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ON THE CONVERGENCE OF STOCHASTIC GRADIENT DESCENT
FOR NONLINEAR ILL-POSED PROBLEMS\ast 
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Abstract. In this work, we analyze the regularizing property of the stochastic gradient descent
for the numerical solution of a class of nonlinear ill-posed inverse problems in Hilbert spaces. At
each step of the iteration, the method randomly chooses one equation from the nonlinear system
to obtain an unbiased stochastic estimate of the gradient and then performs a descent step with
the estimated gradient. It is a randomized version of the classical Landweber method for nonlinear
inverse problems, and it is highly scalable to the problem size and holds significant potential for
solving large-scale inverse problems. Under the canonical tangential cone condition, we prove the
regularizing property for a priori stopping rules and then establish the convergence rates under a
suitable sourcewise condition and a range invariance condition.
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1. Introduction. This work is concerned with the numerical solution of the
following system of nonlinear ill-posed operator equations

(1.1) Fi(x) = y\dagger i , i = 1, . . . , n,

where each Fi : \scrD (Fi) \rightarrow Y is a nonlinear mapping with its domain \scrD (Fi) \subset X and
X and Y are Hilbert spaces with inner products \langle \cdot , \cdot \rangle and norms \| \cdot \| , respectively.
The number n of nonlinear equations in (1.1) can potentially be large. The notation

y\dagger i \in Y denotes the exact data (corresponding to the reference solution x\dagger \in X to be
defined below). Equivalently, (1.1) can be rewritten as

(1.2) F (x) = y\dagger ,

with F : X \rightarrow Y n (Y n denotes the product space Y \times \cdot \cdot \cdot \times Y ) and y\dagger \in Y n defined
by

F (x) =
1\surd 
n

\left(  F1(x)
. . .

Fn(x)

\right)  and y\dagger =
1\surd 
n

\left(  y\dagger 1
. . .
y\dagger n

\right)  ,

respectively. The scaling n - 1
2 is introduced for the convenience of later discussion. In
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1422 BANGTI JIN, ZEHUI ZHOU, AND JUN ZOU

practice, we have access only to the noisy data y\delta of a noise level \delta \geq 0, i.e.,

\| y\delta  - y\dagger \| = \delta .

Nonlinear inverse problems of the form (1.1) arise naturally in many real-world
applications, especially parameter identifications for PDEs, e.g., electrical impedance
tomography and diffuse optical spectroscopy. Due to the ill-posed nature of problem
(1.1), i.e., a solution may not exist and even if it does exist, the solution may be
nonunique and highly unstable with respect to the perturbation in the noisy data y\delta ,
regularization is often needed for their stable and accurate numerical solutions, and
many effective techniques have been proposed over the past few decades (see, e.g.,
[5, 15, 23, 12, 24]). Among existing techniques, iterative regularization represents
a very powerful class of solvers for problem (1.1), including the Landweber method,
the (regularized) Gauss--Newton method, conjugate gradient methods, the Leverberg--
Marquardt method, etc.; see the monographs [15] and [24] for overviews on iterative
regularization methods in Hilbert spaces and Banach spaces, respectively. In this
work, we are interested in the convergence analysis of stochastic gradient descent
(SGD) for problem (1.1) with noisy data y\delta . The basic version of SGD reads as
follows: Given the initial guess x\delta 

1 = x1, update the iterate x\delta 
k by

(1.3) x\delta 
k+1 = x\delta 

k  - \eta kF
\prime 
ik
(x\delta 

k)
\ast (Fik(x

\delta 
k) - y\delta ik); k = 1, 2, . . . ,

where the index ik is drawn uniformly from the index set \{ 1, . . . , n\} and \eta k > 0 is
the corresponding step size. SGD was pioneered by Robbins and Monro in statis-
tical inference [22] (see the monograph [17] for asymptotic convergence results). It
has demonstrated encouraging numerical results on diffuse optical tomography [2].
Further, a variant of SGD, i.e., the randomized Kaczmarz method (RKM), has been
successful in the computed tomography community [9, 10] with revived interest in
linear regression and phase retrieval [25, 27]. Algorithmically, SGD is a randomized
version of the classical Landweber method [18]

(1.4) x\delta 
k+1 = x\delta 

k  - \eta kF
\prime (x\delta 

k)
\ast (F (x\delta 

k) - y\delta ),

which may be obtained from gradient descent applied to the functional

(1.5) J(x) =
1

2
\| F (x) - y\delta \| 2 =

1

n

n\sum 
i=1

1

2
\| Fi(x) - y\delta i \| 2.

Compared with the Landweber method, SGD requires only evaluating one randomly
selected (nonlinear) equation at each iteration instead of the whole nonlinear system,
which substantially reduces the computational cost per iteration and enables excellent
scalability to truly massive data sets (i.e., large n), which are increasingly common
in practice due to advances in data acquisition technologies. This highly desirable
property has attracted much recent interest in machine learning, where currently
SGD and its variants are the workhorse for many challenging training tasks involving
deep neural networks [32, 26, 16, 1].

Note that due to the ill-posed nature of problem (1.1) (in the sense that the min-
imizer depends sensitively on the data perturbation), the minimization problem (1.5)
is also ill-posed, and due to the inevitable presence of noise in the observational data
y\delta , the global minimizer (if it exists at all!) often represents a poor approximation to
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the exact solution x\dagger and thus is not of interest. The goal of iterative regularization is
to iteratively construct an approximate minimizer that converges to the exact solution
x\dagger as the noise level \delta \rightarrow 0+ and, further, to derive convergence rates in terms of \delta .
This is achieved by equipping an iterative algorithm, e.g., the Landweber method or
SGD, with an early stopping strategy. Early stopping allows properly balancing the
deleterious effect of the perturbation \delta and the approximation error of the iterates
for the perturbed data y\delta , which, respectively, grows and decreases as the iteration
proceeds. Thus, the setting differs greatly from well-posed optimization problems that
are extensively studied in the optimization and machine learning literature.

For a class of nonlinear inverse problems, the Landweber method is relatively
well understood in terms of the regularizing property since the influential work [8]
(see also [20, 30] for linear inverse problems), and the results were refined and ex-
tended in different aspects [15]. In contrast, the stochastic counterparts, e.g., SGD,
remains largely underexplored for inverse problems despite their computational ap-
peal. The theoretical analysis of stochastic iterative methods for inverse problems
has just started, and some first theoretical results were obtained in [13, 14] for lin-
ear inverse problems. The regularizing property of SGD for linear inverse problems
was proved in [14] by drawing on relevant developments in statistical learning theory
[31, 4, 19], whereas in [13], the preasymptotic convergence behavior of RKM was an-
alyzed. In this work, we study in depth the regularizing property and convergence
rates of SGD for a class of nonlinear inverse problems under an a priori choice of the
stopping index and standard assumptions on the nonlinear operator F ; see section 2
for further details and discussion. The analysis borrows techniques from the works
[14, 8], i.e., handling iteration noise [14] and coping with the nonlinearity of a forward
map [8]. To the best of our knowledge, this work gives a first thorough analysis of
SGD for nonlinear ill-posed inverse problems in the lens of iterative regularization.

There is a vast literature on the convergence of SGD and its variants in optimiza-
tion and machine learning; see [1, section 4] for a comprehensive overview, and see
also [7] and references therein for recent results and [6] for recent results in a Hilbert
space setting. For general nonconvex optimization problems, most of the results are
concerned with the convergence in terms of either the expected optimality gap or the
expected norm of its gradient with respect to the iteration index k. However, these
works focus on well-posed optimization problems, and the ultimate goal is to find a
global minimizer. This differs substantially from the setting of ill-posed problems,
e.g., (1.5). In particular, the existing convergence results of SGD cannot be applied
directly to deduce convergence (and rate) for problem (1.5) due to its least-squares
structure and different assumptions (on the forward map instead of the objective
functional J ; see Remark 2.1 below for further discussions). More closely related to
this work are the works [31, 28, 4, 19] on generalization error in statistical learning.
Ying and Pontil [31] studied an online least-squares gradient descent algorithm in a
reproducing kernel Hilbert space (RKHS) and derived bounds on the generalization
error. Lin and Rosasco [19] analyzed the influence of batch size on the convergence
of minibatch SGD. See also the recent work [4] on averaged SGD for nonparamet-
ric regression in RKHS. There are also major differences between these interesting
works and this study. First, in these prior works, the noise arises mainly due to finite
sampling, whereas for inverse problems, it arises from an imperfect data acquisition
process and enters into the data y\delta directly. Second, the main focus of these works
is to bound the generalization error instead of error estimates on the iterate. Third,
these prior works analyzed only linear problems (similar to [14]) instead of the nonlin-
ear problems of this work. Nonetheless, our proof strategy of decomposing the mean
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1424 BANGTI JIN, ZEHUI ZHOU, AND JUN ZOU

squared error into the bias and variance components shares a similarity with these
works.

Throughout, we denote the iterate for the exact data y\dagger by xk. The notation \scrF k

denotes the filtration generated by the random indices \{ i1, . . . , ik - 1\} up to the (k - 1)th
iteration. The notation c, with or without a subscript, denotes a generic constant,
which may differ at each occurrence, but it is always independent of the noise level \delta 
and the iteration number k. We shall abuse \| \cdot \| for the operator norm on Y n and from
X to Y (or Y n). The rest of the paper is organized as follows. In section 2, we state
the main results and provide relevant discussion. Then in section 3 and section 4, we
give the proofs on the regularizing property and convergence rate, respectively. The
paper concludes with further discussion in section 5. In the appendix, we collect some
useful inequalities.

2. Main results and discussion. To analyze SGD for nonlinear inverse prob-
lems, suitable conditions are needed. For example, for Tikhonov regularization, both
nonlinearity and source conditions are often employed to derive convergence rates
[5, 11, 24, 12]. Below we make a number of assumptions on the nonlinear opera-
tors Fi and the reference solution x\dagger . Since the solution to problem (1.1) may be
nonunique, the reference solution x\dagger is taken to be the minimum norm solution (with
respect to the initial guess x1), which is known to be unique under Assumption 2.1(ii)
below [8].

