
July 20, 2021 17:32 WSPC/S0129-167X 133-IJM 2150073

International Journal of Mathematics
Vol. 32, No. 8 (2021) 2150073 (15 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0129167X21500737

Alexander polynomial and spanning trees

Yuanyuan Bao

Graduate School of Mathematical Sciences
University of Tokyo, 3-8-1 Komaba

Tokyo 153-8914, Japan
bao@ms.u-tokyo.ac.jp

Zhongtao Wu∗

Department of Mathematics
The Chinese University of Hong Kong

Shatin, Hong Kong
ztwu@math.cuhk.edu.hk

Received 5 April 2021
Revised 5 June 2021
Accepted 5 June 2021
Published 8 July 2021

Communicated by Yasuyuki Kawahigashi

Inspired by the combinatorial constructions in earlier work of the authors that general-
ized the classical Alexander polynomial to a large class of spatial graphs with a balanced
weight on edges, we show that the value of the Alexander polynomial evaluated at t = 1
gives the weighted number of the spanning trees of the graph.
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1. Introduction

Relations between Alexander polynomial and spanning trees appeared in several

studies. In [4], Kauffman introduced a state sum formula for the Alexander poly-

nomial of a link, where a state corresponds to a spanning tree of the checkerboard

graph of the link diagram. Murasugi and Stoimenow [5] defined a polynomial for

an even valence plane graph, and showed a relation between this polynomial and

the Alexander polynomial of an alternating link when the graph is the checker-

board graph of the link diagram. In particular, the polynomial evaluated at 1 is the

number of unoriented spanning trees of the graph. In this paper, we show that a

∗Corresponding author.
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topological invariant of a spatial graph, which we also call Alexander polynomial,

counts oriented spanning trees of the graph. This result has no connection with

checkerboard graph.

In [2], we studied an Alexander polynomial Δ(G,c)(t) for a certain class of spatial

graphs in the 3-sphere S3. Having a standard definition in terms of abelian covers

of graph complement [1, Sec. 5], the invariant is foremost a topological invariant

that naturally generalizes the classical Alexander polynomial for knots and links.

On the other hand, the equivalent definitions in terms of Kauffman states and MOY

calculus discovered by the authors reveal several interesting combinatorial flavours

of the invariant. In [2], it is shown that the value of the Alexander polynomial

evaluated at t = 1 is unchanged under crossing changes of the graph diagrams.

Consequently, for a spatial graph (G, c), Δ(g,c) := Δ(G,c)(1) is an intrinsic invariant

of the underlying abstract graph (g, c) of (G, c).

In this paper, we go one step further and relate the invariant Δ(g,c) with a certain

count of spanning trees of the graph. In order to state the main result precisely, we

introduce a few notations and terms first.

Definition 1.1. Given a vertex r in a connected directed graph Γ, an oriented

spanning tree of Γ rooted at r is a spanning subgraph T that satisfies the following

3 conditions:

(i) Every vertex v �= r has in-degree 1.

(ii) The root r has in-degree 0.

(iii) T has no cycle.

Denote Tr(Γ) the set of all oriented spanning trees of Γ rooted at r. One can then

count the number of such spanning trees. If there is in addition a weight function

w : E → Z on the edge set, we can count instead the weighted number of spanning

trees.

Definition 1.2. Define the weight of each spanning tree T by

w(T ) :=
∏

e∈E(T )

w(e), (1.1)

where E(T ) is the edge set of T . Then, the weighted number of spanning trees rooted

at r is

N(Γ, w, r) :=
∑

T∈Tr(Γ)

w(T ). (1.2)

In particular, for the special case of a bouquet graph, that is the wedge of

some loops, we adopt the convention that there is exactly one spanning tree T of a

bouquet graph consisting of exactly one vertex, and w(T ) = 1.

In this paper, we will be mostly interested in weight functions satisfying a certain

balanced property. We review the related definitions in what follows and refer the

reader to [2, Definition 2.1] for more details.
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Definition 1.3. (i) An abstract MOY graph is a directed graph that equipped with

a positive balanced weight/coloring c : E → N such that for each vertex v

∑
e: pointing into v

c(e) =
∑

e: pointing out of v

c(e). (1.3)

(ii) An MOY graph diagram in R
2 is an immersion of an abstract MOY graph

into R
2, with crossing information and a transverse orientation: through each

vertex v, there is a straight line Lv that separates the edges entering v and the

edges leaving v.

Lv

......

......

