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This paper has two purposes. First, as a continuation of [27], we
apply a similar method to compute the perturbed HF+ for some
special classes of fibered three-manifolds in the second highest spinc-
structures, including the mapping tori of Dehn twists along a single
non-separating curve and along a transverse pair of curves. Second, we
establish an adjunction inequality for the perturbed Heegaard Floer
homology, which indicates a potential connection between the U -action
on the homology group and the Thurston norm of a three-manifold. As
an application, we find the U -action on the perturbed HF+ of the
above classes of fibered three-manifolds is trivial.

1. Introduction

Instanton Floer homology [4], Seiberg–Witten Floer homology [12], embed-
ded contact homology [7] and a few other versions of Floer homology are
siblings of Heegaard Floer homology, all of which are extremely useful invari-
ants in their own rights. In spite of their very different origins, it is largely
believed that all versions of Floer homology should be isomorphic in a
proper sense. As a first step toward the conjecture, Taubes established the
equivalence between Seiberg–Witten Floer cohomology and embedded con-
tact homology [26], and, more recently, with Lee, the equivalence between
Seiberg–Witten Floer cohomology and periodic Floer homology [13].

The Floer homology of a fibered three-manifold is particularly important,
for it is the meeting point of various different versions of Floer homology. A
significant number of computations of this nature have been carried out in,
for example, [3, 5, 9, 25], and their results all agree. Similar computations
can be done for perturbed Floer homology, in which the areas of flow-lines
are kept track of, and the Novikov ring Λ is used as the coefficient ring. (See
Definition 2.1 below for the definition of the Novikov ring.)

1



2 Z. WU

Following [27], where the perturbed Heegaard Floer homology is calcu-
lated for the product three-manifolds Σg × S1, we aim to apply a similar
method to compute the perturbed HF+ for some special classes of fibered
three-manifolds. More precisely, viewing each fibered three-manifold Y as
a mapping torus Σg × [0, 1]/(x, 1) ∼ (φ(x), 0), denoted by M(φ), for some
orientation-preserving diffeomorphism φ of Σg, we study the cases where φ
can be decomposed as products of Dehn twists along a single non-separating
curve, or along a transverse pair of curves.

To state the results, recall that the homology group H2(M(φ); Z) of the
mapping torus M(φ) can be identified with Z⊕ker(1−φ∗) where φ∗ denotes
the action of φ on H1(Σg, Z). For a fixed integer k, let Sk ⊂ Spinc(M(φ))
denote the collection of spinc-structures satisfying the following two require-
ments:

(1) 〈c1(s), [Σg]〉 = 2k.
(2) 〈c1(sk), [T ]〉 = 0, for all classes [T ] coming from H1(Σg).
According to the adjunction inequality for Heegaard Floer homology [17],

HF+(M(φ); s) = 0 unless s satisfy the conditions above and |k| ≤ g−1. We
shall focus on the computation of the perturbed homology group HF+ in
Sg−2 with a generic perturbation ω, denoted by the notation HF+(M(φ), g−
2; ω). Let g > 2 so that Sg−2 consists of entirely non-torsion spinc-structures;
we have the following main theorem.

Theorem 1.1. Assume g > 2.
(1) Let M(tnγ ) denote the mapping torus of multiple Dehn twists along a

non-separating curve γ, and let ω be a generic perturbation. Then

HF+(M(tnγ ), g − 2; ω) = (Λ[U ]/U)2g−2.

(2) Let M(tmγ tnδ ) denote the mapping torus of multiple Dehn twists along a
transverse pair of curves γ and δ, and let ω be a generic perturbation.
Then

HF+(M(tmγ tnδ ), g − 2; ω) =

{
(Λ[U ]/U)2g−2+|mn| if mn < 0 ,

(Λ[U ]/U)2g−4+|mn| if mn > 0 .

(3) Let M(tm1
γ tn1

δ tm2
γ ) denote the mapping torus of multiple Dehn twists

along a transverse pair of curves γ and δ, where m1, m2, n1 > 0; and
let ω be a generic perturbation. Then

HF+(M(tm1
γ tn1

δ tm2
γ ), g − 2; ω) = (Λ[U ]/U)2g−4+(m1+m2)n1 .

(4) Let M(tm1
γ tn1

δ · · · tmk
γ tnk

δ ) denote the mapping torus of multiple Dehn
twists along a transverse pair of curves γ and δ, where mi · nj < 0;
and let ω be a generic perturbation. Then

HF+(M(tm1
γ tn1

δ · · · tmk
γ tnk

δ ), g − 2; ω) = (Λ[U ]/U)|L|,

where L denotes the Lefschetz number of the monodromy.
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In [2], Cotton–Clay computes the perturbed symplectic Floer homol-
ogy for all area-preserving surface diffeomorphisms, which provides a lower
bound on the number of fixed points of symplectomorphisms in given map-
ping classes. Note that Theorem 1.1 agrees with his results. We shall also
compare with [6], in which computations of the perturbed Heegaard Floer
homology are carried out for the mapping torus of a periodic diffeomorphism.
Fink shows that the rank of the homology in second highest Spinc structures
Sg−2 is exactly the Lefschetz number of the corresponding monodromy φ.

The unperturbed counterpart of the problem is considered in [9]. By pre-
senting Mφ as zero-surgery on some knot K in a three-manifold, Jabuka and
Mark is able to use the relationship between the knot Floer homology of K
and the Floer homology of surgeries on K to determine the Heegaard Floer
homology of certain mapping tori M(φ), mostly overlapping with the cases
considered here. However, some extra difficulties arise as the higher differ-
entials of certain spectral sequences is non-vanishing when one attempts
to adapt their method in the perturbed case. Hence, we take an alterna-
tive approach based on certain special Heegaard Diagrams, which will be
explained in the next two sections. In the end, we find the homology group
in our perturbed case is actually simpler, whose rank is, more or less, just
the Euler characteristic of the corresponding homology group in the unper-
turbed case.

