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Contact .C1/-surgeries

along Legendrian two-component links
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Abstract. In this paper, we study contact surgeries along Legendrian links in the standard
contact 3-sphere. On one hand, we use algebraic methods to prove the vanishing of the
contact Ozsváth–Szabó invariant for contact .C1/-surgery along certain Legendrian two-
component links. The main tool is a link surgery formula for Heegaard Floer homology
developed by Manolescu and Ozsváth. On the other hand, we use contact-geometric
argument to show the overtwistedness of the contact 3-manifolds obtained by contact
.C1/-surgeries along Legendrian two-component links whose two components are linked
in some special configurations.
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1. Introduction

A contact structure � on a smooth oriented 3-manifold Y is a smooth tangent
2-plane field � such that any smooth 1-form ˛ locally defining � as � D ker˛
satisfies the condition ˛ ^ d˛ > 0. A contact structure � is coorientable if and
only if there is a global 1-form ˛ with � D ker˛. Throughout this paper, we
will assume our 3-manifolds are oriented, connected and our contact structures
are cooriented. A contact structure � on Y is called overtwisted if one can find an
embedded disc D in Y such that the tangent plane field of D along its boundary
coincides with �; otherwise, it is called tight. Any closed oriented 3-manifold
admits an overtwisted contact structure (cf. [7]). It is much harder to find tight
contact structures on a closed oriented 3-manifold. The following question is still
open: Which closed oriented 3-manifolds admit tight contact structures?
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One way of obtaining new contact manifolds from the existing one is through
contact surgery. Suppose L is a Legendrian knot in a contact 3-manifold .Y; �/,
i.e., L is tangent to the given contact structure � on Y . Contact surgery is a version
of Dehn surgery that is adapted to the contact category. Roughly speaking, we
delete a tubular neighborhood of L, then reglue it, and obtain a contact structure
on the surgered manifold by extending � from the complement of the tubular
neighborhood of L to a tight contact structure on the reglued solid torus (see [3]
for details). In [3], the first author and Geiges proved that every closed contact
3-manifold .Y; �/ can be obtained by contact .˙1/-surgery along a Legendrian
link in .S3; �std/, where �std denotes the standard contact structure on S3.

Many tools have been developed to detect tightness, including an invariant
c.Y; �/ 2 cHF.�Y / in Heegaard Floer theory for closed contact 3-manifolds .Y; �/.
We call it the contact Ozsváth–Szabó invariant, or simply the contact invariant of
.Y; �/. It is shown that c.Y; �/ D 0 if .Y; �/ is overtwisted [25], and c.Y; �/ ¤ 0 if
.Y; �/ is strongly symplectically fillable [8].

It is natural to ask whether the contact invariant of a contact 3-manifold ob-
tained by contact surgery along a Legendrian link is trivial or not. All known
results concern contact surgeries along Legendrian knots. In [15], Lisca and Stip-
sicz showed that contact 1

n
-surgeries along certain Legendrian knots in .S3; �std/

yield contact 3-manifolds with nonvanishing contact invariants for any positive
integer n. In [9], Golla considered contact 3-manifolds obtained from .S3; �std/

by contact n-surgeries along Legendrian knots, where n is any positive integer.
He gave a necessary and sufficient condition for the contact invariant of such a
contact 3-manifold to be nonvanishing. In [20], Mark and Tosun extended Golla’s
result to contact r-surgeries, where r > 0 is rational.

To go further along this line of investigation, we study contact .C1/-surgeries
along Legendrian two-component links in .S3; �std/ in this paper. Here, contact
.C1/-surgery along a Legendrian link means contact .C1/-surgery along each
component of the Legendrian link. One of our main results below (Theorem 1.1)
can be viewed as a first step towards our ultimate goal of obtaining a necessary
and sufficient condition for contact .C1/-surgery on a link to yield a manifold with
nonvanishing contact Ozsváth–Szabó invariant.

Theorem 1.1. Suppose L D L1 [ L2 is a Legendrian two-component link in the

standard contact 3-sphere .S3; �std/ whose two components have nonzero linking

number. AssumeL2 satisfies �C.L2/ D �
C.L2/ D 0, whereL2 denotes the mirror

ofL2. Then contact .C1/-surgery on .S3; �std/ alongL yields a contact 3-manifold

with vanishing contact invariant.
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The main tool for proving this theorem is a link surgery formula for the
Heegaard Floer homology of integral surgeries on links developed by Manolescu
and Ozsváth [19]. Here, �C is a numerical invariant defined by Hom and the
third author in [12] based on work of Rasmussen [30]. It is shown in [10,
Proposition 3.11] that a knot K satisfies the condition �C.K/ D �C. xK/ D 0

if and only if we have a filtered chain homotopy equivalence

CFK1.K/ ' CFK1.U /˚ A (1.1)

where U denotes the unknot and A is acyclic, i.e., H�.A/ D 0. In particular, such
a knot must have �.K/ D 0. Applying (1.1) enables us to treat K effectively like
the unknot in the proof of Theorem 1.1.

Below, we list some interesting families of knots that satisfy the condition

�C.K/ D �C. xK/ D 0

of Theorem 1.1.

Example 1.2. (1) The most basic examples are the slice knots.

We are particularly interested in Legendrian slice knots with Thurston–Ben-
nequin invariant �1, as contact .C1/-surgeries along these knots result in contact
3-manifolds with nonvanishing contact invariants [9]. Nontrivial knot types of
smoothly slice knots with at most 10 crossings that have Legendrian representa-
tives with Thurston–Bennequin invariant�1 are 946 (the mirror of 946) and 10140,
see [2]. In Figures 1 and 2 below, we show a couple of Legendrian two-component
links in .S3; �std/ that include a Lengendrian unknot and a Legendrian knot of type
946, respectively. Note that one obtains nonvanishing contact invariant after per-
forming contact .C1/-surgery along each knot component of the depicted links.
On the other hand, Theorem 1.1 implies that contact .C1/-surgeries along these
links result in contact 3-manifolds with vanishing contact invariants.

