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In this paper, sufficient conditions for contact (+1)-surgeries along
Legendrian knots in contact rational homology 3-spheres to have
vanishing contact invariants or to be overtwisted are given. They
can be applied to study contact (±1)-surgeries along Legendrian
links in the standard contact 3-sphere. We also obtain a suffi-
cient condition for contact (+1)-surgeries along Legendrian two-
component links in the standard contact 3-sphere to be overtwisted
via their front projections.

1. Introduction

There is a dichotomy of contact structures on 3-manifolds: tight and over-
twisted. Given a contact 3-manifold (Y, ξ), it is a fundamental question to
ask whether it is tight or overtwisted. In [33], Ozsváth and Szabó intro-

duced contact invariants c(ξ) ∈ ĤF (−Y ) and its image c+(ξ) ∈ HF+(−Y ),
and proved that if (Y, ξ) is overtwisted then c(ξ) vanishes. Moreover, Ghig-
gini proved that if (Y, ξ) is strongly symplectically fillable then c+(ξ), and
hence c(ξ), are non-trivial [19, Theorem 2.13]. So it is crucial to determine
whether the contact invariant is trivial or not. In [10], the first author and
Geiges proved that any closed connected contact 3-manifold can be obtained
by contact surgery on the standard contact 3-sphere (S3, ξst) along a Leg-
endrian link L1 ∪ L2 with coefficients +1 for each component of L1 and −1
for each component of L2. This leads us to study the tightness and contact
invariant of (Y, ξ) through its contact (±1)-surgery diagram along a Legen-
drian link in (S3, ξst). If L1 is empty, then (Y, ξ) is Stein fillable, and c(ξ)
is nontrivial, and hence (Y, ξ) is tight. So we consider the case that L1 is
non-empty, namely there are contact (+1)-surgeries involved in the surgery.
In [13], the authors studied contact (+1)-surgeries along Legendrian two-
component links in (S3, ξst).
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In many situations, a problem related to contact (±1)-surgery along a
Legendrian link in (S3, ξst) can be reduced to a problem related to con-
tact (+1)-surgery along a Legendrian link in a contact rational homology
3-sphere. This may occur, for example, when contact (−1)-surgery along the
sublink L2 yields a contact rational homology 3-sphere.

For a Legendrian knot L in the standard contact 3-sphere (S3, ξst),
whether or not the result of contact p

q
-surgery along L has non-vanishing

contact invariant has been well studied by Lisca and Stipsicz [27, 28], Golla
[20], and Mark and Tosun [29], etc. Recall that the contact invariant is natu-
ral under the cobordism induced by contact (+1)-surgery [33]. Thus, if (Y, ξ)
is a contact 3-manifold whose contact invariant vanishes, then the result of
contact (+1)-surgery along any Legendrian knot in (Y, ξ) has vanishing con-
tact invariant as well. By Theorem 1.2 in [39] and Proposition 8 in [9], the
result of contact (+1)-surgery along any Legendrian knot in an overtwisted
closed connected contact 3-manifold (Y, ξ) is overtwisted. In this paper, we
are mainly concerned with the contact invariant and overtwistedness of the
result of contact (+1)-surgery along a Legendrian knot in a contact rational
homology 3-sphere.

The last two authors introduced an invariant τ∗
c(ξ)(Y,K) for a rationally

null-homologous knot K in a contact 3-manifold (Y, ξ) with non-vanishing
contact invariant c(ξ) [25], and proved that this invariant gives an upper
bound for the sum of the rational Thurston-Bennequin invariant and the
absolute value of the rational rotation number of all Legendrian knots iso-
topic to K, i.e.

tbQ(L) + |rotQ(L)| ≤ 2τ∗c(ξ)(Y,K)− 1,

where L is a Legendrian knot in (Y, ξ) isotopic to K. This is a generalization
of the inequalities appeared in [5], [15], [36], [22], etc. We give a sufficient
condition for the result of contact (+1)-surgery having vanishing contact
invariant. Let (Y+1(L), ξ+1(L)) denote the result of contact (+1)-surgery on
(Y, ξ) along L.

Theorem 1.1. Suppose K is a knot in a rational homology 3-sphere Y ,
and ξ is a contact structure on Y with nontrivial contact invariant c(ξ) ∈

ĤF (−Y ). Let L be a Legendrian knot in (Y, ξ) isotopic to K. Then the
contact invariant c(ξ+1(L)) vanishes if

tbQ(L) + |rotQ(L)| < 2τ∗c(ξ)(Y,K)− 1.



✐

✐

“2-Li” — 2023/4/24 — 14:48 — page 1039 — #3
✐

✐

✐

✐

✐

✐

Contact (+1)-surgeries on rational homology 3-spheres 1039

Let (S3(L+
1 ∪ L−

2 ), ξst(L
+
1 ∪ L−

2 )) denote the contact 3-manifold obtained
by contact surgery on (S3, ξst) along a Legendrian link L1 ∪ L2 with coef-
ficients +1 for each component of L1 and −1 for each component of L2.
Özbağci showed in [31] that if some component of L1 contains an isolated
stabilized arc which does not tangle with any other component of L1 ∪ L2,
then (S3(L+

1 ∪ L−
2 ), ξst(L

+
1 ∪ L−

2 )) is overtwisted. In fact, thanks to Theorem
1.2 in [39], the condition in Özbağci’s result can be slightly relaxed to be
that some component of L1 contains an isolated stabilized arc which does
not tangle with any component of L2. Applying Theorem 1.1 we obtain a
result similar to that of Özbağci. Here we consider isolated Legendrian con-
nected summands. See Figure 1. We refer the reader to [17] for Legendrian
connected sum.

Proposition 1.2. Let L1 ∪ L2 ⊂ (S3, ξst) be an oriented Legendrian link.
If the contact 3-manifold S3(L−

2 ) is a rational homology 3-sphere, and there
exists a front projection of L1 ∪ L2 such that a component L1 of L1 con-
tains an isolated connected summand L3 which does not tangle with L2 and
satisfies

tb(L3) + |rot(L3)| < 2τ(L3)− 1,

then the contact invariant c(ξst(L
+
1 ∪ L−

2 )) vanishes.

L3 L3

Figure 1: Isolated Legendrian connected sum.

On the other hand, we remark that the second part of [28, Proposi-
tion 1.4] can be generalized to Legendrian knots in contact L-spaces.

Proposition 1.3. Suppose (Y, ξ) is a contact L-space, and L is a Legen-
drian knot in (Y, ξ). If tbQ(L) < −1, then the contact invariant c+(ξ+1(L))
vanishes.

As mentioned earlier, this result may be used to study certain contact
(±1)-surgeries along Legendrian links in (S3, ξst).
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Corollary 1.4. Let L = L1 ∪ L2 be a Legendrian two-component link in
(S3, ξst) whose two components have linking number l. Suppose that L2 is a
Legendrian L-space knot and l2 > 2g(L2)(tb(L1) + 1), where g(L2) denotes
the genus of L2. Then the contact invariant c+(ξst(L

+)) vanishes.