In order to determine HF+(M(φ), g − 2; ω) as a Λ[U ]-module, we could
cite the result from Lekili [14] which readily implies the triviality of the U -
action. Alternatively, we establish a more general adjunction inequality here
that may be of independent interests in other occasions. The following state-
ment can be seen as an analogy, as well as a generalization, of Theorem 7.1
of [17].

Theorem 1.2 (U-action Adjunction Inequality). Let Z be a connected,
embedded two-manifold that represents a non-trivial homology class in an
oriented three-manifold Y , and let ω be a generic perturbation. If s is a
Spinc structure for which U j ·HF+(Y, s; ω) �= 0, then

|〈c1(s), [Z]〉| ≤ 2g(Z)− 2j − 2.

In fact, the same conclusion holds for a perturbation ω as long as ω(Z) �= 0.

We immediately obtain, by taking j = g in the above theorem:

Corollary 1.3. If a three-manifold Y contains a homologically non-trivial,
embedded two-manifold of genus g, then Ug ·HF+(Y ; ω) = 0.

In particular, the U -action applies trivially on HF+(M(φ); ω), provided
we can find a homologically non-trivial torus inside the mapping torus M(φ).
It turns out that every diffeomorphism considered in Theorem 1.1 fixes cer-
tain essential curve in Σg, thus generates the desired homologically non-
trivial torus.



4 Z. WU

Our paper is organized as follows. In Section 2, we collect some prelim-
inary results on perturbed Heegaard Floer homology. We also review the
construction of a special Heegaard diagram, which will be used throughout
the paper. In Section 3, we extract and reformulate a standard argument
from [27], and use it as a principal tool in determining the rank of the
perturbed Heegaard Floer homology of various mapping tori. In Section 4,
we establish the U -action adjunction inequality as a formal consequence of
Heegaard–Floer cobordism invariants. This, along with the computations in
the preceding section, leads to Theorem 1.1.

2. Preliminaries

2.1. Perturbed Heegaard Floer homology. Let (Σ, α, β, z) be a pointed
Heegaard diagram of a three-manifold Y . The Heegaard Floer chain complex
CF+(Y ) is freely generated by [x, i] where x is an intersection point of
Lagrangian tori Tα and Tβ and i ∈ Z≥0, and the differential is given by

∂+[x, i] =
∑

y

⎛
⎝ ∑

{φ∈π2(x,y)|nz(φ)≤i}
#M̂(φ)[y, i− nz(φ)]

⎞
⎠ .

The above definition only makes sense under certain admissibility conditions
so that the sum on the right-hand side of the differential is finite. However,
there is a variant of Heegaard Floer homology where Novikov rings and
perturbations by closed two-forms are introduced without any admissibility
condition, called the perturbed Heegaard Floer homology. See [11] for a
more detailed account.

Definition 2.1. The Novikov ring Λ is the ring whose elements are formal
power series of the form

∑
r∈R

arT
r with ar ∈ Z2 such that #{ar|ar �= 0, r <

N} <∞ for any N ∈ R. In fact, Λ is a field.

Define a perturbed chain complex which is freely generated over Λ by
[x, i] as before, and whose differential is given by

∂+[x, i] =
∑

y

⎛
⎝ ∑

{φ∈π2(x,y)|nz(φ)≤i}
#M̂(φ)TA(φ) · [y, i− nz(φ)]

⎞
⎠ ,

where A(φ) denotes the area pre-assigned to the domain D(φ) by A. If φ1

and φ2 are two topological discs that connect an intersection point x to y,
then their difference is a periodic domain P; and there is a unique two-
form η ∈ H2(Y ; R) satisfying the equality A(φ1) − A(φ2) = η([P]) for all
choices of φ1 and φ2. We denote HF+(Y ; η) for the homology of this chain
complex. We remark that although the differential depends on the choice of
a representative of the class η, the isomorphism class of the homology group
HF+(Y ; η) is determined by ker(η) ∩H2(Y ; Z).
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Recall that a two-form ω is said to be generic if ker(ω) ∩ H2(Y ; Z) =
0, or equivalently, ω(P) �= 0 for any integral periodic domain P. For a
generic form, HF+(Y, ω) is defined without any admissibility conditions on
the Heegaard diagram.

Perturbed Heegaard Floer homology shares many common properties
with the unperturbed homology. In particular, we will need the following
characterization for the Euler characteristic of HF+ [17].

Lemma 2.2. For a non-torsion Spinc structure s, HF+(Y, s; η) is finitely
generated, and the Euler characteristic

χ(HF+(Y, s; η)) = χ(HF+(Y, s)) = ±τt(Y, s),

where τt is Turaev’s torsion function, with respect to the component t of
H2(Y ; R)− 0 containing c1(s).

Recall that the Heegaard Floer chain complex can be equipped with a
Z/2Z-grading, and χ(HF+(Y, s)) is simply rankHF+(Y, s)even − rankHF+

(Y, s)odd. Different ways of assigning the Z/2Z-grading account for the sign
ambiguity in the statement. Turaev’s torsion function, derived from certain
complicated group rings over CW-complex, is often rather hard to compute.
For fibered three manifolds, the situation is much simplified by the following
remarkable identity [8,24].

Lemma 2.3. If we denote τt(M(φ), k) for the sum of all Turaev’s torsion
functions over the set of the spinc-structures Sk, then

τt(M(φ), k) = L(Sg−1−kφ),

where the latter is the Lefschetz number of the induced function of φ over
the symmetric product Sg−1−kΣg.

