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Abstract
In this paper, we introduce a rational τ invariant for rationally null-homologous knots in
contact 3-manifolds with nontrivial Ozsváth–Szabó contact invariants. Such an invariant is
an upper bound for the sumof rational Thurston–Bennequin invariant and the rational rotation
number of the Legendrian representatives of the knot. In the special case of Floer simple knots
in L-spaces, we can compute the rational τ invariants by correction terms.
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1 Introduction

Given a Legendrian representative L of an integrally null-homologous knot K in a tight
contact 3-manifold (Y , ξ). We have the well-known Bennequin–Eliashberg inequality [3,7]

tb(L) + rot(L) ≤ 2g(K ) − 1,

where g(K ) is the genus of K . Plameneveskaya [20] improved this inequality for knots in
the tight contact 3-sphere (S3, ξstd), and showed that

tb(L) + rot(L) ≤ 2τ(K ) − 1,

where τ(K ) is an invariant of K defined by Ozsváth and Szabó [17]. Later on, Hedden [9]
introduced an invariant τξ (K , F) for an integrally null-homologous knot K with a Seifert
surface F in a contact 3-manifold (Y , ξ) with a non-trivial Ozsváth–Szabó contact invariant
c(ξ) [19]. He proved that for any Legendrian representatives L of K in (Y , ξ),

tb(L) + rot(L; F) ≤ 2τξ (K , F) − 1.

More generally, consider a rationally null-homologous knot K in a 3-manifold Y . Let L be
a Legendrian representative of a rationally null-homologous knot K in a contact 3-manifold
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(Y , ξ), and let F be a rational Seifert surface of K . Baker and Etnyre [1] defined the rational
Thurston–Bennequin invariant tbQ(L) and rational rotation number rotQ(L; F). When ξ is
a tight contact structure on Y , they showed that

tbQ(L) + rotQ(L; F) ≤ − 1

q
χ(F), (1.1)

where q is the order of [K ] in H1(Y ; Z).
In this paper, we introduce an invariant τ ∗

c(ξ)(Y , K , F) for an rationally null-homologous
knot K , which generalizes Hedden’s definition [9]. Our main theorem proves that this invari-
ant gives an upper bound for the sum of the rational Thurston–Bennequin invariant and the
rational rotation number of all Legendrian representatives of K .

Theorem 1.1 Suppose K is a rationally null-homologous knot in a 3-manifold Y with a
rational Seifert surface F, and ξ is a contact structure on Y with nontrivial Ozsváth–Szabó
contact invariant c(ξ) ∈ Ĥ F(−Y , sξ ), where sξ is the Spinc structure induced by ξ . Then
for any Legendrian representative L of K , we have

tbQ(L) + rotQ(L; F) ≤ 2τ ∗
c(ξ)(Y , K , F) − 1. (1.2)

A closed 3-manifold Y is called an L-space if it is a rational homology sphere and
rank̂H F(Y ) = |H1(Y )|. A knot K in an L-space Y is called Floer simple if rankĤ F K (Y , K )

= rank̂H F(Y ). Our next result shows that the rational τ invariant of a Floer simple knot in
an L-space Y can be expressed in terms of the correction terms of Y ; in particular, it depends
only on the order of the knot (rather than its isotopy class).

Proposition 1.2 For a Floer simple knot K in an L-space Y ,

2τs(Y , K ) = d(Y , s) − d(Y , Js + PD[K ]).
While the precise definition of τs(Y , K ) will be given later, we remark that τsξ (Y , K ) =

τ ∗
c(ξ)(Y , K , F) when Y is an L-space with a nontrivial Ozsváth–Szabó contact invariant c(ξ)

in the Spinc structure sξ . Also note that rotQ(L; F) is independent of F when Y is a rational
homology sphere, and it may be abbreviated as rotQ(L). We have the following immediate
corollary.

Corollary 1.3 Suppose K is a Floer simple knot in an L-space Y , ξ is a contact structure
on Y with nontrivial Ozsváth–Szabó contact invariant c(ξ) ∈ Ĥ F(−Y , sξ ). Then for any
Legendrian representative L of K ,

tbQ(L) + rotQ(L) ≤ d(Y , sξ ) − d(Y , J (sξ + P D[K ])) − 1.

