Spinc

structure corresponding to 0; if n is even, then there are two self-conjugate Spinc structures
corresponding to n/2 and 0.

By the recursive formula above, we can compute the values of d(L(n, 1), i) for n > 0 as
follows.

d(L(n, 1), i) = −1

4
+ (2i − n)2

4n
. (2·5)
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When the cobordism associated to a distance one surgery between two rational homology
spheres is Spin, there is a strong constraint on the d-invariant.

LEMMA 2·3 (Lidman–Moore–Vazquez [5, lemma 2·7]). Let (W, s) : (Y, t) → (Y ′, t′) be
a Spin cobordism between L-spaces satisfying b+

2 (W ) = 1 and b−
2 (W ) = 0. Then

d(Y ′, t′) − d(Y, t) = −1

4
.

Now we are ready to show Theorem 1·1. The proof runs a very similar argument to
Lidman–Moore–Vazquez [5, proposition 2·6].

Proof of Theorem 1·1. First we prove the “only if” part of the theorem. By homological
obstruction, distance one surgery on L(p, 1) can not give S1 × S2, so we assume that
n �= 0. Let W be the associated 2-handle cobordism between L(p, 1) and L(n, 1). Then
H2(W ) =Z. We claim that W is either positive definite (i.e. b+

2 (W ) = 1 and b−
2 (W ) = 0) or

negative definite (i.e. b+
2 (W ) = 0 and b−

2 (W ) = 1), that is, the case b+
2 (W ) = b−

2 (W ) = 0 can
never happen. Let N be a 4-manifold with boundary L(p, 1), which is obtained by attaching
a p-framed 2-handle to B4 along an unknot. Let Z denote the 4-manifold obtained by attach-
ing N to W . Then b±

2 (Z) = b±
2 (N ) + b±

2 (W ). We see that W satisfies b+
2 (W ) = b−

2 (W ) = 0
if and only if b+

2 (Z) = 1 and b−
2 (Z) = 0. Note that the intersection form QZ of Z is

QZ =
[

p k

k m

]
.

As pm − k2 = n �= 0, we can never have b+
2 (W ) = b−

2 (W ) = 0.
Since |H1(L(n, 1))| = |n| is assumed to be even, Lemma 2·1 implies that the associated

cobordism W is Spin. If b+
2 (W ) = 1 and b−

2 (W ) = 0, then by Lemma 2·3 we have

d(L(n, 1), i) − d(L(p, 1), 0) = −1

4
, (2·6)

where i = 0 or |n|/2. Applying Equation (2·5) to L(p, 1), we conclude that d(L(n, 1), i) =
p

4
− 1

2
for i = 0 or |n|/2. If i = 0, Equation (2·5) gives

d(L(n, 1), 0) =

⎧⎪⎪⎨⎪⎪⎩
n − 1

4
n > 0

1 + n

4
n < 0

.

Therefore, d(L(n, 1), 0) = p

4
− 1

2
may only occur when n = p − 1. If i = |n|/2, Equation

(2·5) gives

d(L(n, 1),
|n|
2

) =

⎧⎪⎪⎨⎪⎪⎩
−1

4
n > 0

1

4
n < 0

,

which can never equal p/4 − 1/2.
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274 ZHONGTAO WU AND JINGLING YANG

If b+
2 (W ) = 0 and b−

2 (W ) = 1, applying Lemma 2·3 to −W we obtain

d(L(p, 1), 0) − d(L(n, 1), i) = −1

4
, (2·7)

where i = 0 or |n|/2. By a similar calculation, we find that (2·7) holds only when n = p + 1.
So we complete the proof of the “only if” part.

The “if” part is true because there exist band surgeries from T (2, p) to T (2, p + 1)

and band surgeries from T (2, p) to T (2, p − 1) shown in Figure 1(c) and 1(d). The dou-
ble branched cover of those band surgeries gives the desired distance one surgery. This
completes the proof.

3. Surgeries along null-homologous knots

3·1. d-invariant surgery formula for null-homologous knots

For any null-homologous knot K in a rational homology sphere Y , there exists a non-
negative integer Vt,i associated to K for each i ∈Z and t ∈ Spinc(Y ) satisfying the following
property.

PROPERTY 3·1 ([12, proposition 7·6]).

Vt,i ≥ Vt,i+1 ≥ Vt,i − 1.

Let ti ∈ Spinc(Ym(K )) denote the Spinc structure that corresponds to (t, i) ∈ Spinc(Y ) ⊕
Zm under the natural bijection between the sets of Spinc structures Spinc(Ym(K )) and
Spinc(Y ) ⊕Zm . Ni and the first author give a d-invariant surgery formula for a knot in S3

[7, proposition 1·6], whose argument also applies to a general null-homologous knot in an
L-space.

PROPOSITION 3·2. Fix an integer m > 0 and a self-conjugate Spinc structure t on an
L-space Y . Let K be a null-homologous knot in Y . Then, for any ti ∈ Spinc(Ym(K )),

d(Ym(K ), ti ) = d(Y, t) + d(L(m, 1), i) − 2Nt,i , (3·1)

where Nt,i = max{Vt,i , Vt,m−i }.
Lidman, Moore and Vazquez also give the following lemma which will be used repeatedly

when we apply the above d-invariant surgery formula.

LEMMA 3·3 (Lidman–Moore–Vazquez [5]). Let K be a null-homologous knot in a Z/2
homology sphere Y and t a self-conjugate Spinc structure on Y . Let t0 be the Spinc structure
on Ym(K ) as described in Proposition 3·2. Then t0 is self-conjugate.

3·2. Surgeries along null-homologous knots

In this section, we study surgeries along null-homologous knots in L(p, 1) with p ≥ 5
prime. To prove Theorem 1·2 (i), we may assume that the surgered manifold is the lens
space L(n, 1) with n = ±pm for some odd integer m. The argument is adapted from [5,
section 3·1], where an analogous statement for surgeries along null-homologous knots in
L(3, 1) is proved.
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PROPOSITION 3·4. If m ≥ 3 is odd, then L(pm, 1) cannot be obtained by m-surgery along
a null-homologous knot in L(p, 1) with p ≥ 5 prime.

Proof. Suppose L(pm, 1) is obtained by m-surgery along a null-homologous knot in
L(p, 1), and m ≥ 3 is odd. Since p is odd, the Spinc structure corresponding to 0 is the
unique self-conjugate one on L(p, 1). Choose the self-conjugate Spinc structure t= 0 on
L(p, 1) and let i = 0 in (3·1). Then we have

d(L(pm, 1), t0) = d(L(p, 1), 0) + d(L(m, 1), 0) − 2N0,0, (3·2)

where the first 0 in the subscript of N0,0 stands for the self-conjugate Spinc structure
corresponding to 0 on L(p, 1) and the second 0 in the subscript represents i = 0.

Lemma 3·3 implies that t0 is a self-conjugate Spinc structure on L(pm, 1). Since m and
p are odd integers, t0 must be the unique self-conjugate Spinc structure on L(pm, 1) that
corresponds to 0 in the above identification with Z/pm. Equation (3·2) implies

N0,0 = d(L(p, 1), 0) + d(L(m, 1), 0) − d(L(pm, 1), 0)

2

= (1 − p)(m − 1)

8
< 0,

which contradicts the fact that N0,0 is non-negative.

PROPOSITION 3·5. If m ≥ 1 is odd, then L(−pm, 1) cannot be obtained by −m-surgery
along a null-homologous knot in L(p, 1) with p ≥ 5 prime.

Proof. Suppose L(−pm, 1) is obtained by −m-surgery along a null-homologous knot in
L(p, 1) with m ≥ 1 odd. By reversing the orientation, L(pm, 1) is obtained by m-surgery
on L(−p, 1) along a null-homologous knot. Choosing the self-conjugate Spinc structure
t= 0 and i = 0 in (3·1), we have

d(L(pm, 1), t0) = d(L(−p, 1), 0) + d(L(m, 1), 0) − 2N0,0.

Also, t0 is a self-conjugate Spinc structure on L(pm, 1) that corresponds to 0 in Z/pm.
Hence,

N0,0 = d(L(−p, 1), 0) + d(L(m, 1), 0) − d(L(pm, 1), 0)

2

= (1 − p)(m + 1)

8
< 0,

which is a contradiction.

PROPOSITION 3·6. If m ≥ 3 is odd, then L(pm, 1) cannot be obtained by −m-surgery along
a null-homologous knot in L(p, 1) with p ≥ 5 prime.

Proof. Suppose that L(pm, 1) is obtained by −m-surgery along a null-homologous knot
in L(p, 1) with m ≥ 3 odd. Reversing the orientation, we have L(−pm, 1) is given by
m-surgery on L(−p, 1) along a null-homologous knot. Consider the self-conjugate Spinc

structure t= 0. (3·1) gives us the following equation

d(L(−pm, 1), t0) = d(L(−p, 1), 0) + d(L(m, 1), 0) − 2N0,0,
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where we choose i = 0. Also by the same reason as above, the self-conjugate Spinc structure
t0 corresponds to 0 on L(−pm, 1), so

N0,0 = d(L(−p, 1), 0) + d(L(m, 1), 0) + d(L(pm, 1), 0)

2

= (p + 1)(m − 1)

8
> 0,

where N0,0 = max{V0,0, V0,m} = V0,0 by the monotonicity of Vt,i . Now we choose t= 0 and
i = 1 in (3·1). Then

d(L(−pm, 1), t1) = d(L(−p, 1), 0) + d(L(m, 1), 1) − 2N0,1, (3·3)

where N0,1 = max{V0,1, V0,m−1} = V0,1. By Property 3·1, V0,1 = V0,0 or V0,0 − 1.

Case (i) V0,1 = V0,0 = (p + 1)(m − 1)

8
.

Equation (2·5) implies d(L(−pm, 1), t1) = −
(

−1

4
+ (2 j − pm)2

4pm

)
for some integer j ∈

[0, pm − 1]. Putting it into (3·3), we have

−1

4
+ (2 j − pm)2

4pm
+ 1 − p

4
+

(
−1

4
+ (2 − m)2

4m

)
− (p + 1)(m − 1)

4
= 0

for some integer j ∈ [0, pm − 1], which can be further simplified to

j2 − pmj + p − mp = 0. (3·4)

We claim that the function f (x) = x2 − pmx + p − mp has no root in [0, pm − 1]. Indeed,
f (x) < 0 for any x ∈ [0, pm − 1], since its axis of symmetry is x = pm/2 and f (0) =
p − mp < 0. So this case is impossible.