An MOY graph (G, c) is an equivalence class of MOY graph diagrams of (g, c)

under a certain topological equivalence relation (a.k.a. the Reidemeister moves).

The Alexander polynomial Δ(G,c)(t) is defined using an MOY graph diagram and

proved to be a topological invariant for the equivalence class (G, c).

Convention. Throughout this paper, we only study connected graphs. As no-

tational convention, we use Γ, w, and w(T ) to denote a general directed graph,

a weight on Γ, and the weight of a spanning tree T of Γ, respectively. In con-

trast, we reserve the letters g, c and c(T ) for an abstract MOY graph, its balanced

weight/coloring, and the weight of a spanning tree T of g, respectively.

With the balanced property on the weight function c, one can show that the

weighted number of spanning trees of a given abstract MOY graph (g, c) is in fact

independent of the choice of the root r (Proposition 2.3). Thus we denote this

number by N(g, c), and our main theorem identifies it with the value Δ(g,c).

Theorem 1.4. For an abstract MOY graph (g, c), we have

Δ(g,c) = N(g, c).

As a corollary, we can establish the non-vanishing property for the Alexander

polynomial Δ(G,c)(t) as a consequence of the existence of spanning trees, thus gen-

eralizing an earlier result of the authors [2, Theorem 5.6], which treated the case

that G is plane.

Corollary 1.5. Suppose G is a connected MOY graph with a positive balanced

weight c. Then Δ(G,c)(1) > 0. In particular, this implies Δ(G,c)(t) �= 0.
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2. Matrix Tree Theorem

Kirchhoff’s matrix tree theorem is a classical result that allows one to determine

the number of spanning trees by simply computing the determinant of an appro-

priate matrix associated to the graph. In this section, we review the theorem in the

weighted directed graph setting. As an application, we prove the independence of

the weighted number of spanning trees on the choice of root for balanced weight.

Definition 2.1. Suppose (Γ, w) is a weighted directed graph with vertex set V =

{v1, v2, . . . , vn}. The n× n Laplacian matrix L is given by

Lij =

⎧⎪⎪⎨
⎪⎪⎩

−aij if i �= j

n∑
k=1

akj if i = j,

where

aij =

⎧⎨
⎩

∑
{e | e is an edge from vi to vj}

w(e) if i �= j

0 if i = j.

Fix a vertex vr in Γ, and let Lr be the Laplacian matrix of Γ with the rth row

and column removed. The matrix tree theorem asserts:

Theorem 2.2 (Matrix Tree Theorem). Let (Γ, w) be a weighted directed graph.

Then

det(Lr) = N(Γ, w, vr),

where the right-hand side is the weighted number of the oriented spanning trees

rooted at vr.

A proof of the above theorem can be found, for example, in [3, 6].

In general, the weighted number of oriented spanning trees with different roots

are not necessarily the same. Nonetheless, for the most relevant case to our paper,

namely, a balanced weight/coloring (Definition 1.3), N(Γ, w, vr) is independent of

the choice of root.

Proposition 2.3. Suppose (Γ, w) is a directed graph with a balanced weight. We

have

N(Γ, w, vi) = N(Γ, w, vj)

for all vi, vj ∈ V . In other words, the weighted number of oriented spanning trees

is independent of the choice of the root vr.

Proof. Recall that a balanced weight means
∑

e: pointing into v

w(e) =
∑

e: pointing out of v

w(e)

2150073-4

In
t. 

J.
 M

at
h.

 2
02

1.
32

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
H

IN
E

SE
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
09

/0
8/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



July 20, 2021 17:32 WSPC/S0129-167X 133-IJM 2150073

Alexander polynomial and spanning trees

for each vertex v. In terms of the Laplacian matrix L in Definition 2.1, this is

equivalent to the identity
∑n

k=1 akj =
∑n

k=1 ajk for all j; so L has the property

that every row and every column sums up to 0. From
∑

j Lij = 0, we can readily

show that the cofactors of the elements of any particular row of L are all equal.

From
∑

i Lij = 0, we can likewise deduce that the cofactors of the elements of any

particular column of L are all equal. Hence, all cofactors of L are equal, and the

statement follows from Theorem 2.2.

Example 2.4. We consider the directed graph Γ with a balanced weight w indi-

cated by numbers drawing near the edges, which is Fig. 1.