C1

C1

Figure 1. The upper component is a Legendrian unknot with Thurston–Bennequin invariant
�1.
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C1 C1

�
��

Figure 2. The right component of the link is a Legendrian knot of type 946 with Thurston–
Bennequin invariant �1 and rotation number 0. The right figure is a Legendrian tangle.

As pointed out by the referee, if we replace the dashed circled area of the
front projection diagram of the Legendrian 946 by the right tangles in Figure 2,
then we can obtain infinitely many prime Legendrian slice knots with Thurston–
Bennequin invariant �1. Alternatively, as tb.L1]L2/ D tb.L1/ C tb.L2/ C 1,
where L1]L2 denotes the Legendrian connected sum [6], we can obtain infinitely
many composite Legendrian slice knots with Thurston–Bennequin invariant �1.
In either case, we can create infinitely families of examples similar to Figures 1
and 2 using those Legendrian slice knots.

(2) More generally, all rationally slice knots satisfy �C.K/ D �C. xK/ D 0, see
[13, Theorem 1.4].

Recall that a knot K � S3 is rationally slice if there exists an embedded disk
D in a rational homology 4-ball V such that @.V;D/ D .S3; K/. Examples of
rationally slice knots include strongly � amphicheiral knots and Miyazaki knots,
i.e., fibered, � amphicheiral knots with irreducible Alexander polynomial [13]. In
particular, the figure-eight knot is rationally slice but not slice.

Example 1.3. Let L D L1 [ L2 be a Legendrian link in .S3; �std/. Suppose L2
is a Legendrian unknot with tb.L2/ D �1, and L2 is a meridional curve of L1.
Then, by Theorem 1.1, contact .C1/-surgery along L yields a contact structure
�L on S3 with vanishing contact invariant. Hence by the classification of tight
contact structures on S3 [4] and c.S3; �std/ ¤ 0, the contact 3-manifold .S3; �L/
is overtwisted.

In the special case of Theorem 1.1 where L2 is a Legendrian unknot with
tb.L2/ D �1, contact .C1/-surgery on .S3; �std/ along L2 yields the unique (up
to isotopy) tight contact structure �t on S1 � S2. Hence, in this case, we may
interpret the theorem as a result of contact .C1/-surgery along a Legendrian knot
in .S1 � S2; �t /. More generally, we have the following corollary.
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Corollary 1.4. Suppose L is a Legendrian knot in ]k.S1 � S2; �t /, the contact

connected sum of k copies of .S1 � S2; �t /. If L is not null-homologous, then

contact 1
n
-surgery on ]k.S1 � S2; �t / along L yields a contact 3-manifold with

vanishing contact invariant for any positive integer n.

We also consider contact .C1/-surgeries along Legendrian two-component
links in .S3; �std/ whose two components have zero linking number. Unlike
the nonzero linking number case, there are numerous instances for which the
contact invariant is nonvanishing even if one of the components of the surg-
ered link is the unknot. For example, .C1/-surgery along the Legendrian two-
component unlink with Thurston–Bennequin invariant �1 for both components
yields ]2.S1 � S2; �t /. Another more interesting example comes from contact
.C1/-surgery along the Legendrian two-component link as depicted in Figure 3.
The resulting contact 3-manifold has nonvanishing contact invariant by [22, Ex-
ercise 12.2.8(c)].

C1

C1

Figure 3. The lower component is a Legendrian right handed trefoil with Thurston–
Bennequin invariant 1 and rotation number 0.

Thus, we expect that analogous results to Theorem 1.1 for the linking number
0 case are likely more difficult to obtain. Instead, we will first study some special
cases in our paper, namely contact .C1/-surgeries along Legendrian Whitehead
links. To the best of our knowledge, the contact invariants or tightness of such
manifolds have not been explicitly given in the literature.

Proposition 1.5. Contact .C1/-surgery on .S3; �std/ along a Legendrian White-

head link yields a contact 3-manifold with vanishing contact invariant.

In light of the above vanishing results in Theorem 1.1 and Proposition 1.5,
one may wonder whether the contact manifolds studied there are tight or not.
As far as we know, this question is wide open even for contact .C1/-surgeries
along Legendrian knots. Two sufficient conditions for contact .C1/-surgeries
along Legendrian knots to be overtwisted were given by Özbağci in [21] and
by Lisca and Stipsicz in [17, Theorem 1.1]. We come up with the following
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sufficient condition for contact .C1/-surgeries along Legendrian two-component
links yielding overtwisted contact 3-manifolds. Note that this theorem is irrelevant
to the linking number of the two components of the Legendrian link along which
we perform contact .C1/-surgery. It is inspired by the work of Baker and Onaran
[1, Proposition 4.1.10].

Theorem 1.6. Suppose there exists a front projection of a Legendrian two-

component link L D L1[L2 in the standard contact 3-sphere .S3; �std/ that con-

tains one of the configurations exhibited in Figure 4, then contact .C1/-surgery

on .S3; �std/ along L yields an overtwisted contact 3-manifold.

L1

L2

(a)

L1

L2

(b)

L1

L2

(c)

L1

L2

(d)

Figure 4. Four configurations in a front projection of a Legendrian two-component link L.

As an application, we will show in Example 6.3 and Example 6.5 that con-
tact .C1/-surgeries along the Legendrian links in Figures 1 and 2 actually yield
overtwisted contact 3-manifolds.