In particular when k = g − 2,

τt(M(φ), g − 2) = L(φ).

Let us remind the reader that the Lefschetz number of a continuous map
φ : M −→M is defined by

L(φ) :=
∑

i

(−1)iTr(φ∗ : Hi(M)→ Hi(M)).

2.2. A special Heegaard diagram. In order to compute the homology
for general fibered three manifolds, we need to use certain special Heegaard
diagram, first introduced by Ozsváth and Szabó in studying contact invari-
ant [20, Section 3]. Figure 1 is the special Heegaard Diagram for Σg × S1.
It consists of two twice punctured 4g-gons and a standard identification on
their edges, representing two genus g surfaces with opposite orientations
that glued together through the pairs of holes that produces a genus 2g + 1
surface. In the text below, we shall refer to the top 4g-gon in Figure 1 as
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Figure 1. The special Heegaard Diagram of Σg×S1. It con-
sists of two twice punctured 4g-gons and a standard identifi-
cation on their edges. Here, the top polygon, which shall be
also referred to as the “left” one has the usual counterclock-
wise, while the bottom polygon, which shall be also referred
to as the “right” one has the other orientation. They repre-
sent two genus g surfaces, glued together through the pairs
of holes that produces a genus 2g + 1 surface.

the “left” one and the bottom 4g-gon as the “right” one for the sake of
consistency with [20]. All the α’s and β’s curves are drawn along with their
intersection points marked. We list some of the important properties of this
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special Heegaard diagram:

• each αi ∩ βi twice, denoted by Li and Ri respectively, 1 ≤ i ≤ 2g;
• αi ∩ βj = ∅, when i �= j, 1 ≤ i, j ≤ 2g;
• α2g+1 ∩ βi twice, denoted by Ai and A′

i, respectively, 1 ≤ i ≤ 2g;
• αi ∩ β2g+1 twice, denoted by Bi and B′

i, respectively, 1 ≤ i ≤ 2g.

Recall that Sk ⊂ Spinc(M(φ)) is the set of spinc-structures satisfying the
following two conditions

(1) 〈c1(s), [Σg]〉 = 2k.
(2) 〈c1(sk), [T ]〉 = 0 for all classes [T ] coming from H1(Σg).

We can find the generators of Sk in this Heegaard diagram.

• For k ≥ g, Sk is empty.
• For k = g − 1, Sg−1 consists of a pair of generators: (A2g, B2g, L1,

L2, . . . , L2g−1) and (A2g−1, B2g−1, L1, . . . , L2g−2, L2g).
• For k = g − 2, Sg−2 consists of (2g − 1) pairs of generators:

a1 := (A2g, B2g, R1, L2, L3, . . . , L2g−1),
a2 := (A2g, B2g, L1, R2, L3, . . . , L2g−1)
. . .
a2g−2 = (A2g, B2g, L1, L2, . . . , R2g−2, L2g−1)
and
b1 := (A2g−1, B2g−1, R1, L2, L3, . . . , L2g−2, L2g),
b2 := (A2g−1, B2g−1, L1, R2, L3, . . . , L2g−2, L2g)
. . .
b2g−2 = A2g−1, B2g−1, L1, L2, . . . , R2g−2, L2g)
and
a0 := (A2g, B2g, L1, L2, . . . , R2g−1),
b0 := (A2g−1, B2g−1, L1, L2, . . . , R2g).

Here, a0 and b0 are distinguished from the other generators by the
fact that there is a disk D′ connecting them without passing the base-
point z. We call them fake generators. The remaining (2g − 2) pairs,
on the other hand, are called essential generators. By making a choice
of the Z/2Z-grading so that ai ∈ CF+(Y )odd and bi ∈ CF+(Y )even,
we can resolve the sign ambiguity in Lemma 2.2:

χ(HF+Y, s; η)) = χ(HF+Y, s)) = τt(Y, s).

• When 0 < k < g−1, Sk consists of
(

2g−1
g−1−k

)
pairs of generators: simply

replace (g − 1 − k) of Li by Ri in the coordinates of the generators
of Sg−1. Among them,

(
2g−2

g−2−k

)
pairs are fake and

(
2g−2

g−1−k

)
pairs are

essential.
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We claim that the above is a complete list of all generators in Sk. Again,
recall the following Chern class formula [17, Section 7.1]:

〈c1(sz(x), [P]〉 = χ(P)− 2nz(P) + 2
∑
xi∈x

nxi(P),

where P is a domain whose boundary is a sum of α and β curves and x is
a generator of the Heegaard Floer homology. We check 〈c1(sz(ai)), [Σg]〉 =
2(g − 2).

Clearly, the periodic domain P in the formula corresponding to the homol-
ogy representative [Σg] is represented by the the union of all hexagons lying
in the left-hand-side polygon between α2g+1 and β2g+1, which is itself a
genus-g surface with two punctures; thus, the Euler measure χ(P) = −2g.
It is also easy to see that

nz(P) = 1, nA2g(P) = nB2g(P) =
1
2
, nLi(P) = 1, nRi(P) = 0.

Plugging into the Chern class formula, we obtain

〈c1(sz(ai)), [Σg]〉 = −2g − 2 + 2
(

1
2

+
1
2

+ 2g − 2
)

= 2g − 4

as desired.
Indeed, it is a very similar calculation using the Chern class formula

to show that 〈c1(sz(ai)), [T ]〉 = 0 for all ai’s. Here, each class [T ] is rep-
resented by some embedded torus in the three-manifold, as well as by
unions of hexagons in the Heegaard diagram. In particular, the unions
D ∪ D′ ∪ D1 ∪ D′

1 and D ∪ D′ ∪ D2 ∪ D′
2 in Figure 1 are examples

of such periodic domains. By applying the Chern class formula on these
two periodic domains, we can further see that every essential generator in
Sk must contain intersection points (A2g, B2g, L2g−1) or (A2g−1, B2g−1, L2g),
while every fake generator must contain intersection points (A2g, B2g, R2g−1)
or (A2g−1, B2g−1, R2g). This fact enabled us to simplify the enumeration of
generators of Σg × S1 by a great deal, and we would like to point out that
the same simplification remains valid for all three-manifolds considered in
this paper. (Although it is definitely not true for an arbitrary three-manifold
Y with b1(Y ) = 1.)

