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Invariant Metrics with Nonnegative
Curvature on Compact Lie Groups

Nathan Brown, Rachel Finck, Matthew Spencer, Kristopher Tapp and
Zhongtao Wu

Abstract. We classify the left-invariant metrics with nonnegative sectional curvature on SO(3) and

U (2).

1 Introduction

Every compact Lie group admits a bi-invariant metric, which has nonnegative sec-

tional curvature. This observation is the starting point of almost all known con-

structions of nonnegatively and positively curved manifolds. The only exceptions are

found in [1, 6, 12], and many of these exceptions admit a different metric which does

come from a bi-invariant metric on a Lie group; see [10].

In order to generalize this cornerstone starting point, we consider the following

problem: for each compact Lie group G, classify the left-invariant metrics on G which

have nonnegative sectional curvature. The problem is well motivated because each

such metric, gl, provides a new starting point for several known constructions.

For example, suppose H ⊂ G is a closed subgroup. The left-action of H on (G, gl)

is by isometries. The quotient space H\G inherits a metric of nonnegative curvature,

which is generally inhomogeneous. Geroch proved [5] that this quotient metric can

only have positive curvature if H\G admits a normal homogeneous metric with pos-

itive curvature, so new examples of positive curvature cannot be found among such

metrics. However, it seems worthwhile to search for new examples with quasi- or

almost-positive curvature (meaning positive curvature on an open set, or on an open

and dense set).

A second type of example occurs when H ⊂ G is a closed subgroup, and F is a

compact Riemannian manifold of nonnegative curvature on which H acts isometri-

cally. Then H acts diagonally on (G, gl)×F. The quotient, M = H\(G×F), inherits a

metric with nonnegative curvature. M is the total space of a homogeneous F-bundle

over H\G. Examples of this type with quasi-positive curvature are given in [9]. It is

not known whether new positively curved examples of this type could exist.

In this paper, we explore the problem for small-dimensional Lie groups. In Sec-

tion 3, we classify the left-invariant metrics on SO(3) with nonnegative curvature.

This case is very special because the bi-invariant metric has positive curvature, and

therefore so does any nearby metric. The solution is straightforward and known to
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some, but does not appear in the literature. In Section 4, we classify the left-invariant

metrics on U (2) with nonnegative curvature. This classification does not quite re-

duce to the previous, since not all such metrics lift to product metrics on U (2)’s

double-cover S1 × SU(2).

The only examples in the literature of left-invariant metrics with nonnegative cur-

vature on compact Lie groups are obtained from a bi-invariant metric by shrink-

ing along a subalgebra (or a sequence of nested subalgebras). We review this con-

struction in Section 5. Do all examples arise in this way? In Section 6, we outline a

few ways to make this question precise. Even for U (2), the answer is essentially no.

Also, since each of our metrics on U (2) induces via Cheeger’s method a left-invariant

metric with nonnegative curvature on any compact Lie group which contains a sub-

group isomorphic to U (2), our classification for small-dimensional groups informs

the question for large-dimensional groups.

2 Background

Let G be a compact Lie group with Lie algebra g. Let g0 be a bi-invariant metric on G.

Let gl be a left-invariant metric on G. The values of g0 and gl at the identity are inner

products on g which we denote as 〈 · , · 〉0 and 〈 · , · 〉l. We can always express the

latter in terms of the former:

〈A, B〉l = 〈φ(A), B〉0

for some positive-definite self-adjoint φ : g → g. The eigenvalues and eigenvectors of

φ are called eigenvalues and eigenvectors vectors of the metric gl.

There are several existing formulas for the curvature tensor of gl at the identity,

which we denote as R : g × g × g → g. Püttmann’s formula [8] says that for all

x, y, z, w ∈ g,

(2.1) 〈R(x, y)z, w〉l = −
1

4

(

〈[φx, y], [z, w]〉0 + 〈[x, φy], [z, w]〉0

+ 〈[x, y], [φz, w]〉0 + 〈[x, y], [z, φw]〉0

)

−
1

4

(

〈[x, w], [y, z]〉l − 〈[x, z], [y, w]〉l − 2〈[x, y], [z, w]〉l

)

−
(

〈B(x, w), φ−1B(y, z)〉0 − 〈B(x, z), φ−1B(y, w)〉0

)

,

where B is defined by B(x, y) =
1
2
([x, φy] + [y, φx]).