We can check that the weighted numbers of spanning trees rooted at either

vertex are all equal to (i+ k)(j+ k), as illustrated in Figs. 2–4. On the other hand,

the Laplacian matrix is

L =

⎛
⎜⎜⎝
i+ j + k −(j + k) −i
−j j + k −k

−(i+ k) 0 i+ k

⎞
⎟⎟⎠.

It is a straightforward calculation to see that all the matrix cofactors are also equal

to (i + k)(j + k).

v1

v2 v3k

i+ kj
ij + k

Fig. 1. Graph Γ.

v1

v2 v3

ij + k

v1

v2 v3k

j + k

Fig. 2. There are 2 oriented spanning trees rooted at v1, so N(Γ, w, v1) = i(j + k) + k(j + k) =
(i+ k)(j + k).
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v1

v2 v3

ij

v1

v2 v3

j

k

v1

v2 v3k

i+ k

Fig. 3. There are 3 oriented spanning trees rooted at v2, so N(Γ, w, v2) = ij + kj + k(i + k) =
(i + k)(j + k).

v1

v2 v3

i+ k
j + k

Fig. 4. There is 1 oriented spanning tree rooted at v3, so N(Γ, w, v2) = (i+ k)(j + k).

3. Spanning Trees and Kauffman States

In this section, we prove Theorem 1.4 for a planar MOY graph (g, c), that is, there

exists an MOY graph diagram G of g in the plane without intersections between the

interior of edges. Our strategy is to express Δ(g,c) = Δ(G,c)(1) using the Kauffman

state sum formulation and then make an explicit bijection of Kauffman states to

the oriented spanning trees in (1.2) for the weighted sum.

From now on, G denotes a plane MOY graph diagram in R
2 of the graph g.

In [2, Sec. 2], the authors defined the Kauffman state sum for general MOY graph

diagrams; we do not need the full generality here, and instead, will only focus on

the simpler plane diagram case, following [2, Sec. 5.3].

Starting from the plane diagram G, we can obtain a decorated diagram (G, δ)

by putting a base point δ on one of the edges in G and drawing a circle around

each vertex of G. Then

(i) Cr(G): denotes the set of crossings
�

�
which are the intersection points around

each vertex between the incoming edges with the circle. Such a crossing is said

to be generated by the edge. (In Example 3.5, there are two crossings around

v1 generated by the edges with weights j and i+ k, respectively.)

(ii) Re(G): denotes the set of regions, including the regular regions of R2 separated

by G and the circle regions around the vertices. Note that there is exactly one

circle region around each vertex. Marked regions are the regions adjacent to

the base point δ, and the others are called unmarked regions. (In Example 3.5,

there are 2 marked regions and 5 unmarked regions.)
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(iii) Corners: There are 3 corners around a crossing �

�
, and we call the one inside

the circle region the north corner, the one on the left of the crossing the west

corner and the one on the right the east corner, as illustrated in the following.

Note also that every corner belongs to a unique region in Re(G).

W E

N

Calculating the Euler characteristic of R2 using G with circles around each of

the vertices shows

|Re(G)| = |Cr(G)|+ 2.

Also, a generic base point δ is adjacent to two regions, which will be denoted by Ru

and Rv. We claim that Ru and Rv must be distinct in our case of a graph equipped

with a positive balanced weight. This is due to the fact that the weight of a bridge

in a graph with a balanced weight must equal 0.

Definition 3.1. A Kauffman state for a decorated diagram (G, δ) is a bijective

map

s : Cr(G)→ Re(G)\{Ru, Rv},

which sends a crossing in Cr(G) to one of its corners. Let S(G, δ) denote the set of

all Kauffman states.

Definition 3.2. Suppose (G, δ) is a decorated plane diagram with n crossings

C1, C2, . . . , Cn in Cr(G) and n+ 2 regions R1, R2, . . . , Rn+2 in Re(G). We assume

that the base point δ is on an edge e1 with weight i1.

(i) We define a local contribution P�
Cp

(t) as in Fig. 5, which is a polynomial in t.

t−i/2 ti/2

[i]

i

ti1/2

i1
∗δ

Fig. 5. The local contributions P�
Cp

(t) for crossings generated by a generic edge without δ (left)

and the edge with δ (right), respectively.
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Here, � represents a corner around Cp, and

[i] :=
ti/2 − t−i/2

t1/2 − t−1/2
= t

i−1
2 + · · ·+ t

1−i
2 .

(ii) For each Kauffman state s, let

Ps(t) :=
n∏

p=1

P
s(Cp)
Cp

(t).