In general, the special Heegaard diagram for an arbitrary mapping torus
is obtained in a similar manner. The α and β curves inside the left-hand-side
4g-gon are always the same as those inside Σg × S1, which we would refer
later as a standard diagram. Inside the right-hand-side 4g-gon, whereas the
α’s curves remain unaltered, the β’s curves twist according to φ. Therefore,
it is only necessary to exhibit the right-hand-side 4g-gon of the Heegaard
diagram, as it encodes essentially all the information of the manifold.



PERTURBED HEEGAARD FLOER HOMOLOGY 9

γ

δ

Figure 2. The standard position of a transverse pair of
curves is represented by γ and δ.

3. Calculations for fibered three manifolds

Standard classification results in surfaces imply that any simple non-
separating curve can be mapped to the standard position γ, and that any
pair of transverse curves can be mapped to γ and δ in Figure 2, by a suitable
surface automorphism. Hence, for simplicity, we always assume the curves
to lie in the standard position in the forthcoming discussions. We are going
to compute the rank of HF+(M(φ), g − 2; ω) for various mapping tori by
a method based on ideas from [27]. A few simplification is made in the
argument although, and it is reformulated in a form most suitable for its
subsequent applications.

Throughout the section, g is implicitly assumed to be greater than 2.

3.1. A standard argument. Recall from the proceeding section that there
are 2g − 2 pairs of essential generators ai

D−→ bi in Sg−2 with a holomorphic

disk D connecting them; and there is a single pair of fake generators a0
D′←−

b0 with a holomorphic disk D′ connecting them. Also note that both the
topological disks D and D′ can be represented by some holomorphic disks
φ, so that the algebraic number of holomorphic disk in the corresponding
moduli space of disks in the homology class of φ is given by #M̂(φ) = ±1
(See [23, Section 9]). Arguments below will show that a0 and b0 do not
survive in the homology, hence justifying the name “fake generators” that
we have called them.

In general, let us denote:
CF ess

odd := Vector space generated by all essential generators supported in
odd grading.
(generated by all ai’s, 1 ≤ i ≤ g − 2 in CF (Σg × S1, g − 2)).

CF ess
even := Vector space generated by all essential generators supported in

even grading.
(generated by all bi’s, 1 ≤ i ≤ g − 2 in CF (Σg × S1, g − 2)).

CF fake
odd := Vector space generated by all fake generator supported in odd

grading.
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nz = 0
D′D′D D

nz = 1

CF ess
odd CF ess

odd · Uk

CF ess
even · U−1 CF ess

even · U−k−1 CF fake
even · U−kCF fake

even

CF fake
odd · U−kCF fake

odd

······

Figure 3. The chain complex of CF+(Y ).

(generated by a0 in CF (Σg × S1, g − 2)).

CF fake
even := Vector space generated by all fake generators supported in even

grading
(generated by b0 in CF (Σg × S1, g − 2)).

CF+
odd := (CF ess

odd)⊕ CF fake
odd ) · (1⊕ U−1 ⊕ U−2 + · · · ).

CF+
even := (CF ess

even)⊕ CF fake
even) · (1⊕ U−1 ⊕ U−2 + · · · ).

We summarize these information of the chain complex CF+(Y ) in
Figure 3.

It contains all the generators of CF+(Y, g−2), though the boundary map
∂ of this chain complex is apparently incomplete as here represented. We
can get around this difficulty by cleverly choosing a generic form ω in light
of the fact that HF+(Y, g − 2; ω) is an invariant for generic perturbation
ω. To this end, choose a generic two form ω such that ω(D) = ω(D′) �
ω(other regions). Then the above complex would be the E1 page of the
spectral sequence if there were an area filtration on the Heegaard diagram.
Unfortunately, such an area filtration does not exist due to non-admissiblity
of the Heegaard diagram. Nevertherless, this idea can still carry through by
other means and is made precise by the following technical lemma, which
enables us to compute HF+(Y, g − 2; ω) without any further knowledge on
the chain complex, provided that certain condition on Euler characteristic
is satisfied.

Lemma 3.1. Suppose the generators and a partial information of the bound-
ary map ∂ of a chain complex CF+(Y ) are reflected as in Figure 3. If we
know, in addition, that χ(HF+(Y )) = −rankCF ess

odd, then

rankHF+
even(Y ; ω) = 0,

rankHF+
odd(Y ; ω) = −χ(HF+(Y ))

for the generic perturbation ω.
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Proof. As mentioned above, it suffices to prove the lemma for a generic two-
form ω with ω(D) = ω(D′) � ω (other regions). Suppose x represents a
non-zero class in HF+

odd, we will show:

(1) x /∈ CF ess
odd · (U−1 ⊕ U−2 + · · · ).

(2) there is an element x′ ∈ CF ess
odd · (1 ⊕ U−1 ⊕ U−2 + · · · ) such that

[x] = [x′] ∈ HF+
odd.