Case (ii) V0,1 = V0,0 − 1 = (p + 1)(m − 1)

8
− 1.

Similarly, by (3·3), there exists an integer j ∈ [0, pm − 1] satisfying

−1

4
+ (2 j − pm)2

4pm
+ 1 − p

4
+

(
−1

4
+ (2 − m)2

4m

)
− (p + 1)(m − 1)

4
+ 2 = 0,

which can be simplified to

j2 − pmj + pm + p = 0. (3·5)

Let f (x) = x2 − pmx + pm + p. Its axis of symmetry is x = pm/2. We see that f (0) =
pm + p > 0, f (1) = p + 1 > 0 and f (2) = p + 4 − pm < 0 since m ≥ 3 and p ≥ 5. Hence
the roots of f (x) are in the intervals (1, 2) and (pm − 2, pm − 1), and they are not integers.
Therefore, there is no integral root of f (x) in [0, pm − 1], which gives a contradiction.

PROPOSITION 3·7. If m ≥ 3 is odd, then L(−pm, 1) cannot be obtained by m-surgery along
a null-homologous knot in L(p, 1) with p ≥ 5 prime.

Proof. Suppose that L(−pm, 1) is obtained by m-surgery along a null-homologous knot in
L(p, 1) with m ≥ 3 odd. Applying (3·1) to the case that t= 0 is self-conjugate on L(p, 1)

and i = 0, we have
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d(L(−pm, 1), t0) = d(L(p, 1), 0) + d(L(m, 1), 0) − 2N0,0,

where N0,0 = max{V0,0, V0,m} = V0,0 by monotonicity of Vt,i . Also, t0 is the unique self-
conjugate Spinc structure corresponding to 0 on L(−pm, 1), so the above equation implies

N0,0 = V0,0 = d(L(p, 1), 0) + d(L(m, 1), 0) + d(L(pm, 1), 0)

2

= p + m + pm − 3

8
> 0.

Next we choose the self-conjugate t= 0 on L(p, 1) and i = 1. Then by (3·1)

d(L(−pm, 1), t1) = d(L(p, 1), 0) + d(L(m, 1), 1) − 2N0,1, (3·6)

where N0,1 = max{V0,1, V0,m−1} = V0,1. By Property 3·1, V0,1 = V0,0 or V0,0 − 1.

Case (i) V0,1 = V0,0 = p + m + pm − 3

8
.

Equation (2·5) implies d(L(−pm, 1), t1) = −
(

−1

4
+ (2 j − pm)2

4pm

)
for some integer j ∈

[0, pm − 1]. Plugging it into (3·6), we have

−1

4
+ (2 j − pm)2

4pm
+ p − 1

4
+

(
−1

4
+ (2 − m)2

4m

)
− p + m + pm − 3

4
= 0.

The equation can be simplified to

j2 − pmj + p − mp = 0,

which is the same as (3·4). As there is no integer j in [0, pm − 1] that satisfies the equation,
we can rule out this case.

Case (ii) V0,1 = V0,0 − 1 = p + m + pm − 3

8
− 1.

Similarly, by (3·6), there exists an integer j ∈ [0, pm − 1] satisfying

−1

4
+ (2 j − pm)2

4pm
+ p − 1

4
+

(
−1

4
+ (2 − m)2

4m

)
− p + m + pm − 3

4
+ 2 = 0,

which can be simplified to

j2 − pmj + pm + p = 0.

This is the same equation as (3·5). As there is no integer j in [0, pm − 1] that satisfies the
equation, we can rule out this case.

The last ingredient for proving Theorem 1·2 (i) is the following result due to Moore and
Vazquez.

PROPOSITION 3·8 ([6, corollary 3·7]). Suppose m > 0 is a square-free odd integer. There
exists a distance one surgery along any knot K in L(m, 1) yielding −L(m, 1) if and only if
m = 1 or m = 5.
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Proof of Theorem 1·2(i). By homological reasons, we may assume n = ±pm for some odd
integer m > 0. Then, Propositions 3·4 - 3·7 imply that n can only be ±p. Lifting the band
surgery shown in Figure 1(a) to the double branched cover, we can see a distance one surgery
along a null-homologous knot in L(p, 1) produces itself. On the other hand, Proposition 3·8
shows that a distance one surgery from L(p, 1) to L(−p, 1) exists if and only if p = 5. This
completes the proof.

4. d-invariant surgery formula for homologically essential knots

4·1. The mapping cone for rationally null-homologous knots

In this section, we give a d-invariant surgery formula for rationally null-homologous knots
based on the mapping cone formula by Ozsváth and Szabó [11]. We assume the readers are
familiar with Heegaard Floer homology and we use F=Z/2Z coefficients throughout unless
otherwise stated.

Let Y be a rational homology sphere and K an oriented knot in Y . There is a canonical
choice of meridian μ of K , and a framing γ is an embedded curve on the boundary of the
tubular neighborhood of K which intersects μ once transversely. We write Spinc(Y, K ) for
the relative Spinc structures on Y − K , which has an affine identification with H 2(Y, K ). In
particular, if the knot K is primitive, i.e., K generates H1(Y ), then Spinc(Y, K ) is affinely
isomorphic to Z.

Let w be a vector field on S1 × D2 as described in [11], which is also the so-called dis-
tinguished Euler structure in Turaev’s literature [14]. Gluing this vector field w to a relative
Spinc structure on Y − K gives us a natural map:

GY,±K : Spinc(Y, K ) → Spinc(Y ) ∼= H 2(Y ),

satisfying

GY,±K (ξ + κ) = GY,±K (ξ) + i∗(κ),

where κ ∈ H 2(Y, K ) and i∗ : H 2(Y, K ) → H 2(Y ) is induced from inclusion. Here, −K
denotes K with the opposite orientation. We have

GY,−K (ξ) = GY,K (ξ) + P D[K ].
For each ξ ∈ Spinc(Y, K ), there is a Z⊕Z-filtered knot Floer complex Cξ = C F K ∞

(Y, K , ξ), whose bifiltration is given by (i, j) = (algebraic, Alexander). Let A+
ξ = Cξ

{max{i, j} ≥ 0} and B+
ξ = Cξ {i ≥ 0}. There are two natural projection maps

v+
ξ : A+

ξ −→ B+
ξ , h+

ξ : A+
ξ −→ B+

ξ+P D[γ ].

Ozsváth and Szabó show that v+
ξ and h+

ξ correspond to the negative definite cobordism maps
W ′

n : Yγ+nμ(Y ) → Y for n � 0 equipped with certain Spinc structures. See [11, theorem 4·1]
for details.

The Heegaard Floer homology of any Spinc rational homology sphere contains a non-
torsion submodule T + = F[U, U−1]/U · F[U ], called the tower. On the level of homology,
both v+

ξ and h+
ξ induce grading homogeneous maps between towers, which are multiplica-

tion by U N for some integer N ≥ 0. We denote the corresponding non-negative integers for
v+

ξ and h+
ξ by Vξ and Hξ respectively, which are also known as the local h-invariants of

Rasmussen [12]. An analogue of Property 3·1 shows that for each ξ ∈ Spinc(Y, K ),
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Vξ ≥ Vξ+P D[μ] ≥ Vξ − 1. (4·1)

Given any s ∈ Spinc(Yγ (K )), let

A+
s =

⊕
{ξ∈Spinc(Yγ (K ),Kγ )|GYγ (K ),Kγ (ξ)=s}

A+
ξ

B+
s =

⊕
{ξ∈Spinc(Yγ (K ),Kγ )|GYγ (K ),Kγ (ξ)=s}

B+
ξ ,

where Kγ denotes the oriented dual knot of the knot K in the surgered manifold
Yγ (K ), and GYγ (K ),Kγ

: Spinc(Yγ (K ), Kγ ) → Spinc(Yγ (K )). Note that Spinc(Y, K ) = Spinc

(Yγ (K ), Kγ ), since they both represent the set of the relative Spinc structures on the knot
complement Y − K = Yγ (K ) − Kγ . Let

D+
s :A+

s −→B+
s , (ξ, a) �−→ (ξ, v+

ξ (a)) + (ξ + P D[γ ], h+
ξ (a)).

The knot Floer complex of the knot K and the Heegaard Floer homology of the manifold
obtained from distance one surgery along K are related by:

THEOREM 4·1 (Ozsváth–Szabó, [11, theorem 6·1]). For any s ∈ Spinc(Yγ ), the Heegaard
Floer homology H F+(Yγ (K ), s) is the homology of the mapping cone X+

s of the chain map
D+

s :A+
s →B+

s .

Ozsváth and Szabó show that there exist grading shifts on A+
s and B+

s , which gives a
consistent relative Z-grading on X+

s . Actually, the shift can be fixed such that the grading
is the same as the absolute Q-grading of H F+(Yγ (K ), s). It is important to point out that
these shifts only depend on the homology class of the knot.

Denote

A+
ξ = H∗(A+

ξ ) (resp. B+
ξ = H∗(B+

ξ )), A+
s = H∗(A+

s ) (resp. B+
s = H∗(B+

s )).

Let

v+
ξ :A+

ξ −→B+
ξ , h+

ξ :A+
ξ −→B+

ξ+P D[γ ]

be the maps induced on homology by v+
ξ and h+

ξ respectively, and let

D+
s :A+

s −→B+
s

be the map induced on homology by D+
s . Theorem 4·1 implies the exact triangle

A+
s

D+
s �� B+

s

incl∗
��

H F+(Yγ (K ), s).

proj∗

��������������

Therefore, to compute either H F+(Yγ (K ), s) or d(Yγ (K ), s), we study the kernel and
cokernel of the map D+

s .
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280 ZHONGTAO WU AND JINGLING YANG

Fig. 3. An example of a simple knot K (5, 1, 2) in L(5, 1).

Finally, we remark that there is an analogous mapping cone formula for the hat version of
Heegaard Floer homology. One can define Âξ , B̂ξ , D̂ξ and the mapping cone X̂s of D̂ξ , and
the Heegaard Floer homology Ĥ F(Yγ (K ), s) can be calculated by the homology of X̂s.