Now we deal with the overtwistedness of contact (+1)-surgeries. Among
other things, Conway [7] and Onaran [30] obtained sufficient conditions
for the overtwistedness of contact (+1)-surgeries along Legendrian null-
homologous knots. Here we generalize Conway’s results to Legendrian knots
in contact rational homology 3-spheres. Likewise, it is useful for determin-
ing the overtwistedness of contact (±1)-surgery along Legendrian links in
(S3, ξst).

Theorem 1.5. Let L be a Legendrian knot in a contact rational homology
3-sphere (Y, ξ). Let q be the order of [L] in H1(Y ;Z), and χ(F ) be the Euler
characteristic of a rational Seifert surface F for L.
(1) If

tbQ(L) < −1 and tbQ(L)− |rotQ(L)| <
χ(F )

q
,

then (Y+1(L), ξ+1(L)) is overtwisted.
(2) If

tbQ(L) + |rotQ(L)| <
χ(F )

q
− 2,

then the result of any positive contact surgery along L is overtwisted.

In [13, Theorem 1.6 and Corollary 6.4], the authors obtained sufficient
conditions for the result of contact (+1)-surgery along a Legendrian two-
component link in (S3, ξst) to be overtwisted via some specific configurations
in the front projection. The following theorem is an improvement of [13,
Corollary 6.4].

Theorem 1.6. Suppose the front projection of a Legendrian two-component
link L = L1 ∪ L2 in the standard contact 3-sphere (S3, ξst) contains a con-
figuration exhibited in Figure 2, then contact (+1)-surgery on (S3, ξst) along
L yields an overtwisted contact 3-manifold.

Acknowledgements. The authors would like to thank Roger Casals for
sharing us his alternative proof of Theorem 1.6. We are also grateful to the
referee for valuable suggestions. The first author was partially supported by
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L1 L2

Figure 2: A configuration in the front projection of a Legendrian two-
component link L.

National Key R&D Program of China (No. 2020YFA0712800) and Grants
No. 12131009 and 11371033 of the National Natural Science Foundation of
China. The second author was partially supported by Grant No. 11871332
and 12271349 of the NNSFC. The third author was partially supported by
grants from the Research Grants Council of the Hong Kong Special Admin-
istrative Region, China (Project No. 14300018 and 14301819).

2. knots in rational homology 3-spheres

Suppose Y is an oriented rational homology 3-sphere and K is an oriented
knot in Y . Suppose the order of [K] in H1(Y ;Z) is q. According to [1], we
define a rational Seifert surface for K to be a smooth map j : F → Y from
a connected compact oriented surface F to Y that is an embedding from
the interior of F into Y \K, and a q-fold cover from its boundary ∂F to
K. Denote by N(K) a closed tubular neighborhood of K in Y , and by µ ⊂
∂N(K) a meridian of K. We can assume that j(F ) ∩ ∂N(K) is composed
of c parallel oriented simple closed curves, each of which has homology ν ∈
H1(∂N(K);Z). Then we can choose a canonical longitude λcan such that
ν = tλcan + rµ, where homology classes of λcan and µ are also denoted by
λcan and µ, respectively, t and r are coprime integers, and 0 ≤ r < t (cf. [38,
Section 2.6]). Certainly we have ct = q.

2.1. Filtrations.

Let (Σ,α,β, w, z) be a doubly pointed Heegaard diagram of K in Y . Then
the set of relative Spinc-structures determines a filtration of the chain com-
plex ĈF (Y ) via a map

sw,z : Tα ∩ Tβ → Spinc(Y,K).
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Each relative Spinc structure s for (Y,K) corresponds to a Spinc struc-
ture s on Y via a natural map GY,K : Spinc(Y,K) → Spinc(Y ) (see [35, Sec-
tion 2.2]).

Fix a rational Seifert surface F for K. As in [23], the Alexander grading
of a relative Spinc-structure s ∈ Spinc(Y,K) is defined by

A(s) =
1

2q
(⟨c1(s), [F ]⟩+ q).

Moreover, the Alexander grading of an intersection point x ∈ Tα ∩ Tβ is
defined by

A(x) =
1

2q
(⟨c1(sw,z(x)), [F ]⟩+ q).

In general, the Alexander grading A(x) is a rational number. Nonethe-
less, observe that for any two relative Spinc structures s1, s2 ∈ G−1

Y,K(s) of a
fixed s, we have s2 − s1 = lPD[µ] for some integer l, and A(s2)−A(s1) = l.

2.2. Rational τ invariants and rational ν invariants

For a fixed s ∈ Spinc(Y,K), let Cs be the Z⊕ Z-filtered chain complex
CFK∞(Y,K, s) (see [35, Section 3]).

Let

ιk : Cs{i = 0, j ≤ k} → Cs{i = 0}

be the inclusion map, where k ∈ Z. It induces a homomorphism between the
homologies

ιk∗ : H∗(Cs{i = 0, j ≤ k}) → ĤF (Y, s),

where s = GY,K(s). Let

vk : Cs{max(i, j − k) = 0} → Cs{i = 0}

be the composition of ιk and the quotient map from Cs{max(i, j − k) = 0}
to Cs{i = 0, j ≤ k}. It induces a homomorphism between the homologies

vk∗ : H∗(Cs{max(i, j − k) = 0}) → ĤF (Y, s).

Next we recall the definition of rational τ invariants [22].

Definition 2.1. For any [x] ̸= 0 ∈ ĤF (Y, s), define

τ[x](Y,K) = min{A(s) + k | [x] ∈ Im(ιk∗)}.
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Then we introduce the definition of rational ν invariants in the same
manner as Hom-Levine-Lidman did in the integral homology sphere case
([24]).

Definition 2.2. For any [x] ̸= 0 ∈ ĤF (Y, s), define

ν[x](Y,K) = min{A(s) + k | [x] ∈ Im(vk∗)}.

Lemma 2.3. ν[x](Y,K) = τ[x](Y,K) or τ[x](Y,K) + 1.

Proof. Due to [22, Proposition 24] and [25, Proposition 2.5], the proof is
similar to the case where Y = S3 [35, Equation 34], and is straightforward.

□

Consider the orientation reversal −Y of Y . We have a pairing

⟨−,−⟩ : ĈF (−Y, s)⊗ ĈF (Y, s) → Z/2Z,

given by

⟨x, y⟩ =

{
1 if x = y,

0 otherwise.

It descends to a pairing

⟨−,−⟩ : ĤF (−Y, s)⊗ ĤF (Y, s) → Z/2Z.

Definition 2.4. For any [y] ̸= 0 ∈ ĤF (−Y, s), define

τ∗[y](Y,K) = min{A(s) + k | ∃α ∈ Im(ιk∗), such that⟨[y], α⟩ ≠ 0}.