If we can prove these two claims, then each class in HF+
odd would

uniquely correspond to an element in the subspace CF ess
odd; so rankHF+

odd ≤
rankCF ess

odd. Since we also have rankHF+
odd − rankHF+

even = rankCF ess
odd, the

desired equalities follow immediately.
To prove (1), note that every element of CF ess

odd · (U−1 ⊕ U−2 + · · · ) can
be written as x =

∑
aiU

−jkij , where kij ∈ Λ and ai ∈ CF ess
odd. Suppose ki1j1

is one of the coefficients with the lowest order term in T . Then

∂x = bi1U
−(j1−1) · (ki1j1T

ω(D) + higher order terms in T ) + · · · .

Hence ∂x �= 0, if x �= 0; so x is not a cycle.
To prove (2), we first compute the determinant of the ∂-matrix from

CF fake
even to CF fake

odd . There is a unique lowest order term TN ·ω(D′) coming
from the holomorphic disk D′ in diagonal entries, where N is the number of
generators and thus also the size of the matrix (N = 1 in the case of Σg×S1

that corresponds to the unique pair of generators a0, b0 and the holomorphic
disk D′ that connects them). Consequently, the determinant is nonzero. As
this ∂-matrix has entries in the Novikov ring Λ, which is itself a field, it
follows that det �= 0 is equivalent to the invertibility of the matrix; so the
boundary map ∂ is surjective.

We would like to extend the above argument to the differential from the
larger space CF fake

even ·(1⊕U−1⊕· · ·⊕U−k) to CF fake
odd ·(1⊕U−1⊕· · ·+⊕U−k).

Suppose x1, x2, . . . , xN and y1, y2, · · · , yN are the generators of CF fake
even and

CF fake
odd respectively, and there is a holomorphic disk D′ connecting xi and

yi for each i. Then CF fake
even · (1⊕U−1⊕ · · · ⊕U−k) (resp. CF fake

odd · (1⊕U−1⊕
· · · ⊕ U−k)) can be viewed as an Λ-vector space generated by a basis of
N(k + 1) elements [xi, j] (resp. [yi, j]), where 1 ≤ i ≤ N and 0 ≤ j ≤ k.
We can construct an associated ∂-matrix with entries in Λ of size N(k + 1)
according to the following rule: if ∂[xi1 , j1] = ci2j2

i1j1
[yi2 , j2] + · · · , then record

ci2j2
i1j1

in the entry of the matrix that corresponds to the row for [xi1 , j1] and
the column for [yi2 , j2]. Complicated as this matrix appears to be, we claim
that it has nonzero determinant and thus invertible. The key observation
is that there is a unique lowest order term Tω(D′) in each diagonal entry
of the matrix cij

ij . This corresponds to the fact that there is a holomorphic
disk D′ connecting [xi, j] and [yi, j] for each i. Therefore, there is a unique
lowest order term TN(k+1)ω(D′) in the expression of the determinant, and
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consequently the determinant must not be zero. It follows that this matrix
is surjective.

Note that ci2j2
i1j1

vanishes whenever j2 > j1. This implies that the image of
the differential from CF fake

even ·(1⊕U−1⊕· · ·⊕U−k) to CF fake
odd ·(1⊕U−1⊕· · · )

lands entirely inside the subspace CF fake
odd · (1 ⊕ U−1 ⊕ · · · ⊕ U−k). Hence,

for any b ∈ CF fake
odd · (1 ⊕ U−1 ⊕ · · · ⊕ U−k), using the surjection proved in

the last paragraph, we can always find a ∈ CF fake
even · (1 ⊕ U−1 ⊕ · · · ⊕ U−k)

such that the projection of ∂a in CF fake
odd · (1 ⊕ U−1 ⊕ · · · ) is b. Choose

a large enough k, and let this b be the projection of x (the same x that
appears at the beginning of the proof) in CF fake

odd · (1⊕ U−1 ⊕ · · · ); also let
∂a = y ∈ CF+

odd, so [y] = 0 ∈ HF+
odd. Let x′ = x−y, then x′ projects to 0 in

CF fake
odd · (1⊕U−1 ⊕ · · · ). Hence x′ ∈ CF ess

odd · (1⊕U−1 ⊕ · · · ) as desired. �

We remark that the preceding argument is applicable to any three-
manifold as long as the conditions of the assumption are met. In particular,
it holds for Y = Σg × S1

χ(HF+(Y, g − 2)) = −rankCF ess
odd = 2− 2g,

from which the computation of HF+(Y, g − 2; ω) in [27] follows. For the
remaining section, we would apply this method to determine the rank of
the perturbed Heegaard Floer homology for various other mapping tori, and
would refer it as the “standard” argument.

3.2. Multiple Dehn twists along a non-separating curve φ = tn
γ .

Assume that the monodromy φ = tnγ ; the right-hand side of the special
Heegaard diagram of M(tnγ ) looks like Figure 4.

We proceed to enumerate all the generators in the set of the Spinc struc-
tures Sg−2 in the Heegaard diagram. Observe that apart from n intersection
points between α2 and β1, Dehn twists along γ introduce does not intro-
duce any new intersection points; and a routine calculation using the Chern
class formula finds no other additional generator than the 2g − 1 pairs that
initially existed, among which 2g − 2 pairs are essential.

Apply Lemma 2.2 and 2.3: χ(HF+(M(tnγ ), sg−2; ω)) = L(tnγ ) = 2 − 2g.
The condition χ(HF+(M(tnγ ), sg−2) = 2− 2g = −rankCF ess

odd is satisfied, so
we can apply the standard argument and obtain the following.

Proposition 3.2. HF+(M(tnγ ), g − 2; ω) = Λ2g−2
odd .

3.3. Multiple Dehn twists along a transverse pair of curves φ =
tm
γ tn

δ . Assume the monodromy φ = tmγ tnδ . There are two cases: either m ·n <
0 or m · n > 0.
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γ

δ

β1

β2

Figure 4. The Heegaard diagram for M(tnγ ), when n = 2.
The pair of non-separating curves γ and δ in standard
positions are exhibited in thick lines.