The remainder of this paper is organized as follows. In Section 2, we review
basic properties of the contact invariant. We also reformulate the statement
of Golla concerning the conditions under which contact .C1/-surgery along a
Legendrian knot yields a contact 3-manifold with nonvanishing contact invariant.
In Section 3, we go through the construction of the link surgery formula of
Manolescu and Ozsváth in the special case of two-components links. We elaborate
on the E1 page of an associated spectral sequence and identify the relevant maps
in the differential @1 with the well-known Ov and Oh in the knot surgery formula of
Ozsváth and Szabó [27]. In Section 4, we analyze the E1 page and give a proof of
Theorem 1.1 based on diagram chasing. This idea is partly inspired by the work
of Mark and Tosun [20] and Hom and Lidman [11], and also constitutes the most
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novel part of our paper. Due to some technical issues, the above argument does not
apply to the linking number 0 case, so in Section 5, we use a different machinery in
Heegaard Floer homology, namely the grading, to prove Proposition 1.5. Finally,
we prove Theorem 1.6 in Section 6 Applying Legendrian Reidemeister moves, we
obtain more examples of overtwisted contact .C1/-surgery in Corollary 6.4.
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2. Preliminaries on contact invariants

We briefly review backgrounds in Heegaard Floer homology and the contact
invariant in this section. Throughout this paper, we work with Heegaard Floer
homology with coefficients in F D Z=2Z. Heegaard Floer theory associates
an abelian group cHF.Y; t/ to a closed, oriented Spinc 3-manifold .Y; t/, and a
homomorphism

FW;sWcHF.Y1; t1/ �! cHF.Y2; t2/

to a Spinc cobordism .W; s/ between two Spinc 3-manifolds .Y1; t1/ and .Y2; t2/.
Write cHF.Y / for the direct sum˚t

cHF.Y; t/ over all Spinc structures t on Y andFW
for the sum

P
s
FW;s over all Spinc structures s onW . In [25], Ozsváth and Szabó

introduced an invariant c.Y; �/ 2 cHF.�Y / for closed contact 3-manifold .Y; �/.
If the contact manifold .YK ; �K/ is obtained from .Y; �/ by contact .C1/-surgery
along a Legendrian knot K, then we have

F�W .c.Y; �// D c.YK ; �K/; (2.2)

where �W stands for the cobordism induced by the surgery with reversed orienta-
tion. This functorial property of the contact invariant can be proved by an adaption
of [25, Theorem 4.2] (cf. [16, Theorem 2.3]).
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Next, suppose L D L1 [ L2 is an oriented Legendrian two-component link
in .S3; �std/, and the linking number of L1 and L2 is l . The resulting contact
.C1/-surgery along L is denoted by .S3ƒ.L/; �L/, where

ƒ D

�
tb.L1/C 1 l

l tb.L2/C 1

�

is the topological surgery framing matrix. Let W be the cobordism from S3 to
S3ƒ.L/ induced by this surgery, and �W be W with reversed orientation. This
gives a map

F�W WcHF.S3/ �! cHF.S3�ƒ.xL//:

In particular, the contact invariants

c.S3; �std/ 2 cHF.�S3/ D cHF.S3/

and
c.S3ƒ.L/; �L/ 2

cHF.�S3ƒ.L// D cHF.S3�ƒ.xL//

are related by
F�W .c.S

3; �std// D c.S
3
ƒ.L/; �L/: (2.3)

from the functoriality (2.2) and the composition law [26, Theorem 3.4].

In [9], Golla investigated the contact invariant of a contact manifold given
by contact surgery along a Legendrian knot in .S3; �std/. In particular, by [9,
Theorem 1.1], the contact 3-manifold obtained by contact .C1/-surgery along the
Legendrian knot Li (i D 1; 2) in .S3; �std/ has nonvanishing contact invariant if
and only if Li satisfies the following three conditions:

tb.Li / D 2�.Li / � 1; (2.4)

rot.Li / D 0; (2.5)

�.Li / D �.Li /: (2.6)

Hence, if either L1 or L2 does not satisfy one of these three conditions, then it
follows readily from the functoriality (2.2) that the contact invariant c.S3ƒ.L/; �L/
must vanish as well.

Remark 2.1. There exists a two-component link such that the knot type of each
component has a Legendrian representative satisfying the above three conditions,
but the link type of this two-component link has no Legendrian representative
with both two components satisfying the above three conditions simultaneously
[5, Section 5.6].
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3. Link surgery formula for two-component links

In this section, we recall the link surgery formula for two-component links de-
veloped in [19]. The link surgery formula given by Manolescu and Ozsváth is
a generalization of the knot surgery formula given by Ozsváth and Szabó [27]
and [28]. The idea is to compute the Heegaard Floer homology of a 3-manifold
obtained by surgery along a knot in terms of a mapping cone construction, and
more generally surgery along a link in terms of the hyperbox of the link surgery
complex. In addition, the cobordism map F�W is realized as the induced map of
the inclusion of complexes in the system of hyperboxes [19, Theorem 14.3].

We go over the construction for two-component links. SupposeL is an oriented
link with two components K1 and K2, and the linking number of K1 and K2 is l .
Given the topological surgery framing matrix

ƒ D

�
p1 l

l p2

�
;

we will see the computation of cHF.S3ƒ.L//.