Sectional curvatures can be calculated from this formula. An alternative formula

by Milnor for the sectional curvatures of gl is found in [7]. If {e1, . . . , en} ⊂ g is a

gl-orthonormal basis, then the sectional curvature of the plane spanned by e1 and e2

is:

(2.2) κ(e1, e2) =

n
∑

k=1

( 1

2
α12k (−α12k + α2k1 + αk12)

−
1

4
(α12k − α2k1 + αk12) (α12k + α2k1 − αk12) − αk11αk22

)

,
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where αi jk = 〈[ei , e j], ek〉l are the structure constants.

3 Metrics on SO(3)

Let G = SO(3), which has Lie algebra g = so(3). We use the following bi-invariant

metric:

〈A, B〉0 = (1/2) trace(ABT) for A, B ∈ g.

A left-invariant metric gl on G has three eigenvalues, {λ2
1, λ

2
2, λ

2
3}. The metric can be

re-scaled so that λ3 = 1.

Proposition 3.1 A left-invariant metric on SO(3) with eigenvalues {λ2
1, λ

2
2, 1} has

nonnegative sectional curvature if and only if the following three inequalities hold:

(3.1)

2λ2
1 + 2λ2

2 − 3 + λ4
1 − 2λ2

1λ
2
2 + λ4

2 ≥ 0,

2λ2
1 − 3λ4

1 + 2λ2
1λ

2
2 − 2λ2

2 + 1 + λ4
2 ≥ 0,

2λ2
2 − 3λ4

2 + 2λ2
1λ

2
2 − 2λ2

1 + 1 + λ4
1 ≥ 0.
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Figure 1: The values of λ1 and λ2 for which SO(3) has nonnegative sectional curvature, when

λ3 = 1 (left) and when
∑

λi = 1 (right)

The intersection of the graph in Figure 1 (left) with the identity function λ1 = λ2

is interesting. The eigenvalues {λ2, λ2, 1} yield nonnegative curvature if and only if

λ2 ≥ 3/4. Re-scaled, this means that the eigenvalues {1, 1, µ2} yield nonnegative

curvature if and only if µ2 ≤ 4/3. Metrics with two equal eigenvalues on SO(3) (or

on its double-cover S3) are commonly called Berger metrics. They are obtained by

scaling the Hopf fibers by a factor of µ2. The nonnegative curvature cut-off µ2 ≤ 4/3

is well known.
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Proof Let gl be a left-invariant metric on SO(3). Let {u1, u2, u3} ⊂ g denote an

oriented g0-orthonormal basis of eigenvectors of gl, with eigenvalues {λ2
1, λ

2
2, λ

2
3}.

Then,
{

e1 =

u1

λ1

, e2 =

u2

λ2

, e3 =

u3

λ3

}

is a gl-orthonormal basis of g. The Lie bracket structure of g is given by:

(3.2) [u1, u2] = u3, [u2, u3] = u1, [u3, u1] = u2.

The structure constants, αi jk = 〈[ei , e j], ek〉l, are:

α123 = −α213 =

λ3

λ1λ2

, α231 = −α321 =

λ1

λ2λ3

, α312 = −α132 =

λ2

λ1λ3

,

with all others equal to zero. Equation (2.2) gives:

κ(e1, e2) =

1

2

λ3

λ1λ2

(

−
λ3

λ1λ2
+

λ1

λ2λ3
+

λ2

λ1λ3

)

−
1

4

( λ3

λ1λ2

−
λ1

λ2λ3

+
λ2

λ1λ3

)( λ3

λ1λ2

+
λ1

λ2λ3

−
λ2

λ1λ3

)

.

When λ3 = 1, the inequality κ(e1, e2) ≥ 0 is equivalent to the first inequality of (3.1).

The second and third inequalities are equivalent to κ(e2, e3) ≥ 0 and κ(e1, e3) ≥ 0,

respectively.

It remains to prove the following: if the planes spanned by pairs of {e1, e2, e3}
are nonnegatively curved, then all planes are nonnegatively curved. It is immediate

from Püttmann’s formula (2.1) that R(ei , e j)ek = 0 whenever i, j, k are distinct. This

implies that the curvature operator is diagonal in the basis {e1 ∧ e2, e2 ∧ e3, e3 ∧ e1}.

The result follows.

To classify up to isometry the left-invariant metrics of nonnegative sectional cur-

vature on SO(3) it remains to observe the following proposition:

Proposition 3.2 Two left-invariant metrics on SO(3) are isometric if and only if they

have the same eigenvalues.