Assumption 2.1. The following conditions hold:
(i) The operator F : X \rightarrow Y n is continuous, with a continuous and uniformly

bounded Frech\'et derivative on X.
(ii) There exists an \eta \in (0, 1

2 ) such that for any x, \~x \in X,

(2.1) \| F (x) - F (\~x) - F \prime (\~x)(x - \~x)\| \leq \eta \| F (x) - F (\~x)\| .

(iii) There are a family of uniformly bounded operators Ri
x such that for any

x \in X, F \prime 
i (x) = Ri

xF
\prime 
i (x

\dagger ) and Rx = diag(Ri
x) : Y

n \rightarrow Y n, with

\| Rx  - I\| \leq cR\| x - x\dagger \| .

(iv) The source condition holds: There exist some \nu \in (0, 1
2 ) and w \in X such that

x\dagger  - x1 = (F \prime (x\dagger )\ast F \prime (x\dagger ))\nu w.

The conditions in Assumption 2.1 are standard for analyzing iterative regulariza-
tion methods for nonlinear inverse problems [8, 15]. (i) is similar to the L-smoothness
commonly used in optimization. (ii)--(iii) have been verified for a class of nonlinear
inverse problems [8], e.g., parameter identification for PDEs and nonlinear integral
equations. The inequality (2.1) is often known as the tangential cone condition, and
it controls the degree of nonlinearity of the operator F . Roughly speaking, it requires
that the map F be not far from a linear map; see Lemma 3.1 for the consequences. The
fractional power (F \prime (x\dagger )\ast F \prime (x\dagger ))\nu in (iv) is defined by spectral decomposition (e.g.,
via the Dunford--Taylor integral). Customarily, it represents a certain smoothness
condition on the exact solution x\dagger (relative to the initial guess x1). The restriction
\nu < 1

2 is due to technical reasons. It is worth noting that most results require only (i)--
(ii), especially the convergence of SGD, whereas (iii)--(iv) are only needed for proving
the convergence rate of SGD.
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Remark 2.1. It is instructive to compare Assumption 2.1 with the canonical con-
ditions for the usual finite-sum optimization:

(2.2) \scrF (x) = n - 1
n\sum 

i=1

fi(x).

Clearly, problem (1.5) is a special case of (2.2), with the choice fi(x) =
1
2\| Fi(x) - y\delta i \| 2.

In the literature on SGD for problem (2.2), the following two conditions are often
adopted:

\bullet L-smoothness: \| \scrF \prime (x) - \scrF \prime (\~x)\| \leq L\| x - \~x\| .
\bullet \lambda -convexity: \scrF (x) \geq \scrF (\~x) + (\scrF \prime (\~x), x - \~x) + \lambda 

2 \| x - \~x\| 2.
Under these conditions, various convergence results have been established; see [1,
section 4].

Assumption 2.1(i) imposes boundedness and continuity on the derivative F \prime (u),
which does not imply directly the L-smoothness condition. Nonetheless, the Lipschitz
continuity of F \prime (u) can be verified for a number of inverse problems, which then
implies the L-smoothness condition. Assumption 2.1(ii) requires the forward map
being not too far from a linear map, and thus one might expect a link with the
\lambda -convexity, which, however, seems not evident. Straightforward computation gives
\nabla 2J(x) = F \prime (x)\ast F \prime (x) + \nabla 2F (x)\ast (F (x)  - y\delta ). First, the map F is not assumed
a priori twice differentiable so that J(x) admits a Hessian \nabla 2J(x). Second, if the
Hessian \nabla 2F does exist, then Taylor expansion gives

\| F (x) - F (\~x) - F \prime (\~x)(x - \~x)\| = \| 1
2\nabla 

2F (\~x)(x - \~x)2+\scrO 
\bigl( 
| x - \~x| 3

\bigr) 
\| \leq \eta \| F (x) - F (\~x)\| .

Unfortunately, it does not imply directly that \nabla 2F is small. Further, F \prime (x)\ast F \prime (x) is
usually only positive semidefinitive since the linearized operator F \prime (x) is degenerate
(e.g., compact) for most ill-posed inverse problems, so even if \nabla 2F (\~x) is small, gener-
ally one cannot ensure \nabla 2J(x) \geq 0, i.e., the convexity. In sum, (2.1) does not imply
the \lambda -convexity condition. Thus, Assumption 2.1 is not directly comparable with
standard assumptions for SGD, and the convergence results in [1] cannot be applied
directly.

We also need suitable assumptions on the step size schedule \{ \eta k\} \infty k=1. The choice
is viable since maxi supx\in X \| F \prime 

i (x)\| < \infty by Assumption 2.1(i). The choice in As-
sumption 2.2(i) is more general than (ii). The latter choice is often known as a
polynomially decaying step size schedule in the literature.

Assumption 2.2. The step sizes \{ \eta k\} k\geq 1 satisfy one of the following conditions:
(i) \eta k maxi supx\in X \| F \prime 

i (x)\| 2 < 1 and
\sum \infty 

k=1 \eta k = \infty .
(ii) \eta k = \eta 0k

 - \alpha , with \alpha \in (0, 1) and \eta 0 \leq (maxi supx\in X \| F \prime 
i (x)\| 2) - 1.

Due to the random choice of the index ik, the SGD iterate x\delta 
k is random. There

are several different ways to measure the convergence. We shall employ the mean
squared norm defined by \BbbE [\| \cdot \| 2], where the expectation \BbbE [\cdot ] is with respect to the
filtration \scrF k. Clearly, the iterate x

\delta 
k is measurable with respect to \scrF k. The first result

gives the regularizing property of SGD for problem (1.1) under a priori parameter
choice. The notation \scrN (\cdot ) denotes the kernel of a linear operator.

Theorem 2.3 (convergence for noisy data). Let Assumption 2.1(i)--(ii) and As-
sumption 2.2(i) be fulfilled. If the stopping index k(\delta ) \in \BbbN satisfies lim\delta \rightarrow 0+ k(\delta ) = \infty 
and lim\delta \rightarrow 0+ \delta 2

\sum k(\delta )
i=1 \eta i = 0, then there exists a solution x\ast \in X to problem (1.1)
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1426 BANGTI JIN, ZEHUI ZHOU, AND JUN ZOU

such that
lim

\delta \rightarrow 0+
\BbbE [\| x\delta 

k(\delta )  - x\ast \| 2] = 0.

Further, if \scrN (F \prime (x\dagger )) \subset \scrN (F \prime (x)), then

lim
\delta \rightarrow 0+

\BbbE [\| x\delta 
k(\delta )  - x\dagger \| 2] = 0.

Remark 2.2. The conditions on k(\delta ) in Theorem 2.3 are identical with that for
the Landweber method [8, Theorem 2.4]. Note that consistency does not require a
monotonically decreasing step size schedule and holds for a constant step size.

Next we make an assumption on the nonlinearity of the operator F in a stochastic
sense.

Assumption 2.4. There exist some \theta \in (0, 1] and cR > 0 such that for any function
G : X \rightarrow Y n and zt = tx\delta 

k + (1 - t)x\dagger , t \in [0, 1], there hold

\BbbE [\| (I  - Rzt)G(x\delta 
k)\| 2]

1
2 \leq cR\BbbE [\| x\delta 

k  - x\dagger \| 2] \theta 2\BbbE [\| G(x\delta 
k)\| 2]

1
2 ,

\BbbE [\| (I  - R\ast 
zt)G(x\delta 

k)\| 2]
1
2 \leq cR\BbbE [\| x\delta 

k  - x\dagger \| 2] \theta 2\BbbE [\| G(x\delta 
k)\| 2]

1
2 .

Assumption 2.4 is a stochastic version of Assumption 2.1(iii) and strengthens the
corresponding estimate in the sense of expectation. The case \theta = 0 follows trivially
from Assumption 2.1(iii) by the boundedness of the operator Rx, whereas with \theta = 1,
it recovers the latter when specialized to a Dirac measure. It will play a role in the
convergence rate analysis by taking G(x) = F (x)  - y\delta and G(x) = F \prime (x\dagger )(x  - x\dagger )
(see the proofs in Lemmas 4.1 and 4.6), and it enables bounding the terms involving
conditional dependence.

The next result gives a convergence rate under a priori parameter choice, i.e.,
bound on the error e\delta k := x\delta 

k  - x\dagger , in terms of \delta and k etc., provided that
\| F \prime (x\dagger )\ast F \prime (x\dagger )\| \leq 1 and \eta 0 \leq 1. The notation [\cdot ] denotes taking the integral part
of a real number. The assumptions in Theorem 2.5 are identical with that for the
Landweber method [8], except Assumption 2.4. The strategy of the error analysis
is to split the mean squared error \BbbE [\| e\delta k\| 2] using bias-variance decomposition: With
bias \| \BbbE [e\delta k]\| 2 and variance \BbbE [\| e\delta k  - \BbbE [e\delta k]\| 2],

(2.3) \BbbE [\| e\delta k\| 2] = \| \BbbE [e\delta k]\| 2 + \BbbE [\| e\delta k  - \BbbE [e\delta k]\| 2].

The former contains the approximation error and data error, whereas the latter arises
from the random choice of the index ik. Due to the nonlinearity of the operator F ,
the two terms interact with each other (and also \BbbE [\| F \prime (x\dagger )e\delta k\| 2]); see Theorems 4.4
and 4.7. This leads to a coupled system of recursive inequalities for \BbbE [\| e\delta k\| 2] and
\BbbE [\| F \prime (x\dagger )e\delta k\| 2], and thus the analysis differs substantially from that for linear inverse
problems in [14] and the Landweber method for nonlinear inverse problems [8].