4·2. Simple knots in lens spaces

To compute the d-invariant of the surgered manifold Yγ (K ), we need to fix the grading
shift in the mapping cone formula. Since the grading shift only depends on the homology
class of the knot, we may want to find it using a knot of the same homology class with
simpler knot Floer complex. Simple knots in lens spaces will play such a role.

For a lens space L(p, q), there is a standard genus one Heegaard diagram (e.g., L(5, 1) in
Figure 3), where we identify opposite sides of a rectangle to give a torus. We use a horizontal
red curve to represent the α curve and use a blue curve of slope p/q to represent the β curve.
They intersect at p points, x0, x1, . . . , x p−1, where we label them in the order they appear
on the α curve. The α (resp. β) curve gives a solid torus Uα (resp. Uβ).

Definition 4·2. The simple knot K (p, q, k) ⊂ L(p, q) is an oriented knot defined as the
union of the arc joining x0 to xk in Uα and the arc joining xk to x0 in Uβ .

To draw the simple knot K (p, q, k) in the Heegaard diagram, we place two points x ′
0 and

x ′
k next to x0 and xk respectively, and connect them in Uα and Uβ , e.g., K (5, 1, 2) in L(5, 1)

illustrated in Figure 3.
In our case, the lens space is L(p, 1) for some prime number p ≥ 5, and we consider

simple knots K (p, 1, k) in L(p, 1). If we represent K (p, 1, k) in the standard genus one
Heegaard diagram as described above, then the intersection points x0, . . . , x p−1 represent p
different Spinc structures. Let η(xi , x j ) denote the one chain constructed by going from xi

to x j along α curve and from x j to xi along β curve. The relative Alexander grading of xi

and x j is defined as

A(xi , x j ) = [η(xi , x j )] ∈ H1(L(p, 1) − K (p, 1, k)) ∼=Z.

We can fix the absolute Alexander gradings such that these values are symmetric about 0.

Example 4·3. Consider the simple knot K (5, 1, 2) in Figure 3. One can check that
[η(x3, x4)] = [η(x4, x0)] = [η(x0, x1)] = −2x and [η(x1, x2)] = [η(x2, x3)] = 3x for a gen-
erator x ∈ H1(L(5, 1) − K (5, 1, 2)) ∼=Z. Hence the absolute Alexander gradings of
x3, x4, x2, x0 and x1 are −3, −1, 0, 1 and 3 respectively. Here, we fix the absolute Alexander
grading by making it symmetric about 0.
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Fig. 4. The mapping cone of 1-surgery along K (5, 1, 2). Note that all the elements on the left of −5 are −,
and all the elements on the right of 5 are +.

For a general simple knot K (p, 1, k) in L(p, 1), we have that

[η(xk+1, xk+2)] = [η(xk+2, xk+3)] = · · · = [η(x p−1, x0)] = [η(x0, x1)] = −kx

[η(x1, x2)] = · · · = [η(xk, xk+1)] = (p − k)x,

where x is a generator of H1(L(p, 1) − K (p, 1, k)). Thus, the Alexander gradings of the p
points are

0, ±(p − k), ±2(p − k), . . . , ±k

2
· (p − k), ±k

2
, ±3k

2
, . . . , ±(p − k − 2) · k

2

when k is even; (4·2)

0, ±k, ±2k, . . . , ± p − k

2
· k, ± p − k

2
, ±3(p − k)

2
, . . . , ±(k − 2) · (p − k)

2

when k is odd. (4·3)

Note that in either case, the largest and smallest Alexander grading are ±(k/2) · (p − k)

respectively.
For our purpose, we also introduce Rasmussen’s notation for computing the hat version of

the mapping cone formula [13]. We represent the chain complex D̂s : Âs → B̂s for a simple
knot K (p, 1, k) by a type of diagram shown in Figure 4: here, the upper row of the diagram
represents Âξ , while the lower row of the diagram represents B̂ξ . We denote Âξ by a + if
v̂ξ is nontrivial but ĥξ is trivial, and we denote Âξ by a − if ĥξ is nontrivial but v̂ξ is trivial.
Denote Âξ by a ◦ if both v̂ξ and ĥξ are nontrivial. Each B̂ξ are represented by a filled circle.
Nontrivial maps are indicated by arrows, and trivial maps are omitted.

The complex D̂s : Âs → B̂s can be decomposed into summands corresponding to the
connected components of the diagram. For each summand, we denote it by an interval [a, b],
where a and b are labelled with a + or − and all the elements in between are ◦. We can
see that summands of types [+, +] and [−, −] are acyclic and summands of types [−, +]
and [+, −] have homology of rank one. Moreover, when the summand is type [−, +], the
homology group F is supported by an element in the top row (i.e. in the kernel of D̂s), and
when the summand is type [+, −], the homology group F is supported in the bottom row
(i.e. the cokernel of D̂s).

4·3. The proof of the d-invariant surgery formula for homologically essential knots

In this section, we will deduce our d-invariant surgery formula for homologically essential
knots in L(p, 1). We split it into two cases m > k2/p and m < k2/p because the truncated
mapping cones are different in the two cases.
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Fig. 5. The mapping cone X+
s with s= GYγ (K ),Kγ (ξ).

PROPOSITION 4·4. Let Y = L(p, 1) with p ≥ 5 prime and K be a homologically essential
knot in Y with winding number 1 ≤ k ≤ p − 1/2. Suppose that Y ′ is an L-space obtained
from γ = (mμ + λ)-surgery on K with m > k2/p, and |H1(Y ′)| ≥ 5 is odd. If p = 5, 7 or
m ≥ (p + k) · k/2p + 1, then there exists a non-negative integer Vξ0 , a unique self-conjugate
Spinc structure t on Y ′ and a unique self-conjugate Spinc structure tM on the Seifert fiber
space M(0, 0; (m − k, 1), (p − k, 1), (k, 1)), abbreviated M, satisfying

d(Y ′, t) = d(M, tM) − 2Vξ0 . (4·4)

If, in addition, Vξ0 ≥ 2, then there exists Vξ0+P D[μ] satisfying Vξ0 − 1 ≤ Vξ0+P D[μ] ≤ Vξ0 and

d(Y ′, t+ i∗ P D[μ]) = d(M, tM + i∗ P D[μ]) − 2Vξ0+P D[μ], (4·5)

where i : Y − K → Yγ (K ) is inclusion.

PROPOSITION 4·5. Given Y , K and k as above, suppose that Y ′ is an L-space obtained from
γ = (mμ + λ)-surgery on K with m < k2/p, and |H1(Y ′)| �= 1 is odd. If p = 5, 7 or m ≤
(3k − p) · k/2p − 1, then there exists a non-negative integer Vξ0 , a unique self-conjugate
Spinc structure t on Y ′ and a unique self-conjugate Spinc structure tM on the Seifert fiber
space M(0, 0; (m − k, 1), (p − k, 1), (k, 1)), abbreviated M, satisfying

d(Y ′, t) = d(M, tM) + 2Vξ0 . (4·6)

If, in addition, Vξ0 ≥ 2, then there exists Vξ0+P D[μ] satisfying Vξ0 − 1 ≤ Vξ0+P D[μ] ≤ Vξ0 and

d(Y ′, t+ i∗ P D[μ]) = d(M, tM + i∗ P D[μ]) + 2Vξ0+P D[μ], (4·7)

where i : Y − K → Yγ (K ) is inclusion.

Remark 4·6. In our notation for the Seifert fiber space M(0, 0; (m − k, 1), (p − k, 1),

(k, 1)), the two 0’s means the base space for M is of genus 0 and without boundary, and
(m − k, 1), (p − k, 1), and (k, 1) specify the type of its exceptional fibers.

Both propositions are deduced from the mapping cone formula. We will discuss the case
pm − k2 > 0 in detail, and the other case pm − k2 < 0 can be obtained by reversing the
orientation.

Fix a ξ ∈ Spinc(Y, K ) =Z. Then the mapping cone X+
s is given in Figure 5, where

s= GYγ (K ),Kγ
(ξ). Since

[γ ] = m[μ] + [λ] = (pm − k2)[θ],
the mapping cone X+

s consists of A+
ξ+ j (pm−k2)·P D[θ] and B+

ξ+ j (pm−k2)·P D[θ] for j ∈Z.
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Fig. 6. The truncated mapping cone X
+,N
s with s= GYγ (K ),Kγ (ξ) when pm − k2 > 0.

For a given ξ , there exists some positive integer N such that v+
ξ+i ·P D[μ] and h+

ξ−i ·P D[μ] are
quasi-isomorphisms when i > N . In the case pm − k2 > 0, we see that [γ ] = (pm − k2) · [θ]
has the same sign as [μ] = p · [θ]. Therefore the mapping cone X+

s is quasi-isomorphic to
the truncated mapping cone, denoted by X+,N

s , shown in Figure 6.
As Yγ (K ) is an L-space obtained by a distance one surgery from an L-space, it follows

from [1, lemma 6·7] that

Âξ
∼= F, A+

ξ
∼= T +

for all ξ ∈ Spinc(Y, K ). As Y = L(p, 1) itself is an L-space, we also have

B̂ξ
∼= F, B+

ξ
∼= T +.

This implies that H F+(Yγ (K ), s) for any s ∈ Spinc(Yγ (K )) is completely determined by
the integers Vξ and Hξ for ξ ∈ Spinc(Y, K ) with GYγ (K ),Kγ

(ξ) = s.
Fix n � 0, and choose the parity of n such that |H1(Ynμ+λ)| = pn − k2 is odd. Then

there exists only one self-conjugate Spinc structure in Spinc(Ynμ+λ), denoted by t0. For all
sufficient large n, there is a map

� : Spinc(Yλ+nμ(K )) −→ Spinc(Y, K ).

Let ξ0 = �(t0). The relative Spinc structure ξ0 has some key properties given in the following
lemmas, which we can prove by the same arguments as in [5].

LEMMA 4·7 ([5, proposition 4·5]). Let [l] ∈ H1(Y − K ). Then Vξ0+P D[l] = Hξ0−P D[l].