Putting our results in context, recall that a knot in a lens space that admits S3 surgery is
Floer simple in general cases [10, Theorem 1.4]; in addition, such a knot is rationally fibered
and supports a contact structure on the lens space with nontrivial Ozsváth–Szabó contact
invariant [11, Corollary 2]. To this end, the study of rationally null-homologous Legendrian
knots in contact lens spaces is of particular interest due to their potential role in the resolution
of the Berge conjecture.

The remaining part of this paper is organized as follows. In Sect. 2, we review Alexander
filtration on knot Floer complex and use it to define a rational τ invariant associated to a knot in
a 3-manifold possessing non-vanishing Floer (co)homology classes. In Sect. 3, we recall the
notions of rational Thurston–Bennequin invariant and rational rotation number. In particular,
we exhibit how these two invariants behave under connected sum of two Legendrian knots.
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In Sect. 4, we prove Theorem 1.1. In Sect. 5, we study in more detail the case of Floer simple
knots in L-spaces. We show that rational τ invariants are determined by the correction terms.
In Section 6, we specialize further to an example of Legendrian representatives of simple
knots in lens spaces.

2 Rational � invariants

Let K be a knot in Y and (�,α,β, w, z) be a corresponding doubly pointed Heegaard
diagram. Then the set of relative Spinc-structures determine a filtration of the chain complex
̂C F(Y ) via a map

sw,z : Tα ∩ Tβ → Spinc(Y , K ).

Each relative Spinc structure s for (Y , K ) corresponds to a Spinc structure s on Y via a
natural map GY ,K : Spinc(Y , K ) → Spinc(Y ).

From now on, assume that K is a rationally null-homologous knot in a 3-manifold Y ,
and [K ] is of order q in H1(Y ; Z). A rational Seifert surface for K is defined to be a map
j : F → Y from a connected compact orientable surface F to Y that is an embedding of
the interior of F into Y \ K , and a q-fold cover from its boundary ∂ F to K . Let N (K ) be
a tubular neighborhood of K in Y , and μ ⊂ ∂ N (K ) the meridian of K . We can assume
that F ∩ ∂ N (K ) consists of c parallel cooriented simple closed curves, each of which has
homology [ν] ∈ H1(∂ N (K ); Z). We can then choose a canonical longitude λcan such that
[ν] = t[λcan] + r [μ], where t and r are coprime integers, and 0 ≤ r < t (cf., e.g., [22,
Section 2.6]). Note that ct = q .

Suppose K corresponds to a doubly pointed Heegaard diagram (�,α,β, w, z). Fix a
rational Seifert surface F for K . Following Ni [13],1 we define the Alexander grading of a
relative Spinc-structure s ∈ Spinc(Y , K ) by

AF (s) = 1

2q
(〈c1(s), [F̃]〉 − q), (2.1)

where F̃ is the closure of j(F) \ N (K ).
Moreover, the Alexander grading of an intersection point x ∈ Tα ∩ Tβ is defined by

AF (x) = 1

2q
(〈c1(sw,z(x)), [F̃]〉 − q).

In general, the Alexander grading AF takes values in rational number Q. Nonetheless,
observe that for any two relative Spinc structures s1, s2 ∈ G−1

Y ,K (s) of a fixed s, we have
s2 − s1 = k PD[μ] for some integer k. Hence, there exists a unique rational number ks,F ∈
[− 1

2 ,
1
2 ) depending only on s and F such that for every s ∈ G−1

Y ,K (s),

1

2q
(〈c1(s), [F̃]〉 − q) = ks,F + k.

for some integer k [22].
As a result, the Alexander grading induces effectively a Z-filtration of ̂C F(Y , s) by

Fs,k = {x ∈ ̂C F(Y , s)|AF (x) ≤ ks,F + k},
1 Ni’s original definition of the Alexander grading assumes that Y is a rational homology sphere and is not
divided by q, in contrast to Eq. (2.1).
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where k ∈ Z. Let ik : Fs,k → ̂C F(Y , s) be the inclusion map. It induces a homomorphism

between the homologies Ik : H∗(Fs,k) → Ĥ F(Y , s).

Next we introduce two rational τ invariants in the same way as Hedden did for integrally
null-homologous knots [9].

Definition 2.1 For any [x] 
= 0 ∈ Ĥ F(Y , s), define

τ[x](Y , K , F) = min{ks,F + k|[x] ∈ Im(Ik)}.
Consider the orientation reversal −Y of Y , we have the paring

〈−,−〉 : ̂C F(−Y , s) ⊗ ̂C F(Y , s) → Z/2Z,

given by

〈x, y〉 =
{

1 if x = y,

0 otherwise.