Theorem 2.5. Let Assumptions 2.1, 2.2(ii), and 2.4 be fulfilled with \| w\| and
\eta 0 being sufficiently small and x\delta 

k be the SGD iterate defined in (1.3). Then for all

k \leq k\ast = [( \delta 
\| w\| )

 - 2
(2\nu +1)(1 - \alpha ) ] and small \epsilon \in (0, \alpha 

2 ), there hold

\BbbE [\| e\delta k\| 2] \leq c\ast k - min(2\nu (1 - \alpha ),\alpha  - \epsilon )\| w\| 2

and \BbbE [\| F \prime (x\dagger )e\delta k\| 2] \leq c\ast k - min((1+2\nu )(1 - \alpha ),1 - \epsilon )\| w\| 2,

where the constant c\ast depends on \nu , \alpha , \eta 0, n, and \theta but is independent of k and \delta .
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Remark 2.3. When \alpha \in (0, 1) is close to 1, setting k = k\ast gives

\BbbE [\| e\delta k\ast \| 2] \leq c\ast \| w\| 
2

2\nu +1 \delta 
4\nu 

2\nu +1 and \BbbE [\| F \prime (x\dagger )e\delta k\ast \| 2] \leq c\ast \| w\| 
4\nu 

2\nu +1 \delta 
2

2\nu +1 .

These rates are comparable with that for the Landweber method for nonlinear inverse
problems [8, Theorem 3.2] and SGD for linear inverse problems [14, Theorem 2.2].
The restriction O(k - (\alpha  - \epsilon )) is due to the computational variance arising from the
random index ik, and for small \alpha , the convergence rate may suffer from a loss. It is
noteworthy that for \nu > 1/2, the convergence rate is suboptimal, just as the classical
Landweber method, and thus SGD may suffer from a saturation phenomenon. It is
an interesting open question to remove the saturation phenomenon.

Remark 2.4. In practice, the domain \scrD (F ) \subset X is often not the whole space X,
especially for parameter identifications for PDEs, where box constraints arise naturally
due to physical constraints. When the domain \scrD (F ) \subset X is a closed convex set, e.g.,
box constraints, it can be incorporated into the algorithm by a projection operator P
[29], i.e.,

x\delta 
k+1 = P (x\delta 

k  - \eta kF
\prime 
ik
(x\delta 

k)
\ast (Fik(x

\delta 
k) - y\delta ik)).

However, the presence of the projection P significantly complicates the analysis. The
extension to the constrained case is an interesting open question.

3. Convergence of SGD. Now we analyze the convergence of SGD and give
the proof of Theorem 2.3. We first recall a useful characterization of an exact solution
x\ast [8, Proposition 2.1].

Lemma 3.1. The following statements hold under Assumption 2.1(i)--(ii).
(i) The following upper and lower bounds hold:

1
1+\eta \| F

\prime (x)(x - \~x)\| \leq \| F (x) - F (\~x)\| \leq 1
1 - \eta \| F

\prime (x)(x - \~x)\| .

(ii) If x\ast is a solution of problem (1.1), then any other solution \~x\ast satisfies x\ast  - 
\~x\ast \in \scrN (F \prime (x\ast )), and vice versa.

The next result gives a crucial monotonicity result of the mean squared error.

Proposition 3.1. Under Assumptions 2.1(i)--(ii) and 2.2(i), for any solution x\ast 

to problem (1.1), there holds

\BbbE [\| x\ast  - x\delta 
k+1\| 2] - \BbbE [\| x\ast  - x\delta 

k\| 2] \leq  - (1 - 2\eta )\eta k\BbbE [\| F (x\delta 
k) - y\delta \| 2]

+ 2\eta k(1 + \eta )\delta \BbbE [\| F (x\delta 
k) - y\delta \| 2] 12 .

Proof. Completing the square using the definition of the iterate x\delta 
k in (1.3) gives

\| x\ast  - x\delta 
k+1\| 2  - \| x\ast  - x\delta 

k\| 2

=  - 2\eta k\langle F \prime 
ik
(x\delta 

k)(x
\delta 
k  - x\ast ), Fik(x

\delta 
k) - y\delta ik\rangle + \eta 2k\| F \prime 

ik
(x\delta 

k)
\ast (Fik(x

\delta 
k) - y\delta ik)\| 

2.

Using the splitting F \prime 
ik
(x\delta 

k)(x
\delta 
k  - x\ast ) = (Fik(x

\delta 
k) - y\delta ik)+ (y\delta ik  - y\dagger ik)+ (y\dagger ik  - Fik(x

\delta 
k) - 
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1428 BANGTI JIN, ZEHUI ZHOU, AND JUN ZOU

F \prime 
ik
(x\delta 

k)(x
\ast  - x\delta 

k)), by the condition \eta k\| F \prime 
ik
(x)\| 2 < 1 in Assumption 2.2(i), we obtain

\| x\ast  - x\delta 
k+1\| 2  - \| x\ast  - x\delta 

k\| 2

=  - 2\eta k\langle Fik(x
\delta 
k) - y\delta ik , Fik(x

\delta 
k) - y\delta ik\rangle + \eta 2k\| F \prime 

ik
(x\delta 

k)
\ast (Fik(x

\delta 
k) - y\delta ik)\| 

2

 - 2\eta k\langle y\delta ik  - y\dagger ik , Fik(x
\delta 
k) - y\delta ik\rangle 

 - 2\eta k\langle y\dagger ik  - Fik(x
\delta 
k) - F \prime 

ik
(x\delta 

k)(x
\ast  - x\delta 

k), Fik(x
\delta 
k) - y\delta ik\rangle 

\leq  - \eta k\langle Fik(x
\delta 
k) - y\delta ik , Fik(x

\delta 
k) - y\delta ik\rangle  - 2\eta k\langle y\delta ik  - y\dagger ik , Fik(x

\delta 
k) - y\delta ik\rangle 

 - 2\eta k\langle y\dagger ik  - Fik(x
\delta 
k) - F \prime 

ik
(x\delta 

k)(x
\ast  - x\delta 

k), Fik(x
\delta 
k) - y\delta ik\rangle .

Next, by the measurability of xk with respect to \scrF k, the Cauchy--Schwarz inequality,
and Assumption 2.1(i), we have

\BbbE [\| x\ast  - x\delta 
k+1\| 2  - \| x\ast  - x\delta 

k\| 2| \scrF k]

\leq  - \eta k\| F (x\delta 
k) - y\delta \| 2  - 2\eta k\langle y\delta  - y\dagger , F (x\delta 

k) - y\delta \rangle 
 - 2\eta k\langle y\dagger  - F (x\delta 

k) - F \prime (x\delta 
k)(x

\ast  - x\delta 
k), F (x\delta 

k) - y\delta \rangle 
\leq  - \eta k\| F (x\delta 

k) - y\delta \| 2 + 2\eta k\delta \| F (x\delta 
k) - y\delta \| + 2\eta k\eta \| F (x\delta 

k) - y\dagger \| \| F (x\delta 
k) - y\delta \| 

\leq \eta k\| F (x\delta 
k) - y\delta \| 

\bigl( 
(2\eta  - 1)\| F (x\delta 

k) - y\delta \| + 2(1 + \eta )\delta 
\bigr) 
.

Finally, taking the full conditional yields the desired assertion.

Below we analyze the convergence of SGD for exact and noisy data separately.

3.1. Convergence for exact data. The next result is direct from Proposi-
tion 3.1.

Corollary 3.2. Let Assumptions 2.1(i)--(ii) and 2.2(i) be fulfilled. Then for the
exact data y\dagger , any solution x\ast to problem (1.1) satisfies

\BbbE [\| x\ast  - xk+1\| 2] - \BbbE [\| x\ast  - xk\| 2] \leq  - (1 - 2\eta )\eta k\BbbE [\| F (xk) - y\dagger \| 2],
\infty \sum 
k=1

\eta k\BbbE [\| F (xk) - y\dagger \| 2] \leq 1
1 - 2\eta \| x

\ast  - x1\| 2.

Remark 3.1. Corollary 3.2 shows that the mean squared error \BbbE [\| xk  - x\ast \| 2] is
monotonically decreasing, but the mean squared residual \BbbE [\| F (xk) - y\dagger \| 2] is not nec-
essarily so. The latter reflects the fact that the estimated gradient is not guaranteed
to be descent.

The next result shows that the sequence \{ xk\} k\geq 1 is a Cauchy sequence.

Lemma 3.3. Under Assumptions 2.1(i)--(ii) and 2.2(i), for the exact data y\dagger , the
sequence \{ xk\} k\geq 1 generated by SGD (1.3) is a Cauchy sequence.

Proof. The argument below follows closely [8, Theorem 2.3], which can be traced
back to [21]. Let x\ast be any solution to problem (1.1), and let ek := xk  - x\ast . By
Corollary 3.2, \BbbE [\| ek\| 2] is monotonically decreasing to some \epsilon \geq 0. Next we show
that the sequence \{ xk\} k\geq 1 is actually a Cauchy sequence. First, we note that \BbbE [\langle \cdot , \cdot \rangle ]
defines an inner product. For any j \geq k, choose an index \ell with j \geq \ell \geq k such that

(3.1) \BbbE [\| y\dagger  - F (x\ell )\| 2] \leq \BbbE [\| y\dagger  - F (xi)\| 2] \forall k \leq i \leq j.

D
ow

nl
oa

de
d 

06
/2

7/
20

 to
 1

37
.1

89
.4

9.
14

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOCHASTIC GRADIENT DESCENT FOR ILL-POSED PROBLEMS 1429

By the inequality \BbbE [\| ej  - ek\| 2]
1
2 \leq \BbbE [\| ej  - e\ell \| 2]

1
2 +\BbbE [\| e\ell  - ek\| 2]

1
2 and the identities

(3.2)
\BbbE [\| ej  - e\ell \| 2] = 2\BbbE [\langle e\ell  - ej , e\ell \rangle ] + \BbbE [\| ej\| 2] - \BbbE [\| e\ell \| 2],
\BbbE [\| e\ell  - ek\| 2] = 2\BbbE [\langle e\ell  - ek, e\ell \rangle ] + \BbbE [\| ek\| 2] - \BbbE [\| e\ell \| 2],

it suffices to prove that both \BbbE [\| ej  - e\ell \| 2] and \BbbE [\| e\ell  - ek\| 2] tend to zero as k \rightarrow \infty .
For k \rightarrow \infty , the last two terms on the right-hand sides of (3.2) tend to \epsilon  - \epsilon = 0, by
the monotone convergence of \BbbE [\| ek\| 2] to \epsilon ; cf. Corollary 3.2. Next we show that the
term \BbbE [\langle e\ell  - ek, e\ell \rangle ] also tends to zero as k \rightarrow \infty . Actually, by the definition of xk,
we have

e\ell  - ek =

\ell  - 1\sum 
i=k

(ei+1  - ei) =

\ell  - 1\sum 
i=k

\eta iF
\prime 
ii(xi)

\ast (y\dagger ii  - Fii(xi)).