Proof Suppose first that f : (SO(3), g1) → (SO(3), g2) is an isometry, where g1

and g2 are left-invariant metrics. We lose no generality in assuming that f (I) = I.

The linear map ∧2(g) → ∧2(g) induced by d fI : g → g must send eigenvectors of the

curvature operator of g1 to eigenvectors of the curvature operator of g2. Since these

eigenvectors are wedge products of eigenvectors of the metrics, d fI : g → g must send

the eigenvectors of g1 to the eigenvectors of g2. Since d fI preserves lengths, the two

metrics must have the same eigenvalues.

Conversely, suppose that g1 and g2 are left-invariant metrics on SO(3) with eigen-

vectors E = {e1, e2, e3} and F = { f1, f2, f3}, respectively. Assume that the eigenval-

ues of the two metrics agree. The bases E and F can be chosen to be g0-orthonormal

and to have the same orientation. There exists x ∈ SO(3) such that Adx : g → g sends

E to F. It is straightforward to verify that Cx : (SO(3), g1) → (SO(3), g2) (conjugation

by x) is an isometry.



28 N. Brown, R. Finck, M. Spencer, K. Tapp, Z. Wu

4 Metrics on U (2)

Let G = U (1)×SU(2). In this section, we classify the left-invariant metrics on G with

nonnegative curvature. This is equivalent to solving the problem for U (2), which has

the same Lie algebra.

Let g0 denote a bi-invariant metric on G. Suppose that gl is a left-invariant metric

on G. The Lie algebra of G is g = u(1) ⊕ su(2). The factors u(1) and su(2) are

orthogonal with respect to g0. If they are orthogonal with respect to gl, then gl is a

product metric, so the problem reduces to the one from the previous section.

We will see, however, that nonnegatively curved metrics need not be product met-

rics. This might be surprising, since when gl is nonnegatively curved, the splitting

theorem [2, Ch. 4] implies that the pull-back of gl to the universal cover R× SU(2) is

isometric to a product metric. The subtlety is that the metric product structure and

the group product structure need not agree. Further, the metric gl on G need only be

locally isometric to a product metric, not globally.

Let {u1, u2, u3} denote an orthonormal basis of eigenvectors of the restriction of

gl to the su(2) factor. Let {λ2
1, λ

2
2, λ

2
3} denote the corresponding eigenvalues, which

we call “restricted eigenvalues” of gl. Notice that

{

e1 =

u1

λ1

, e2 =

u2

λ2

, e3 =

u3

λ3

}

is gl-orthonormal. Let e0 ∈ g span the u(1) factor. Let E0 span the gl-orthogonal

compliment of the su(2) factor, and be gl-unit length.

Proposition 4.1 (G, gl) has nonnegative curvature if and only if {λ1, λ2, λ3} satisfy

the restrictions of Proposition 3.1, and one of the following conditions holds:

(i) E0 is parallel to e0 (in this case, gl is a product metric);

(ii) λ1 = λ2 = λ3 (in this case, E0 is arbitrary);

(iii) λ1 = λ2 and E0 ∈ span{e0, e3} (or analogously if a different pair of λ’s agree).

We prove the proposition with a sequence of lemmas.

Lemma 4.2 The map adE0
: g → g is skew-adjoint with respect to gl if and only if one

of the three conditions of Proposition 4.1 holds.

Proof Write E0 = ae0 + be1 + ce2 + de3. In the gl-orthonormal basis {E0, e1, e2, e3}
of g, the structure constants α0 jk = 〈[E0, e j], ek〉l are as follows:

α012 = d
λ2

λ1

, α021 = −d
λ1

λ2

, α023 = b
λ3

λ2

,

α032 = −b
λ2

λ3

, α031 = c
λ1

λ3

, α013 = −c
λ3

λ1

.

Here we assume for convenience that g0 is scaled such that the Lie bracket structure

of the SU(2) factor is given by equation (3.2). The lemma follows by inspection, since

adE0
is skew-adjoint if and only if α0i j = −α0 ji for all i, j.
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The next lemma applies more generally to any left-invariant metric on any Lie

group.

Lemma 4.3 The left-invariant vector field x ∈ g is parallel if and only if adx is skew-

adjoint and 〈x, [g, g]〉l = 0.