(ii) The Kauffman state sum is defined as

Δ(G,c)(t) :=
∑

s∈S(G,δ)

Ps(t). (3.1)

Theorem 3.3 ([2, Secs. 3 and 5]). The function Δ(G,c)(t) is a topological in-

variant of (G, c) well-defined up to tk and is independent of the choice of δ.

Now, we are ready to prove Theorem 1.4 for the planar graph case. The key

observation is the remarkable similarity in the formula of the weighted number

of spanning trees in Definition 1.2 and the formula of the Kauffman state sum in

Definition 3.2. Note that when one substitutes t = 1 in Eq. (3.1), the value Δ(G,c)(1)

is expressed as a sum of the value Ps(1) over all Kauffman states s, where each Ps(1)

is a product of local contributions P�
Cp

(1) as in Fig. 6. Our goal is to describe an

explicit bijection between the set of rooted spanning trees Tr(G) with the set of

Kauffman states S(G, δ), and then identify the weights c(e) and c(T ) with the local

contributions P�
Cp

(1) and Ps(1), respectively.

Theorem 3.4. Suppose (G, c) is a plane MOY graph diagram where the base point

δ is on an edge that enters the vertex r. Then, there is a canonical bijective map

φ : Tr(G)→ S(G, δ)

so that each oriented spanning tree T rooted at r has a one-to-one correspondence

with a certain Kauffman state s ∈ S(G, δ). Moreover, the weight of each span-

ning tree c(T ) is equal to the corresponding term Ps(1). Consequently, Δ(G,c)(1) =

N(G, c).

1 1

i

i

Fig. 6. The local contributions P�
Cp

(1) for a crossing generated by a generic edge without δ; the

contribution is 1 for the edge with δ, so we can ignore the term in the computation of Ps(1).
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Proof. Recall that for each spanning tree T of the plane graph G, there is a

canonical dual spanning tree T ∗ in the dual graph G∗ consisting of all edges which

are duals of the edges not in T . We then construct the Kauffman state s in the

following way:

(i) For the edge e1 where the base point δ is on, assign the crossing �

�
generated

by e1 to its north corner inside the circle region around the vertex r.

(ii) For each edge e in the oriented spanning tree T that enters the vertex v,

assign the crossing
�

�
generated by e to its north corner inside the circle

region around the vertex v.

(iii) For all other crossings, there is a unique way of assigning one of the east and

west corners: Starting from the vertices in G∗ dual to the two regions Ru and

Rv, one can travel to all other vertices in G∗ along edges of T ∗. In each step

that we traverse e on the dual edge e∗ from v∗1 and v∗2 , assign the crossing
�

�generated by e to the corner that belongs to the regular region dual to v∗2 .

The above construction may be easier to understand if one looks instead at

the more concrete pictures in Example 3.5. Since every vertex v �= r of an oriented

spanning tree T has in-degree 1, and vertices in T ∗ have a one-to-one correspondence

with regular regions of R2 separated by G, one can see that s thus defined gives

a bijective map between Cr(G) and Re(G)\{Ru, Rv}; so it is a Kauffman state by

Definition 3.1. Therefore, the map φ : Tr(G)→ S(G, δ) is well-defined.

To show that φ is bijective, we construct an inverse map ψ : S(G, δ) → Tr(G).
Given a Kauffman state s, let F ⊂ E be the set of edges so that s assigns the

crossing
�

�
generated by those edges to their north corners. By definition e1 ∈ F ,

recalling that e1 is the edge with base point δ. Then E−F is the set of edges so that

s assigns the crossing
�

�
generated by those edges to their east or west corners.

Let T be the subgraph of G generated by F − {e1}, and let T ∗ be the subgraph of

G∗ generated by (E − F ) ∪ {e1}. We want to show that T is an oriented spanning

tree rooted at r. To this end, note that the size of T is by definition |F |−1 = |V |−1

since s is a Kauffman state. It is also clear that every vertex v �= r has in-degree

1 and the root r has in-degree 0. Thus, it suffices to show that T does not have a

cycle.

We prove by contradiction. Suppose C is a cycle in T . Then C bounds a disk D

in R
2. Without loss of generality, we assume that D∩ Int(e1) = ∅, and therefore the

marked regions Ru, Rv are not contained in D. Consider the subgraph G′ = G∩D.

Let a be the number of vertices of G′, and let b be the number of edges of G′. By

Euler’s formula, the number of regular regions of G inside D is b− a+ 1. Together

with the additional a circle regions intersecting D, the total number is

#(regions) = (b− a+ 1) + a = b+ 1.