LEMMA 4·8 ([5, lemma 4·7]). The Spinc structure s0 = GYγ (K ),Kγ
(ξ0) is a self-conjugate

Spinc structure on Yγ (K ).

LEMMA 4·9 ([5, lemma 4·8]). Let �+
ξ0

:X+
s0

→ A+
ξ0

be the natural quotient map, where
s0 = GYγ (K ),Kγ

(ξ0). Suppose that Yγ (K ) is an L-space, then �+
ξ0

is a quasi-isomorphism.

LEMMA 4·10 ([5, lemma 4·9]). Suppose that Yγ (K ) is an L-space, and suppose Vξ0 ≥ 2.
Then the natural quotient map �+

ξ0+P D[μ] :X+
s0+i∗ P D[μ] → A+

ξ0+P D[μ] is a quasi-isomorphism,
where i∗ is induced by the inclusion i : Y − K → Yγ (K ).

Proof of Proposition 4·4. First, we use the truncated mapping cone X+
s0

to show

d(Y ′, s0) = d(M, s0) − 2Vξ0 .

By Lemma 4·8, s0 is self-conjugate, and it is the unique self-conjugate Spinc structure on Y ′

and M since |H1(Y ′)| = |H1(M)| is assumed to be odd.
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284 ZHONGTAO WU AND JINGLING YANG

Fig. 7. The mapping cone of K (p, 1, k) when m > (p + k) · k/2p. All the elements to the left of the
summand [−, +] are −, and all the elements to the right are +.

According to Lemma 4·9, the nonzero element of minimal grading in H F+(Y ′, s0) is
supported in A+

ξ0
, so the minimal grading in A+

ξ0
is the d-invariant after an appropriate grading

shift. Let σ(ξ0) denote this grading shift. Then we have

d(Y ′, s0) = d(Y, GY,K (ξ0)) − 2Vξ0 + σ(ξ0). (4·8)

Recall that grading shifts only depend on the homology class of the knot. So we use the
simple knot in the same homology class as K , i.e., K (p, 1, k), to compute the grading
shift. We can see that γ -surgery along K (p, 1, k) gives the Seifert fiber space M(0, 0; (m −
k, 1), (p − k, 1), (k, 1)). This computation is standard (cf. [2, lemma 9]).

We claim that if p = 5, 7 or m ≥ (p + k) · k/2p, then for the mapping cone X+
s0

of
K (p, 1, k), the nonzero element of minimal grading in H F+(M, s0) is supported in A+

ξ0
.

We remark that one cannot directly apply Lemma 4·9 here because the surgered mani-
fold M(0, 0; (m − k, 1), (p − k, 1), (k, 1)) is not necessarily an L-space. By Lemma 4·7,
ξ0 has the symmetric property Vξ0+P D[l] = Hξ0−P D[l] for any [l] ∈ H1(Y − K ). We see from
(4·2) and (4·3) that the relative Spinc structure with Alexander grading 0 is the unique rela-
tive Spinc structure which has this symmetric property, hence the relative Spinc structure ξ0

corresponds to 0. Now we consider the hat version of the mapping cone.
When m is large enough such that pm − k2 ≥ k/2 · (p − k), where the right hand side is

the largest Alexander grading of generators in the knot Floer complex of K (p, 1, k), the
mapping cone is well-ordered, i.e., there is one summand of type [−, +] in the middle and
all the elements of the top row to left of the [−, +] summand are marked −, while all the
elements to the right of the [−, +] summand are marked +, as shown in Figure 7. Hence the
homology is isomorphic to F, and �̂ξ0 : X̂s0 → Âξ0 is a quasi-isomorphism. It follows that
�+

ξ0
:X+

s0
→ A+

ξ0
is also a quasi-isomorphism, so the nonzero element of minimal grading in

H F+(M, s0) is supported in A+
ξ0

.
When p = 5, k = 1 and m > 0, we can check that the mapping cone is also well-ordered.

Hence, the minimal grading is also supported in A+
ξ0

. When p = 5 and k = 2, the mapping
cone for m = 1 is shown in Figure 4 whereas the mapping cone for m = 2 is well-ordered.
In either case, we see that the minimal grading is supported in A+

ξ0
. Hence the claim is true

when p = 5. Finally, the case p = 7 can be proved in a similar way, which we omit here.
Once we understand where the nonzero element of minimal grading is supported, we can

compute the d-invariant by the formula

d(M, s0) = d(Y, GY,K (p,1,k)(ξ0)) + σ(ξ0), (4·9)

where we use the fact that Vξ0 for the simple knot K (p, 1, k) equals 0. Comparing (4·8) and
(4·9), we obtain the desired equality

d(Y ′, s0) = d(M, s0) − 2Vξ0 .

The second equality (4·5) is proved by the same strategy. We use Lemma 4·10 instead of
Lemma 4·9, and under the assumption |H1(Y ′)| = pm − k2 ≥ 5 we can show that �+

ξ0+P D[μ]

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004121000220
Downloaded from https://www.cambridge.org/core. Chinese University of Hong Kong, on 04 Mar 2022 at 08:35:29, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004121000220
https://www.cambridge.org/core


Studies of distance one surgeries on the lens space L(p, 1) 285

for simple knot is a quasi-isomorphism when p = 5, 7 or m ≥ (p + k) · k/2p + 1. Note that
the inequality m ≥ (p + k) · k/2p + 1 implies pm − k2 ≥ k/2 · (p − k) + p, which guaran-
tees that the mapping cone of the simple knot is well-ordered. This completes the proof.

Proof of Proposition 4·5. The proof is similar to the case pm − k2 > 0. We consider −Y ′

as an L-space obtained from (−mμ + λ)-surgery along a knot in L(−p, 1) and then apply
the same argument. In particular, the inequality m ≤ (3k − p) · k/2p − 1 implies pm − k2 ≤
−(k/2) · (p − k) − p, which guarantees that the mapping cone of the simple knot is well-
ordered.

5. Surgeries along homologically essential knots

5·1. Distance one surgeries on L(p, 1) with p ≥ 5 prime and k = 1

We divide distance one surgeries along homologically essential knot in L(p, 1) into two
cases: k = 1 and k > 1. The case k = 1 is simpler as the Seifert fiber space M appearing in
our d-invariant surgery formula is a lens space, of which the d-invariant is easier to compute.

More precisely, the Seifert fiber space M = M(0, 0; (m − k, 1), (p − k, 1), (k, 1)) in
Proposition 4·4 and 4·5 reduces to the lens space L(pm − 1, p) when k = 1. Note that
the self-conjugate Spinc structure tM in our d-invariant surgery formula corresponds to
(p − 1)/2, as it is the unique self-conjugate Spinc structure on L(pm − 1, p). In addition,
the Spinc structure tM + i∗ P D[μ] in (4·5) and (4·7) corresponds to (3p − 1)/2 up to Spinc-
conjugation, because the difference of the two Spinc structures (p − 1)/2 and (3p − 1)/2 is
±i∗ P D[μ].

For the convenience of the reader, we compute the d-invariant of the relevant lens spaces
using the recursive formula (2·4) and list the results below.

For m ≥ 2,

d(L(pm − 1, 1), 0) = pm − 2

4
(5·1)

d(L(pm − 1, 1), j) = −1

4
+ (2 j − (pm − 1))2

4(pm − 1)
(5·2)

d

(
L(pm − 1, p),

p − 1

2

)
= m − 2

4
(5·3)

d

(
L(pm − 1, p),

3p − 1

2

)
= pm2 − (6p + 1)m + 4p + 6

4(pm − 1)
. (5·4)

For m ≤ −2,

d(L(−pm + 1, 1), 0) = −pm

4
(5·5)

d(L(−pm + 1, 1), j) = −1

4
+ (2 j − (−pm + 1))2

4(−pm + 1)
(5·6)

d

(
L(−pm + 1, p),

p − 1

2

)
= −m

4
(5·7)

d

(
L(−pm + 1, p),

3p − 1

2

)
= pm2 + (4p − 1)m + 4p − 4

4(−pm + 1)
. (5·8)
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Proof of Theorem 1·2(ii). Suppose the lens space L(n, 1) with n odd is obtained by (mμ +
λ)-surgery along K . Since |n| = pm − 1, m is an even integer. The proof is based on the
computation of d-invariant, which we divide into 3 cases:

Case (i) m > 0.
By (2·3), we have |n| = pm − 1.

If n = pm − 1, (4·4) gives

d(L(pm − 1, 1), 0) = d

(
L(pm − 1, p),

p − 1

2

)
− 2Vξ0,

where we use the Spinc structure corresponding to 0 on L(pm − 1, 1) as it is the unique
self-conjugate Spinc structure. Thus

2Vξ0 = m(1 − p)

4
< 0,

which contradicts the fact that Vξ0 is non-negative.
If n = −pm + 1, Formula (4·4) gives

−d(L(pm − 1, 1), 0) = d

(
L(pm − 1, p),

p − 1

2

)
− 2Vξ0,

which implies

Vξ0 = m(p + 1) − 4

8
.

When p = 5 and m = 2, we have Vξ0 = 1 < 2, so (4·5) is not applicable here. In this case, we
cannot obstruct distance one surgery from L(5, 1) to L(−9, 1) by our d-invariant surgery
formula. So that gives one of the possible solutions in the statement of Theorem 1·2 (ii).

Otherwise, we have p > 5 or m ≥ 4, so the non-negative integer Vξ0 =
(m(p + 1) − 4)/8 ≥ 2. Applying (4·5), we have

− d(L(pm − 1, 1), 0 + i∗ P D[μ]) = d

(
L(pm − 1, p),

3p − 1

2

)
− 2Vξ0+P D[μ]. (5·9)

Equation (5·2) implies −d(L(pm − 1, 1), 0 + i∗ P D[μ]) = 1/4 − (2 j − (pm − 1))2/

4(pm − 1) for some j ∈ [0, pm − 2]. Plugging it into (5·9), we have

1

4
− (2 j − (pm − 1))2

4(pm − 1)
= pm2 − (6p + 1)m + 4p + 6

4(mp − 1)
− 2Vξ0+P D[μ] (5·10)

Since Vξ0 − 1 ≤ Vξ0+P D[μ] ≤ Vξ0 , there are two cases:
Case (i) (a): Vξ0+P D[μ] = Vξ0 = (m(p + 1) − 4)/8. Equation (5·10) can be simplified to

j2 − (pm − 1) j + p + 1 − mp = 0.