By the triangle inequality and the Cauchy--Schwarz inequality, we have

| \BbbE [\langle e\ell  - ek, e\ell \rangle ]| \leq 
\ell  - 1\sum 
i=k

\eta i| \BbbE [\langle F \prime 
ii(xi)

\ast (y\dagger ii  - Fii(xi)), e\ell \rangle ]| 

=

\ell  - 1\sum 
i=k

\eta i| \BbbE [\langle y\dagger ii  - Fii(xi), F
\prime 
ii(xi)(x

\ast  - xi + xi  - x\ell )\rangle ]| 

=

\ell  - 1\sum 
i=k

\eta i| \BbbE [\langle y\dagger  - F (xi), F
\prime (xi)(x

\ast  - xi + xi  - x\ell )\rangle ]| 

\leq 
\ell  - 1\sum 
i=k

\eta i\BbbE [\| y\dagger  - F (xi)\| 2]
1
2\BbbE [\| F \prime (xi)(x

\ast  - xi)\| 2]
1
2

+

\ell  - 1\sum 
i=k

\eta i\BbbE [\| y\dagger  - F (xi)\| 2]
1
2\BbbE [\| F \prime (xi)(xi  - x\ell )\| 2]

1
2 := I + II.

By Assumption 2.1(ii) and Lemma 3.1(i), we bound the first term I by

I \leq (1 + \eta )

\ell  - 1\sum 
i=k

\eta i\BbbE [\| y\dagger  - F (xi)\| 2]
1
2\BbbE [\| F (x\ast ) - F (xi)\| 2]

1
2

= (1 + \eta )

\ell  - 1\sum 
i=k

\eta i\BbbE [\| y\dagger  - F (xi)\| 2].

Likewise, we bound the term II by the triangle inequality and the choice of \ell in (3.1)
as

II \leq (1 + \eta )

\ell  - 1\sum 
i=k

\eta i\BbbE [\| y\dagger  - F (xi)\| 2]
1
2\BbbE [\| (F (x\ell ) - y\dagger ) + (y\dagger  - F (xi))\| 2]

1
2

\leq 2(1 + \eta )

\ell  - 1\sum 
i=k

\eta i\BbbE [\| y\dagger  - F (xi)\| 2].

The last two estimates together imply | \BbbE [\langle e\ell  - ek, e\ell \rangle ]| \leq 3(1 + \eta )
\sum \ell  - 1

i=k \eta i\BbbE [\| y\dagger  - 
F (xi)\| 2]. Similarly, one can deduce | \BbbE [\langle ej - e\ell , e\ell \rangle ]| \leq 3(1+\eta )

\sum j - 1
i=\ell \eta i\BbbE [\| y\dagger  - F (xi)\| 2].

These two estimates and Corollary 3.2 imply that the right-hand sides of (3.2) tend
to zero as k \rightarrow \infty . Hence, both \{ ek\} k\geq 1 and \{ xk\} k\geq 1 are Cauchy sequences.
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1430 BANGTI JIN, ZEHUI ZHOU, AND JUN ZOU

Lemma 3.4. Under Assumptions 2.1(i)--(ii) and 2.2(i), there holds

lim
k\rightarrow \infty 

\BbbE [\| F (xk) - y\dagger \| 2] = 0.

Proof. Lemma 3.3 implies that \{ xk\} k\geq 1 is a Cauchy sequence. By Assump-
tion 2.2(i), supx\in X \| F \prime (x)\| \leq cF for some cF > 0. Further, for any x, \~x \in X,
there holds

\| F (x) - F (\~x)\| \leq (1 - \eta ) - 1\| F \prime (x)(x - \~x)\| \leq cF (1 - \eta ) - 1\| x - \~x\| .

Thus, \{ F (xk) - y\dagger \} k\geq 1 is a Cauchy sequence, and \BbbE [\| F (xk) - y\dagger \| 2] converges. Now
we proceed by contradiction and assume that limk\rightarrow \infty \BbbE [\| F (xk)  - y\dagger \| 2] > 0. Then
there exist some \epsilon > 0 and k\ast \in \BbbN such that \BbbE [\| F (xk)  - y\dagger \| 2] \geq \epsilon for all k \geq k\ast .
Hence, by Assumption 2.2(i),

\infty \sum 
k=1

\eta k\BbbE [\| F (xk) - y\dagger \| 2] \geq 
\infty \sum 

k=k\ast 

\eta k\BbbE [\| F (xk) - y\dagger \| 2] \geq \epsilon 

\infty \sum 
k=k\ast 

\eta k = \infty ,

which contradicts the inequality
\sum \infty 

k=1 \eta k\BbbE [\| F (xk) - y\dagger \| 2] < \infty from Corollary 3.2.

Now we can state the convergence of SGD for the exact data y\dagger . Below x\dagger denotes
the unique solution to problem (1.1) of minimal distance to x1.

Theorem 3.5 (convergence for exact data). Let Assumptions 2.1(i)--(ii) and
2.2(i) be fulfilled. Then for the exact data y\dagger , the sequence \{ xk\} k\geq 1 generated by SGD
converges to a solution x\ast of problem (1.1):

lim
k\rightarrow \infty 

\BbbE [\| xk  - x\ast \| 2] = 0.

Further, if \scrN (F \prime (x\dagger )) \subset \scrN (F \prime (x)), then

lim
k\rightarrow \infty 

\BbbE [\| xk  - x\dagger \| 2] = 0.

Proof. Since \{ xk\} k\geq 1 is a Cauchy sequence, it has a limit, denoted by x\ast . Further,
x\ast is a solution since by Lemma 3.4 the mean squared residual \BbbE [\| y\dagger  - F (xk)\| 2]
converges to zero as k \rightarrow \infty . Note that problem (1.1) has a unique solution of minimal
distance to the initial guess x1 that satisfies x\dagger  - x1 \in \scrN (F \prime (x\dagger ))\bot ; see Lemma 3.1.
If \scrN (F \prime (x\dagger )) \subset \scrN (F \prime (xk)) for all k = 1, 2, . . ., then clearly xk  - x1 \in \scrN (F \prime (x\dagger ))\bot ,
k = 1, 2, . . . . Hence, x\dagger  - x\ast = x\dagger  - x1 + x1  - x\ast \in \scrN (F \prime (x\dagger ))\bot . This and Lemma 3.1
imply x\ast = x\dagger .

Remark 3.2. Theorem 3.5 does not impose any constraint on the step size sched-
ule \{ \eta k\} \infty k=1 directly apart from the fact that it should not decay too fast to zero. In
particular, it can be taken to be a constant step size. This result slightly improves
that in [14, Theorem 2.1], where a decreasing step size is required (for linear inverse
problems). The improvement is achieved by exploiting the quadratic structure of the
functional J(x) in (1.5) (and the tangential cone condition in Assumption 2.1(i)),
whereas in [14] the consistency is derived by means of bias-variance decomposition.

3.2. Convergence for noisy data. The next result gives the stability of the
SGD iterate x\delta 

k with respect to the noise level \delta (at \delta = 0).
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Lemma 3.6. Let Assumption 2.1(i) be fulfilled. For any fixed k \in \BbbN and any path
(i1, . . . , ik - 1) \in \scrF k, let xk and x\delta 

k be the SGD iterates along the path for exact data
y\dagger and noisy data y\delta , respectively. Then

lim
\delta \rightarrow 0+

\BbbE [\| x\delta 
k  - xk\| 2] = 0.

Proof. We prove the assertion by mathematical induction. It holds trivially for
k = 1. Now suppose that it holds for all indices up to k and any path in \scrF k. By the
definition, for any fixed path (i1, . . . , ik), we have

x\delta 
k+1  - xk+1 = (x\delta 

k  - xk) - \eta k
\bigl( 
(F \prime 

ik
(x\delta 

k)
\ast  - F \prime 

ik
(xk)

\ast )(Fik(x
\delta 
k) - y\delta ik)

+ F \prime 
ik
(xk)

\ast ((Fik(x
\delta 
k) - y\delta ik) - (Fik(xk) - y\dagger ik))

\bigr) 
.

Thus, by the triangle inequality,

\| x\delta 
k+1  - xk+1\| \leq \| x\delta 

k  - xk\| + \eta k\| F \prime 
ik
(x\delta 

k)
\ast  - F \prime 

ik
(xk)

\ast \| \| Fik(x
\delta 
k) - y\delta ik\| (3.3)

+ \eta k\| F \prime 
ik
(xk)

\ast \| \| (Fik(x
\delta 
k) - y\delta ik) - (Fik(xk) - y\dagger ik)\| .

Next we show that for any fixed k, sup(i1,...,ik - 1)\in \scrF k
\| xk\| is bounded. Indeed, by As-

sumption 2.1(i), maxi supx\in X \| F \prime 
i (x)\| \leq cF for some cF > 0. Then by Lemma 3.1(i),

\| xk+1  - x\ast \| \leq \| xk  - x\ast \| + \eta k\| F \prime 
ik
(xk)

\ast \| \| Fik(xk) - y\dagger ik\| \leq (1 + \eta k
c2F
1 - \eta )\| xk  - x\ast \| .