It descends to a pairing

〈−,−〉 : Ĥ F(−Y , s) ⊗ Ĥ F(Y , s) → Z/2Z.

Definition 2.2 For any [y] 
= 0 ∈ Ĥ F(−Y , s), define

τ ∗[y](Y , K , F) = min{ks,F + k|∃α ∈ Im(Ik), such that〈[y], α〉 
= 0}.
Using the same argument as in the proof of [9, Proposition 28], we have the following

duality.

Proposition 2.3 Let [y] 
= 0 ∈ Ĥ F(−Y , s). Then

τ[y](−Y , K , F) = −τ ∗[y](Y , K , F).

For i = 1, 2, let Ki be a rationally null-homologous knot in a 3-manifold Yi with order
qi , and j : Fi → Yi be a rational Seifert surface for Ki . Let K1�K2 denote their connected
sum in Y1�Y2. Then the order of K1�K2 is lcm(q1, q2), that is, the least common multiple of
q1 and q2. One can construct a rational Seifert surface for K1�K2 by taking

lcm(q1,q2)
q1

copies

of j : F1 → Y1 and
lcm(q1,q2)

q2
copies of j : F2 → Y2 and gluing them in an appropriate way.

See the next section. We denote it by j : F1�F2 → Y1�Y2.
By [22, Lemma 3.8], for x1 ∈ ̂C F(Y1) and x2 ∈ ̂C F(Y2), we have

AF1�F2(x1 ⊗ x2) = AF1(x1) + AF2(x2).

So we can use the same argument as in the proof of [9, Proposition 29] to obtain the
following proposition.

Proposition 2.4 For any [xi ] 
= 0 ∈ Ĥ F(Yi , si ), [yi ] 
= 0 ∈ Ĥ F(−Yi , si ), i = 1, 2, we
have

τ[x1]⊗[x2](Y1�Y2, K1�K2, F1�F2) = τ[x1](Y1, K1, F1) + τ[x2](Y2, K2, F2),

and

τ ∗[y1]⊗[y2](Y1�Y2, K1�K2, F1�F2) = τ ∗[y1](Y1, K1, F1) + τ ∗[y2](Y2, K2, F2).
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Let X−n(K ) be the cobordism from Y to Y−n(K ) obtained by attaching a 4-dimensional
2-handle to K × 1 ⊂ Y × [0, 1] with (−n)-framing with respect to the canonical longitude.
Suppose rk is the restriction to Y−n(K ) of the unique Spinc structure tk on X−n(K ) satisfying
tk |Y = s and

〈c1(tk), [ j(F) ∪ qC]〉 − nq − cr = 2q(ks,F + k),

where C is the core of the added 2-handle in X−n(K ), and [ j(F) ∪ qC] represents a class
in H2(X−n(K ); Z) (cf. [22, Theorem 4.2]). We have the following homomorphism between
homology induced by the above cobordism

F̂s−n,k : Ĥ F(Y , s) → Ĥ F(Y−n(K ), rk),

and a commutative diagram

̂C F(Y , s)
f s−n,k

∼=

̂C F(Y−n(K ), rk)

∼=

Cs{i = 0} f s−n,k Cs{min(i, j − k) = 0}

where f s−n,k induces the map F̂s−n,k on homologies. We then apply the argument of [9,
Proposition 24] and [9, Proposition 26] to obtain the following two propositions.

Proposition 2.5 Let [x] 
= 0 ∈ Ĥ F(Y , s) and n > 0 be sufficiently large. We have

(1) If ks,F + k < τ[x](Y , K , F), then F̂s−n,k([x]) 
= 0.

(2) If ks,F + k > τ[x](Y , K , F), then F̂s−n,k([x]) = 0.

Proposition 2.6 Let [y] 
= 0 ∈ Ĥ F(−Y , s) and n > 0 be sufficiently large. We have

(1) If ks,F + k < τ ∗[y](Y , K , F), then for every α ∈ Ĥ F(Y , s) such that 〈[y], α〉 
= 0, we

have F̂s−n,k(α) 
= 0.