Let

H.L/i D
l

2
C Z; i D 1; 2:

Define the affine lattice H.L/ overH1.S3 � L/ Š Z
2 by

H.L/ D H.L/1 ˚H.L/2:

Here we identify H1.S3 � L/ with Z
2 using the oriented meridians of the com-

ponents as the generators. The elements of H.L/ correspond to Spinc structures
on S3 relative to L. Also, let

H.Ki/ D Z; H.;/ D ¹0º:

The elements of H.Ki/ correspond to Spinc structures on S3 relative to Ki for
i D 1; 2, while 0 2 H.;/ corresponds to the unique Spinc structure on S3.
Furthermore, letCKi and�Ki represent the componentKi ofLwith the induced
and opposite orientation, respectively. For M D �1K1 or �2K2, where �i is C or
� for i D 1; 2, define

 M WH.L/ �! H.L�M/;

s D .s1; s2/ 7�! sj �
lk.CKj ;M/

2
;



304 F. Ding, Y. Li, and Z. Wu

where CKj D L�M denotes the component of L other than M . We also define

 �1K1[�2K2 WH.L/ �! H.;/;

s 7�! 0:

Now we consider Spinc structures on S3ƒ.L/. LetH.L;ƒ/ be the (possibly de-
generate) sublattice of Z2 generated by the two columns ƒ1 and ƒ2 ofƒ. We de-
note the quotient of s 2 H.L/ inH.L/=H.L;ƒ/ by Œs�. For any u 2 Spinc.S3ƒ.L//,
there is a standard way of associating an element Œs� 2 H.L/=H.L;ƒ/. This gives
an identification of the set H.L/=H.L;ƒ/ with Spinc.S3ƒ.L//.

For any s 2 H.L/, and any choice of �1; �2 2 ¹˙º, there is a square of chain
complexes:

yA.HK1;  �2K2.s// yA.H;;  �1K1[�2K2.s//

yA.HL; s/ yA.HK1 ;  �2K2.s//

 

!
ˆ
�1K1

 
�2K2.s/

 

!
ˆ
�1K1
s

 

!

ˆ
�2K2
s

 

!

ˆ
�1K1[�2K2
s

 

!

ˆ
�2K2

 
�1K1.s/

Here, the vertices of the diagram are generalized Floer complexes that can be
determined from a given Heegaard diagram of the link L. The edge maps ˆ’s
between these generalized Floer complexes are defined by counting holomorphic
polygons with certain properties in the Heegaard diagram. The diagonal map
ˆ
�1K1[�2K2
s is a chain homotopy equivalence between ˆ�2K2

 �1K1 .s/
ı ˆ

�1K1
s and

ˆ
�1K1

 �2K2 .s/
ıˆ

�2K2
s . This is a unified expression of the four squares in [18, p. 20].

Following the notations of [19, Sections 4], we denote

C 00s D
yA.HL; s/; C 10s D

yA.HK2 ;  CK1.s//;

C 01s D
yA.HK1 ;  CK2.s//; C 11s D

yA.H;;  CK1[CK2.s//:

Fix u 2 Spinc.S3ƒ.L//. The link surgery formula for two-component links is a
hyperbox of complexes .yC; yD; u/ shown as follow:

Y

s2H.L/;Œs�Du

C 01s

Y

s2H.L/;Œs�Du

C 11s

Y

s2H.L/;Œs�Du

C 00s

Y

s2H.L/;Œs�Du

C 10s

 

!

 

!

 

!

 

!

 

!
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Here, the horizontal arrows consist of maps of the form ˆ
�1K1
s or ˆ�1K1

 �2K2 .s/
,

the vertical arrows of maps ˆ�2K2s or ˆ�2K2
 �1K1 .s/

, and the diagonal of maps

ˆ
�1K1[�2K2
s . The value of s in the targets of each map are shifted by an amount

depending on the type of map and the framing ƒ: whenever we have a negatively
oriented component �Ki in the superscript of a map ˆs , we add the vector ƒi
to s. So, for example, the maps ˆ�K1

s and ˆ�K2
s shift s by .p1; l/ and .l; p2),

respectively, and ˆ�K1[�K2
s shifts s by .p1 C l; l C p2/. We refer the reader to

[19, Sections 4, 5, 8 and 9], [14, Section 2], or [18, Section 4] for details.
In Figure 5, we exhibit a more concrete representation of .yC; yD; u/ for which

a square is drawn at the lattice point s D .s1; s2/ with Œs� D u, and the complexes
C 00s , C 01s , C 10s and C 11s are placed at the lower left, the upper left, the lower right
and the upper right corner of the square, respectively. Note that while ˆCK1

s and
ˆ

CK2
s stay at the original lattice point, ˆ�K1

s and ˆ�K2
s map to the complexes at

the lattice points .s1 C p1; s2 C l/ and .s1 C l; s2 C p2), respectively.
It is often convenient to study .yC; yD; u/ by introducing a filtration and consider

the associated spectral sequence. Here, we define the filtration F.x/ to be the
number of components of L0 � L if x 2 yA.HL0

/. Thus, the complex at the lower
left corner of each square has filtration level 2; the complex at the lower right or
the upper left corner of each square has filtration level 1; and the complex at the
upper right corner of each square has filtration level 0. Since the largest difference
in the filtration levels is 2, the kth differential in the spectral sequence, @k , mush
vanish for k > 2. According to [14, Section 3], the associated spectral sequence
has

E0 D .yC; @0/;

E1 D .H�.yC; @0/; @1/;

and

cHF.S3ƒ.L/; u/ D E1 D H�.E2/ D H�.H�.H�.yC; @0/; @1/; @2/:

Let us explain the E1 page of the surgery chain complex in greater detail.
Figure 6 exhibits a typical example of an E1 page associated to a 2-dimensional
hyperbox .yC; yD; u/. Observe that @0 is the internal differential of each generalized
Floer complex. Hence we haveH�.yA.H

L; s// at the lower left corner of the square
at the lattice point s D .s1; s2/, which turns out to be isomorphic to cHF of a large
surgery along L in a certain Spinc structure. Similarly, H�.yA.H

K1;  CK2.s/// at
the upper left corner andH�.yA.H

K2 ;  CK1.s/// at the lower right corner of each
square are isomorphic to cHF of large surgeries along K1 and K2 in certain Spinc

structures, respectively; and H�.yA.H
;;  CK1[CK2.s/// at the upper right corner

of each square is isomorphic to cHF.S3/.
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b1

b2

c

.s1; s2 C 1/

.s1; s2/

.s1; s2 � 1/

.s1 � 1; s2/ .s1 C 1; s2/

�
�K1

 CK2.s/

�
CK1

 CK2.s/

�
�K2

 CK1.s/

�
CK2

 CK1.s/

Figure 6. Part of an E1 page for the surgery framing matrix
�
0 �1

�1 0

�
.