This and an induction argument show the claim. Similarly,

\| Fik(x
\delta 
k) - y\delta ik\| \leq \| Fik(x

\delta 
k) - Fik(xk)\| + \| Fik(xk) - y\dagger ik\| + \| y\dagger ik  - y\delta ik\| 

\leq cF
1 - \eta 

\bigl( 
\| x\delta 

k  - xk\| + \| xk  - x\ast \| 
\bigr) 
+ \delta ,

and consequently

\| x\delta 
k+1  - xk+1\| 
\leq \| x\delta 

k  - xk\| + \eta k(
cF
1 - \eta (\| x

\delta 
k  - xk\| + \| xk  - x\ast \| ) + \delta )\| F \prime 

ik
(x\delta 

k)
\ast  - F \prime 

ik
(xk)

\ast \| 

+ cF \| ((Fik(x
\delta 
k) - y\delta ik) - (Fik(xk) - y\dagger ik))\| 

\leq \| x\delta 
k  - xk\| + 2\eta kcF (

cF
1 - \eta (\| x

\delta 
k  - xk\| + \| xk  - x\ast \| ) + \delta )

+ cF \| ((Fik(x
\delta 
k) - y\delta ik) - (Fik(xk) - y\dagger ik))\| .

This and mathematical induction show that for any fixed k, sup(i1,...,ik - 1)\in \scrF k
\| x\delta 

k - xk\| 
is uniformly bounded. Let c = cF

1 - \eta sup(i1,...,ik - 1)\in \scrF k
(\| x\delta 

k - xk\| +\| xk - x\ast \| )+\delta . Then

it follows from (3.3) that

lim
\delta \rightarrow 0+

\| x\delta 
k+1  - xk+1\| \leq lim

\delta \rightarrow 0+
\| x\delta 

k  - xk\| 2 + c\eta k lim
\delta \rightarrow 0+

\| F \prime 
ik
(x\delta 

k)
\ast  - F \prime 

ik
(xk)

\ast \| 

+ cF lim
\delta \rightarrow 0+

\| (Fik(x
\delta 
k) - y\delta ik) - (Fik(xk) - y\dagger ik)\| .

Then the desired assertion follows from the continuity of the operators Fi and F \prime 
i in

Assumption 2.1(i), the induction hypothesis, and taking full expectation.

Now we can prove Theorem 2.3 on the regularizing property of SGD.

D
ow

nl
oa

de
d 

06
/2

7/
20

 to
 1

37
.1

89
.4

9.
14

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1432 BANGTI JIN, ZEHUI ZHOU, AND JUN ZOU

Proof of Theorem 2.3. Let \{ \delta n\} n\geq 1 \subset \BbbR be a sequence converging to zero and
yn := y\delta n a corresponding sequence of noisy data. For each pair (\delta n, yn), we denote
by kn = k(\delta n) the stopping index. Further, we may assume that kn increases strictly
monotonically with n. By Proposition 3.1 and Young's inequality 2ab \leq \epsilon a2 + \epsilon  - 1b2,
with the choice a = \BbbE [\| F (x\delta 

k) - y\delta \| 2] 12 , b = (1 + \eta )\delta , and \epsilon = 1 - 2\eta > 0,

\BbbE [\| x\ast  - x\delta 
k+1\| 2] - \BbbE [\| x\ast  - x\delta 

k\| 2] \leq  - (1 - 2\eta )\eta k\BbbE [\| F (x\delta 
k) - y\delta \| 2]

+ 2\eta k(1 + \eta )\delta \BbbE [\| F (x\delta 
k) - y\delta \| 2] 12 \leq (1 + \eta )2

1 - 2\eta 
\eta k\delta 

2.

Then for any m < n, summing the inequality with \delta = \delta n from km to kn  - 1 and
applying the triangle inequality leads to

\BbbE [\| x\delta n
kn

 - x\ast \| 2] \leq \BbbE [\| x\delta n
km

 - x\ast \| 2] + (1 + \eta )2

1 - 2\eta 
\delta 2n

kn - 1\sum 
j=km

\eta j

\leq 2\BbbE [\| x\delta n
km

 - xkm\| 2] + 2\BbbE [\| xkm  - x\ast \| 2] + (1 + \eta )2

1 - 2\eta 
\delta 2n

kn - 1\sum 
j=1

\eta j .

By Theorem 3.5, we can fix a large m so that the term \BbbE [\| xkm
 - x\ast \| 2] is sufficiently

small. Since the index km is fixed, we may apply Lemma 3.6 to conclude that the
term \BbbE [\| x\delta n

km
 - xkm\| 2] tends to zero as n \rightarrow \infty . The last term also tends to zero under

the condition limn\rightarrow \infty \delta 2n
\sum kn

i=1 \eta i = 0. This completes the proof of the first assertion.
The case \scrN (F \prime (x\dagger )) \subset \scrN (F \prime (x)) follows similarly as Theorem 3.5.

4. Convergence rates. Now we prove convergence rates for SGD under As-
sumptions 2.1, 2.2(ii), and 2.4; see Theorems 4.8 and 2.5 for the results for exact and
noisy data, respectively. We employ some shorthand notation. Let

Ki = F \prime 
i (x

\dagger ), K =
1\surd 
n

\left(   K1

...
Kn

\right)   and B = K\ast K =
1

n

n\sum 
i=1

K\ast 
i Ki.

Further, we frequently adopt the shorthand notation

(4.1) \Pi k
j (B) =

k\prod 
i=j

(I  - \eta iB),

with the convention \Pi k
j (B) = I for j > k, and for s \geq 0 and j \in \BbbN , we define

\~s = s+ 1
2 and \phi s

j = \| Bs\Pi k
j+1(B)\| .

The rest of this section is organized as follows. By bias-variance decomposition, we
first derive two important recursions for the mean \| Bs\BbbE [e\delta k]\| and variance \BbbE [\| Bs(e\delta k - 
\BbbE [e\delta k])\| 2], for any s \geq 0, in subsections 4.1 and 4.2, respectively, and then use the re-
cursions to derive convergence rates under a priori parameter choice in subsection 4.3.
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4.1. Recursion on the bias. First, we derive a recursion on the bias of the
SGD iterate x\delta 

k. The following bound on the linearization error is useful.

Lemma 4.1. Under Assumption 2.1(iii), there holds

\| F (x) - F (x\dagger ) - K(x - x\dagger )\| \leq cR
2 \| K(x - x\dagger )\| \| x - x\dagger \| .

Further, under Assumption 2.4, there holds

\BbbE [\| F (x\delta 
k) - F (x\dagger ) - K(x\delta 

k  - x\dagger )\| 2] 12 \leq cR
1+\theta \BbbE [\| K(x\delta 

k  - x\dagger )\| 2] 12\BbbE [\| x\delta 
k  - x\dagger \| 2] \theta 2 .

Proof. Let zt = tx+(1 - t)x\dagger . By the mean value theorem and Assumption 2.1(iii),

\| F (x) - F (x\dagger ) - K(x - x\dagger )\| \leq \| 
\int 1

0

(F \prime (zt) - K)(x - x\dagger )dt\| 

\leq 
\int 1

0

\| (Rzt  - I)K(x - x\dagger )\| dt \leq cR
2
\| K(x - x\dagger )\| \| x - x\dagger \| .

This shows the first estimate. Similarly, using Assumptions 2.1(iii) and 2.4 with the
choice G(x) = K(x - x\dagger ), we obtain

\BbbE [\| F (x\delta 
k) - F (x\dagger ) - K(x\delta 

k  - x\dagger )\| 2] 12

\leq 
\int 1

0

\BbbE [\| (Rzt  - I)K(x\delta 
k  - x\dagger )\| 2] 12 dt

\leq cR\BbbE [\| K(x\delta 
k  - x\dagger )\| 2] 12

\int 1

0

\BbbE [\| zt  - x\dagger \| 2] \theta 2 dt

\leq cR
1 + \theta 

\BbbE [\| K(x\delta 
k  - x\dagger )\| 2] 12\BbbE [\| x\delta 

k  - x\dagger \| 2] \theta 2 .

This completes the proof of the lemma.

The next result gives a useful representation of the mean \BbbE [e\delta k] of the error e\delta k \equiv 
x\delta 
k  - x\dagger .

Lemma 4.2. Under Assumption 2.1(iii), the error e\delta k satisfies

\BbbE [e\delta k+1] = \Pi k
1(B)e1 +

k\sum 
j=1

\eta j\Pi 
k
j+1(B)K\ast ( - (y\dagger  - y\delta ) + \BbbE [vj ]),

with the vector vk \in Y n given by

(4.2) vk =  - (F (x\delta 
k) - F (x\dagger ) - K(x\delta 

k  - x\dagger )) + (I  - R\ast 
x\delta 
k
)(F (x\delta 

k) - y\delta ).

Proof. The definition of the SGD iterate x\delta 
k in (1.3) and the relation F \prime 

ik
(x\delta 

k)
\ast =

(Rik
x\delta 
k

F \prime 
ik
(x\dagger ))\ast = K\ast 

ik
Rik\ast 

x\delta 
k

from Assumption 2.1(iii) directly imply

e\delta k+1 = e\delta k  - \eta kK
\ast 
ik
Kik(x

\delta 
k  - x\dagger ) - \eta kK

\ast 
ik
(y\dagger ik  - y\delta ik) + \eta kK

\ast 
ik
vk,ik ,

with the random variable vk,i defined by

(4.3) vk,i =  - (Fi(x
\delta 
k) - Fi(x

\dagger ) - Ki(x
\delta 
k  - x\dagger )) + (I  - Ri\ast 

x\delta 
k
)(Fi(x

\delta 
k) - y\delta i ).
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1434 BANGTI JIN, ZEHUI ZHOU, AND JUN ZOU

Thus, by the measurability of x\delta 
k (and thus e\delta k) with respect to \scrF k, \BbbE [e\delta k+1| \scrF k] is given

by

\BbbE [e\delta k+1| \scrF k] = (I  - \eta kB)e\delta k  - \eta kK
\ast (y\dagger  - y\delta ) + \eta kK

\ast vk.

Then taking the full conditional and applying the recursion repeatedly completes the
proof.

Remark 4.1. The term vk in (4.2) includes both the linearization error (F (x\delta 
k) - 

F (x\dagger )  - K(x\delta 
k  - x\dagger )) of the nonlinear operator F and the range invariance of the

derivative F \prime (x) in Assumption 2.1(ii)--(iii).