Proposition 2.5. [25, Proposition 2.3] Let [y] ̸= 0 ∈ ĤF (−Y, s). Then

τ[y](−Y,K) = −τ∗[y](Y,K).

Proposition 2.6. [25, Proposition 2.4] For any [yi] ̸= 0 ∈ ĤF (−Yi, si),
i = 1, 2, we have

τ∗[y1]⊗[y2]
(Y1#Y2,K1#K2) = τ∗[y1]

(Y1,K1) + τ∗[y2]
(Y2,K2).

Suppose (Y1, ξ1) and (Y2, ξ2) are two contact rational homology 3-spheres
with nonvanishing contact invariants c(ξ1) and c(ξ2), then the contact in-

variant of (Y1#Y2, ξ1#ξ2) is c(ξ1)⊗ c(ξ2) ∈ ĤF (−Y1)⊗ ĤF (−Y2). See for
example [22, Page 105]. As a corollary of Proposition 2.6, we have the fol-
lowing proposition.
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Proposition 2.7. Let K1 ⊂ (Y1, ξ1) and K2 ⊂ (Y2, ξ2) be two smooth knots.
Then

τ∗c(ξ1)⊗c(ξ2)
(Y1#Y2,K1#K2) = τ∗c(ξ1)(Y1,K1) + τ∗c(ξ2)(Y2,K2).

2.3. Mapping cone for Morse surgery along knots in rational
homology 3-spheres

For p ∈ Z, let Yp(K) denote the 3-manifold obtained by performing Dehn
surgery along K in Y with coefficient p with respect to the canonical lon-
gitude λcan. The meridian µ is isotopic to a core circle of the glued-in solid
torus. Let Kp denote this core circle, with the orientation inherited from
−µ (see [23, Section 1.1]). The sets Spinc(Y,K) and Spinc(Yp(K),Kp) are
naturally identified and the fibers of the map

GYp(K),Kp
: Spinc(Yp(K),Kp) → Spinc(Yp(K))

are the orbits of the action of PD[λ], where λ = λcan + pµ. Let Xp(K) be
the 4-manifold obtained by attaching a 4-dimensional 2-handle H to Y ×
I along K × {1} with coefficient p with respect to λcan. Then ∂Xp(K) =
(−Y ) ⊔ Yp(K). Let C denote the core disk of the attached 2-handle inXp(K)
with ∂C = K × {1}. For a rational Seifert surface j : F → Y for K, FqC =
(j(F )× {1}) ∪ (−qC) represents a homology class [FqC ] in H2(Xp(K);Z).
Given a Spinc structure s on Y , we can extend s to a Spinc structure t on
Xp(K). All Spinc structures t on Xp(K) with t|Y = s are distinguished by
⟨c1(t), [FqC ]⟩. For each s ∈ Spinc(Y,K) with GY,K(s) = s, there is a unique
Spinc structure t on Xp(K) such that t|Y = s and

⟨c1(t), [FqC ]⟩+ pq − cr = 2qA(s)

(see [38, Theorem 4.2]).
For s ∈ Spinc(Y,K), let As = Cs{max(i, j) = 0} and Bs = Cs{i = 0}.

There are two natural projection maps

vs : As → Bs, hs : As → Bs+PD[λ].

Define

Φ :
⊕

s

As →
⊕

s

Bs, (s, a) 7→
(
s, vs(a)

)
+
(
s+ PD[λ], hs(a)

)
,

which is often written in the following form
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· · ·

''

As−PD[λ]

vs−PD[λ]

��

hs−PD[λ]

''

As

vs
��

hs

''

As+PD[λ]

vs+PD[λ]

��

hs+PD[λ]

''

· · ·

· · · Bs−PD[λ] Bs Bs+PD[λ] · · ·

Note that the mapping cone of Φ splits over equivalence classes of relative
Spinc structures, where s1 and s2 are equivalent if s2 = s1 +mPD[λ] for
some integer m.

Theorem 2.8. [35, Theorem 6.1] Denote X̂[s] the summand of the cone
of Φ corresponding to the equivalence class of s. Then there exists a quasi-
isomorphism of the complexes

Ψ : X̂[s]
∼= ĈF (Yp(K), GYp(K),Kp

(s)).

Theorem 2.9. [38, Theorem 4.2] Suppose s ∈ Spinc(Y ) and t ∈
Spinc(Xp(K)) extends s. Then the map

ĈF (Y, s) → ĈF (Yp(K), t|Yp(K))

induced by t corresponds via Ψ to the inclusion of Bs in X̂[s], where s ∈
Spinc(Y,K) is determined by GY,K(s) = s and

⟨c1 (t) , [FqC ]⟩+ pq − cr = 2qA(s).

3. Contact (+1)-surgeries on rational homology 3-spheres
with vanishing contact invariants

For a rationally null-homologous oriented Legendrian knot L in a contact
3-manifold (Y, ξ), one can define the rational Thurston-Bennequin invariant
tbQ(L) and the rational rotation number rotQ(L). We refer the reader to [1]
for more details.

Suppose Y is an oriented rational homology 3-sphere and ξ is a contact
structure on Y . Let K be an oriented knot in Y . Suppose the order of [K]
in H1(Y ;Z) is q. Let L be an oriented Legendrian knot in (Y, ξ) isotopic
to K. Let F be a rational Seifert surface for L. Suppose the longitude of L
determined by the contact framing is λc = λcan + (p− 1)µ for some integer
p. We use the notation in Section 2 withK replaced by L. Performing contact
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(+1)-surgery along L, we obtain a contact 3-manifold (Y+1(L), ξ+1(L)). This
contact (+1)-surgery induces a cobordism Xp(L), also denoted by W , from
Y to Y+1(L). Notice that Yp(L) = Y+1(L).

The contact structure ξ (respectively, ξ+1(L)) defines an almost complex
structure J (on W ) along Y (respectively, Y+1(L)) by requiring ξ (respec-
tively, ξ+1(L)) to be J-invariant and J to map the inward (respectively,
outward) normal along Y (respectively, Y+1(L)) to a vector in Y (respec-
tively, Y+1(L)) positively transverse to ξ (respectively, ξ+1(L)). This J can
be extended to the closure of the complement of a 4-disk DH ⊂ int(H) ⊂ W
such that d3(ξH) = 1

2 , where ξH denotes the plane field on ∂DH induced by
J (see [12, Section 3]). The Spinc structure on W induced by J is denoted
by t1.

Mimicking the proof of [12, Proposition 5.2], we have

Lemma 3.1. ⟨c1(t1), [FqC ]⟩ = q · rotQ(L). ✷

Lemma 3.2. pq − cr = q · (tbQ(L) + 1).