Next, we consider the differential @1. For i D 1; 2, let ��iKis be the homomor-
phism induced from ˆ

�iKi
s . Let ��1K1

 CK2 .s/
and ��2K2

 CK1.s/
be the homomorphisms

induced from ˆ
�1K1

 CK2 .s/
and ˆ�2K2

 CK1.s/
, respectively. Then @1 consists of a collec-

tion of short edge maps �CK1 and �CK2 that stay at the original lattice point, and
another collection of long edge maps ��K1 and ��K2 that shift the position by the
vectors .p1; l/ and .l; p2/, respectively. The most relevant maps for our purposes
are the ones that map into the homology H�.yA.H

;;  CK1[CK2.s/// at the upper
right corner of each square. If we let N be a sufficiently large integer, then under
the above identification of H�.yC; @0/ with Heegaard Floer homology of large in-
teger surgeries, we can identify the short edge map initiated from the upper left
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corner as

�
CK1

 CK2 .s/
WcHF

�
S3N .K1/; s1 �

l

2

�
�! cHF.S3/;

the long edge map initiated from the upper left corner as

�
�K1

 CK2 .s/
WcHF

�
S3N .K1/; s1 �

l

2

�
�! cHF.S3/;

the short edge map initiated from the lower right corner as

�
CK2

 CK1 .s/
WcHF

�
S3N .K2/; s2 �

l

2

�
�! cHF.S3/;

and the long edge map initiated from the lower right corner as

�
�K2

 CK1 .s/
WcHF

�
S3N .K2/; s2 �

l

2

�
�! cHF.S3/;

Note that the targets cHF.S3/ of the first two maps are

H�.yA.H
;;  CK1[CK2.s/// and H�.yA.H

;;  �K1[CK2.s///;

respectively, and the targets cHF.S3/ of the last two maps are

H�.yA.H
;;  CK1[CK2.s/// and H�.yA.H

;;  CK1[�K2.s///;

respectively. According to [19, Theorem 14.3], the pi -surgery on S3 along
Ki , i D 1; 2, corresponds to a 1-dimensional subcomplex in the 2-dimensional
hyperbox .yC; yD; u/. Thus, by [19, Remark 3.23], the maps �CK1

 CK2.s/
and ��K1

 CK2.s/

are equivalent to the vertical and horizontal maps OvK1 and OhK1 defined in [27],
respectively. The same thing holds for �CK2

 CK1 .s/
and ��K2

 CK1.s/
.

4. Vanishing contact invariants

Proof of Theorem 1.1. It follows from �C.L2/ D �C.L2/ D 0 and (1.1) that
�.L2/ D 0. We claim that it suffices to consider the case where the Thurston–
Bennequin invariant tb.L2/ D �1. Otherwise, tb.L2/ must be strictly less than
�1 by the inequality tb.L2/C j rot.L2/j � 2�.L2/ � 1 D �1 ([29, Theorem 1]),
thus violating the condition of (2.4). This then implies the triviality of the contact
invariant by our discussion near the end of Section 2.

We first treat the case where L2 is a Legendrian unknot. We try to determine
the contact invariant c.S3ƒ.L/; �L/ 2

cHF.�S3ƒ.L// D
cHF.S3

�ƒ.
xL//. Note that
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c.S3; �std/ is the unique generator of cHF.S3/ Š F. Hence by (2.3), c.S3ƒ.L/; �L/
is the image of the generator under the cobordism map

F�W WcHF.S3/ �! cHF.S3�ƒ.xL//;

so c.S3ƒ.L/; �L/ D 0 is equivalent to F�W being the zero map.
We resort to [19, Theorem 14.3] to understand this map, which identifies F�W

with the induced map of the inclusion

Y

s2H.xL/;Œs�Du

yA.H;;  L1[L2.s// ,�! .yC; yD; u/:

In order to prove that F�W vanishes, it suffices to show that for each s D .s1; s2/ 2
H.xL/, cs1;s2 , the generator of cHF.S3/ at the upper right corner of the square at the
lattice point .s1; s2/, is a boundary in the E1 page of the spectral sequence (or
equivalently, trivial in the E2 page).

For the subsequent argument, we will still refer to Figure 6 for a schematic
picture of the E1 page of the spectral sequence, although we should point out
that at present the surgery is performed along the link xL D L1 [ L2, L1 and L2
correspond to K1 and K2 in Figure 6, respectively, and the topological surgery
framing matrix is

�ƒ D

�
�.tb.L1/C 1/ �l

�l 0

�
:

As earlier, we use N to denote a sufficiently large integer. Since L2 is the
unknot, the homology group that was identified with cHF.S3N

�
L2/; s2 C

l
2

�
at the

lower right corner of the square at each lattice point .s1; s2/ is 1-dimensional. We
denote the generator of the homology group by b2s1;s2 . Clearly,

(1) if s2C l
2
> 0, then �CL2

 L1 .s/
is an isomorphism, and ��L2

 L1.s/
is the trivial map,

so

@1b
2
s1;s2
D cs1;s2 I

(2) if s2C l
2
< 0, then �CL2

 L1 .s/
is the trivial map, and ��L2

 L1.s/
is an isomorphism,

so

@1b
2
s1Cl;s2

D cs1;s2 I

(3) if s2 C
l
2
D 0, then both �CL2

 L1.s/
and ��L2

 L1 .s/
are isomorphisms, so

@1b
2

s1;�
l
2

D cs1;� l
2
C cs1�l;� l

2
:
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On the other hand, we understand the general properties of the maps �˙L1

 L2.s/

well when s1 is sufficiently large. In that case, we have that the homology group
cHF