Proof For all y, z ∈ g,

(4.1) 2〈y,∇zx〉l = 〈z, [y, x]〉l + 〈x, [y, z]〉l − 〈y, [x, z]〉l.

If adx is skew-adjoint, then the first and last terms of (4.1) sum to 0. If additionally

〈x, [g, g]〉l = 0, then the middle term is also 0. So ∇zx = 0 for all z ∈ g, which means

that x is parallel.

Conversely, assume that x is parallel, so the left side of (4.1) equals 0 for all y, z ∈ g.

When y = z, this yields 2〈y, [y, x]〉l = 0 for all y ∈ g, which implies that adx is

skew-adjoint. This property makes the first and third terms of (4.1) sum to zero, so

〈x, [y, z]〉l = 0 for all y, z ∈ g. In other words, 〈x, [g, g]〉l = 0.

The next lemma [7] also applies more generally to any left-invariant metric on any

Lie group. We use r to denote the Ricci curvature of gl.

Lemma 4.4 (Milnor) If x ∈ g is gl-orthogonal to the commutator ideal [g, g], then

r(x) ≤ 0, with equality if and only if adx is skew-adjoint with respect to gl.

Proof of Proposition 4.1 Suppose that gl has nonnegative curvature. Then adE0
is

skew-adjoint by Lemma 4.4. Next, Lemma 4.2 implies that one of the three condi-

tions of the proposition hold. It remains to prove that {λ1, λ2, λ3} satisfy the con-

straints for eigenvalues of a nonnegatively curved metric on SO(3) (or equivalently

on SU(2)). By Lemma 4.3, E0 is parallel. Using (4.1), this implies that the SU(2) fac-

tor of G is totally geodesic, so its induced metric has nonnegative curvature, which

gives the constraints on the λ ′s.

Conversely, suppose {λ1, λ2, λ3} satisfies the constraints for eigenvalues of a non-

negatively curved metric on SU(2), and that one of the three conditions of the propo-

sition holds. By Lemma 4.2, adE0
is skew-adjoint, so by Lemma 4.3, E0 is parallel. This

implies that the SU(2) factor of G is totally geodesic. It has nonnegative curvature be-

cause of the constraints on the λ’s. Consider the curvature operator of gl expressed

in the following basis of ∧2(g):

{E0 ∧ e1, E0 ∧ e2, E0 ∧ e3, e1 ∧ e2, e2 ∧ e3, e3 ∧ e1}.

Since E0 is parallel, R(E0 ∧ ei) = 0. Furthermore, R(ei ∧ e j) is calculated in the totally

geodesic SU(2). It follows that the curvature operator is nonnegative.

We refer to metrics of types (i) and (ii) in Proposition 4.1 as “twisted metrics.”

We know from the splitting theorem that nonnegatively curved twisted metrics are
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locally isometric to untwisted (product) metrics. We end this section by explicitly

exhibiting the local isometry between a twisted metric and a product metric.

Suppose that gl is a twisted metric. Recall that {E0, e1, e2, e3} is a gl-orthonormal

basis of g. Let g̃l denote the pull-back of gl to the universal cover, R × SU(2), of

G. Let g ′ denote the product metric on R × SU(2) for which {e0, e1, e2, e3} forms a

g ′-orthonormal basis of g. Define f : (R × SU(2), g ′) → (R × SU(2), g̃l) as follows:

f (t, g) = flow from (0, g) for time t along E0 = RetE0 (0, g) = (at, getÊ0 ),

where E0 = ae0 + be1 + ce2 + de3 and Ê0 = be1 + ce2 + de3.

Proposition 4.5 If gl has nonnegative curvature, then f is an isometry.

Proof First,

(4.2) d f(t,g)(e0) =

d

ds

∣

∣

∣

s=0
(a(t + s), ge(t+s)Ê0 ) = (a, (getÊ0 )Ê0),

which is the value at f (t, g) of the left-invariant vector field E0. So d f sends the

left-invariant field e0 to the left-invariant field E0. Next, for i ∈ {1, 2, 3},

(4.3) d f(t,g)(eig) =

d

ds

∣

∣

∣

s=0
f (t, esei g) =

d

ds

∣

∣

∣

s=0
(at, esei getÊ0 ) = (0, ei(getÊ0 )),

which is the value at f (g, t) of the right-invariant vector field determined by ei . In

other words, d f sends the right-invariant vector field determined by ei to itself.