Proof. Recall that the longitude of L determined by the contact framing is
λc = λcan + (p− 1)µ. By definition in Baker-Etnyre [1], tbQ(L) is the ratio-
nal linking number of L and λc. So

tbQ(L) + 1 = lkQ(L, λc) + 1 =
1

q
[F ] • λc + 1

=
1

q
(qλcan + crµ) • (λcan + (p− 1)µ) + 1 =

1

q
(pq − cr),

where the second intersection product is on ∂(Y \N(L)). □

By Baldwin [4, Theorem 1.2] (see also Mark-Tosun [29, Theorem 3.1]),
there exists a Spinc structure t2 on −W such that the homomorphism

F−W,t2 : ĤF (−Y ) → ĤF (−Y+1(L))

satisfies

F−W,t2(c(ξ)) = c(ξ+1(L)).

The following lemma is similar to [29, Corollary 3.6].

Lemma 3.3. The Spinc structure t2 satisfies

⟨c1(t2), [FqC ]⟩ = ±⟨c1(t1), [FqC ]⟩ = ±q · rotQ(L).
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Proof. First, assume that pq − cr = 0, which is equivalent to r = p = 0. In
this case, the map H2(Xp(L);Q) → H2(Y+1(L);Q) induced by inclusion is
an isomorphism. Combining this with the fact that t1, t2 induce the same
Spinc structure on Y+1(L), i.e. the Spinc structure induced by ξ+1(L), we
have

⟨c1(t2), [FqC ]⟩ = ⟨c1(t1), [FqC ]⟩ = q · rotQ(L).

Now suppose pq − cr ̸= 0. In this case, Y+1(L) is a rational homology
3-sphere and c1(ξ+1(L)) is torsion. For an oriented plane filed η with torsion
first Chern class in an oriented 3-manifold R, Gompf [21] defined the 3-
dimensional invariant d3(η) to be the rational number

1

4
(c21(Z, J)− 3σ(Z)− 2χ(Z)),

where (Z, J) is an almost complex 4-manifold having ∂Z = R and η =
TR ∩ J(TR). According to [33] or [37], the absolute grading of the contact
invariant c(ξ) for a contact 3-manifold (R, ξ) is related to the 3-dimensional
invariant d3(ξ) by

g̃r(c(ξ)) = −d3(ξ)−
1

2
.

So it follows from the degree shift formula [34, Theorem 7.1] in Heegaard
Floer homology that

(3.1)
1

4
(c21(t2)−W − 3σ(−W )− 2χ(−W )) = −d3(ξ+1(L)) + d3(ξ).

Let W ′ denote W − int(DH). Since ∂W ′ = Y+1(L) ⊔ (−Y ) ⊔ (−∂DH)
and the almost complex structure J induces the plane fields ξ+1(L), ξ and
ξH on Y+1(L), Y and ∂DH , respectively, we have

d3(ξ+1(L))− d3(ξ)− d3(ξH) =
1

4
(c21(J)W ′ − 3σ(W ′)− 2χ(W ′))

=
1

4
(c21(t1)W − 3σ(W )− 2χ(W )) +

1

2
.

Note that χ(W ) = 1 and d3(ξH) = 1
2 . Thus

d3(ξ+1(L))− d3(ξ)−
1

2
=

1

4
(c21(t1)W − 3σ(W )).

With (3.1), we get c21(t2)−W = −c21(t1)W . Since H2(W ;Q) is generated by
[FqC ] and [FqC ]

2 = q(pq − cr) ̸= 0, we obtain

⟨c1(t2), [FqC ]⟩ = ±⟨c1(t1), [FqC ]⟩ = ±q · rotQ(L). □
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For s ∈ Spinc(−Y, L), by Theorem 2.8, there exists a quasi-isomorphism
of the complexes

Ψ : X̂[s]
∼= ĈF (−Yp(L), G−Yp(L),−Lp

(s)).

The isomorphism

H∗(X̂[s]) ∼= ĤF (−Yp(L), G−Yp(L),−Lp
(s))

induced by Ψ is denoted by Ψ∗. Let sξ (respectively, sξ+1(L)) denote the Spin
c

structure on Y (respectively, Y+1(L)) induced by ξ (respectively, ξ+1(L)).
By Theorem 2.9, the map

ĈF (−Y, sξ) → ĈF (−Yp(L), sξ+1(L))

induced by t2 corresponds via Ψ to the inclusion of Bs in X̂[s], where s ∈
Spinc(−Y, L) satisfies G−Y,L(s) = sξ and

⟨c1 (t2) , [FqC ]⟩ − pq + cr = 2qA(s).

Applying Lemmata 3.2 and 3.3, we have

Corollary 3.4. Via Ψ∗, the contact invariant c(ξ+1(L)) ∈ ĤF (−Yp(L))
is the image of c(ξ) under the homomorphism of homologies induced by
inclusion

Bs →֒ X̂[s],

where s ∈ Spinc(−Y, L) satisfies G−Y,L(s) = sξ and

2A(s) = −tbQ(L)± rotQ(L)− 1.

Lemma 3.5. Suppose c(ξ) ̸= 0. For s in the above corollary, c(ξ) ̸∈ Im(vs∗)
if and only if both

νc(ξ)(−Y,K) = −τ∗c(ξ)(Y,K) + 1

and τ∗c(ξ)(Y,K) =
1

2
(tbQ(L)∓ rotQ(L) + 1).

Proof. By the definition of νc(ξ)(−Y,K), the contact invariant c(ξ) ̸∈ Im(vs∗)
if and only if A(s) < νc(ξ)(−Y,K). By Lemma 2.3 and Proposition 2.5,
νc(ξ)(−Y,K) equals either −τ∗

c(ξ)(Y,K) or −τ∗
c(ξ)(Y,K) + 1. On the other

hand, it follows from [25, Theorem 1.1] that 1
2(−tbQ(L)± rotQ(L)− 1) ≥
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−τ∗
c(ξ)(Y,K). Applying Corollary 3.4, we conclude that νc(ξ)(−Y,K) =

−τ∗
c(ξ)(Y,K) + 1 and −τ∗

c(ξ)(Y,K) = A(s) = 1
2(−tbQ(L)± rotQ(L)− 1). □

Proof of Theorem 1.1. Since

1

2
(tbQ(L)± rotQ(L) + 1) < τ∗c(ξ)(Y,K) = −τc(ξ)(−Y,K),

Lemma 3.5 implies that c(ξ) lies in the image of vs∗. By Corollary 3.4,
it suffices to find a cycle c ∈ As such that vs∗([c]) = c(ξ) ∈ H∗(Bs), while
hs∗([c]) = 0. Recall that As is the subquotient complex Cs{max(i, j) = 0}
of CFK∞(−Y,K, s). By the definition of τc(ξ)(−Y,K), there is a cycle c
in the vertical complex Bs = Cs{i = 0} that is supported in Cs{i = 0, j ≤
τc(ξ)(−Y,K)−A(s)} and [c] = c(ξ) ∈ H∗(Bs). By our assumption, A(s) =
1
2(±rotQ(L)− tbQ(L)− 1) > τc(ξ)(−Y,K), so c can be considered as a cycle
in As, and since it lies in the subcomplex with j < 0, it vanishes under
hs. □

Remark 3.6. Note that we do not really need the condition on the rational
ν invariant in Lemma 3.5 for the proof of Theorem 1.1 or any other main
results in this paper. On the other hand, it is natural and convenient to
study this rational ν invariant in the context of the paper, which is likely to
be useful in future research.