(2) If ks,F + k > τ ∗[y](Y , K , F), then there exists α ∈ Ĥ F(Y , s) such that 〈[y], α〉 
= 0 and

F̂s−n,k(α) = 0.

3 Rationally null-homologous Legendrian knots

Given a rationally null-homologous oriented Legendrian knot L in a contact 3-manifold
(Y , ξ). Suppose that its order is q , and it has a rational Seifert surface j : F → Y . The
rational Thurston–Bennequin invariant of L , tbQ(L), is defined to be 1

q L ′ · j(F), where L ′
is a copy of L obtained by pushing off using the framing coming from ξ , and · denotes the
algebraic intersection number. We fix a trivialization F × R

2 of the pullback bundle j∗ξ on
F . The restriction of ξ on L is ξ |L = L × R

2 and has a section T L . The pullback j∗(T L)

is a section of ∂ F × R
2. The rational rotation number of L , rotQ(L), is defined to be the

winding number of j∗(T L) in ∂ F × R
2 divided by q , i.e., 1

q winding( j∗T L, R
2). We refer

the reader to [1] for more details.
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Lemma 3.1 [1, Lemma 1.3] Suppose the positive/negative stabilization of L is S±(L). Then
we have

tbQ(S±(L)) = tbQ(L) − 1,

rotQ(S±(L), F) = rotQ(L, F) ± 1.

For i = 1, 2, suppose that Li is a Legendrian knot in a contact 3-manifold (Yi , ξi ). One
can construct their connected sum, L1�L2, in the contact 3-manifold (Y1�Y2, ξ1�ξ2) [8]. The
following proposition generalizes [8, Lemma 3.3].

Proposition 3.2 For i = 1, 2, suppose that Li is a rationally null-homologous Legen-
drian knot in a contact 3-manifold (Yi , ξi ). Then the rational Thurston–Bennequin invariant
and the rational rotation number of the Legendrian knot L1�L2 in the contact 3-manifold
(Y1�Y2, ξ1�ξ2) satisfy

tbQ(L1�L2) = tbQ(L1) + tbQ(L2) + 1,

rotQ(L1�L2, F1�F2) = rotQ(L1, F1) + rotQ(L2, F2).

Proof We denote L1�L2 by L . For i = 1, 2, let pi ∈ Li be a point. Suppose (Bi , ξi |Bi ) is
a Darboux ball centered at pi . That is, Bi has coordinates (x, y, z) about pi so that ξi |Bi is
given by the one-form dz + xdy. Moreover, Li ∩ Bi can be identified with the y-axis.

Since (Bi , ξi |Bi ) is a Darboux ball for i = 1, 2, (B1, ξ1|B1) ∪ (B2, ξ2|B2) = (S3, ξstd).
Moreover, (L1 ∩ B1) ∪ (L2 ∩ B2) is a Legendrian unknot U in (S3, ξstd) with maximal
Thurston–Bennequin invariant −1. The Seifert surface of U is a disk, which we denote by
j : F0 → S3.

For i = 1, 2, suppose [Li ] is of order qi , and j : Fi → Yi is a rational Seifert surface
of Ki , then j(Fi ) ∩ Bi is a union of qi half disks with common diameter given by Li ∩ Bi .
For simplicity of presentation and without loss of generality, we assume that q1 and q2 are
coprime. We choose q2 copies of j(F1) in Y1 and q1 copies of j(F2) in Y2, and identify their
boundaries to L1 and L2, respectively. We denote them by q2 j(F1) and q1 j(F2). Gluing
q2 j(F1) ∩ B1 and q1 j(F2) ∩ B2 along the q1q2 semi-circles which lie in ∂ B1 and ∂ B2

respectively, we obtain a union of q1q2 disks with common boundary U . Gluing q2 j(F1) \
int(B1) and q1 j(F2) \ int(B2) along the q1q2 semi-circles, we obtain the image of a rational
Seifert surface for L . We denote it by j : F1�F2 → Y1�Y2.

Let L ′, L ′
1, L ′

2 and U ′ be the contact push-offs of L, L1, L2 and U respectively. Then we
can assume that L ′ ∩ (Y1 \ int(B1)) coincides with L ′

1 \ int(B1), L ′ ∩ (Y2 \ int(B2)) coincides
with L ′

2 \ int(B2), U ′ ∩ B1 coincides with L ′
1 ∩ B1, and U ′ ∩ B2 coincides with L ′

2 ∩ B2. So
we have

L ′ · j(F1�F2) + q1q2U ′ · j(F0) = q2L ′
1 · j(F1) + q1L ′

2 · j(F2).