In summary, (4.2) implies that d f sends the g ′-unit-length field e0 to the g̃l-unit-

length field E0. Further, (4.3) implies that d f sends the g ′-orthogonal compliment

e0 to the g̃l-orthogonal compliment of E0 (both of which equal span{e1, e2, e3}). It

remains to verify that the restriction d f : span{e1, e2, e3} → span{e1, e2, e3} is an

isometry.

Under condition (ii) of Proposition 4.1, g ′ restricts to a bi-invariant metric on the

SU(2) factor. Under condition (iii), g ′ restricts to a left-invariant and AdH-invariant

metric, where H = exp(span(Ê0)). In either case, the metric has exactly enough

right-invariance to give the desired result from (4.3).

Propositions 3.2 and 4.5 together imply

Corollary 4.6 Two left-invariant metrics with nonnegative curvature on U (1)×SU(2)

are locally isometric if and only if their restricted eigenvalues {λ1, λ2, λ3} are the same.

These local isometries are really isometries between the universal covers. In general,

they are not group isomorphisms. They do not generally descend to global isometries

between twisted and product metrics on U (1) × SU(2).
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5 Review of Cheeger’s Method

In the literature, the only examples of left-invariant metrics with nonnegative curva-

ture on compact Lie groups come from a construction which, in its greatest general-

ity, is due to Cheeger [1]. In this section, we review Cheeger’s method.

Let H ⊂ G be compact Lie groups with Lie algebras h ⊂ g. Let g0 be a left-

invariant and AdH-invariant metric on G with nonnegative curvature. Let gH be a

right-invariant metric on H with nonnegative curvature. The right diagonal action

of H on (G, g0)×(H, gH) is by isometries. The quotient is diffeomorphic to G and in-

herits a submersion metric, g1, which is left-invariant and has nonnegative curvature:

(G, g1) = ((G, g0) × (H, gH))/H. If gH is bi-invariant, then g1 is AdH-invariant.

The metrics g0 and g1 agree orthogonal to h. To describe g1 on h, let {e1, . . . , ek}
denote a gH-orthonormal basis of h. Let A and Ã denote the k-by-k matrices whose

entries are ai j = g0(ei , e j) and ãi j = g1(ei, e j), respectively. The restrictions of g1 and

g0 to h are shown in [1] to be related by the equation:

(5.1) Ã = A(I + A)−1.

A common special case occurs when g0 is bi-invariant, and gH is a multiple, λ, of

the restriction of g0 to H. In this case, which was first studied in [4], g1 restricted

to h is obtained from g0 by scaling by the factor t = λ/(1 + λ). In this case, g1 is

AdH-invariant, and is therefore AdK-invariant for any closed subgroup K ⊂ H. So

Cheeger’s method can be applied again:

(G, g2) = ((G, g1) × (K, gK ))/K,

and so on. Iterating Cheeger’s method in this way is studied in [3].

In summary, whenever H0 ⊂ H1 ⊂ · · · ⊂ Hl−1 ⊂ Hl = G is a chain of closed

subgroups of G with Lie algebras h0 ⊂ h1 ⊂ · · · ⊂ hl−1 ⊂ hl = g, one can apply

Cheeger’s method l-times. One chooses a starting bi-invariant metric g0 on G and l

constants {λ0, . . . , λl−1}. The result is a new left-invariant metric with nonnegative

curvature on G. The sub-algebras hi are separately scaled by factors determined by

the λ’s, with hi scaled a greater amount than hi+1. More precisely, the eigenvalues of

the metric are a strictly increasing sequence t0 < t1 < · · · < tl−1 < tl = 1. The

λ ′s can be chosen to give any such strictly increasing sequence. The eigenspace of t0

equals h0. For i > 1, the eigenspace of ti equals the g0-orthogonal compliment of

hi−1 in hi .

6 Do All Metrics Come From Cheeger’s Method?

Let G be a compact Lie group. Does every left-invariant metric on G with nonnega-

tive curvature come from Cheeger’s method? In this section, we outline several ways

to precisely formulate this question, and address the cases G = SO(3) and G = U (2).

First, one might ask whether all examples arise by starting with a bi-invariant

metric g0 on G and applying Cheeger’s method to a chain of subgroups H0 ⊂ · · · ⊂
Hl−1 ⊂ G, each time choosing the metric on Hi to be a multiple, λi , of the restriction

of g0 to Hi . The answer is clearly no, since not all metrics on SO(3) arise in this
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fashion. But SO(3) is a very special case, since its bi-invariant metric has positive

curvature. There are several ways to modify the question to reflect the guess that

SO(3) is the only exception.