L2

L1

Figure 3: A Legendrian link L1 ∪ L2, where L2 is a Legendrian push-off
of L1.

Remark 3.7. For a Legendrian knot L in (S3, ξst), if rot(L) ̸= 0, then [20,
Theorem 1.1] tells us that ξ+1(L) has vanishing contact invariant. How-
ever, this is not true for Legendrian knots in contact rational homology
3-spheres. For example, in Figure 3, L1 is a Legendrian right handed trefoil
with tb(L1) = 0 and rot(L1) = −1, and L2 is a Legendrian push-off of L1.
The 3-manifold S3(L−

2 ) is an integral homology 3-sphere. By [18, Lemma
3.1], the Thurston-Bennequin invariant of L1 in (S3(L−

2 ), ξst(L
−
2 )) is 0 and



✐

✐

“2-Li” — 2023/4/24 — 14:48 — page 1050 — #14
✐

✐

✐

✐

✐

✐

1050 F. Ding, Y. Li, and Z. Wu

the rotation number of L1 in (S3(L−
2 ), ξst(L

−
2 )) is −1. Contact (+1)-surgery

along L1 in (S3(L−
2 ), ξst(L

−
2 )) yields (S3, ξst) (see [9]) which certainly has

nonvanishing contact invariant.

Now we turn to some applications of Theorem 1.1. First we recall the
following proposition.

Proposition 3.8. [25, Lemma 3.2] For i = 1, 2, suppose that Li is a Legen-
drian knot in a contact rational homology 3-sphere (Yi, ξi). Then the rational
Thurston-Bennequin invariant and the rational rotation number of the Leg-
endrian knot L1#L2 in the contact 3-manifold (Y1#Y2, ξ1#ξ2) satisfy

tbQ(L1#L2) = tbQ(L1) + tbQ(L2) + 1,

rotQ(L1#L2) = rotQ(L1) + rotQ(L2).

Proof of Proposition 1.2. It suffices to prove the case that L1 contains only
one component L1. Suppose L1 is the Legendrian connected sum of L′

3 and
L3. Then we have

(S3(L−
2 ), L1) = (S3(L−

2 ), L
′
3)#(S3, L3).

By [25, Theorem 1.1],

tbQ(L
′
3) + |rotQ(L

′
3)|+ 1 ≤ 2τ∗

c(ξst(L
−
2 ))

(S3(L−
2 ), L

′
3).

By assumption,

tb(L3) + |rot(L3)|+ 1 < 2τ(L3).

So by Propositions 2.7 and 3.8, we have

tbQ(L1) + |rotQ(L1)|+ 1 < 2τ∗
c(ξst(L

−1
2 ))

(S3(L−
2 ), L1).

The proposition now follows from Theorem 1.1. □

Corollary 3.9. Let L1 ∪ L2 ⊂ (S3, ξst) be an oriented Legendrian link with
two components which has a front projection depicted at the top of Figure 4.
If tb(L2) ̸= 1 and tb(L1) + |rot(L1)| < 2τ(L1)− 1, then the contact invariant
c(ξst(L

+
1 ∪ L−

2 )) vanishes.
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L2 L1

L2

U
L1

Figure 4: A Legendrian link L1 ∪ L2.

Proof. Clearly, the contact invariant c(ξst(L
−
2 )) is non-trivial. Since tb(L2)−

1 ̸= 0, S3(L−
2 ) is a rational homology 3-sphere. We have

(S3(L−
2 ), L1) = (S3(L−

2 ), U)#(S3, L1),

where U is a Legendrian unknot shown at the bottom left of Figure 4.
Since

tb(L1) + |rot(L1)|+ 1 < 2τ(L1),

the corollary follows from Proposition 1.2. □

L2

L1

Figure 5: A Legendrian link L1 ∪ L2, where L1 is a Legendrian figure eight
knot.

Example 3.10. Let L = L1 ∪ L2 be a Legendrian link in (S3, ξst) depicted
in Figure 5. Note that L1 is a Legendrian figure eight knot with tb(L1) =
−3 and rot(L1) = 0. Since τ(L1) = 0, Corollary 3.9 implies that (S3(L+

1 ∪
L−
2 ), ξst(L

+
1 ∪ L−

2 )) is a contact 3-manifold with vanishing contact invariant
for any Legendrian knot L2 with tb(L2) ̸= 1.
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In the last part of this section, we prove Proposition 1.3 and its appli-
cation to contact (+1)-surgeries along Legendrian links in (S3, ξst), Corol-
lary 1.4. Note that the vanishing result in Proposition 1.3 is only obtained
for the plus-version of the contact invariant c+(ξ) as opposed to c(ξ) in the
other parts of the paper. To the best of the authors’ knowledge, there is
no known example of contact 3-manifold (Y, ξ) with vanishing c+(ξ) but
nonvanishing c(ξ).

Proof of Proposition 1.3. Let W be the cobordism from Y to Y+1(L)
induced by contact (+1)-surgery. Then the map F+

−W : HF+(−Y ) →
HF+(−Y+1(L)) send c+(ξ) to c+(ξ+1(L)). By [29, Lemma 5.1] and Lemma
3.2, the self-intersection of a generator of H2(−W ;Z) ∼= Z is −q2(tbQ(L) +
1) > 0. So −W is positive definite. By [34, Lemma 8.2], F∞

−W : HF∞(−Y ) →
HF∞(−Y+1(L)) vanishes. Since Y is an L-space, HF∞(−Y ) → HF+(−Y )
is onto. Hence F+

−W = 0, and the contact invariant c+(ξ+1(L)) vanishes. □

Proof of Corollary 1.4. If L2 is an unknot, then the corollary follows from
[13, Theorem 1.1]. In the following we assume that L2 is nontrivial.

Since L2 is an L-space knot, g(L2) = τ(L2). If tb(L2) < 2g(L2)− 1 =
2τ(L2)− 1, then [20, Theorem 1.1] implies that c+(ξst(L

+
2 )) vanishes. So

the contact invariant c+(ξst(L
+)) vanishes for any Legendrian knot L1.

From Bennequin inequality, we can now assume that tb(L2) = 2g(L2)−
1. (Indeed, Lidman and Sivek conjectured in [26, Conjecture 1.19] that any
L-space knot K has maximal Thurston-Bennequin invariant 2g(K)− 1.) By
[20, Theorem 1.1], (S3(L+

2 ), ξst(L
+
2 )) is a tight contact L-space. Using [18,

Lemma 3.1], we know that the rational Thurston-Bennequin invariant of L1

in (S3(L+
2 ), ξst(L

+
2 )) is

tb(L1) +

det

(
0 l
l tb(L2) + 1

)

tb(L2) + 1
= tb(L1)−

l2

2g(L2)
,

which is less than −1 by assumption. So the corollary follows immediately
from Proposition 1.3. □

Example 3.11. Contact (+1)-surgery along the Legendrian link L = L1 ∪
L2 in (S3, ξst) depicted in Figure 6 yields a contact 3-manifold with vanishing
contact invariant c+(ξst(L

+)).
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L1

L2

Figure 6: A Legendrian link L1 ∪ L2, where both components are Legen-
drian right handed trefoil knots with tb = 1, and the linking number is 4.