Obviously, U ′ · j(F0) = −1. Hence

tbQ(L) = 1

q1q2
L ′ · j(F1�F2) = 1

q1
L ′
1 · j(F1) + 1

q2
L ′
2 · j(F2) + 1

= tbQ(L1) + tbQ(L2) + 1.

To prove the second equality of the proposition, we choose a trivialization of j∗(ξi ) over
Fi for i = 1, 2; this induces a trivialization of j∗(ξ1�ξ2) over F1�F2, and a trivialization of
j∗(ξstd) over F0. These trivializations induce a trivialization of j∗(ξi ) over ∂ Fi for i = 1, 2,
a trivialization of j∗(ξ1�ξ2) over ∂(F1�F2), and a trivialization of ξstd over ∂ F0. We denote
them by ∂ Fi × R

2 for i = 1, 2, ∂(F1�F2) × R
2, and ∂ F0 × R

2, respectively.
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Observe that

winding( j∗T L, R
2) + q1q2winding( j∗T U , R

2)

= q2winding( j∗T L1, R
2) + q1winding( j∗T L2, R

2).

Indeed, both the left and the right sides of this equation equal 1
2π times the sum of the

angles induced from the four Legendrian arcs L1∩ B1, L2∩ B2, L1\ int(B1) and L2 \ int(B2).
For example, the Legendrian arc L1 ∩ B1 lift to q1q2 arcs in ∂(F1�F2) and q1 arcs in ∂ F1.
With respect to the chosen trivializations, the winding angles along the lifted arcs on both
sides of the equation are the same.

By definition, we have

winding( j∗T U , R
2) = 0,

winding( j∗T L1, R
2) = q1 · rotQ(L1, F1),

winding( j∗T L2, R
2) = q2 · rotQ(L2, F2).

Hence,

rotQ(L, F1�F2) = 1

q1q2
winding( j∗T L, R

2) = rotQ(L1, F1) + rotQ(L2, F2).

��

4 A bound for rational Thurston–Bennequin invariants

Suppose K is a rationally null-homologous knot in a 3-manifold Y ; ξ is a contact structure
on Y ; L is a Legendrian representative of K of order q in (Y , ξ); F is a rational Seifert
surface for K . Using Lemma 3.1, we can perform sufficiently many positive stabilizations
so that the contact framing of L is λ1 = λcan + (−n + 1)μ without altering the number
tbQ(L)+rotQ(L, F). Performing Legendrian surgery along L , we obtain a contact structure
ξL on a 3-manifold Y−n(K ). This Legendrian surgery induces a Stein cobordism (W , J )

whose concave end is (Y , ξ), and whose convex end is (Y−n(K ), ξL). Moreover, by [22,
Theorem 4.2], we have

〈c1(J ), [ j(F) ∪ qC]〉 − nq − cr = 2q(ksξ ,F + k),

for some integer k, where sξ is the Spinc structure represented by ξ .

Lemma 4.1 〈c1(J ), [ j(F) ∪ qC]〉 = q · rotQ(L, F).

Proof Suppose ξ is the kernel of a contact form α on Y , and R is the Reeb vector field.
Consider the symplectization of (Y , ξ), (Y × [0, 1], ω = d(etα)). The restriction of the
almost complex structure J on Y × [0, 1] is compatible with ω. Moreover, J (ξ) = ξ ,
J (R) = ∂t , and J (∂t ) = R. The complex line bundle spanned by R and ∂t can be extended
to a trivial one on W .

By the same argument as in [6, Proposition 2.3], the obstruction to extending a trivialization
of the complex line bundle ξ on Y ×[0, 1] to W is the winding number of j∗(T L)with respect
to the trivialization ∂ F ×R

2 induced by a trivialization of the pullback bundle j∗ξ on F . By
definition, this winding number is q ·rotQ(L, F). So 〈c1(J ), [ j(F)∪qC]〉 = q ·rotQ(L, F).

��
Lemma 4.2 −nq − cr = q · (tbQ(L) − 1).

123



Geometriae Dedicata

Proof Recall that the contact framing of the Legendrian knot L is λ1 = λcan + (−n + 1)μ.