β1

β2

P1,1

R1

Figure 5. The Heegaard diagram for M(tmγ tnδ ), when m =
1, n = −1. Here, β1 is represented by the dashed curve, while
β2 is represented by the dotted curve.

Consider the case m · n < 0 first. We have the Heegaard Diagram in
Figure 5.

Denote the |mn| extra intersection between α1 and β1 by Pi,j , where
1 ≤ i ≤ |m| and 1 ≤ j ≤ |n|. There are (2g − 1 + |mn|) pairs of generators
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in Sg−2, among which (2g − 2 + |mn|) pairs are essential:

(A2g, B2g, R1, L2, . . . , L2g−1),

(A2g, B2g, L1, R2, . . . , L2g−1)
· · ·

(A2g, B2g, L1, L2, . . . , R2g−1)

and

(A2g−1, B2g−1, R1, L2, . . . , L2g−2, L2g),

(A2g−1, B2g−1, L1, R2, . . . , L2g−2, L2g)
· · ·

(A2g−1, B2g−1, L1, L2, . . . , R2g),

and

(A2g, B2g, Pi,j , L2, . . . , L2g−1),

(A2g−1, B2g−1, Pi,j , L2, . . . , L2g).

To compute the Lefschetz number of L(tmγ tnδ ), note that both tγ and tδ act
trivially on H0(Σg), H2(Σg), and a (2g−2)-dimensional subspace of H1(Σg).
While on the two-dimensional subspace spanned by the Poincare duals of γ

and δ, they act by
(

1 1
1

)
and

(
1
−1 1

)
, respectively. Then,

Tr
((

1 1
1

)m (
1
−1 1

)n)
= Tr

((
1 m

1

)
·
(

1
−n 1

))
= 2−mn

and the Lefschetz number is

L(φ) =
2∑

i=0

(−1)iTr(φ∗ : Hi(M)→ Hi(M))

= 1− ((2g − 2) + (2−mn)) + 1
= 2− 2g + mn.

The condition χ(HF+(M(tnγ ), sg−2) = 2 − 2g + mn = −rankCF ess
odd is

satisfied, so we can apply the standard argument and obtain the following.

Proposition 3.3. HF+(M(tmγ tnδ ), g − 2; ω) = Λ2g−2+|mn|
odd , m · n < 0.

Let us proceed to the case m · n > 0. By symmetry, it suffices to consider
m, n > 0.

We have the following Heegaard diagram (Figure 6), that can be subse-
quently simplified to Figure 7 by an isotopy on β1. Note that the intersections
R1 and Pm,n disappear in the new diagram. In this Heegaard diagram, there
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β1

β2

P1,1

P1,2

R1

Figure 6. The Heegaard diagram for M(tmγ tnδ ), when m =
1, n = 2. β1 is represented by the dashed curve, while β2 is
represented by the dotted curve.

are (2g − 3 + mn) pairs of generators in Sg−2, among which 2g − 4 + mn
pairs are essential:

(A2g, B2g, L1, R2, . . . , L2g−1)
· · ·

(A2g, B2g, L1, L2, . . . , R2g−1)

and

(A2g−1, B2g−1, L1, R2, . . . , L2g)
· · ·

(A2g−1, B2g−1, L1, L2, . . . , R2g)

and

(A2g, B2g, Pi,j , L2, . . . , L2g−1)

(A2g−1, B2g−1, Pi,j , L2, . . . , L2g)

where (i, j) �= (m, n).
As alluded to earlier, there are multiple Spinc structures in the set Sg−2. In

fact, the spinc-structures are naturally identified with the second cohomology
group H2(M(tmγ tnδ ), Z) = Z

2g−1 ⊕ Z/mZ⊕ Z/nZ. Applying the Chern class
formula, we find

(A2g, B2g, Pi,j , L2, . . . , L2g−1)
· · ·

(A2g−1, B2g−1, Pi,j , L2, . . . , L2g)
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β1

β2

P1,1

Figure 7. The simplified Heegaard diagram after isotopying
β1. Note that the intersections R1 and P1,2 disappear in this
new diagram.

with (i, j) �= (m, n) lying on mn − 1 different spinc-structures, denoted by
si,j respectively, while all the remaining generators

(A2g, B2g, L1, R2, . . . , L2g−1)
· · ·

(A2g, B2g, L1, L2, . . . , R2g−1),

(A2g−1, B2g−1, L1, R2, . . . , L2g)
· · ·

(A2g−1, B2g−1, L1, L2, . . . , R2g)

lying on another distinguished spinc-structure, that we denote by sm,n.
For each spinc-structure si,j , (i, j) �= (m, n), there are exactly two gen-

erators (A2g, B2g, Pi,j , L2, . . . , L2g−1), (A2g−1, B2g−1, Pi,j , L2, . . . , L2g) which
are connected by a holomorphic disk D with nz �= 0. The argument from
[27, Section 3] for three-torus can be adapted here to show

HF+(M(tmγ tnδ ), si,j ; ω) = Λ,

all supported in even gradings.
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β1

β2

R1

P1,1

Figure 8. The Heegaard diagram of M(tγtδtγ). An isotopy
on β1 can be carried out to cancel the pairs of intersection
points R1 and P1,1.

To determine the homology in the spinc-structure sm,n, note that its Euler
characteristic is:

χ(HF+
sm,n

) = τt(2g − 2)−
∑

(i,j) �=(m,n)

χ(HF+
si,j

)

= 2− 2g + mn− (mn− 1)
= 3− 2g.