4. Contact (±1)-surgeries on rational homology 3-spheres

Let L = L1 ∪ · · · ∪ Ln be a Legendrian link in a contact rational homology
3-sphere (Y, ξ). Suppose that contact (±1)-surgery along the components
of L produces (Y ′, ξ′). Set ai = tbQ(Li)± 1, depending on whether we per-
form contact (+1)-surgery or (−1)-surgery along Li. Let L0 be a Legendrian
knot in (Y, ξ) disjoint from L. For i ̸= j, denote the rational linking number
lkQ(Li, Lj) by lij . Let M = (mij)

n
i,j=1 be the linking matrix of L, i.e.

mij =

{
ai if i = j,
lij if i ̸= j.

Let M0 = (mij)
n
i,j=0 be the extended matrix given by

mij =





0 if i = j = 0,
ai if i = j ≥ 1,
lij if i ̸= j.

Y ′ is still a rational homology 3-sphere if and only if detM ̸= 0 (see the
proof of the following lemma). Let L be the image of L0 in (Y ′, ξ′). The
following lemma is a generalization of [18, Lemma 3.1].

Lemma 4.1. Suppose detM ̸= 0. Then

tbQ(L) = tbQ(L0) +
detM0

detM

and

rotQ(L) = rotQ(L0)−

〈


rotQ(L1)
...

rotQ(Ln)


 , M−1




l01
...
l0n



〉
.
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Proof. For i = 0, 1, . . . , n, denote by N(Li) a closed tubular neighborhood of
Li in Y . Suppose for i ̸= j, N(Li) and N(Lj) are disjoint. Denote the knot

exterior Y \N(Li) by X(Li). Denote Y \
n⋃

i=1
N(Li) by X(L) and Y \

n⋃
i=0

N(Li)

by X(L0 ∪ L). Suppose the order of [Li] in H1(Y ;Z) is qi. Let Fi be a
rational Seifert surface for Li. We can assume that Fi ∩ ∂N(Li) is composed
of ci parallel oriented simple closed curves, each of which has homology
tiλi + riµi ∈ H1(∂N(Li);Z), where λi is the class of a canonical longitude
and µi is the class of a meridian, ti, ri are coprime and 0 ≤ ri < ti. Certainly
we have citi = qi.

Note that

H1(X(L0 ∪ L);Q) ∼= Q⟨µ0⟩ ⊕ · · · ⊕Q⟨µn⟩,

where Q⟨µi⟩ denotes the vector space over Q generated by the class µi. In
H1(X(L0 ∪ L);Q), we have

ci(tiλi + riµi) =

n∑

j=0

j ̸=i

qilijµj .

Since citi = qi, this is equivalent to

λi = −
ri
ti
µi +

n∑

j=0

j ̸=i

lijµj .

Suppose the class of a longitude of Li determined by the contact framing is
λi +miµi. Then

tbQ(Li) =
1

qi
[Fi] • (λi +miµi) =

1

qi
(citimi − ciri) = mi −

ri
ti
.

Contact (±1)-surgery along Li implies that we glue a meridional disc along

λi + (mi ± 1)µi = aiµi +

n∑

j=0

j ̸=i

lijµj ,

i = 1, . . . , n. It follows that

H1(X
′(L);Q) ∼= Q⟨µ0⟩ ⊕ · · · ⊕Q⟨µn⟩/⟨aiµi +

n∑

j=0

j ̸=i

lijµj , i = 1, . . . , n⟩,



✐

✐

“2-Li” — 2023/4/24 — 14:48 — page 1055 — #19
✐

✐

✐

✐

✐

✐

Contact (+1)-surgeries on rational homology 3-spheres 1055

where X ′(L) denotes the knot exterior Y ′ \N(L0). Similarly,

H1(Y
′;Q) ∼= Q⟨µ1⟩ ⊕ · · · ⊕Q⟨µn⟩/⟨aiµi +

n∑

j=1

j ̸=i

lijµj , i = 1, . . . , n⟩.

Hence Y ′ is a rational homology 3-sphere if and only if detM ̸= 0.
Since detM ̸= 0, Y ′ is a rational homology 3-sphere andH1(X

′(L);Q) ∼=
Q⟨µ0⟩. Thus there is a unique a0∈Q such that λ0+a0µ0 = 0 inH1(X

′(L);Q).
The rational Thurston-Bennequin invariant of L in (Y ′, ξ′) can be computed
as

tbQ(L) = (λ0 + a0µ0) • (λ0 +m0µ0) = m0 − a0,

where the intersection product is on ∂X ′(L). Since

λ0 = −
r0
t0
µ0 +

n∑

j=1

l0jµj ∈ H1(X(L0 ∪ L);Q),

and

λ0 + a0µ0 = 0 ∈ H1(X
′(L);Q),

(a0 −
r0
t0
)µ0 +

n∑
j=1

l0jµj is a linear combination of the relations in

H1(X
′(L);Q), which gives

0 =

∣∣∣∣∣∣∣∣∣

a0 −
r0
t0

l01 · · · l0n
l10 a1 · · · l1n
...

...
. . .

...
ln0 ln1 · · · an

∣∣∣∣∣∣∣∣∣
= (a0 −

r0
t0
) detM + detM0.

Hence tbQ(L) = m0 − ( r0
t0

− detM0

detM ) = tbQ(L0) +
detM0

detM .
The Poincaré dual of the relative class e(ξ, Li) over Q, PD(e(ξ, Li))Q ∈

H1(X(Li);Q) ∼= Q⟨µi⟩, is equal to rotQ(Li)µi. Since under the map

H1(X(L0 ∪ L);Q) → H1(X(Li);Q) induced by inclusion, PD(e(ξ,
n⋃

i=0
Li))Q

maps to PD(e(ξ, Li))Q, we have

PD(e(ξ,

n⋃

i=0

Li))Q =

n∑

i=0

rotQ(Li)µi.

Under the map H1(X(L0 ∪ L);Q) → H1(X
′(L);Q) induced by inclusion,

PD(e(ξ,
n⋃

i=0
Li))Q maps to PD(e(ξ′, L))Q (see [18, Lemma 3.2]). Therefore,
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in H1(X
′(L);Q), we have

rotQ(L)µ0 =

n∑

i=0

rotQ(Li)µi

=


rotQ(L0)−

〈


rotQ(L1)
...

rotQ(Ln)


 , M−1




l01
...
l0n



〉
µ0.