�
S3N .L1/; s1 C

l
2

�
Š F, and �CL1

 L2.s/
is an isomorphism while ��L1

 L2 .s/
is the

trivial map [27]. Thus, if we denote the generator of the homology group at the
upper left corner of the square at the lattice point

�
s1;�

l
2

�
by b1

s1;�
l
2

, then

@1b
1

s1;�
l
2

D c
s1;�

l
2
; when s1 � 0: (4.7)

Let us put them together. When s2 ¤ �
l
2
, we can immediately see from

claims (1) and (2) that cs1;s2 lies in the image of @1. When s2 D �
l
2
, we can

use claim (3) and (4.7) to find an explicit element b such that @1.b/ D cs1;� l
2

under the assumption that the linking number l is nonzero. More precisely, one
can check that

@1.b
2

s1Cl;� l
2

C b2
s1C2l;� l

2

C � � � C b2
s1Cnl;� l

2

C b1
s1Cnl;� l

2

/ D c
s1;�

l
2

for n large enough and l > 0; and

@1.b
2

s1;�
l
2

C b2
s1�l;� l

2

C � � � C b2
s1�nl;� l

2

C b1
s1�.nC1/l;� l

2

/ D c
s1;�

l
2

for n large enough and l < 0. In either case, this proves that cs1;s2 lies in the image
of @1 for each s D .s1; s2/, thus implying the theorem for the special case when
L2 is a Legendrian unknot.

More generally, since L2 satisfies �C.L2/ D �
C.L2/ D 0, we apply (1.1) and

conclude that CFK1.L2/ is filtered chain homotopy equivalent to CFK1.U /˚A

for some acyclic complex A. Then, the above argument for the unknot case
nearly extends verbatim to the general case, except that the homology group
cHF

�
S3N .L2/; s2 C

l
2

�
may not necessarily be 1-dimensional. Nevertheless, we

noticed that only the existence of the elements b2s1;s2 that satisfy claims (1), (2),
and (3) was really needed for the above proof. This can be attained in our case
by taking the generators b2s1;s2 from the CFK1.U / summand in the filtered chain
homotopy equivalent complex CFK1.U /˚ A. The rest of the proof carries over
for the general case. �

Remark 4.1. Indeed, based on a slightly more involved diagram-chasing-type
argument like above, one can show that in general cases there exists s D .s1; s2/ 2
H.xL/ such that cs1;s2 is nontrivial in the E2 page if and only if �.Li / D �.Li / and
�.Li / D �.Li / � 1 for i D 1; 2, under the assumption that the linking number is
nonzero and tb.Li / D 2�.Li/�1. A better understanding of the higher differential
@2 in the E2 page of the spectral sequence may lead to nonvanishing results of
contact invariant.
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As a corollary, we show that contact 1
n
-surgery on ]k.S1 � S2; �t / along

a homologically essential Legendrian knot L yields a contact 3-manifold with
vanishing contact invariant for any positive integer n, as claimed in Corollary 1.4.

Proof of Corollary 1.4. The contact 3-manifold ]k.S1 � S2; �t / can be obtained
by contact .C1/-surgery on .S3; �std/ along a Legendrian k-component unlinkL0.
There exists a Legendrian knot zL in .S3; �std/which becomes the Legendrian knot
L in ]k.S1 � S2; �t / after the contact .C1/-surgery along L0. To find such an zL,
it suffices to perform Legendrian surgery on ]k.S1 � S2; �t / along a Legendrian
k-component link, each component of which lies in a summand .S1�S2; �t / and
is disjoint from L, so that the result is .S3; �std/. Then the image of L in .S3; �std/
is the desired zL.

Note that contact 1
n
-surgery on ]k.S1�S2; �t / alongL is equivalent to contact

.C1/-surgery on ]k.S1�S2; �t / along nLegendrian push-offs ofL for any positive
integer n. Therefore, contact 1

n
-surgery on ]k.S1�S2; �t / alongL is equivalent to

contact .C1/-surgery on .S3; �std/ along a Legendrian .kCn/-component link L0,
which is the union of the aforementioned Legendrian k-component unlink L0 and
n Legendrian push-offs of the Legendrian knot zL. See Figure 7 for an example.

C1C1

C1

C1

zL

Figure 7. Contact 1
2
-surgery on ]2.S1 �S2; �t / along a Legendrian knot L is equivalent to

contact .C1/-surgery on .S3; �std/ along a Legendrian 4-component link.

If L is not null-homologous in ]k.S1 �S2/, then the linking number of zL and
one component of L0 is nonzero. By Theorem 1.1, contact .C1/-surgery along
the Legendrian two-component sublink of L0 formed by zL and that component of
L0 yields a contact 3-manifold with vanishing contact invariant. Hence, it follows
from (2.2) that contact .C1/-surgery along the Legendrian .k C n/-component
link L0 yields a contact 3-manifold with vanishing contact invariant as well. This
finishes the proof of the corollary. �
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5. Contact .C1/-surgeries along Legendrian Whitehead links

In Figure 8, we draw a Legendrian two-component link in .S3; �std/ with each
component having Thurston–Bennequin invariant�1. Denote the topological link
types of this link and the mirror of it by Wh and Wh, respectively. A link in S3 is
called a Whitehead link if it is of type Wh or Wh.

C1

C1

Figure 8. A Legendrian Whitehead link with each component having Thurston–Bennequin
invariant �1. The underlying topological type of this link is Wh.

Proof of Proposition 1.5. First, we consider contact .C1/-surgery on .S3; �std/
along a Legendrian representative L of type Wh. According to [5, Section 5.6],
the sum of Thurston–Bennequin invariants of the two components of L does not
exceed �5. Consequently, the Thurston–Bennequin invariant of one of the com-
ponents of L must be strictly less than �1. By Özbağci [21, Theorem 3], contact
.C1/-surgery along a Legendrian unknot with Thurston–Bennequin invariant less
than �1 yields an overtwisted contact 3-manifold. Subsequently, the main result
of Wand [31] implies that contact .C1/-surgery along L yields an overtwisted
contact 3-manifold, and must have vanishing contact invariant.