We claim that the function f (x) = x2 − (pm − 1)x + p + 1 − pm has no root in [0, pm −
2]. Indeed, f (x) < 0 for all x ∈ [0, pm − 2] since its axis of symmetry is x = (pm − 1)/2
and f (0) = p + 1 − mp < 0. So this case is impossible.

Case (i) (b): Vξ0+P D[μ] = Vξ0 − 1 = (m(p + 1) − 4)/8 − 1. Equation (5·10) can be simpli-
fied to

j2 − (pm − 1) j + p + pm − 1 = 0.
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Let f (x) = x2 − (pm − 1)x + p + pm − 1. The axis of symmetry of f (x) is x =
pm − 1/2, and we can see that f (0) = p + pm − 1 > 0, f (1) = 1 + p > 0 and f (2) =
p + 5 − pm < 0. Therefore, the roots of f (x) lie in (1, 2) and (pm − 3, pm − 2), which
are not integers. This gives a contradiction.

Case (ii) m < 0.
By (2·3), we have |n| = −pm + 1. If n = pm − 1, Formula (4·6) gives

−d(L(−pm + 1, 1), 0) + d

(
L(−pm + 1, p),

p − 1

2

)
= 2Vξ0,

where we use the Spinc structure corresponding to 0 on L(pm − 1, 1) as it is the unique
self-conjugate Spinc structure on it. Thus

2Vξ0 = m(p − 1)

4
< 0,

which contradicts the fact that Vξ0 is non-negative. If n = −pm + 1, Formula (4·6) gives

d(L(−pm + 1, 1), 0) + d

(
L(−pm + 1, p),

p − 1

2

)
= 2Vξ0,

which implies the integer

Vξ0 = −m(p + 1)

8
≥ 2,

since m ≤ −2 and p ≥ 5. Hence, we can apply (4·7) and get

d(L(−pm + 1, 1), 0 + i∗ P D[μ]) + d

(
L(−pm + 1, p),

3p − 1

2

)
= 2Vξ0+P D[μ]. (5·11)

By (5·6), d(L(−pm + 1, 1), 0 + i∗ P D[μ]) = −1/4 + (2 j − (−pm + 1))2/4(−pm + 1)

for some j ∈ [0, −pm]. Plugging it into (5·11), we have

− 1

4
+ (2 j − (−pm + 1))2

4(−pm + 1)
+ pm2 + (4p − 1)m + 4p − 4

4(−mp + 1)
= 2Vξ0+P D[μ]. (5·12)

Since Vξ0 − 1 ≤ Vξ0+P D[μ] ≤ Vξ0 , there are two cases:
Case (ii) (a): Vξ0+P D[μ] = Vξ0 = −m(p + 1)/8. Equation (5·12) can be simplified to

j2 − (−pm + 1) j + p + pm − 1 = 0.

We claim that the function f (x) = x2 − (−pm + 1)x + p + pm − 1 has no root in
[0, −pm]. Indeed, f (x) < 0 for any x ∈ [0, −pm] since its axis of symmetry is x =
−mp + 1/2 and f (0) = p + pm − 1 < 0. So this case is impossible.

Case (ii) (b): Vξ0+P D[μ] = Vξ0 − 1 = −m(p + 1)/8 − 1. Equation (5·12) can be simpli-
fied to

j2 − (−pm + 1) j + p − pm + 1 = 0.

Let f (x) = x2 − (−pm + 1)x + p − pm + 1. The axis of symmetry of f (x) is x =
−pm + 1/2, and f (0) = p − pm + 1 > 0, f (1) = p + 1 > 0 and f (2) = p + 3 + pm < 0.
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(a) (b)

Fig. 8. The plumping diagram of M(0, 0; (m − k, 1), (p − k, 1), (k, 1)) when k > 1.

So the roots of f (x) lie in the intervals (1, 2) and (−pm − 1, −pm), which are not integers.
This gives a contradiction.

Case (iii): m = 0. By (2·3), we have |n| = 1. In this case, we indeed have a distance one
surgery on L(p, 1) yielding S3 given as the double branched cover of the band surgery in
Figure 1(e).

5·2. d-invariants of Seifert fiber spaces

To use the d-invariant surgery formula for homologically essential knots in L(p, 1) with
k > 1, we must compute the d-invariant of the Seifert fiber space M(0, 0; (m − k, 1), (p −
k, 1), (k, 1)). In this subsection, we briefly review the algorithm due to Ozsváth and Szabó,
which computes the d-invariant of a larger class of 3-manifolds, namely, the plumbed
3-manifolds [9].

Let N be a Seifert fiber space. Then N can be regarded as the boundary of a plumbed 4-
manifold X , which is constructed by plumbing disc bundles over S2 according to a diagram
G. For example, in our case N = M(0, 0; (m − k, 1), (p − k, 1), (k, 1)), and the plumbing
diagram G is shown in Figure 8.

Suppose N is a rational homology sphere. We have the following exact sequence:

Spinc(X)

c1

��

�� Spinc(N )

c1

��
0 �� H2(X) �� H 2(X) �� H 2(N ) �� 0

0 �� Zb2(X) Q �� Zb2(X) �� cokerQ �� 0.

Let V (G) denote the set of vertices of G. For each v ∈ V (G) let Sv be the sphere corre-
sponding to v. The homology H2(X) is free and generated by the homology class of spheres
Sv. Since X is simply-connected, the cohomology H 2(X) = Hom(H2(X),Z). As H 2(X) is
free, it can be represented over the basis [Sv]∗, the Hom-dual of [Sv]. Over the basis [Sv]
and [Sv]∗, the map H2(X) → H 2(X) is represented by the matrix of the intersection form
Q : H2(X) × H2(X) →Z.
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The set of characteristic vectors for G, denoted by Char(G), consists of those w ∈ H 2(X)

satisfying

〈w, [Sv]〉 ≡ 〈[Sv], [Sv]〉 (mod 2)

for all v ∈ V (G). The set of Spinc structures on X is in one-to-one correspondence with the
characteristic vectors for G by the first Chern class c1. We use t(w) to represent the Spinc

structure on N that is determined by the equivalence class w ∈ Char(G) in coker Q. If s, s′ ∈
Spinc(X) restrict to the same Spinc structure on N , then their corresponding characteristic
vectors w, w′ ∈ Char(G) are congruent modulo the image of 2H2(X) in H 2(X); equivalently,
(w − w′)Q−1 ∈ H2(X).

Denote by ω(v) and d(v) the weight and degree of a vertex v in G, respectively. The
vertex v is called bad if ω(v) > −d(v). Ozsváth and Szabó [9] show that if G is negative
definite and contains at most one bad vertex, then

d(N , t) = 1

4

(
max

w:t(w)=t
〈w, w〉 + |G|

)
. (5·13)

Moreover, they give an algorithm to find the characteristic covector w that maximises (5·13),
which we review below.

Consider all w ∈ Char(G) satisfying

ω(v) + 2 ≤ 〈w, [Sv]〉 ≤ −ω(v) for all v ∈ V (G). (5·14)

Let w0 = w. We then construct wi inductively as follows: if there exists v j ∈ V (G) such that

〈wi , [Sv j ]〉 = −ω(v j ),

then we let wi+1 = wi + 2P D[Sv j ] and call this action a pushing down the value of wi

on v j . The path {w0, w1, . . . } will terminate at some wn when one of the followings
happens:

(i) ω(v) ≤ 〈wn, [Sv]〉 ≤ −ω(v) − 2 for all v ∈ V (G). In this case, the path is called
maximising;

(ii) 〈wn, [Sv]〉 > −ω(v) for some v ∈ V (G). In this case, the path is called non-
maximising.

Ozsváth and Szabó proved that the maximiser of (5·13) is contained in the set of
characteristic vectors which satisfy (5·14) and initiate a maximising path.

5·3. Distance one surgeries on L(p, 1) with p ≥ 5 prime and k > 1

The goal of this section is to prove Theorem 1·2(iii): we want to show that a distance one
surgery never yields a lens space L(n, 1) when m ≥ k + 3. We achieve this by showing that
the d-invariant of the lens space L(n, 1) never equals the value obtained from our d-invariant
surgery formula for homologically essential knots.

The first step is to compute the d-invariant of Seifert fiber space M(0, 0; (m − k, 1), (p −
k, 1), (k, 1)). When m ≥ k + 3, the negative-definite plumbing diagram of M on which we
apply Ozsváth–Szabó’s formula (5·13) is given in Figure 8(a). We compute the intersection
form Q associated to this plumbing diagram:
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QM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m−k−1︷ ︸︸ ︷
−2 1
1 −2

. . . 1
1 −2 1

p−k−1︷ ︸︸ ︷
−2 1
1 −2

. . . 1
1 −2 1

k−1︷ ︸︸ ︷
−2 1
1 −2

. . . 1
1 −2 1

1 1 1 −3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The next lemma gives the maximiser of (5·13) for each Spinc structure on M .

LEMMA 5·1. The maximisers for the pm − k2 number of Spinc structures on M =
M(0, 0; (m − k, 1), (p − k, 1), (k, 1)) with m ≥ k + 3 and k > 1 are given as follows:

(i) w1
2(i, j) = (0, . . . , 0, 2, 0, . . . , 0|0, . . . , 0, 2, 0, . . . , 0|0, . . . , 0| − 1). Here,

1 ≤ i ≤ m − k − 1 and 1 ≤ j ≤ p − k − 1 denote the place where 2 appears (e.g.,
w1

2(1, 1) = (2, . . . , 0|2, . . . , 0|0, . . . , 0| − 1));

w2
2(i, j) = (0, . . . , 0, 2, 0, . . . , 0|0, . . . , 0|0, . . . , 0, 2, 0, . . . , 0| − 1). Here,

1 ≤ i ≤ m − k − 1 and 1 ≤ j ≤ k − 1 denote the place where 2 appears.;

w3
2(i, j) = (0, . . . , 0|0, . . . , 0, 2, 0, . . . , 0|0, . . . , 0, 2, 0, . . . , 0| − 1). Here

1 ≤ i ≤ p − k − 1 and 1 ≤ j ≤ k − 1 denote the place where 2 appears;

(ii) w1
1(i, ±1) = (0, . . . , 0, 2, 0, . . . , 0|0, . . . , 0|0, . . . , 0| ± 1). Here, 1 ≤ i ≤

m − k − 1 denotes the place where 2 appears; the last element can be either
+1 or −1;

w2
1(i, ±1) = (0, . . . , 0|0, . . . , 0, 2, 0, . . . , 0|0, . . . , 0| ± 1). Here, 1 ≤ i ≤

p − k − 1 denotes the place where 2 appears; the last element can be either
+1 or −1;

w3
1(i, ±1) = (0, . . . , 0|0, . . . , 0|0, . . . , 0, 2, 0, . . . , 0| ± 1). Here, 1 ≤ i ≤ k − 1

denotes the place where 2 appears; the last element can be either +1 or −1;

w4
1 = (0, . . . , 0|0, . . . , 0|0, . . . , 0|3);
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(iii) w1
0 = (0, . . . , 0|0, . . . , 0|0, . . . , 0|1);

w2
0 = (0, . . . , 0|0, . . . , 0|0, . . . , 0| − 1).