The next result gives a useful bound on \BbbE [vj ].
Lemma 4.3. Under Assumption 2.1(i)--(iii), for vj defined in (4.2), there holds

\| \BbbE [vj ]\| \leq (3 - \eta )cR
2(1 - \eta ) \BbbE [\| e

\delta 
j\| 2]

1
2\BbbE [\| B 1

2 e\delta j\| 2]
1
2 + cR\BbbE [\| e\delta j\| 2]

1
2 \delta .

Proof. By the triangle inequality, there holds

\| \BbbE [vj ]\| \leq \| \BbbE [F (x\delta 
j) - F (x\dagger ) - K(x\delta 

j  - x\dagger )]\| + \| \BbbE [(I  - R\ast 
x\delta 
j
)(F (x\delta 

j) - y\delta )]\| := I + II.

The bound on I follows from Lemma 4.1 and the Cauchy--Schwarz inequality as

I \leq cR
2 \BbbE [\| e\delta j\| \| Ke\delta j\| ] \leq cR

2 \BbbE [\| e\delta j\| 2]
1
2\BbbE [\| Ke\delta j\| 2]

1
2 .

For the term II, by the triangle inequality, the Cauchy--Schwarz inequality, and
Lemma 3.1,

II := \| \BbbE [(I  - R\ast 
x\delta 
j
)(y\delta  - F (x\delta 

j))]\| \leq \BbbE [\| (I  - R\ast 
x\delta 
j
)(y\delta  - F (x\delta 

j))\| ]

\leq cR
1 - \eta \BbbE [\| e

\delta 
j\| \| Ke\delta j\| ] + cR\BbbE [\| e\delta j\| ]\delta \leq \BbbE [\| e\delta j\| 2]

1
2 ( cR

1 - \eta \BbbE [\| Ke\delta j\| 2]
1
2 + cR\delta ).

Combining these estimates with the identity \| Ke\delta j\| = \| B 1
2 e\delta j\| gives the assertion.

Finally, we bound the error \BbbE [e\delta k] in a weighted norm. The cases s = 0 and s = 1
2

will be employed in the convergence analysis.

Theorem 4.4. Under Assumption 2.1, for any s \geq 0, there holds

\| Bs\BbbE [e\delta k+1]\| \leq \phi s+\nu 
0 \| w\| 

+
k\sum 

j=1

\eta j\phi 
\~s
j

\Bigl( 
(3 - \eta )cR
2(1 - \eta ) \BbbE [\| e

\delta 
j\| 2]

1
2\BbbE [\| B 1

2 e\delta j\| 2]
1
2 + cR\BbbE [\| e\delta j\| 2]

1
2 \delta + \delta 

\Bigr) 
.

Proof. By Lemma 4.2 and the triangle inequality,

\| Bs\BbbE [e\delta k+1]\| \leq I +

k\sum 
j=1

\eta jIIj ,

with I = \| Bs\Pi k
1(B)(x1 - x\dagger )\| and IIj = \| Bs\Pi k

j+1(B)K\ast (\BbbE [vj ] - (y\dagger  - y\delta ))\| . It suffices
to bound the terms I and IIj . By Assumption 2.1(iv),

I = \| Bs\Pi k
1(B)B\nu w\| \leq \| \Pi k

1(B)Bs+\nu \| \| w\| .

To bound the terms IIj , we have

IIj \leq \| Bs\Pi k
j+1(B)K\ast (\BbbE [vj ] - (y\dagger  - y\delta ))\| \leq \| Bs+ 1

2\Pi k
j+1(B)\| (\| \BbbE [vj ]\| + \delta ).

This, Lemma 4.3, and the notation \phi s
j complete the proof.
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Remark 4.2. The bound on \BbbE [e\delta k] depends on the variance of the iterate x\delta 
k (via

the terms like \BbbE [\| e\delta k\| 2] etc.), which differs from the linear case [14]. This is one
of the complications for nonlinear inverse problems. The weighted norm \| Bs\BbbE [e\delta k]\| 
is useful since the upper bound in Theorem 4.4 involves \BbbE [\| B 1

2 e\delta k\| 2], i.e., s = 1
2 .

For linear inverse problems, Rx = I and cR = 0, and the recursion simplifies to
\| Bs\BbbE [e\delta k+1]\| \leq \phi s+\nu 

0 \| w\| +
\sum k

j=1 \eta j\phi 
\~s
j\delta , i.e., the approximation error and data error,

respectively.

4.2. Recursion on variance. Now we turn to the computational variance
\BbbE [\| Bs(x\delta 

k  - \BbbE [x\delta 
k])\| 2], which arises from the random index ik. First, we bound the

variance in terms of iteration noises Nj,1 and Nj,2 (defined in (4.4) below).

Lemma 4.5. Under Assumption 2.1(iii), for the SGD iterate x\delta 
k, there holds

\BbbE [\| Bs(x\delta 
k+1  - \BbbE [x\delta 

k+1])\| 2] \leq 
k\sum 

j=1

\eta 2j (\phi 
\~s
j)

2\BbbE [\| Nj,1\| 2] + 2

k\sum 
i=1

k\sum 
j=i

\eta i\eta j\phi 
\~s
i\phi 

\~s
j\BbbE [\| Ni,1\| \| Nj,2\| ]

+

k\sum 
i=1

k\sum 
j=1

\eta i\eta j\phi 
\~s
i\phi 

\~s
j\BbbE [\| Ni,2\| \| Nj,2\| ],

with the random variables Nj,1 and Nj,2, respectively, given by

(4.4)
Nj,1 = (K(x\delta 

j  - x\dagger ) - Kij (x
\delta 
j  - x\dagger )\varphi ij ) + ((y\dagger  - y\delta ) - (y\dagger i  - y\delta i )\varphi ij ),

Nj,2 =  - \BbbE [vj ] + vj,ij\varphi ij ,

where vk and vk,i are given in (4.2) and (4.3), and \varphi i = (0, . . . , 0, n
1
2 , 0, . . . , 0) denotes

the canonical ith Cartesian basis vector in \BbbR n scaled by n
1
2 .

Proof. Similar to the proof of Lemma 4.2, we rewrite the SGD iteration (1.3) as

(4.5) x\delta 
k+1 = x\delta 

k  - \eta kK
\ast 
ik
Kik(x

\delta 
k  - x\dagger ) - \eta kK

\ast 
ik
(y\dagger ik  - y\delta ik) + \eta kK

\ast 
ik
vk,ik ,

with vk,i defined in (4.3). By the definition of vk in (4.2) and the measurability of x\delta 
k

with respect to \scrF k, we obtain

\BbbE [x\delta 
k+1| \scrF k] = x\delta 

k  - \eta kB(x\delta 
k  - x\dagger ) - \eta kK

\ast (y\dagger  - y\delta ) + \eta kK
\ast vk.

Taking the full conditional yields

\BbbE [x\delta 
k+1] = \BbbE [x\delta 

k] - \eta kB\BbbE [x\delta 
k  - x\dagger ] - \eta kK

\ast (y\dagger  - y\delta ) + \eta kK
\ast \BbbE [vk].(4.6)

Thus, subtracting (4.6) from (4.5) shows that zk := x\delta 
k  - \BbbE [x\delta 

k] satisfies

zk+1 = (I  - \eta kB)zk + \eta kMk,(4.7)

with z1 = 0 and the iteration noise Mj given by Mj = Mj,1 +Mj,2, where

Mj,1 = (B(x\delta 
j  - x\dagger ) - K\ast 

ijKij (x
\delta 
j  - x\dagger )) + (K\ast (y\dagger  - y\delta ) - K\ast 

ij (y
\dagger 
ij
 - y\delta ij )),

Mj,2 =  - (K\ast \BbbE [vj ] - K\ast 
ijvj,ij ).

Repeatedly applying the recursion (4.7) with z1 = 0 leads to

zk+1 =

k\sum 
j=1

\eta j\Pi 
k
j+1(B)Mj .
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1436 BANGTI JIN, ZEHUI ZHOU, AND JUN ZOU

With the decomposition of Mj = Mj,1 +Mj,2, we directly obtain

\BbbE [\| Bszk+1\| 2] =
k\sum 

i=1

k\sum 
j=1

\eta i\eta j\BbbE [\langle Bs\Pi k
i+1(B)Mi,1, B

s\Pi k
j+1(B)Mj,1\rangle ]

+ 2

k\sum 
i=1

k\sum 
j=1

\eta i\eta j\BbbE [\langle Bs\Pi k
i+1(B)Mi,1, B

s\Pi k
j+1(B)Mj,2\rangle ]

+

k\sum 
i=1

k\sum 
j=1

\eta i\eta j\BbbE [\langle Bs\Pi k
i+1(B)Mi,2, B

s\Pi k
j+1(B)Mj,2\rangle ] := I + II + III.

Below we simplify the three terms. Since x\delta 
j is measurable with respect to \scrF j , we have

\BbbE [Mj,1| \scrF j ] = 0, which directly implies the independence \BbbE [\langle BsMi,1, B
sMj,1\rangle ] = 0,

i \not = j. Indeed, for i > j, \BbbE [\langle BsMi,1, B
sMj,1\rangle | \scrF i] = \langle Bs\BbbE [Mi,1| \scrF i], B

sMj,1\rangle = 0, and
taking the full conditional yields the claim. Thus, the term I simplifies to

I =

k\sum 
j=1

\eta 2j\BbbE [\| Bs\Pi k
j+1(B)Mj,1\| 2].

Further, for i > j, a similar argument yields \BbbE [\langle BsMi,1, B
sMj,2\rangle ] = 0 and thus

II = 2

k\sum 
i=1

k\sum 
j=i

\eta i\eta j\BbbE [\langle Bs\Pi k
i+1Mi,1, B

s\Pi k
j+1Mj,2\rangle ].

Now we further simplify Mj,1 and Mj,2. By the definitions of Nj,1 and Nj,2, with
(K\ast )\dagger being the pseudoinverse of K\ast , we have (K\ast )\dagger Mj = Nj,1 +Nj,2. Thus, by the
triangle inequality,

\BbbE [\| Bszk+1\| 2] \leq 
k\sum 

j=1

\eta 2j\BbbE [\| Bs+ 1
2\Pi k

j+1(B)\| 2\| Nj,1\| 2]

+ 2

k\sum 
i=1

k\sum 
j=i

\eta i\eta j\| Bs+ 1
2\Pi k

i+1(B)\| \| Bs+ 1
2\Pi k

j+1(B)\| \BbbE [\| Ni,1\| \| Nj,2\| ]

+

k\sum 
i=1

k\sum 
j=1

\eta i\eta j\| Bs+ 1
2\Pi k

i+1(B)\| \| Bs+ 1
2\Pi k

j+1(B)\| \BbbE [\| Ni,2\| \| Nj,2\| ].