So by [1, Page 23],

tbQ(L) − 1 = lkQ(K , λ1) − 1 = 1

q
j(F) · λ1 − 1

= 1

q
· (q[λcan] + cr [μ]) · ([λcan] + (−n + 1)[μ]) − 1

= 1

q
(−nq − cr),

The rational linking number, lkQ(K , λ1), is defined in [1, Page 21]. ��
Combining Lemma 4.1 and Lemma 4.2, we get

Lemma 4.3 tbQ(L) + rotQ(L, F) = 2(ksξ ,F + k) + 1.

Proof of Theorem 1.1 We proceed by a similar argument as in the proofs of [21, Theorem 1]
and [9, Theorem 2].

The first step is to show that

tbQ(L) + rotQ(L, F) ≤ 2τ ∗
c(ξ)(Y , K , F) + 1. (4.1)

Suppose c(ξL) ∈ Ĥ F(−Y−n(K ), sξL ) is the Ozsváth–Szabó contact invariant. Let

F̂W : Ĥ F(Y , sξ ) → Ĥ F(Y−n(K ), sξL ) and F̂W : Ĥ F(−Y−n(K ), sξL ) → Ĥ F(−Y , sξ )

be the homomorphisms induced by the cobordisms. We have F̂W (c(ξL ) = c(ξ). Let α be a

homology class in Ĥ F(Y , sξ ) that pairs nontrivially with c(ξ) ∈ Ĥ F(−Y , sξ ), then

0 
= 〈c(ξ), α〉 = 〈F̂W (c(ξL )), α〉 = 〈c(ξL), F̂W (α)〉.
So F̂W (α) 
= 0. By Proposition 2.6, ksξ ,F +k ≤ τ ∗

c(ξ)(Y , K , F). Inequality (4.1) then follows
from Lemma 4.3.

Next we prove that

tbQ(L) + rotQ(L, F) ≤ 2τ ∗
c(ξ)(Y , K , F). (4.2)

We apply (4.1) on the Legendrian connected sum of two copies of L , i.e., the Legendrian
knot L�L ∈ (Y �Y , ξ�ξ):

tbQ(L�L) + rotQ(L�L, F�F) ≤ 2τ ∗
c(ξ)⊗c(ξ)(Y �Y , K �K , F�F) + 1.

Using Propositions 2.4 and 3.2, we can rewrite the inequality as

2tbQ(L) + 1 + 2rotQ(L, F) ≤ 4τ ∗
c(ξ)(Y , K , F) + 1,

which is the same as (4.2).
Finally, Definition 2.2 implies that τ ∗

c(ξ)(Y , K ) = ksξ ,F + k′ for some integer k′. So (1.2)
follows from Lemma 4.3. ��

5 Rational � invariant of Floer simple knots

Throughout this section, we will assume that the 3-manifold Y is a rational homology sphere.
Thus a knot K in Y is automatically rationally null-homologous. Since the Alexander grading
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defined by Eq. (2.1) is independent of the choice of the rational Seifert surface F , we can
conveniently suppress the subscript and write A(s) for the Alexander grading.

The Alexander grading determines the genus of a knot [13,18]. More precisely, let

BY ,K =
{

s ∈ Spinc(Y , K )

∣

∣

∣ Ĥ F K (Y , K , s) 
= 0
}

.

If we denote

Amax = max{A(s)| s ∈ BY ,K }, Amin = min{A(s)| s ∈ BY ,K },
then

Amax = −Amin = −χ(F)

2q
+ 1

2
, (5.1)

where F is a maximal Euler characteristic rational Seifert surface for K .
Every Spinc structure s has a conjugate Spinc structure Js via the conjugation map

J : Spinc(Y ) → Spinc(Y ). Likewise, there is a conjugation map ˜J : Spinc(Y , K ) →
Spinc(Y , K ) on the set of all relative Spinc structures. These two conjugation maps satisfy
the relation

GY ,K (˜Js) = J GY ,K (s) + PD[K ] (5.2)

for all s ∈ Spinc(Y , K ). The conjugation ˜J mapsBY ,K intoBY ,K , and there is an isomorphism
of absolutely graded chain complexes:

Ĉ F K ∗(Y , K , s) ∼= Ĉ F K ∗−d(Y , K , ˜Js), (5.3)

where d = A(s) − A(˜Js). Note that the Alexander grading is anti-symmetric with respect
to ˜J :

A(s) = −A(˜Js).