There are also exactly 2g−3 pairs of essential generators, so we can apply
the standard argument and conclude

HF+(M(tmγ tnδ ), sm,n; ω) = Λ2g−3.

In summary, we have:

Proposition 3.4. HF+(M(tmγ tnδ ), g − 2; ω) = Λmn−1
even ⊕ Λ2g−3

odd , m · n > 0.

3.4. Multiple Dehn twists along a transverse pair of curves φ =
tm1
γ tn1

δ tm2
γ . The manifolds considered here have the form M(tm1

γ tn1
δ tm2

γ ),
where m1, m2, n1 > 0. The Heegaard diagram is drawn for the case m1 =
n1 = m2 = 1 in Figure 8, which can be simplified by an isotopy on β1 to
remove the intersections R1 and P1,1 (Figure 9). In general, there will be
2g − 4 + (m1 + m2)n1 pairs of essential generators in a simplified Heegaard
diamgram of M(tm1

γ tn1
δ tm2

γ ). (We spare the labour of including the diagram
here, for it is not more illuminating but far more difficult to perceive.)

As H2(M(tm1
γ tn1

δ tm2
γ ), Z) = Z

2g−1 ⊕ Z/(m1 + m2)Z ⊕ Z/n1Z, we have
(m1 + m2)n1 different spinc-structures in Sg−2, denoted by si,j . After a
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β1

β2

Figure 9. The simplified Heegaard diagram of M(tγtδtγ).
An isotopy on β1 has been carried out to cancel the pairs of
intersection points R1 and P1,1.

tedious, yet elementary, calculation using the Chern class formula, we
can identify exactly a single pair of essential generators for each si,j for
(i, j) �= (m1+m2, n1), and 2g−3 pairs of essential generators for the remain-
ing distinguished spinc-structure sm1+m2,n1 , much like the situation in the
previous section.

Hence, for all (i, j) �= (m1 + m2, n1),

HF+(M(tm1
γ tn1

δ tm2
γ ), si,j ; ω) = Λ.

all supported in even gradings.
The Lefschetz number of this monodromy is 2− 2g +(m1 +m2)n1. Thus:

χ(HF+
sm1+m2,n1

) = τt(2g − 2)−
∑

(i,j) �=(m1+m2,n1)

χ(HF+
si,j

)

= 2− 2g + (m1 + m2)n1 − ((m1 + m2)n1 − 1)
= 3− 2g.

The standard argument applies once more and shows

HF+(M(tm1
γ tn1

δ tm2
γ ), sm1+m2,n1 ; ω) = Λ2g−3.

Putting all the spinc-structures together, we conclude:

Proposition 3.5. HF+(M(tm1
γ tn1

δ tm2
γ ), g − 2; ω) = Λ(m1+m2)n1−1

even ⊕ Λ2g−3
odd .

3.5. Multiple Dehn twists along a transverse pair of curves
φ = tm1

γ tn1
δ · · · tmk

γ tnk
δ . Lastly, we consider the manifolds of the form
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M(tm1
γ tn1

δ · · · tmk
γ tnk

δ ), where mi·nj < 0. In other words, they are the mapping
tori of Dehn twists along γ and δ with alternating signs.

Let M denote the matrix

M :=
(

1 m1

1

)
·
(

1
−n1 1

)
· · ·

(
1 mk

1

)
·
(

1
−nk 1

)
.

Then the Lefschetz number is 4− 2g − Tr(M).
On the other hand, if we denote by M ′ the matrix

(1) M ′ :=
(

1 |m1|
1

)
·
(

1
|n1| 1

)
· · ·

(
1 |mk|

1

)
·
(

1
|nk| 1

)
,

a direct counting reveals a total number of 2g−4+Tr(M ′) pairs of essential
generators in the corresponding special Heegaard diagram. (Refer back to
M(tmγ tnδ ) as a special example.)

We claim Tr(M) = Tr(M ′) in our case. This is trivial when mi > 0, or
equivalently, nj < 0. In the case mi < 0 and nj > 0, apply induction on k to
show that the diagonal entries of M are sum of monomials of even degrees,
and hence, equal to the corresponding entries of M ′.

From this, we see that the total number of essential generators is the
minus of the Lefschetz number, which we denote by L. Hence, the standard
argument implies

Proposition 3.6. HF+(M(tm1
γ tn1

δ · · · tmk
γ tnk

δ ), g − 2; ω) = Λ|L|
odd, mi · nj < 0

where |L| = 2g − 4 + Tr(M ′), and M ′ is the matrix defined in (1).

4. Adjunction inequalities

Having discussed the motivation and applications of the U -action adjunction
inequality in the introduction, we are devoted to the proof of Theorem 1.2
in this section. The argument below is due primarily to Yanki Lekili.

Let us first recall the adjunction inequality by Ozsváth and Szabó [17].

Theorem 4.1. [17, Theorem 7.1] Let Z ⊂ Y be a connected, embedded
two-manifold of genus g(Z) > 0 in an oriented three-manifold with b1(Y ) >
0. If s is a Spinc structure for which HF+(Y, s) �= 0, then

|〈c1(s), [Z]〉| ≤ 2g(Z)− 2.

While Ozsváth and Szabó proved Theorem 4.1 by constructing a partic-
ular Heegaard diagram whose generators all lie in the Spinc structures that
satisfy the adjunction inequality, we establish Theorem 1.2 in a more indi-
rect way. Our approach depends on certain formal properties of cobordism
in Heegaard Floer homology [11,22].