In the above notation, we divide vectors by vertical bars to 4 blocks, which contain m − k −
1, p − k − 1, k − 1, and 1 elements, respectively. The subscripts in w stand for the number
of 2 in the corresponding vector, and the superscripts are used to distinguish different type
of those vectors which contain the same number of 2.

Proof. We see that there is no bad vertex in the plumbing diagram of M . It follows from [9,
lemma 2·7, proposition 3·2] that the number of characteristic vectors which satisfy (5·14)
and initiate a maximising path must equal the number of Spinc structures over M .

Given a vector w satisfying (5·14), suppose w contains a substring (2, 0, . . . , 0, 2) in one
of the blocks in the above vector notation. When we push down the 2’s from left to right
in the substring, we will eventually obtain a 4 at the last spot of the substring. Thus, we
conclude that if there exist two vertices v ∈ V (G) in the same block satisfying 〈w, [Sv]〉 =
−ω(v), then w initiates a non-maximising path. So for a maximiser w, there are at most four
v ∈ V (G) such that 〈w, [Sv]〉 = −ω(v); because otherwise, the pigeonhole principle implies
that there must be two of v ∈ V (G) in the same block.

Now we consider the following 5 cases:
(1) there are four v ∈ V (G) such that 〈w, [Sv]〉 = −ω(v). Then the vector looks like

(0, . . . , 0, 2, 0, . . . , 0|0, . . . , 0, 2, 0, . . . , 0|0, . . . , 0, 2, 0, . . . , 0|3). Pushing down the last
element 3, we will have two 2’s in each of the first 3 blocks. So this w initiates a
non-maximising path;

(2) there are three v ∈ V (G) such that 〈w, [Sv]〉 = −ω(v). If w has two 2’s in two of the
first 3 blocks and a 3 in the last block, then similar to (1) we will eventually get two 2’s in one
block after pushing down the 3. If w looks like (0, . . . , 0, 2, 0, . . . , 0|0, . . . , 0, 2, 0, . . . , 0|
0, . . . , 0, 2, 0, . . . , 0| j) with −1 ≤ j ≤ 1, then after we push down the 2’s, the last element
j will change to j + 6 > 3;

(3) there are two v ∈ V (G) such that 〈w, [Sv]〉 = −ω(v). If w has a 3 in the last block
and a 2 in one of the first 3 blocks, then similar to (1) we will eventually get two 2’s in one
block. If w has two 2’s, then after we push down the 2’s, the last element j will change to
j + 4. So j can only be -1. By doing a similar pushing down, this shows that vectors of type
w1

2, w2
2 and w3

2 initiate maximising paths;
(4) there are one v ∈ V (G) such that 〈w, [Sv]〉 = −ω(v). Similar argument implies that

only the vectors of type w1
1, w2

1, w3
1, w4

1 initiate maximising paths;
(5) there is no v ∈ V (G) such that 〈w, [Sv]〉 = −ω(v). In fact, only w1

0 and w2
0 are vectors

of such type, and both of them initiate maximising paths;
In summary, we have found a total number of pm − k2 vectors which agrees with the num-

ber of Spinc structures over M . Each of them is a maximiser of (5·13) for the corresponding
Spinc structure.

The next goal is to compute d(M, tM) and d(M, tM + i∗ P D[μ]), where tM is the unique
self-conjugate Spinc structure on M . The following lemma determines the corresponding
maximisers.
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292 ZHONGTAO WU AND JINGLING YANG

Fig. 9. The surgery description L= ((K1, m1), . . . , (K p+m−k−2, m p+m−k−2)) of the plumbed 4-manifold
X with ∂ X = M . Denote by Di a small normal disk to Ki , and ∂ Di = μi the meridian of Ki .

LEMMA 5·2. Let M = M(0, 0; (m − k, 1), (p − k, 1), (k, 1)) with m ≥ k + 3 and k > 1.

(i) When k is even, the characteristic vector w3
1(k/2, −1) =

(0, . . . , 0|0, . . . , 0|0, . . . , 0, 2, 0, . . . , 0| − 1) (resp. w2
2(1, k/2) =

(2, . . . , 0|0, . . . , 0|0, . . . , 0, 2, 0, . . . , 0| − 1)) is the maximiser of (5·13) in
the equivalence class, which corresponds to the Spinc structure tM (resp.
tM + i∗ P D[μ]).

(ii) When k is odd, the characteristic vector w2
1(p − k)/2, −1 =

(0, . . . , 0|0, . . . , 0, 2, 0, . . . , 0| 0, . . . , 0| − 1) (resp. w1
2(1, p − k)/2 =

(2, . . . , 0|0, . . . , 0, 2, 0, . . . , 0|0, . . . , 0| − 1)) is the maximiser of (5·13) in
the equivalence class, which corresponds to the Spinc structure tM (resp.
tM + i∗ P D[μ]).

Proof. Since the first Chern class c1 of a self-conjugate Spinc structure is 0, the unique
self-conjugate Spinc structure tM must correspond to the equivalence class of characteristic
vectors which are in the image of QM .

When k is even, we can see that among all maximisers, only w3
1(

k
2 , −1) satisfies

this; more precisely, w3
1(k/2, −1) = QMvT where v = (0, . . . , 0|0, . . . , 0| − 1, −2, . . . ,

−k/2 + 1, −k/2, − k
2 + 1, . . . , −2, −1|0).

When k is odd, only w2
1((p − k)/2, −1) is in the image of QM ; more pre-

cisely, w2
1((p − k)/2, −1) = QMvT , where v = (0, . . . , 0| − 1, −2, . . . , −(p − k)/2 +

1, −p − k/2, −p − k/2 + 1, . . . , −2, −1|0, . . . , 0|0).
To find the maximiser corresponding to tM + i∗ P D[μ], we represent M as the bound-

ary of a plumbed 4-manifold X given by the framed link L= ((K1, m1), . . . , (K p+m−k−2,

m p+m−k−2)) in Figure 9. Denote by Di a small normal disk to Ki , and ∂ Di = μi the
meridian of Ki . A systematic yet strenuous computation of homology shows that μ =
−μ1. Thus, i∗(P D[μ]) corresponds to −P D[D1] ∈ H 2(X) which is represented by the
vector (−1, 0, . . . , 0|0, . . . , 0|0, . . . , 0|0). Therefore, tM + i∗ P D[μ] corresponds to the
characteristic vector w2

2(1, k/2) (resp. w1
2(1, (p − k)/2)) when k is even (resp. odd).

Now we can use (5·13) to compute d(M, tM) and d(M, tM + i∗ P D[μ]).

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004121000220
Downloaded from https://www.cambridge.org/core. Chinese University of Hong Kong, on 04 Mar 2022 at 08:35:29, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004121000220
https://www.cambridge.org/core


Studies of distance one surgeries on the lens space L(p, 1) 293

(i) When k is even,

d(M, tM) = m + p − 2k − 2

4

d(M, tM + i∗ P D[μ]) = pm2 − (6p + 2kp − p2 + k2)m + 4p + 6k2 + 2k3 − pk2

4(pm − k2)
.

(ii) When k is odd,

d(M, tM) = m − 2

4

d(M, tM + i∗ P D[μ]) = pm2 − (6p + k2)m + 6k2 + 4p

4(pm − k2)
.

Proof of Theorem 1·2(iii). Suppose L(n, 1) with n odd is obtained by (mμ + λ)-surgery
along K for some m ≥ k + 3. Then m ≥ (p + k/2p) · (k + 1) > k2/p. So we can apply the
d-invariant surgery formula in Proposition 4·4. We divide the computation into 2 cases:

Case (i) k is even. By (2·3), |n| = pm − k2.
If n = pm − k2, (4·4) implies

d(L(pm − k2, 1), 0) = d(M, tM) − 2Vξ0 .

Then

Vξ0 = p + k2 − 2k − 1 − (p − 1)m

8

≤ p + k2 − 2k − 1 − (p − 1)(k + 3)

8

= k2 + 2 − kp − 2p − k

8
< 0,

which contradicts the fact that Vξ0 ≥ 0.
If n = −pm + k2, (4·4) gives

−d(L(pm − k2, 1), 0) = d(M, tM) − 2Vξ0,

which implies

Vξ0 = (p + 1)m + p − 2k − k2 − 3

8

≥ (p + 1)(k + 3) + p − 2k − k2 − 3

8

= pk + 4p − k(k + 1)

8
≥ 2.

We can thus apply (4·5) and get

−d(L(pm − k2, 1), 0 + i∗ P D[μ]) = d(M, tM + i∗ P D[μ]) − 2Vξ0+P D[μ].

Here, −d(L(pm − k2, 1), 0 + i∗ P D[μ]) = 1/4 − (2 j − (pm − k2))2/4(pm − k2) for
some j ∈ [0, pm − k2 − 1]. Therefore,
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1

4
− (2 j − (pm − k2))2

4(pm − k2)

= pm2 − (6p + 2kp − p2 + k2)m + 4p + 6k2 + 2k3 − pk2

4(pm − k2)
− 2Vξ0+P D[μ].