Meanwhile, the total number of crossings in D is

#(crossings
�

�
) = b.
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v1

v2 v3
k

i+ kj
ij + k

∗
δ

•

•

•

•

•

v1

v2 v3

T

◦

◦

◦◦

T ∗

Fig. 7. The Kauffman state s ∈ S(G, δ) in the decorated diagram (left) and the corresponding
oriented spanning tree T and its dual spanning tree T ∗ in thick red (right).

Since ∂D = C ⊂ T , the Kauffman state s assigns the crossing
�

�
generated by

edges of the cycle C to their north corners (circle regions intersecting the boundary

of D). It follows that s must map b crossings in D onto b + 1 regions in D, which

is impossible.

Thus, we proved T is a spanning tree, and we define ψ(s) = T . Clearly, ψ is the

inverse of φ. It is straightforward to see that the weight of each spanning tree c(T )

is equal to the corresponding term Ps(1). This proves the theorem.

Example 3.5. The graph in Example 2.4 is in fact an MOY graph diagram, so

we can compute its Alexander polynomial. With the base point δ on the edge of

weight k, we obtain a decorated diagram and find exactly one Kauffman state s, as

indicated by • in Fig. 7 (left). The associated spanning tree T rooted at v3 and its

dual spanning tree T ∗ specified by Theorem 3.4 are marked in thick red in Fig. 7

(right).

According to Definition 3.2,

Δ(G,c)(t) = Ps(t) = tk/2 · t−j/2 · ti/2 · [i+ k] · [j + k],

as s is the unique Kauffman state. In particular, we see that

Ps(1) = (i+ k)(j + k) = c(T ).

4. Spanning Trees and Skein Relations

To establish Theorem 1.4 for arbitrary graphs, our strategy is to prove a set of

skein relations and reduce the general case to the plane graph case, which was just

confirmed in the previous section.

Let (g, c) be an abstract MOY graph, and let G be an MOY graph diagram of

g on R
2. In general, G may have double points corresponding to crossings of type

���� (positive crossing) and ���� (negative crossing). Since neither of the invariant
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Δ(g,c) or N(g, c) depends on the types of crossings, hereafter, we simply use ������ to

represent a double point (for either positive or negative crossing) in G. We begin

with a lemma.

Lemma 4.1. Let (g, c) be an abstract MOY graph. We obtain a new graph (g′, c′)

by inserting a vertex v′ of degree 2 into an edge e of g. Then we have

N(g′, c′) = c(e)N(g, c),

where c′ denotes the induced balanced weight on g′ from c.

Proof. Suppose e in g is separated into two edges e1 and e2 in g′, and e1 is the

edge pointing to v′.

v′

e1 e2

For any root vertex r in g, consider Tr(g) and Tr(g′), the set of all oriented

spanning trees of g and g′ rooted at v, respectively. There is a canonical one-

to-one correspondence between Tr(g) and Tr(g′): if T ∈ Tr(g) contains e, let

T ′ = (T − {e}) ∪ {e1, e2}; if T ∈ Tr(g) does not contain e, let T ′ = T ∪ {e1}.
In either case, we have c′(T ′) = c(e)c(T ). Taking the sum over all trees gives the

lemma.

Proposition 4.2. We have the following skein relations for the weighted number

of spanning trees, where N(G) represents N(g, c) if G is a graph diagram with

underlying graph (g, c). In each equality, the graph diagrams are identical out-

side the local diagrams shown there. When i = j, ignore the edge with weight

j − i.

When i ≤ j:

N

⎛
⎜⎜⎜⎜⎜⎝

ij
⎞
⎟⎟⎟⎟⎟⎠

=
−1
i · j ·N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

j

i

i

j

j − i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
1

i · (i+ j)
·N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
i j

j i

i + j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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When j < i:

⎛
⎜⎜⎜⎜⎜⎝

ij
⎞
⎟⎟⎟⎟⎟⎠

=
−1
i · j ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

j

i

i

j

i− j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
1

j · (i+ j)
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
i j

j i

i+ j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof. We prove the first relation only and the second one can be proved analo-

gously. Denote G,G1, G2 the diagram on the left-hand side and the two diagram

on the right-hand side of the equality, respectively.