Now let L D L1 [ L2 be a Legendrian Whitehead link of type Wh. We only
need to consider the case where both L1 and L2 have Thurston–Bennequin in-
variant �1. The result of contact .C1/-surgery along L is denoted by .S3

0
.L/; �L/,

where

0 D

�
0 0

0 0

�

is the topological surgery framing matrix. We need to show that the contact
invariant c.S3

0
.L/; �L/ vanishes.

Note that L D L1 [ L2 and �S3
0
.L/ D S3

0
.L/. Contact .C1/-surgery

along the Legendrian unknot L2 yields the unique tight contact structure �t on
S1 �S2. The subsequent 2-handle addition along L1 yields S3

0
.L/, and induces a

homomorphism
F1WcHF.�S1 � S2/ �! cHF.�S3

0
.L//

that sends the nontrivial contact invariant c.S1 � S2; �t / to c.S3
0
.L/; �L/.
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Recall that

cHF.�S1 � S2/ Š cHF.S1 � S2/ Š F.� 12 /
˚ F. 12 /

;

where the subscripts denote the absolute gradings, and the contact invariant
c.S1 � S2; �t / is supported in degree �1

2
. According to [18, Proposition 6.9],

cHF.S3
0
.L// D cHF.S3

0
.L/; .0; 0// Š F.0/ ˚ F.0/ ˚ F.�1/ ˚ F.�1/;

where .0; 0/ denotes the torsion Spinc structure on S3
0
.L/. So

cHF.�S3
0
.L// Š F.0/ ˚ F.0/ ˚ F.1/ ˚ F.1/:

SinceL1 is null-homologous in S1�S2, the homomorphismF1 shifts the absolute
degree by �1

2
[23, Lemma 3.1]. As c.S3

0
.L/; �L/ D F1.c.S

1 � S2; �t // and there

are no nonzero elements in cHF.�S3
0
.L// supported in grading �1, we conclude

that c.S3
0
.L/; �L/ D 0. This finishes the proof. �

Remark 5.1. Indeed, Theorem 1.6 implies that contact .C1/-surgery along the
Legendrian Whitehead link shown in Figure 8 yields an overtwisted contact
3-manifold. On the other hand, it is still unknown to date whether all Legendrian
Whitehead links with each component having Thurston–Bennequin invariant �1
are Legendrian isotopic or not. Hence, the obvious argument cannot be applied
here to conclude that any contact 3-manifold obtained by contact .C1/-surgery
along a Legendrian Whitehead link is overtwisted.

6. Contact .C1/-surgeries yielding overtwisted contact 3-manifolds

Proof of Theorem 1.6. We prove Theorem 1.6 only in the case that the front
projection contains the configuration in Figure 4(a). The same proof works for
all other cases.

We construct a Legendrian knot L0 in .S3; �std/ such that it can be divided
into four segments L0

1, L
0
2, L

0
3, and L0

4. Two segments, L0
3 and L0

4, are contained
in the dashed box in Figure 9. For the other two segments, L0

1 is the downward
Legendrian push-off of the part ofL1 outside the dashed box, andL0

2 is the upward
Legendrian push-off of the part of L2 outside the dashed box.
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L2

L1

L0

C1

C1

Figure 9. An example of a contact .C1/-surgery diagram which satisfies the assumption
of Theorem 1.6. The shaded area is a thrice-punctured sphere. The thin knot is L0. The
two segments of L0 contained in the dashed box, L0

3
and L0

4
, have no cusps and one cusp,

respectively.

There is a thrice-punctured sphere S whose boundary consists of L1, L2,
and L0. See Figure 9. We orient L1, L2 and L0 as the boundary of S . Part of
S is contained in the dashed box in Figure 9. The part of S outside the dashed box
consists of two bands. For brevity, we call the part of a knot in (resp. outside) the
dashed box the inside part (resp. outside part) of the knot.

We compute the Thurston–Bennequin invariant of L0.

Lemma 6.1. tb.L0/ D tb.L1/C tb.L2/C 2.l C 1/, where l is the linking number

lk.L1; L2/ of L1 and L2.

Proof. For the Legendrian knot L0, the Thurston–Bennequin invariant

tb.L0/ D w.L0/ �
1

2
c.L0/; (6.8)

where w.L0/ and c.L0/ denote the writhe and the number of cusps of (the front
projection of ) L0, respectively. Self-crossings of L0 consists of self-crossings
ofL0

1, self-crossings ofL0
2 and crossings ofL0

1 andL0
2. For i D 1; 2, self-crossings
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of L0
i contribute w.Li/ to w.L0/. The crossings of L0

1 and L0
2 contribute 2.l C 1/

to w.L0/. This can be seen as follows. The two crossings of L1 and L2 inside the
dashed box contribute�1 to lk.L1; L2/. So the crossings ofL1 andL2 outside the
dashed box contribute lC 1 to lk.L1; L2/. Recall that L0

i is a Legendrian push-off
of the outside part of Li for i D 1; 2. Each crossing of L0

1 and L0
2 is induced

by a crossing of the outside parts of L1 and L2. See Figure 10 for all possible
configurations of L0 near a crossing of the outside parts of L1 and L2. A crossing
of the outside parts of L1 and L2 and the nearby crossing of L0

1 and L0
2 have the

same sign. So the number of crossings of L0
1 and L0

2, counted with sign, equals
that of the outside parts ofL1 and L2, counted with sign, which is 2.lC1/. Hence
we have

w.L0/ D w.L1/C w.L2/C 2.l C 1/: (6.9)

As L0 and L1 [ L2 have the same number of cusps,

c.L0/ D c.L1/C c.L2/: (6.10)

The lemma follows from (6.8), (6.9), and (6.10). 4

L2

L1 L1

L2

L1

L2

L1

L2

�1�1

C1C1 C1 C1

�1 �1

Figure 10. Four possible configurations of L0 near a crossing of the outside parts of L1
and L2. The thin arcs are parts of L0.
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We compute the framings of L1, L2 and L0 induced by S .