This completes the proof of the lemma.

The next result bounds the iteration noises Nj,1 and Nj,2.

Lemma 4.6. Under Assumptions 2.1(i)--(iii) and 2.4, for Nj,1 and Nj,2 defined
in (4.4), there hold

\BbbE [\| Nj,1\| 2]
1
2 \leq n

1
2 (\BbbE [\| B 1

2 e\delta j\| 2]
1
2 + \delta ),(4.8)

\BbbE [\| Nj,2\| 2]
1
2 \leq n

1
2 ( cR(2+\theta  - \eta )

(1+\theta )(1 - \eta )\BbbE [\| B
1
2 e\delta j\| 2]

1
2 + cR\delta )\BbbE [\| e\delta j\| 2]

\theta 
2 .(4.9)
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Proof. By the measurability of x\delta 
j with respect to \scrF j , we have \BbbE [Kij (x

\delta 
j - x\dagger )\varphi ij | \scrF j ]

= K(x\delta 
j  - x\dagger ). Then by bias-variance decomposition, we have

\BbbE [\| (K(x\delta 
j  - x\dagger ) - Kij (x

\delta 
j  - x\dagger )\varphi ij )\| 2| \scrF j ] \leq \BbbE [\| Kij (x

\delta 
j  - x\dagger )\varphi ij\| 2| \scrF j ]

= n - 1
n\sum 

i=1

\| Ki(x
\delta 
j  - x\dagger )\| 2n = n\| K(x\delta 

j  - x\dagger )\| 2,

and then by taking full expectation, we obtain

\BbbE [\| (K(x\delta 
j  - x\dagger ) - Kij (x

\delta 
j  - x\dagger )\varphi ij )\| 2]

1
2 \leq n

1
2\BbbE [\| K(x\delta 

j  - x\dagger )\| 2] 12 .

Similarly, \BbbE [\| (y\dagger  - y\delta )  - (y\dagger ij  - y\delta ij )\varphi ij\| 2]
1
2 \leq n

1
2 \delta . This and the triangle inequality

show the estimate (4.8). Similarly, by the measurability of x\delta 
j with respect to \scrF j and

bias-variance decomposition, we deduce (with \BbbE \scrF j
denoting taking expectation in \scrF j)

\BbbE [\| (\BbbE [vj ] - vj,ij\varphi ij )\| 2] \leq \BbbE \scrF j [\BbbE [\| vj,ij\varphi ij\| 2| \scrF j ]] = n\BbbE [\| vj\| 2],

i.e., \BbbE [\| (\BbbE [vj ]  - vj,ij\varphi ij )\| 2]
1
2 \leq n

1
2\BbbE [\| vj\| 2]

1
2 . Then by the triangle inequality, As-

sumption 2.4, and Lemma 4.1,

\BbbE [\| vj\| 2]
1
2 \leq \BbbE [\| (F (x\delta 

j) - F (x\dagger ) - K(x\delta 
j  - x\dagger ))\| 2] 12 + \BbbE [\| (I  - R\ast 

x\delta 
j
)(F (x\delta 

j) - y\delta )\| 2] 12

\leq cR
1 + \theta 

\BbbE [\| Ke\delta j\| 2]
1
2\BbbE [\| e\delta j\| 2]

\theta 
2 + cR(

1
1 - \eta \BbbE [\| Ke\delta j\| 2]

1
2 + \delta )\BbbE [\| e\delta j\| 2]

\theta 
2

= ( (2+\theta  - \eta )cR
(1+\theta )(1 - \eta )\BbbE [\| Ke\delta j\| 2]

1
2 + cR\delta )\BbbE [\| e\delta j\| 2]

\theta 
2 .

This completes the proof of the lemma.

Remark 4.3. Note that the convergence analysis in [14] relies on the independence
\BbbE [\langle BsMj , B

sM\ell \rangle ] = 0 for j \not = \ell . This identity is no longer valid for nonlinear inverse
problems, although it still holds for the linear part Mj,1: \BbbE [\langle BsMj,1, B

sM\ell ,1\rangle ] = 0
for j \not = \ell . The conditional dependence among the iteration noises Mj,2 poses one big
challenge to the convergence analysis, and the splitting of the conditionally dependent
and independent components will play a role in the analysis below. Assumption 2.4
is to compensate the conditional dependence.

Remark 4.4. The constants in Lemma 4.6 involve an unpleasant dependence on
n as n

1
2 due to the variance inflation of the estimated gradient. It can be reduced by

various strategies, e.g., minibatch or variance reduction.

Finally, we give a bound on the variance \BbbE [\| Bs(x\delta 
k  - \BbbE [x\delta 

k])\| 2]. This result will
play an important role in the error analysis in subsection 4.3.

Theorem 4.7. Let Assumptions 2.1(i)--(iii) and 2.4 be fulfilled. Then for any
s \in [0, 1

2 ], there holds

\BbbE [\| Bs(\BbbE [x\delta 
k+1] - x\delta 

k+1)\| 2] \leq n

k\sum 
j=1

\eta 2j (\phi 
\~s
j)

2(\BbbE [\| B 1
2 e\delta j\| 2]

1
2 + \delta )2

+ 2n

k\sum 
i=1

k\sum 
j=i

\eta i\eta j\phi 
\~s
i\phi 

\~s
j(\BbbE [\| B

1
2 e\delta i \| 2]

1
2 + \delta )( (2+\theta  - \eta )cR

(1+\theta )(1 - \eta )\BbbE [\| B
1
2 e\delta j\| 2]

1
2 + cR\delta )\BbbE [\| e\delta j\| 2]

\theta 
2

+ n

\biggl( k\sum 
j=1

\eta j\phi 
\~s
j(

(2+\theta  - \eta )cR
(1+\theta )(1 - \eta )\BbbE [\| B

1
2 e\delta j\| 2]

1
2 + cR\delta )\BbbE [\| e\delta j\| 2]

\theta 
2

\biggr) 2

.

D
ow

nl
oa

de
d 

06
/2

7/
20

 to
 1

37
.1

89
.4

9.
14

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1438 BANGTI JIN, ZEHUI ZHOU, AND JUN ZOU

Proof. The assertion follows directly from Lemmas 4.5 and 4.6.

4.3. Convergence rates. This part is devoted to convergence rate analysis of
SGD. We analyze the cases of exact and noisy data separately. For exact data, the
bounds involve constants that are more transparent in terms of their dependence on
various algorithmic parameters. First, we analyze the case of exact data y\dagger , and the
bound boils down to the approximation error and computational variance. Further,
we assume that \| B\| \leq 1 and \eta 0 \leq 1 below, which can be easily achieved by rescaling
the operator F and the data y\dagger /y\delta . The analysis relies heavily on various technical
estimates in Appendix A, especially Proposition A.1.

Theorem 4.8. Let Assumptions 2.1, 2.2(ii), and 2.4 be fulfilled with \| w\| , \theta and
\eta 0 being sufficiently small. Then the error ek = xk  - x\dagger satisfies

\BbbE [\| ek\| 2] \leq c\ast \| w\| 2k - min(2\nu (1 - \alpha ),\alpha  - \epsilon ), \BbbE [\| B 1
2 ek\| 2] \leq c\ast \| w\| 2k - min((1+2\nu )(1 - \alpha ),1 - \epsilon ),

where \epsilon \in (0, \alpha 
2 ) is small and c\ast is independent of k but depends on \alpha , \nu , \eta 0, n, and

\theta .

Proof. For any s \geq 0, Theorems 4.4 and 4.7 give (with c0 = (2+\theta  - \eta )cR
(1+\theta )(1 - \eta ) )

\BbbE [\| Bsek+1\| 2] \leq 
\biggl( 
c0

k\sum 
j=1

\eta j\phi 
\~s
j\BbbE [\| ej\| 2]

1
2\BbbE [\| B 1

2 ej\| 2]
1
2 + \phi s+\nu 

0 \| w\| 
\biggr) 2

+ 2nc0

\biggl( k\sum 
i=1

\eta i\phi 
\~s
i\BbbE [\| B

1
2 ei\| 2]

1
2

\biggr) \biggl( k\sum 
j=1

\eta j\phi 
\~s
j\BbbE [\| B

1
2 ej\| 2]

1
2\BbbE [\| ej\| 2]

\theta 
2

\biggr) 
(4.10)

+ nc20

\biggl( k\sum 
j=1

\eta j\phi 
\~s
j\BbbE [\| B

1
2 ej\| 2]

1
2\BbbE [\| ej\| 2]

\theta 
2

\biggr) 2

+ n

k\sum 
j=1

\eta 2j (\phi 
\~s
j)

2\BbbE [\| B 1
2 ej\| 2].

Under Assumption 2.2(ii), Lemmas A.1 and A.2 directly give

\phi s+\nu 
0 \leq (s+ \nu )s+\nu 

es+\nu (
\sum k

i=1 \eta i)
s+\nu 

\leq (s+ \nu )s+\nu (1 - \alpha )\nu +s

es+\nu \eta \nu +s
0 (1 - 2\alpha  - 1)\nu +s

(k + 1) - (1 - \alpha )(\nu +s).