Hence, we can also write d = 2A(s) for the shifting of absolute grading.
Now, assume that K is a knot in an L-space Y . In this special case, rank Ĥ F(Y , s) = 1 for

each Spinc structure s, so there is essentially a unique τ invariant that can be defined using
the Alexander filtration described earlier. More precisely, Let

τs(Y , K ) = min{ks,F + k |̂H F(Y , s) ⊂ Im(Ik)}.
It is straightforward to see that τs(Y , K ) coincides with the invariant τ ∗

c(ξ)(Y , K , F) for

nontrivial contact invariant cξ by comparing it to Definition 2.2. 2

Now, in addition, assume that K is a Floer simple knot. Then there is exactly one relative
Spinc structure s with underlying Spinc structure s such that

Ĥ F K (Y , K , s) ∼= Ĥ F(Y , s) ∼= Z.

Therefore,
τs(Y , K ) = A(s). (5.4)

Finally, since (5.3) implies that

Ĥ F K m(Y , K , s) ∼= Ĥ F K m−2A(s)(Y , K , ˜Js) ∼= Z

2 Indeed, one can also compare with other variations of τ invariant defined by Ni-Vafaee [14] and Raoux [22]
and find that they are all equal.
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for Floer simple knots, we see that the gradings of the generators must be the same as
the corresponding correction terms of the underlying Spinc structures (see, e.g., [15]), i.e.,
d(Y , GY ,K (s)) = m, d(Y , GY ,K (˜Js)) = m − 2A(s). Hence, (5.2) implies

2A(s) = d(Y , s) − d(Y , Js + PD[K ]).
See Fig. 1 below for a graphical illustration.

Putting together the above discussion, we conclude that the τ invariants of a Floer simple
knot K in an L-space Y can be determined from the correction terms of Y ,

2τs(Y , K ) = d(Y , s) − d(Y , Js + PD[K ]).
This proves Proposition 1.2.

6 An example: simple knots in lens spaces

As a special example, consider simple knots in lens spaces. Remember that a lens space
L(m, n) is an L-space. The notion of simple knots in lens space is describe as follows. In
Fig. 2, we draw the standard Heegaard diagram of a lens space L(m, n). Here the opposite
side of the rectangle is identified to give a torus, and there are one α and one β curve on
the torus, intersecting at m points and dividing the torus into m regions. We then put two
base points z, w and connect them in a proper way on the torus. Such a simple closed curve
colored in green is called a simple knot [2]. There is an alternative way of describing simple
knots without referring to the Heegaard diagram: Take a genus 1 Heegaard splitting U0 ∪ U1

of the lens space L(m, n). Let D0, D1 be meridian disks in U0, U1 such that ∂ D0 ∩ ∂ D1

consists of exactly m points. A simple knot in L(m, n) is either the unknot or the union of
two arcs a0 ⊂ D0 and a1 ⊂ D1.

HFKM(Y,K,Amax) ∼= Z

HFKm(Y,K,A(s)) ∼= Z ∼= HF (Y, s)

HFKm−2A(s)(Y,K,A(Js)) ∼= Z ∼= HF (Y, Js+ PD[K])

HFKM−2Amax(Y,K,Amin = −Amax) ∼= Z

A

∼= ∼=

Fig. 1 Ĥ F K (Y , K ) of a Floer simple knot in an L-space has isomorphisms Ĥ F K m (Y , K , A(s)) ∼=
Ĥ F K m−2A(s)(Y , K , A(˜Js)). The correction terms d(Y , s) = m, d(Y , Js + PD[K ]) = m − 2A(s). The
τ invariant τs(Y , K ) = A(s)
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Fig. 2 This is the standard
Heegaard diagram of the lens
space L(4, 1). The red α curve
and the blue β curve intersect at
four points a, b, c and d. The
dotted green curve is a simple
knot of order 2. (Color figure
online)

a b c d

w z

Table 1 For the order two simple
knot K in the lens space
Y = L(4, 1), we verified that
2τs(Y , K ) =
d(Y , s) − d(Y , Js + PD[K ])