This proves the second formula in the lemma. □

5. Overtwisted contact surgeries on rational homology
3-spheres

We use the following result as the main tool of the proof of Theorem 1.5.

Theorem 5.1 (Świa̧towski[14], Etnyre[16], Baker-Onaran[3]). If L ⊂
(Y, ξ) is a rationally null-homologous Legendrian knot such that the comple-
ment of a regular neighborhood of L is tight, then

−|tbQ(L)|+ |rotQ(L)| ≤ −
χ(F )

q
,

where q is the order of [L] in H1(Y ;Z), and χ(F ) is the Euler characteristic
of a rational Seifert surface F for L.

Proof of Theorem 1.5. Consider contact (+1)-surgery along L. Let L∗ be
the surgery dual. Let L0 be a Legendrian push-off of L. Then L∗

0, the image
of L0 in (Y+1(L), ξ+1(L)), is Legendrian isotopic to L∗. We use Lemma 4.1
to compute tbQ(L

∗
0) and rotQ(L

∗
0). Now

M = (tbQ(L) + 1) and M0 =

(
0 tbQ(L)

tbQ(L) tbQ(L) + 1

)
.

Hence

tbQ(L
∗
0) = tbQ(L0) +

detM0

detM

= tbQ(L)−
(tbQ(L))

2

tbQ(L) + 1
=

tbQ(L)

tbQ(L) + 1

and

rotQ(L
∗
0) = rotQ(L0)−

rotQ(L) · tbQ(L)

tbQ(L) + 1
=

rotQ(L)

tbQ(L) + 1
.
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Lemma 5.2. The order of [L∗
0] in H1(Y+1(L);Z) is q · |tbQ(L) + 1|.

Proof. We use the notation in the first paragraph of Section 2 with K re-
placed by L. Let X(L) denote the knot exterior Y \N(L). Let i∗ :
H1(∂N(L);Z) → H1(X(L);Z) be the map induced by inclusion. Then ker i∗
is generated by c(tλcan + rµ) = qλcan + crµ. Write µ′ and λ′ for the classes
of a meridian and a longitude, respectively, of the solid torus we glue in
to perform the surgery. Suppose the class of a longitude of L determined
by the contact framing is λc = λcan + (p− 1)µ for some integer p. Contact
(+1)-surgery can be described by the map

µ′ 7→ µ+ λc = pµ+ λcan, λ′ 7→ λc = (p− 1)µ+ λcan.

Then in terms of µ′ and λ′, ker i∗ is generated by (pq − cr)λ′ + (cr − pq +
q)µ′. Thus the order of [L∗] in H1(Y+1(L);Z) is |pq − cr|. Since L∗

0 is isotopic
to L∗, by Lemma 3.2, [L∗

0] is of order q · |tbQ(L) + 1| in H1(Y+1(L);Z). □

(1) Let L∗
k be the Legendrian knot obtained from L∗

0 after k stabiliza-
tions. If rotQ(L

∗
0) is nonnegative, then we choose k positive stabilizations.

Otherwise, we choose k negative stabilizations. Assume that k is sufficiently
large. Since tbQ(L) < −1, tbQ(L

∗
0) is positive. So we have

−|tbQ(L
∗
k)|+ |rotQ(L

∗
k)| = −|tbQ(L

∗
0)− k|+ |rotQ(L

∗
0)|+ k

= −(k − tbQ(L
∗
0)) + |rotQ(L

∗
0)|+ k

= |tbQ(L
∗
0)|+ |rotQ(L

∗
0)|

=
|tbQ(L)|+ |rotQ(L)|

|tbQ(L) + 1|
.

The order of [L∗
k] in H1(Y+1(L);Z) is the same as that of [L∗

0], that is,
q|tbQ(L) + 1|. Denote F ∩X(L) by F 0. We can radially cone ∂F 0 ⊂ ∂X(L)
in the solid torus we glue in to get a rational Seifert surface F ∗ for L∗

in Y+1(L). Since L∗
k is smoothly isotopic to L∗, there is a rational Seifert

surface F ∗
k for L∗

k in Y+1(L) with χ(F ∗
k ) = χ(F ∗) = χ(F ). Since tbQ(L)−

|rotQ(L)|<
χ(F )
q

, |tbQ(L)|+|rotQ(L)|>
−χ(F )

q
and −|tbQ(L

∗
k)|+|rotQ(L

∗
k)|>

−χ(F ∗
k )

q|tbQ(L)+1| . By Theorem 5.1, the complement of L∗
k in (Y+1(L), ξ+1(L)) is

overtwisted.
(2) Since χ(F ) ≤ 1, tbQ(L) + |rotQ(L)| <

χ(F )
q

− 2 implies that tbQ(L) <
−1. Consider L∗

+ and L∗
−, the positive and negative stabilizations of L∗

0. We
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have

tbQ(L
∗
+) = tbQ(L

∗
0)− 1 = −

1

tbQ(L) + 1

and

rotQ(L
∗
+) = rotQ(L

∗
0) + 1 =

rotQ(L) + tbQ(L) + 1

tbQ(L) + 1
.

It follows that

−|tbQ(L
∗
+)|+ |rotQ(L

∗
+)| =

|rotQ(L) + tbQ(L) + 1| − 1

|tbQ(L) + 1|
> −

χ(F )

q|tbQ(L) + 1|
.

So L∗
+ is loose by Theorem 5.1. Similarly, L∗

− is also loose.
Let X∗

+(L) (respectively, X∗
−(L)) denote the complement of a stan-

dard neighbourhood of L∗
+ (respectively, L∗

−) in (Y+1(L), ξ+1(L)). Then
(X∗

+(L), ξ+1(L)) and (X∗
−(L), ξ+1(L)) are overtwisted. Since the result of any

positive contact surgery along L in (Y, ξ) contains either (X∗
+(L), ξ+1(L)) or

(X∗
−(L), ξ+1(L)) (see [7, Section 4]), it is overtwisted. □

We give some applications of Theorem 1.5. In practice, the most difficult
part is to find a rational Seifert surface.

Corollary 5.3. Let L1 ∪ L2 ⊂ (S3, ξst) be an oriented Legendrian link with
two components which has a front projection depicted at the top of Figure 4.
If

tb(L2) ̸= 1, tb(L1) +
1

1− tb(L2)
< −1

and

|rot(L1) +
rot(L2)

1− tb(L2)
| > 2g1 +

2g2 − 1

|1− tb(L2)|
+ tb(L1) +

1

1− tb(L2)
,

where gi is the genus of Li for i = 1, 2, then (S3(L+
1 ∪ L−

2 ), ξst(L
+
1 ∪ L−

2 )) is
overtwisted.