Lemma 6.2. (1) For i D 1; 2, the framing of Li induced by S is tb.Li /C 1 with

respect to the Seifert surface framing of Li .

(2) The framing ofL0 induced by S is tb.L1/Ctb.L2/C2.lC1/with respect to

the Seifert surface framing of L0; that is, the framing of L0 induced by S coincides

with the contact framing of L0.

Proof. (1) For i D 1; 2, the framing ofLi induced by S , with respect to the Seifert
surface framing of Li , is the linking number of Li and its push-off in the interior
of S . Note that the push-off of the outside part ofLi in the interior of S is isotopic
to a Legendrian push-off of the outside part of Li . So it is easy to know that the
framing ofLi induced by S is tb.Li /C1with respect to the Seifert surface framing
of Li .

(2) The framing ofL0 induced by S , with respect to the Seifert surface framing
of L0, is the linking number lk.L0; L0

0/, where L0
0 is a push-off of L0 in the interior

of S . We compute lk.L0; L0
0/ as the number of crossings where L0

0 crosses under
L0, counted with sign. A similar argument as in the proof of Lemma 6.1 shows that
the outside parts of L0 and L0

0 contribute tb.L1/C tb.L2/C2.lC1/ to lk.L0; L0
0/.

It is easy to see that the inside parts ofL0 andL0
0 contribute 0 to lk.L0; L0

0/. Hence
the framing of L0 induced by S is tb.L1/C tb.L2/C 2.l C 1/ with respect to the
Seifert surface framing of L0. By Lemma 6.1, this framing coincides with the
contact framing of L0. 4

By Lemma 6.2 (1), after we perform contact .C1/-surgery along the Legen-
drian linkL, S caps off to a diskDwith boundaryL0. According to Lemma 6.2 (2),
the contact framing of L0 equals the framing of L0 induced by the disk D. Hence
D is an overtwisted disk and the contact 3-manifold after contact .C1/-surgery is
overtwisted. �

Example 6.3. Contact .C1/-surgery along the Legendrian link in Figure 1 yields
an overtwisted contact 3-manifold. This is because the dashed box in Figure 11
contains the configuration in Figure 4(c).

We can transform the four configurations in Figure 4 to that in Figure 12
through Legendrian Reidemeister moves. So we have the following corollary.

Corollary 6.4. Suppose there exists a front projection of a Legendrian two-

component link L D L1[L2 in the standard contact 3-sphere .S3; �std/ that con-

tains one of the configurations exhibited in Figure 12, then contact .C1/-surgery

on .S3; �std/ along L yields an overtwisted contact 3-manifold.
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Proof. We can transform the configuration in Figure 4(a) to the configuration
in Figure 12(a) through Legendrian Reidemeister moves and an isotopy demon-
strated in Figure 13. The other cases are similar. �

C1

C1

Figure 11. A configuration in the dashed box.

L1

L2

(a)

L1

L2

(b)

L2

L1

(c)

L2

L1

(d)

Figure 12. Four configurations in a front projection of a Legendrian two-component linkL.

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

Figure 13. A Legendrian isotopy. The first four arrows are Legendrian Reidemeister moves.
The last arrow is an isotopy.
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Example 6.5. In Figure 14, L0
1 and L0

2 are parts of L1 and L2, respectively.
We claim that contact .C1/-surgery along the Legendrian link L1 [ L2 in the
left of Figure 14 yields an overtwisted contact 3-manifold. This is because we
can transform the Legendrian link in the left of Figure 14 to that in the right of
Figure 14 which contains the configuration in Figure 12(a) through Legendrian
Reidemeister moves.

Consequently, contact .C1/-surgery along the Legendrian link in Figure 2
yields an overtwisted contact 3-manifold.

L0
1

L0
2

L0
1

L0
2

L0
1

L0
2

C1 C1 C1 C1 C1 C1

Figure 14. An example of a contact .C1/-surgery yielding an overtwisted contact 3-mani-
fold. The arrows are Legendrian Reidemeister moves.

We conclude this section with an example whose tightness is still unclear. It
is interesting in the sense that they provide potential candidates for tight contact
3-manifolds with vanishing contact invariant obtained from .C1/-surgery along
Legendrian links.

Example 6.6. In Figure 15, we consider contact .C1/-surgeries along the follow-
ing Legendrian links. The first link consists of a Legendrian 946 with Thurston–
Bennequin invariant �1 and rotation number 0, and its Legendrian pushoff. The
second link is constructed by performing a Legendrian connected sum of the upper
component of the first link with the Legendrian right handed trefoil with Thurston–
Bennequin invariant 1.

Although contact .C1/-surgery along each knot component of the depicted
links has nonvanishing contact invariant, contact .C1/-surgeries along both links
result in contact 3-manifolds with vanishing contact invariants. This follows
readily from Theorem 1.1. In fact, contact .C1/-surgery along the first link is
contactomorphic to contact 1

2
-surgery along 946, which is also known to have

vanishing contact invariant from Mark-Tosun [20, Theorem 1.2].

On the other hand, we have not been able to determine whether the above
contact 3-manifolds are overtwisted or not using the techniques in this section.
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C1

C1

C1

C1

Figure 15. The first link consists of a Legendrian 946 with Thurston–Bennequin invariant
�1 and rotation number 0 and its Legendrian pushoff; the second link is obtained from the
first link by a Legendrian connected sum with a Legendrian right handed trefoil.
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