x a b c d

A(x) 0 1/2 0 − 1/2

τs(x) 0 1/2 0 − 1/2

d(Y , s(x)) 0 3/4 0 − 1/4

d(Y , Js(x) + PD[K ]) 0 − 1/4 0 3/4

Simple knots are Floer simple. This follows from the observation that the knot Floer com-
plex Ĉ F K (L(m, n), K ) is generated by exactly the m intersection points of α and β curves.
Moreover, there is exactly one simple knot in each homology class in H1(L(m, n); Z)—this
corresponds to the different relative positions of z and w. Figure 2 exhibits a Heegaard dia-
gram of the order 2 simple knot K in the lens space L(4, 1). As computed by Raoux [22],
the Alexander grading of each generator is illustrated in the second row of Table 1, which
is also equal to the τ invariant of the corresponding Spinc structure. We also computed the
correction terms of L(4, 1) using formulae in [16, Proposition 4.8], and verified

2τs(Y , K ) = d(Y , s) − d(Y , Js + PD[K ]).

In general, according to [12], there are exactly m − 1 tight contact structures on a lens
space L(m, 1), which can be represented by Legendrian surgeries on Legendrian unknots
in (S3, ξstd) with Thurston–Bennequin invariant −m + 1, and rotation number m − 2, m −
4, · · · , 2 − m. They bound Stein domains (W , J1), (W , J2), · · · , (W , Jm−1), respectively.
Since 〈c1(Ji ), [F ∪ C]〉 = m − 2i , for i = 1, 2, · · · , m − 1, J1, J2, · · · , Jm−1 represent
distinct Stein structures. By [21, Theorem 2], the contact invariants of these m − 1 tight
contact structures are all distinct and nontrivial. Since L(m, 1) is an L-space, these m − 1
tight contact structures represent m − 1 distinct Spinc structures on L(m, 1).

Let us turn back to the example of the order two simple knot K in L(4, 1) depicted in
Figure 2. Suppose ξ1, ξ2, and ξ3 are the three tight contact structures on L(4, 1) obtained
from Legendrian surgeries on Legendrian unknots in (S3, ξstd) with Thurston–Bennequin
invariant −3, and rotation number 2, 0 and −2, respectively. According to [5], we can
compute the Hopf invariant h(ξi ) of ξi , defined as c21(W , J )−2χ(W )−3σ(W ) for any Stein
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filling (W , J ) of ξi , and obtain that h(ξ1) = h(ξ3) = −2, and h(ξ2) = −1. Recall from
[19] or [21] that the correction term d(Y , sξ ) of a contact structure ξ equals −h(ξ)/4 − 1

2 .
It follows that d(L(4, 1), sξ1) = d(L(4, 1), sξ3) = 0, and d(L(4, 1), sξ2) = − 1

4 . Thus,
we can use Table 1 to compute the rational τ -invariant of the simple knot K , and see that
τξ1(L(4, 1), K ) = τξ3(L(4, 1), K ) = 0, and τξ2(L(4, 1), K ) = − 1

2 .
Now, suppose ξ is one of the m − 1 tight contact structures of L(m, 1). Given the simple

knot K of order q in L(m, 1), we compare the rational Thurston–Bennequin bound of Baker-
Etnyre (1.1) and our bound (1.2) from Theorem 1.1.

We have seen from (5.1) that the genus of a rationally null-homologous knot is determined
by the Alexander grading

Amax = −χ(F)

2q
+ 1

2
,

where F is a minimal genus rational Seifert surface for K . So (1.1) implies that

tbQ(L) + rotQ(L; F) ≤ − 1

q
χ(F) = 2Amax − 1.

Note that this bound is independent of the prescribed contact structures on the lens space.
On the other hand, it follows from (5.4) that τs = As for Floer simple knots. Thus (1.2)

implies that

tbQ(L) + rotQ(L; F) ≤ 2τ ∗
c(ξ)(Y , K ) − 1

= 2Aξ − 1

≤ 2Amax − 1,

where ξ is the relative Spinc structure with the underlying Spinc structure induced from the
contact structure ξ . (Indeed, τ ∗

c(ξ)(Y , K ) ≤ 2Amax is true for an arbitrary knot K in a rational
homology sphere Y . So provided that the contact invariant c(ξ) is nontrivial, (1.2) gives a
stronger bound than (1.1) in general.)

Finally, we remark that Cornwell obtained a Bennequin bound for lens spaces equipped
with universally tight contact structures in terms of different knot invariants [4]. In contrast,
our bound (1.2) is applicable to both universally tight and virtually overtwisted contact
structures on lens spaces.
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