(5·15)

Since Vξ0 − 1 ≤ Vξ0+P D[μ] ≤ Vξ0 , we further divide it into two cases:
Case (i)(a): Vξ0+P D[μ] = Vξ0 = ((p + 1)m + p − 2k − k2 − 3)/8. Equation (5·15) can be

simplified to

j2 − (pm − k2) j + p + k2 − mp = 0. (5·16)

We claim that the function f (x) = x2 − (pm − k2)x + p + k2 − mp has no root in [0, pm −
k2 − 1]. Indeed, f (x) < 0 for any x ∈ [0, pm − k2 − 1] since its axis of symmetry is
x = (pm − k2)/2 and f (0) = p + k2 − mp ≤ p + k2 − 3p − kp < 0. So this case is impos-
sible.

Case (i)(b): Vξ0+P D[μ] = Vξ0 − 1 = ((p + 1)m + p − 2k − k2 − 3)/8 − 1. Equation (5·15)
can be simplified to

j2 − (pm − k2) j + p + pm − k2 = 0. (5·17)

Let f (x) = x2 − (pm − k2)x + p + pm − k2. The axis of symmetry of f (x) is x =
(pm − k2)/2, and f (0) = p + pm − k2 > 0, f (1) = p + 1 > 0 and f (2) = p + 4 − pm +
k2 ≤ p + 4 + k2 − 3p − kp < 0. Therefore, the roots of f (x) lie in (1, 2) and (pm − k2 −
2, pm − k2 − 1), which are not integers. This gives a contradiction.

Case (ii) k is odd.
If n = pm − k2, (4·4) implies

d(L(pm − k2, 1), 0) = d(M, tM) − 2Vξ0 .

We compute

Vξ0 = k2 − 1 − (p − 1)m

8
≤ k2 − 1 − (p − 1)(k + 3)

8
= k(k + 1) + 2 − pk − 3p

8
< 0,

which is a contradiction.
If n = −pm + k2, (4·4) gives

−d(L(pm − k2, 1), 0) = d(M, tM) − 2Vξ0,

which implies

Vξ0 = (p + 1)m − k2 − 3

8
≥ (p + 1)(k + 3) − k2 − 3

8
= pk + 3p + k − k2

8
≥ 2.

We can thus apply (4·5) and get

−d(L(pm − k2, 1), 0 + i∗ P D[μ]) = d(M, tM + i∗ P D[μ]) − 2Vξ0+P D[μ].

Here, −d(L(pm − k2, 1), 0 + i∗ P D[μ]) = 1/4 − (2 j − (pm − k2))2/4(pm − k2) for
some j ∈ [0, pm − k2 − 1]. Therefore

1

4
− (2 j − (pm − k2))2

4(pm − k2)
= pm2 − (6p + k2)m + 4p + 6k2

4(mp − k2)
− 2Vξ0+P D[μ] (5·18)
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Fig. 10. The negative-definite plumbing diagram and the corresponding intersection form of the Seifert
fiber space M(0, 0; (m − 2, 1), (3, 1), (2, 1)) for m ≤ −1.

Since Vξ0 − 1 ≤ Vξ0+P D[μ] ≤ Vξ0 , we further divide it into two cases:
Case (ii)(a): Vξ0+P D[μ] = Vξ0 = ((p + 1)m − k2 − 3)/8. Equation (5·18) can be simplified

to

j2 − (pm − k2) j + p + k2 − mp = 0

which is the same as (5·16). So the function f (x) = x2 − (pm − k2)x + p + k2 − mp has
no root in [0, pm − k2 − 1], and this case can be ruled out.

Case (ii)(b): Vξ0+P D[μ] = Vξ0 − 1 = ((p + 1)m − k2 − 3)/8 − 1. Equation (5·18) can be
simplified to

j2 − (pm − k2) j + p + pm − k2 = 0,

which is the same as (5·17). Therefore the same argument can be applied to rule out this
case. This finishes all the cases and the proof.

6. Distance one surgeries on L(5, 1) and L(7, 1)

DNA knots and links in vivo experiments involving plasmids are often of small crossing
numbers. This motivates our study of band surgeries from T (2, 5) and T (2, 7) to T (2, n) in
this section.

6·1. Distance one surgeries on L(5, 1)

As Theorem 1·2 (i)(ii) has handled the case k = 0, 1, we only need to consider the case
k = 2. By (2·3), the first homology of L(n, 1) is |n| = |5m − 4|. As Theorem 1·1 has com-
pletely solved the even n case, we are left with the odd n case. So we assume that m is an
odd integer.

If m ≤ −1, we use the negative-definite plumbing diagram in Figure 10 to compute the
d-invariant of the Seifert fiber space M = M(0, 0; (m − 2, 1), (3, 1), (2, 1)). We also
compute its intersection form QM .

We see that there is only one bad vertex in the graph, and QM is negative definite.
Applying Ozsváth and Szabó’s algorithm, we can obtain −5m + 4 candidates of maximiser
by a similar argument as in Lemma 5·1:

(i) (2, 0, 0, j, 0), (0, 0, 2, j, 0) and (0, 0, 0, j, 0) for m ≤ j ≤ −m;
(ii) (0, 2, 0, j, 0) and (0, 0, 0, j, 2) for m ≤ j ≤ −m − 2;

(iii) (0, 0, 0, −m + 2, 0).

Meanwhile, the order of the first homology of (mμ + λ)-surgered manifold is precisely
−5m + 4. Therefore, each of these −5m + 4 vectors must be the maximiser of (5·13) for
the corresponding Spinc structure. By a similar argument of Lemma 5·2, we can also show
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that the vector (2, 0, 0, −m, 0) (resp. (0, 0, 2, m, 0)) corresponds to the Spinc structure tM

(resp. tM + i∗ P D[μ]). We compute the d-invariant of M as follows:

d(M, tM) = m + 1

4
, d(M, tM + i∗ P D[μ]) = −5m2 − 21m

4(−5m + 4)
.

Proof of Theorem 1·3(i). Theorem 1·1 implies that there is a distance one surgery from
L(5, 1) to L(n, 1) with n even if and only if n = 4, 6. When n is odd and K is null-
homologous or K is homologically essential with k = 1, Theorem 1·2 (i)(ii) implies that
n can only be ±1, ±5, −9. From now on, we assume that n is odd and the winding number
k = 2. We divide the proof according to different values of m.

(1) Suppose m < −1. If n = −5m + 4, (4·6) gives

d(L(−5m + 4, 1), 0) − d(M, tM) = 2Vξ0,

which implies Vξ0 = (−3m + 1)/4 ≥ 2. We can thus apply (4·7) and get

d(L(−5m + 4, 1), 0 + i∗ P D[μ]) − d(M, tM + i∗ P D[μ]) = 2Vξ0+P D[μ]. (6·1)

where d(L(−5m + 4, 1), 0 + i∗ P D[μ]) = −1/4 + (2 j − (−5m + 4))2/4(−5m + 4) for
some j ∈ [0, −5m + 3].
Case (i) Vξ0+P D[μ] = Vξ0 = (−3m + 1)/4. Equation (6·1) can be simplified to

j2 − (−5m + 4) j + 5m + 1 = 0.

We claim that the function f (x) = x2 − (−5m + 4)x + 5m + 1 has no root in [0, −5m + 3].
Indeed, f (x) < 0 for any x ∈ [0, −5m + 3] since its axis of symmetry is x = (−5m + 4)/2
and f (0) = 5m + 1 < 0.

Case (ii) Vξ0+P D[μ] = Vξ0 − 1 = (−3m + 1)/4 − 1. Equation (6·1) can be simplified to

j2 − (−5m + 4) j − 5m + 9 = 0.

Let f (x) = x2 − (−5m + 4)x − 5m + 9. The axis of symmetry of f (x) is x =
(−5m + 4)/2, and f (0) = −5m + 9 > 0, f (1) = 6 > 0 and f (2) = 5m + 5 < 0 when
m < −1, thus the roots of f (x) lie in (1, 2) and (−5m + 2, −5m + 3), which are not
integers.

If n = 5m − 4, (4·6) gives

−d(L(−5m + 4, 1), 0) − d(M, tM) = 2Vξ0,

which implies Vξ0 = (m − 1)/2 < 0. This gives a contradiction. Hence, we just proved that
when m < −1 there is no desired distance one surgery.

(2) When m = −1, we have |n| = 9. There is a distance one surgery from L(5, 1) to L(9, 1)

given by the double branched cover of the band surgery between T (2, 5) and T (2, 9) as
Figure 1(b). If n = −9, Formula (4·6) gives

−d(L(9, 1), 0) − d(M, tM) = 2Vξ0,

which implies Vξ0 = −1 < 0. This gives a contradiction.
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Fig. 11. The plumbing diagrams and the corresponding intersection form of the Seifert fiber space
M = M(0, 0; (m − 2, 1), (5, 1), (2, 1)).

Fig. 12. The plumbing diagram and the corresponding intersection form of the Seifert fiber space
M ′ = M(0, 0; (m − 3, 1), (4, 1), (3, 1)).

(3) When m = 1, we have |n| = 1. There is a distance one surgery from L(5, 1) to S3 given
by the double branched cover of the band surgery shown in Figure 1(b) (with p = 1 and the
reverse direction).

(4) When m = 3, we have |n| = 11. The Seifert fibered manifold M is actually a lens space:
M(0, 0; (1, 1), (3, 1), (2, 1)) = L(11, 3). If n = 11, then by (4·4) we have

d(L(11, 1), 0) = d(L(11, 3), 1) − 2Vξ0 .

Thus Vξ0 = −1 since d(L(11, 1), 0) = 5/2 and d(L(11, 3), 1) = 1/2, which contradicts
Vξ0 ≥ 0. If n = −11 (4·4) gives

−d(L(11, 1), 0) = d(L(11, 3), 1) − 2Vξ0 .

Thus Vξ0 = 3/2, which is impossible since Vξ0 is supposed to be an integer.

(5) When m ≥ 5, Theorem 1·2 (iii) implies that no solution exists in this case.

In summary, we conclude that the lens space L(n, 1) is obtained by a distance one surgery
from L(5, 1) only if n = ±1, 4, ±5, 6, ±9; except for n = −9, distance one surgeries to all
other L(n, 1) on this list can be realized as the double branched covers of the band surgeries
in Figures 1. Unfortunately, our Heegaard Floer d-invariant obstruction fails for the case of
L(5, 1) to L(−9, 1) when the surgery is performed on a homologically essential knot K
with k = 1.