Let W be an oriented, smooth, connected, four-dimensional cobordism
with ∂W = −Y1 ∪ Y2. Fix a Spinc structure s ∈ Spinc(W ), and let ti denote
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its restriction to Yi. We also fix a cohomology class ω ∈ H2(W ; R), and
denote its restriction to Yi by ωi . Then, there is a cobordism map

F+
W,s;ω : HF+(Y1, t1; ω1) −→ HF+(Y2, t2; ω2),

which is a smooth oriented four-manifold invariant. These maps satisfy a
composition law.

Lemma 4.2. [22, Composition Law] If W1 is a cobordism from Y1 to
Y2 and W2 is a cobordism from Y2 to Y3, and we equip W1 and W2 with
Spinc structures s1 and s2, respectively, whose restrictions agree over Y2.
Let W = W1#Y2W2. Then for any ω ∈ H2(W ; R), we have

F+
W2,s2;ω|W2

◦ F+
W1,s1;ω|W1

=
∑

{s∈Spinc(W )|s|Wi
=si}

F+
W,s;ω.

Another necessary ingredient of our proof for Theorem 1.2 is the Heegaard
Floer homology of product manifolds Σg × S1.

Lemma 4.3. [11, Theorem 9.4] Let η be a two-form perturbed in the
S1-direction of Σg × S1, i.e., the cohomology class η ∈ H2(Y, R) evaluates
non-zero on the fiber Σg, where g ≥ 2. Then there is an identification of
Z[U ]-modules

HF+(Σg × S1, k; η) ∼= X(g, d),
where d = g − 1− |k|, and

X(g, d) =
d⊕

i=0

Λ2g−iH1(Σg)⊗Z (Λ[U ]/Ud−i+1).

Note that Lemma 4.3 verifies our desired adjunction inequality for the
product manifold Σg × S1. It may be also helpful to compare the Lemma
with both Proposition 4.5 of [27], in which a quite different answer is reached
for a generic perturbation; and with Theorem 9.3 of [19], in which a very
similar result is obtained for the unperturbed Heegaard Floer homology in
non-torsion Spinc structures k �= 0 — simply replace Λ by Z in the above
statement. The result of the torsion Spinc structure k = 0 of the unperturbed
case is quite differental though, see [10, Theorem 1.1].

Proof of Theorem 1.2. Take W = Y × [0, 1]. Let Z ⊂ Y be a connected,
embedded two-manifold of genus g in Y , and let N be the boundary of the
tubular neighborhood of Z in W . Clearly, Z ·Z = 0, so N is diffeomorphic to
Σg×S1. By fixing a path joining Y to Z, and taking a regular neighborhood,
we break the cobordism apart into a piece W1 from Y to Y #N , and then
another piece W2 from Y #N to Y .

Suppose s is a Spinc structure on Y . It can be extended uniquely to a
Spinc structure on W , denoted by s as well, as H2(Y × [0, 1]) → H2(Y ) is
an isomorphism. Let si be the restriction of s on Wi, respectively. There is
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actually a unique way of extending si to a Spinc structure s ∈ Spinc(W ),
for the extension of the Spinc structure si|Y from Y to W is unique. Hence,
the composition law of cobordism implies that

F+
W2,s2;ω|W2

◦ F+
W1,s1;ω|W1

= F+
W,s;ω,

where ω ∈ H2(W ; R) is a generic two-form in the sense that Ker(ω) ∩
H2(W ; Z) = {0}.

The cobordism map F+
W,s;ω is an identity from HF+(Y, s; ω) to itself, since

W is a product cobordism. Hence, the cobordism map

F+
W1,s1;ω|W1

: HF+(Y, s; ω|Y ) −→ HF+(Y #N, s|Y #N ; ω|Y #N ),

is injective. Note that ω|Y is a generic form on Y , which we denote by ω
as well; and ω|N is the image of ω under successive restrictions H2(W ) →
H2(Σg × D2) → H2(N = Σg × S1), corresponding to η = PD([S1]) in N .
Thus, we can rewrite the cobordism map as

F+
W1,s1;ω|W1

: HF+(Y, s; ω) −→ HF+(Y, s; ω)⊗HF+(Σg × S1, s; η).

Suppose s is a Spinc structure for which U j · HF+(Y, s; ω) �= 0. Then
F+

W1,s1;ω|W1
(U j ·HF+(Y, s; ω)) �= 0 for the map is injective. As F+

W1,s1;ω|W1
is

U -equivariant, we have U j ·HF+(Y, s; ω)⊗HF+(Σg ×S1, s; η) �= 0. In par-
ticular, multiplying U j on the second factor shows that U j · HF+(Σg ×
S1, s; η) �= 0. When g ≥ 2, we obtain |〈c1(s), [Z]〉| ≤ 2g(Z) − 2j − 2
from Lemma 4.3. When g = 0 or 1, the corresponding homology groups
are HF+(S2 × S1; η) = 0 and HF+(T3; η) = Λ[U ]/U ; and the adjunction
inequality also holds in these cases. �
Remark 4.4. When j ≤ g − 1, the adjunction inequality (Theorem 1.2)
holds for the unperturbed Heegaard Floer homology by the same argument.
However, it is unclear to the author how this can be generalized to torsion
Spinc structures (corresponding to j = g and Corollary 1.3) in the unper-
turbed case.

Corollary 1.3 follows readily from the adjunction inequality. In particular,
when specializing to the case g = 0, we point out that the converse is also
true.

Theorem 4.5. [15] A three-manifold Y contains a homologically non-
trivial, embedded sphere if and only if HF+(Y ; ω) = 0.

Theorem 4.5 follows essentially from [15, Theorem 3.6]. In light of Corol-
lary 1.3 and Theorem 4.5, we would like to ask: is the converse also true for
higher-genus cases g > 1? More generally, is there any special relationship
between the U -action and Thurston norms?

As a consequence of Corollary 1.3 and the results in the previous section,
we obtain Theorem 1.1.
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