We assume without loss of generality that there are four vertices a, b, c, d of

degree 2 in each of the diagram as shown in what follows. If not, we will just insert

the missing ones: Lemma 4.1 ensures that the invariants N(G), N(G1) and N(G2)

will change by a same factor.

ij

ba

c d

G

j

i

i

j

j − i

c d

a b

G1

v1

v2

i j

j i

i+ j

G2

ba

c d

v1

v2

Proposition 2.3, which claims that the weighted number of spanning trees is

independent of the choice of the root for a balanced weight, enables us to further

simplify our argument. In each of G,G1, G2, we choose b to be the root and analyze

the shape of the corresponding spanning trees.

An oriented spanning tree of G rooted at b must contain the edge pointing to

c, the edge pointing to d, the edge pointing out of b and the edge da, which are

highlighted in thick red as follows:

ij

ba

c d
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An oriented spanning tree of G1 rooted at b must contain the edge pointing to

c, the edge pointing to d, the edge dv1, the edge v2a, the edge pointing out of b and

either one of the edges in the following 2 cases:

(A) the edge v1v2
(B) the edge cv2,

which are highlighted in thick red as follows:

j

i

i

j

j − i

c d

a b

(A)

v1

v2

j

i

i

j

j − i

c d

a b

(B)

v1

v2

An oriented spanning tree of G2 rooted at b must contain the edge pointing to

c, the edge pointing to d, the edge v1v2, the edge v2a, the edge pointing out of b

and either one of the edges in the following 2 cases:

(α) the edge dv1,

(β) the edge cv1,

which are highlighted in thick red as follows:

i j

j i

i+ j

(α)

ba

c
d

v1

v2

i j

j i

i+ j

(β)

ba

c d

v1

v2

Note that an oriented spanning tree T of G rooted at b corresponds to a unique

tree T1 of type (A) in G1 and a unique tree T2 of type (α) in G2, and vice versa.

Hence,

Tb(G) 1:1←→{type (A) in Tb(G1)} 1:1←→{type (α) in Tb(G2)}.
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Under this correspondence, we can check that

c(T ) =
−1
i · j c(T1) +

1

i · (i+ j)
c(T2).

Similarly, an oriented spanning tree T ′
1 of type (B) in G1 corresponds to a unique

tree T ′
2 of type (β) in G2, and vice versa. Hence,

{type (B) in Tb(G1)}
1:1←→{type (β) in Tb(G2)}.

Under this correspondence, we have

−1
i · j c(T

′
1) +

1

i · (i+ j)
c(T ′

2) = 0.

Finally, we sum up over all trees and apply the above two identities on their weights

to obtain the desired equality. This completes the proof.

Now we are ready to prove our main theorem.

Proof of Theorem 1.4. The key observation is that the skein relations in Propo-

sition 4.2 for N(g, c) is the same as the ones for Δ(g,c) = Δ(G,c)(1), obtained by

substituting t = 1 in [2, Theorem 4.1 (iv)]. Note that Theorem 1.4 for plane MOY

graphs has been proved in Theorem 3.4, and a general MOY graph diagram can be

related to plane graphs by a finite number of skein relations. It follows by induction

that Theorem 1.4 holds for arbitrary MOY graphs.

We conclude this section by proving Corollary 1.5. This follows directly from

the following two lemmas, since existence of spanning trees implies positivity of

weighted number of spanning trees when the weight function is positive.

Lemma 4.3. A connected directed graph with a balanced positive weight is strongly

connected, i.e. every vertex is reachable from every other vertex by a directed path.

Proof. Suppose Γ is a connected graph with a positive balanced weight c. Given

a vertex v ∈ V , let S ⊂ V be the set of all vertices that can be reached from v.

If S is a proper subset of V , then V − S is not empty. As Γ is a connected graph,

there must be edges that connect vertices in S with vertices in V − S. Let F be

the set of such edges. Note that all edges in F must be oriented from some vertices

in V − S to some vertices in S, because otherwise there will be a vertex in V − S
which is also reachable from v by a directed path, which contradicts the definition

of S. Then, we have
∑

e with terminal vertex in S

c(e)−
∑

e with initial vertex in S

c(e) =
∑
e∈F

c(e) > 0.

But this is a contradiction since the left-hand side must be zero for the reason that

the incoming weight should be the same as the outgoing weight under the balanced

condition. Hence we must have S = V .
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Lemma 4.4. Every strongly connected graph has an oriented spanning tree with

any given root.

Proof. This is a standard result in graph theory. For any given root r, simply take

a maximal oriented tree rooted at r. Such a tree must be spanning by the strongly

connected assumption.
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