6·2. Distance one surgeries on L(7, 1)

As Theorem 1·2 (i)(ii) has handled the case k = 0, 1, we only need to consider the case
k = 2 or 3. When m < 1, we use the negative-definite plumbing diagram in Figures 11 and 12
to compute the d-invariant of the Seifert fiber spaces M = M(0, 0; (m − 2, 1), (5, 1), (2, 1))

and M ′ = M(0, 0; (m − 3, 1), (4, 1), (3, 1)), corresponding to k = 2 and k = 3, respectively.
We also compute their respective intersection forms.

Note that there is only one bad vertex in each of the two plumbing graphs, and
both QM and QM ′ are negative definite. Similar to the case L(5, 1), we can obtain
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−7m + 4 and −7m + 9 maximisers for each case. Moreover, we can show that the vec-
tor (2, 0, 0, 0, 0, −m, 0) (resp. (0, 0, 0, 0, 2, −m − 1, 0)) corresponds to the Spinc structure
tM (resp. tM ′), and the vector (0, 0, 0, 0, 2, m, 0) (resp. (0, 2, 0, 0, 0, m − 1, 0)) corresponds
to the Spinc structure tM + i∗ P D[μ] (resp. tM ′ + i∗ P D[μ]) up to Spinc-conjugation. Then
we compute the d-invariant of M and M ′ as follows:

d(M, tM) = m + 3

4
, d(M, tM + i∗ P D[μ]) = −7m2 − 45m

4(−7m + 4)
;

d(M ′, tM ′) = m

4
, d(M ′, tM ′ + i∗ P D[μ]) = −7m2 − 19m + 8

4(−7m + 9)
.

Before we prove Theorem 1·3 (ii), let us recall some facts of the linking form lk : H1(Y ) ×
H1(Y ) →Q/Z for a rational homology sphere Y , which we also use as an obstruction in
this case. If a rational homology sphere Y has cyclic first homology, we can use a fraction to
represent its linking form, which is the value lk(x, x) for a generator x of the first homology
group. Let N = Y − K be the exterior of a primitive knot K in Y . Then H1(N ) =Z. Choose
two curves m and l on ∂ N such that (m, l) is a basis of H1(∂ N ), where l is null-homologous
in N and m generates H1(N ). Let N (pm + ql) denote the Dehn filling of N along the
curve pm + ql. The linking form of N (pm + ql) is q/p if p �= 0. If two rational homology
spheres Y1 and Y2 have cyclic first homology group with linking forms q1/p and q2/p for
p > 0, then the two forms are equivalent if and only if q1 ≡ q2a2 (mod p) for some integer
a with gcd(a, p) = 1.

Proof of Theorem 1·3(ii). Theorem 1·1 implies that there is a distance one surgery from
L(7, 1) to L(n, 1) with n even if and only if n = 6, 8. Theorem 1·2 (i)(ii) and the band
surgeries we construct in Figure 1 shows that when n is odd and K is null-homologous
or homologically essential with k = 1, there exists a distance one surgery if and only if
n = ±1, 7. From now on, we assume that n is odd and the winding number k = 2 or 3. By
(2·3), the order of the first homology of L(n, 1) equals |n| = |7m − k2|. Hence, when k = 2,
m is odd; when k = 3, m is even. Subsequently, we divide the proof according to different
values of k and m.

(1) Suppose k = 2 and m < −1. If n = −7m + 4, Formula (4·6) gives

d(L(−7m + 4, 1), 0) − d(M, tM) = 2Vξ0,

which implies Vξ0 = −m ≥ 2. We can thus apply (4·7) and get

d(L(−7m + 4, 1), 0 + i∗ P D[μ]) − d(M, tM + i∗ P D[μ]) = 2Vξ0+P D[μ], (6·2)

where d(L(−7m + 4, 1), 0 + i∗ P D[μ]) = −1/4 + (2 j − (−7m + 4))2/4(−7m + 4) for
some j ∈ [0, −7m + 3].
Case (i) Vξ0+P D[μ] = Vξ0 = −m. Equation (6·2) can be simplified to

j2 − (−7m + 4) j + 7m + 3 = 0.

However, the function f (x) = x2 − (−7m + 4)x + 7m + 3 has no root in [0, −7m + 3].
Indeed, f (x) < 0 for any x ∈ [0, −7m + 3] since its axis of symmetry is x = (−7m + 4)/2
and f (0) = 7m + 3 < 0. This give a contradiction.
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Case (ii) Vξ0+P D[μ] = Vξ0 − 1 = −m − 1. Equation (6·2) can be simplified to

j2 − (−7m + 4) j − 7m + 11 = 0.

Let f (x) = x2 − (−7m + 4)x − 7m + 11. The axis of symmetry of f (x) is x =
(−7m + 4)/2, and f (0) = −7m + 11 > 0, f (1) = 8 > 0 and f (2) = 7m + 7 < 0. Therefore
the roots of f (x) lie in (1, 2) and (−7m + 2, −7m + 3), which are not integers.

If n = 7m − 4, Formula (4·6) gives

−d(L(−7m + 4, 1), 0) − d(M, tM) = 2Vξ0,

which implies Vξ0 = (3m − 3)/4 < 0. This gives a contradiction.

(2) Suppose k = 2 and m = −1. Then |n| = 11. There is a distance one surgery from L(7, 1)

to L(11, 1) given by the double branched cover of the band surgery between T (2, 7) and
T (2, 11) in Figure 1(b). If n = −11 (4·6) gives

−d(L(11, 1), 0) − d(M, tM) = 2Vξ0,

which implies Vξ0 = −3/2. This gives a contradiction.

(3) Suppose k = 2 and m = 1. By [5], there is no distance one surgery from L(7, 1) to
L(−3, 1). On the other hand, a distance one surgery along the simple knot K (7, 1, 2)

produces L(3, 1).

(4) Suppose k = 2 and m = 3. Then |n| = |7m − k2| = 17, so the desired lens space is
L(17, 1) or L(−17, 1). If n = 17, then by (4·4) we have

d(L(17, 1), 0) = d(L(17, 3), 1) − 2Vξ0,

which implies Vξ0 = −3/2 < 0. If n = −17, then (4·4) gives

−d(L(17, 1), 0) = d(L(17, 3), 1) − 2Vξ0 .

Thus Vξ0 = 5/2, which is impossible since Vξ0 is supposed to be an integer.

(5) Suppose k = 2 and m ≥ 5. Theorem 1·2 (iii) implies that there is no solution in this case.

(6) Suppose k = 3 and m < 0. If n = −7m + 9, (4·6) gives

d(L(−7m + 9, 1), 0) − d(M ′, tM ′) = 2Vξ0,

which implies Vξ0 = −m + 1 ≥ 2. We can thus apply (4·7) and get

d(L(−7m + 9, 1), 0 + i∗ P D[μ]) − d(M ′, tM ′ + i∗ P D[μ]) = 2Vξ0+P D[μ], (6·3)

where d(L(−7m + 9, 1), 0 + i∗ P D[μ]) = −1/4 + (2 j − (−7m + 9))2/4(−7m + 9) for
some j ∈ [0, −7m + 8].
Case (i) Vξ0+P D[μ] = Vξ0 = −m + 1. Equation (6·3) can be simplified to

j2 − (−7m + 9) j + 7m − 2 = 0.

However, the function f (x) = x2 − (−7m + 9)x + 7m − 2 has no root in [0, −7m + 8].
Indeed, f (x) < 0 for any x ∈ [−7m + 8] since its axis of symmetry is x = (−7m + 9)/2
and f (0) = 7m − 2 < 0. This give a contradiction.
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Case (ii) Vξ0+P D[μ] = Vξ0 − 1 = −m. Equation (6·3) can be simplified to

j2 − (−7m + 9) j − 7m + 16 = 0.

Let f (x) = x2 − (−7m + 9)x − 7m + 16. The axis of symmetry of f (x) is x =
(−7m + 9)/2, and f (0) = −7m + 16 > 0, f (1) = 8 > 0 and f (2) = 7m + 2 < 0. Therefore
the roots of f (x) lie in (1, 2) and (−7m + 7, −7m + 8), which are not integers.

If n = 7m − 9, (4·6) gives

−d(L(−7m + 9, 1), 0) − d(M ′, tM ′) = 2Vξ0,

which implies Vξ0 = (3m − 4)/4 < 0. This gives a contradiction.

(7) Suppose k = 3 and m = 0 (i.e. doing λ-surgery). If n = 7m − 9 = −9, (4·6) gives

−d(L(9, 1), 0) − d(M ′, tM ′) = 2Vξ0,

which implies Vξ0 = −1 < 0. This gives a contradiction. If n = −7m + 9 = 9, we use the
linking form to obstruct this case. Let m = 4μ + 3λ and l = 9μ + 7λ. One may check that
(m, l) forms a basis of H1(∂(L(7, 1) − K )), where m generates H1(L(7, 1) − K ) and l is
null-homologous in L(7, 1) − K . We see λ = −9m + 4l, thus the linking form of the surg-
ered manifold is −4/9. However the linking form of the desired lens space L(9, 1) is 1/9,
and −4 is not a quadratic residue modulo 9.

(8) suppose k = 3 and m = 2. By our discussion in the previous section for distance one
surgery on L(5, 1), we see that there is no distance one surgery from L(7, 1) to L(±5, 1).

(9) Suppose k = 3 and m = 4. Then |n| = |7m − k2| = 19, so the desired lens space is
L(19, 1) or L(−19, 1). If n = 19, then by (4·4) we have

d(L(19, 1), 0) = d(L(19, 4), 11) − 2Vξ0,

which implies Vξ0 = −2 < 0. If n = −19, then (4·4) gives

−d(L(19, 1), 0) = d(L(19, 4), 11) − 2Vξ0 .

Thus Vξ0 = 5/2, which is impossible since Vξ0 is supposed to be an integer.

(10) Suppose k = 3 and m ≥ 6. Theorem 1·2 (iii) implies that there is no solution in this
case.

In summary, we conclude that the lens space L(n, 1) is obtained by a distance one surgery
from L(7, 1) if and only if n = ±1, 3, 6, 7, 8 or 11.
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