What if, in each application of Cheeger’s method, one allows more general right-

invariant metrics on the Hi ’s? For example, if Hi
∼
= SO(3) or SU(2), we allow any

right-invariant metric with nonnegative curvature. With this added generality, the

answer is still no, since metrics on SO(3) which are nonnegatively but not positively

curved do not arise in this fashion:

Proposition 6.1 If g0 is a bi-invariant metric on SO(3) and gR is a right-invariant

metric with nonnegative curvature on SO(3), then the following has strictly positive

curvature:

(SO(3), gl) := ((SO(3), g0) × (SO(3), gR))/ SO(3).

Further, every positively-curved left-invariant metric gl can be described in this way for

some bi-invariant metric g0 and some positively curved right-invariant metric gR.

Proof Let π : (SO(3), g0) × (SO(3), gR) → (SO(3), gl) denote the projection, which

is a Riemannian submersion. Let {e1, e2, e3} ⊂ so(3) be a g0-orthonormal basis of

eigenvectors of the metric gR, with eigenvalues denoted {λ1, λ2, λ3}. The horizontal

space of π at the identity is the following subspace of so(3) × so(3):

H(e,e) = {(V,W ) | 〈(V,W ), (ei, ei)〉 = 0 for all i = 1, 2, 3}(6.1)

= {(V,W ) | 〈V, ei〉0 + λi〈W, ei〉0 = 0 for all i = 1, 2, 3}.

Now let X1 = (V1,W1), X2 = (V2,W2) ∈ H(e,e) be linearly independent vectors.

From (6.1), we see that V1,V2 are linearly independent as well. Since (SO(3), g0)

has positive curvature, κ(V1,V2) > 0, so κ(X1, X2) > 0. Finally, O’Neill’s formula

implies that (SO(3), gl) has strictly positive curvature.

To prove the second statement of the proposition, notice that by (5.1), the eigen-

values {λ̃1, λ̃2, λ̃3} of the metric gl are determined from the eigenvalues {λ1, λ2, λ3}
of the metric gR as follows:

(6.2) λ̃i =

λi

1 + λi

for each i = 1, 2, 3.

Suppose that (λ̃1, λ̃2) is an arbitrary pair such that the triplet {λ̃1, λ̃2, 1} strictly sat-

isfies the inequalities of Proposition 3.1. Define

λ1 :=
aλ̃1

1 + a(1 − λ̃1)
, λ2 :=

aλ̃2

1 + a(1 − λ̃2)
, λ3 := a.

For small enough a, the triplet {λ1, λ2, λ3} strictly satisfies the inequalities of Propo-

sition 3.1. This is because, when scaled such that the third equals 1, the triplet ap-
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proaches {λ̃1, λ̃2, 1} as a → 0. If gR has eigenvalues {λ1, λ2, λ3}, then by equa-

tion 6.2, gl has the following eigenvalues:

{( a

1 + a

)

λ̃1,
( a

1 + a

)

λ̃2,
( a

1 + a

)}

.

Further, gR has positive curvature because the inner products which extend to

right-invariant metrics with positive curvature are the same ones that extend to left-

invariant metrics of positive curvature. This is because a 7→ a−1 is an isometry

between left- and right-invariant metrics determined by the same inner product.

Thus, gR can be chosen such that gl is a multiple of any prescribed positively curved

metric. Then, by scaling the bi-invariant metric g0, this multiple can be made to be 1.

Beginning with a bi-invariant metric g0 on G = SU(2) × U (1) and applying

Cheeger’s method, one cannot obtain product metrics for which the SU(2)-factor

has nonnegative but not positive curvature, nor can one obtain twisted metrics of

type (2). Notice that the only chains of increasing-dimension subgroups are U (1) ⊂
G (possibly embedded diagonally), T2 ⊂ G (any maximal torus), U (1) ⊂ T2 ⊂ G,

and SU(2) ⊂ G.

To obtain more metrics, in addition to allowing general right-invariant metrics

on the Hi ’s as above, one could allow a more general starting metric g0. For example,

when G = SU(2) ×U (1), one could allow g0 to be any left-invariant product metric

with nonnegative curvature. Even with this added generality, it is straightforward to

see that one cannot obtain twisted metrics of type (iii) for which the totally geodesic

SU(2) has nonnegative but not positive curvature.
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