Proof. Let L be the image of L1 in (S3(L−
2 ), ξst(L

−
2 )). By Lemma 4.1,

tbQ(L) = tb(L1) +
1

1−tb(L2)
and rotQ(L) = rot(L1) +

rot(L2)
1−tb(L2)

. The order q of

[L] in H1(S
3(L−

2 );Z) is |1− tb(L2)|. The Legendrian knot L in (S3(L−
2 ),

ξst(L
−
2 )) can be seen as the connected sum of a Legendrian knot U in

(S3(L−
2 ), ξst(L

−
2 )) and L1 in (S3, ξst) (see the bottom of Figure 4). The order

of [U ] in H1(S
3(L−

2 );Z) is also |1− tb(L2)|. Since U is smoothly isotopic to
the core of the solid torus we glue in to get S3(L−

2 ), it has a rational Seifert
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surface in S3(L−
2 ) with Euler characteristic 1− 2g2. By [6, (2.3.1)], L has a

rational Seifert surface F in S3(L−
2 ) with Euler characteristic

1− 2g2 + |1− tb(L2)| · (1− 2g1)− |1− tb(L2)|

= 1− 2g2 − 2g1 · |1− tb(L2)|.

So we have tbQ(L) < −1 and tbQ(L)− |rotQ(L)| <
χ(F )
q

. By Theorem 1.5,

(S3(L+
1 ∪ L−

2 ), ξst(L
+
1 ∪ L−

2 )) is overtwisted. □

L1

U

Figure 7: A Legendrian link L1 ∪ U .

Example 5.4. Let L1 ∪ U be the Legendrian link in (S3, ξst) shown in Fig-
ure 7. By Corollary 5.3, if tb(L1) ≤ −2 and |rot(L1)| > tb(L1) + 2g1, where
g1 is the genus of L1, then (S3(L+

1 ∪ U−), ξst(L
+
1 ∪ U−)) is overtwisted.

L1 U

Figure 8: A Legendrian link L1 ∪ U with linking number 0.

Example 5.5. Let L1 ∪ U be the Legendrian link in (S3, ξst) shown in
Figure 8. Denote the image of L1 in (S3(U−), ξst(U

−)) by L. Since the
linking number of L1 ∪ U is 0, L is null-homologous in S3(U−). By [18,
Lemma 3.1] or Lemma 4.1, tbQ(L) = −6 and |rotQ(L)| = 1. There is a genus-
one Seifert surface F0 of L1 in S3 which intersects U in exactly two points.
Removing the open disk neighborhoods of these two intersection points from
the interior of F0, and gluing a tube which wraps around an arc of U bounded
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by the two intersection points, one can obtain a Seifert surface F for L
in S3(U−). Note that χ(F ) = −3. By Theorem 1.5 or [7, Theorem 1.1],
(S3(L+

1 ∪ U−), ξst(L
+
1 ∪ U−)) is overtwisted.

Remark 5.6. In [2, Proposition 3.4], Baker and Grigsby proved that any
Legendrian knot L in a universally tight contact lens space (L(a, b), ξUT ) has
a twisted toroidal front projection. The invariant tbQ(L) can be computed via
such a front projection (see [2, Proposition 6.8] and [8, Corollary 3.3]). So we
can apply Proposition 1.3 for Legendrian knots in (L(a, b), ξUT ) conveniently.
In [8, Proposition 3.6], the invariant rotQ(L) is also computed via the front
projection. Possibly, one can construct a rational Seifert surface for L via
the front projection in a similar way as in [32, Section 3.4]. Then we can
apply Theorem 1.5 for Legendrian knots in (L(a, b), ξUT ).

6. Overtwisted contact (+1)-surgeries along Legendrian
two-component links

In this section, we prove Theorem 1.6.

Proof of Theorem 1.6. We shall construct an explicit overtwisted disk in the
contact 3-manifold (S3(L+), ξst(L

+)). First, we construct a Legendrian knot
L′ in (S3, ξst) disjoint from the link L = L1 ∪ L2. See Figure 9. Outside
the dashed box, L′ consists of two Legendrian arcs which are downward
Legendrian push-offs of the parts of L1 and L2 outside the dashed box,
respectively. There is a thrice-punctured sphere S shown in Figure 9 whose
boundary ∂S = L1 ∪ L2 ∪ L′.

We orient L1, L2 and L′ as the boundary of S. Suppose the linking
number of L1 and L2 is l.

Lemma 6.1. tb(L′) = tb(L1) + tb(L2) + 2(l + 1).

Proof. The proof is similar to that of [13, Lemma 6.1]. The number of
cusps of L′ is c(L′) = c(L1) + c(L2)− 2. The writhe of L′ is w(L′) = w(L1) +
w(L2) + 2(l + 1)− 1, where the self-crossings of L′ outside the dashed box
contribute w(L1) + w(L2) + 2(l + 1) to w(L′), and the self-crossing of L′ in-
side the dashed box contributes −1 to w(L′). So tb(L′) = w(L′)− 1

2c(L
′) =

tb(L1) + tb(L2) + 2(l + 1). □

Lemma 6.2. (1) For i = 1, 2, the framing of Li induced by S is tb(Li) + 1
with respect to the Seifert surface framing of Li.
(2) The framing of L′ induced by S is tb(L1) + tb(L2) + 2(l + 1) with respect
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L1 L2

L′

Figure 9: The thin knot is L′. The shaded area is a thrice-punctured sphere.

to the Seifert surface framing of L′; that is, the framing of L′ induced by S
coincides with the contact framing of L′.

Proof. (1) For i = 1, 2, the framing of Li induced by S, with respect to the
Seifert surface framing of Li, is the linking number of Li and its push-off in
the interior of S. The verification is straightforward.
(2) Let L′

0 be the push-off of L′ in the interior of S. We compute the link-
ing number lk(L′, L′

0) as the number of crossings where L′
0 crosses under L′,

counted with sign. The crossings outside the dashed box contribute tb(L1) +
tb(L2) + 1 + 2(l + 1) to lk(L′, L′

0). The crossing inside the dashed box con-
tributes −1 to lk(L′, L′

0). So lk(L′, L′
0) = tb(L1) + tb(L2) + 2(l + 1). □

By Lemma 6.2(1), after we perform contact (+1)-surgery along L1 ∪ L2,
S caps off to a disk with boundary L′. It follows from Lemma 6.2(2) that
this disk is an overtwisted disk. □

Roger Casals provided an alternative proof of Theorem 1.6.

Alternative proof of Theorem 1.6. We prove that the Legendrian unknot L0

with tb(L0) = −1 in (S3(L+), ξst(L
+)) in the first picture in the sequence of
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L0

L1

L2

L1

L′
0

L2

Figure 10: The thick curves present the two components of the link L =
L1 ∪ L2. The thin curves present L0 and the resulting Legendrian knots
after Legendrian Reidemeister moves and Kirby moves.

Figure 10 destabilizes. In fact, L0 is Legendrian isotopic to the Legendrian
knot L′

0 in (S3(L+), ξst(L
+)) in the final picture which contains an isolated

stabilized arc.
In the first and fourth steps in the sequence of Figure 10, we perform

Kirby moves of the second kind (see [11, Proposition 1]). The remaining
moves are Legendrian Reidemeister moves. □
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