Note that the function ss

es is decreasing in s over the interval [0, 1] and that the function
1 - \alpha 

1 - 2\alpha  - 1 is decreasing in \alpha over the interval [0, 1] (and upper bounded by 2). Thus, for

\eta 0 \leq 1 and any 0 \leq \nu , s \leq 1
2 , there holds (with c\nu = 2\nu \nu 

\eta 0e\nu 
)

\phi s+\nu 
0 \leq c\nu (k + 1) - (\nu +s)(1 - \alpha ).(4.11)

Let aj \equiv \BbbE [\| ej\| 2] and bj \equiv \BbbE [\| B 1
2 ej\| 2]. Since \| B\| \leq 1, we have \phi s

j \leq \phi \=s
j for any

0 \leq \=s \leq s. Then setting s = 0 and s = 1/2 in the recursion (4.10) and applying (4.11)
leads to

ak+1 \leq 
\biggl( 
c0

k\sum 
j=1

\eta j\phi 
1
2
j a

1
2
j b

1
2
j + c\nu \| w\| (k + 1) - \nu (1 - \alpha )

\biggr) 2

+ n

k\sum 
j=1

\eta 2j (\phi 
1
2
j )

2bj

+ 2nc0

\biggl( k\sum 
i=1

\eta i\phi 
1
2
i b

1
2
i

\biggr) \biggl( k\sum 
j=1

\eta j\phi 
1
2
j b

1
2
j a

\theta 
2
j

\biggr) 
+ nc20

\biggl( k\sum 
j=1

\eta j\phi 
1
2
j b

1
2
j a

\theta 
2
j

\biggr) 2

,(4.12)

D
ow

nl
oa

de
d 

06
/2

7/
20

 to
 1

37
.1

89
.4

9.
14

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOCHASTIC GRADIENT DESCENT FOR ILL-POSED PROBLEMS 1439

bk+1 \leq 
\biggl( 
c0

k\sum 
j=1

\eta j\phi 
1
ja

1
2
j b

1
2
j + c\nu \| w\| (k + 1) - ( 1

2+\nu )(1 - \alpha )

\biggr) 2

+ n

\biggl( [ k2 ]\sum 
j=1

\eta 2j (\phi 
r
j)

2bj

+

k\sum 
j=[ k2 ]+1

\eta 2j (\phi 
1
2
j )

2bj

\biggr) 
+ 2nc0

\biggl( k\sum 
i=1

\eta i\phi 
1
i b

1
2
i

\biggr) \biggl( k\sum 
j=1

\eta j\phi 
1
jb

1
2
j a

\theta 
2
j

\biggr) 

+ nc20

\biggl( k\sum 
j=1

\eta j\phi 
1
jb

1
2
j a

\theta 
2
j

\biggr) 2

,(4.13)

with r = min( 12 + \nu , 1 - \epsilon 
2(1 - \alpha ) ) \in ( 12 , 1). The rest of the proof is to prove

ak \leq c\ast \| w\| 2k - \beta and bk \leq c\ast \| w\| 2k - \gamma ,(4.14)

where \beta = min(2\nu (1  - \alpha ), \alpha  - \epsilon ) and \gamma = min((1 + 2\nu )(1  - \alpha ), 1  - \epsilon ) and c\ast > 0 is
to be specified. The proof is based on mathematical induction. When k = 1, (4.14)
holds trivially for any large c\ast . Now we assume that (4.14) holds up to the case k
and prove it for the case k + 1. Actually, it follows from (4.12) and the induction
hypothesis that (with \varrho = c\ast \| w\| 2)

ak+1 \leq 
\biggl( 
c0\varrho 

k\sum 
j=1

\eta j\phi 
1
2
j j

 - \beta +\gamma 
2 + c\nu \| w\| (k + 1) - \nu (1 - \alpha )

\biggr) 2

+ n\varrho 

k\sum 
j=1

\eta 2j (\phi 
1
2
j )

2j - \gamma 

+ 2nc0\varrho 
1+ \theta 

2

\biggl( k\sum 
i=1

\eta i\phi 
1
2
i i

 - \gamma 
2

\biggr) \biggl( k\sum 
j=1

\eta j\phi 
1
2
j j

 - \gamma +\theta \beta 
2

\biggr) 
+ nc20\varrho 

1+\theta 

\biggl( k\sum 
j=1

\eta j\phi 
1
2
j j

 - \gamma +\beta \theta 
2

\biggr) 2

.

(4.15)

Next we bound the terms on the right-hand side. By Proposition A.1, we have

k\sum 
j=1

\eta j\phi 
1
2
j j

 - \gamma 
2 \leq c1(k + 1) - 

\beta 
2 and

k\sum 
j=1

\eta 2j (\phi 
1
2
j )

2j - \gamma \leq c2(k + 1) - \beta ,

with c1 = 2
\beta 
2 \eta 

1
2
0 (2

 - 1B( 12 , \zeta ) + 1), \zeta = (12  - \nu )(1  - \alpha ) > 0, and c2 = 2\beta \eta 0(\alpha 
 - 1 + 2).

Then we derive from (4.15) that

ak+1 \leq 
\bigl( 
(c0c1\varrho + c\nu \| w\| )2 + nc2\varrho + 2nc0c

2
1\varrho 

1+ \theta 
2 + nc20c

2
1\varrho 

1+\theta 
\bigr) 
(k + 1) - \beta .(4.16)

Next we bound bk similarly. It follows from (4.13) (with r = min( 12 + \nu , 1 - \epsilon 
2(1 - \alpha ) ) \in 

( 12 , 1)) and the induction hypothesis that

bk+1 \leq 
\biggl( 
c0\varrho 

k\sum 
j=1

\eta j\phi 
1
jj

 - \beta +\gamma 
2 + c\nu \| w\| (k + 1) - ( 1

2+\nu )(1 - \alpha )

\biggr) 2

+ n\varrho 

\biggl( [ k2 ]\sum 
j=1

\eta 2j (\phi 
r
j)

2j - \gamma +

k\sum 
j=[ k2 ]+1

\eta 2j (\phi 
1
2
j )

2j - \gamma 

\biggr) (4.17)

+ 2nc0\varrho 
1+ \theta 

2

\biggl( k\sum 
i=1

\eta i\phi 
1
i i

 - \gamma 
2

\biggr) \biggl( k\sum 
j=1

\eta j\phi 
1
jj

 - \gamma +\theta \beta 
2

\biggr) 
+ nc20\varrho 

1+\theta 

\biggl( k\sum 
j=1

\eta j\phi 
1
jj

 - \gamma +\theta \beta 
2

\biggr) 2

.
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By Proposition A.1, there hold

k\sum 
j=1

\eta j\phi 
1
jj

 - \beta +\gamma 
2 \leq c\prime 1(k + 1) - 

\gamma 
2 ,

[ k2 ]\sum 
j=1

\eta 2j (\phi 
r
j)

2j - \gamma +

k\sum 
j=[ k2 ]+1

\eta 2j (\phi 
1
2
j )

2j - \gamma \leq c\prime 2(k + 1) - \gamma ,

\biggl( k\sum 
i=1

\eta i\phi 
1
i i

 - \gamma 
2

\biggr) \biggl( k\sum 
j=1

\eta j\phi 
1
jj

 - \gamma +\theta \beta 
2

\biggr) 
\leq c\prime 23 (k + 1) - \gamma ,

k\sum 
j=1

\eta j\phi 
1
jj

 - \gamma +\theta \beta 
2 \leq c\prime 4(k + 1) - 

\gamma 
2 ,

with c\prime 1 = 2
\gamma 
2 (\zeta  - 1 + 2\beta  - 1 + 1), c\prime 2 = 2\gamma \eta 2 - 2r

0 (3\alpha  - 1 + 1), c\prime 3 = 2
\gamma 
2 ((( 12  - \nu  - \theta \nu )(1  - 

\alpha )) - 1+4(\theta \beta ) - 1+1), and c\prime 4 = 2
\gamma 
2 (\zeta  - 1+2(\theta \beta ) - 1+1). These estimates and (4.17) yield

bk+1 \leq ((c0c
\prime 
1\varrho + c\nu \| w\| )2 + nc\prime 2\varrho + 2nc0c

\prime 2
3 \varrho 

1+ \theta 
2 + nc20c

\prime 2
4 \varrho 

1+\theta )(k + 1) - \gamma .(4.18)

In view of (4.16) and (4.18), upon dividing by \varrho , assertion (4.14) holds if we can show
the existence of a c\ast > 0 such that

(c0c1\varrho 
1
2 + c\nu c

\ast  - 1
2 )2 + nc2 + 2nc0c

2
1\varrho 

\theta 
2 + nc20c

2
1\varrho 

\theta \leq 1,

(c0c
\prime 
1\varrho 

1
2 + c\nu c

\ast  - 1
2 )2 + nc\prime 2 + 2nc0c

\prime 2
3 \varrho 

\theta 
2 + nc20c

\prime 2
4 \varrho 

\theta \leq 1.

Since the constants c2 and c\prime 2 are proportional to \eta 0 and \eta 2 - 2r
0 (with the exponent

1 > 2  - 2r > 0), respectively, for sufficiently small \eta 0, there holds nmax(c2, c
\prime 
2) < 1.

Now for sufficiently small \| w\| and large c\ast such that \rho is small, the above two in-
equalities hold. This completes the induction step and the proof of the theorem.

Remark 4.5. \BbbE [\| B 1
2 ek\| 2] decays as \BbbE [\| B

1
2 ek\| 2] \leq ck - min((1+2\nu )(1 - \alpha ),1 - \epsilon ), which,

for \alpha close to unit, is comparable with that for the Landweber method [8]: \| B 1
2 ek\| \leq 

ck - (\nu + 1
2 )(1 - \alpha ). The factor k - (1 - \epsilon ) limits the fastest possible rate. This restriction

arises from the computational variance due to the random selection of the row index
ik, which limits the convergence rate \BbbE [\| ek\| 2] to O(k - min(2\nu (1 - \alpha ),\alpha  - \epsilon )). Thus, for
order optimality, the largest possible smoothness index is \nu = 1

2 , beyond which SGD
suffers from suboptimality, similar to the Landweber method for nonlinear inverse
problems [8]. Further, it shows the impact of the exponent \alpha : A smaller \alpha may
restrict the error \BbbE [\| ek\| 2] to O(k - (\alpha  - \epsilon )).

Remark 4.6. The exponent \alpha in the step size schedule in Assumption 2.2(ii) enters
into the constant c\ast via the constants c1, . . . , c

\prime 
4 etc., and the constant c0 is independent

of \alpha . The constants c1, . . . , c
\prime 
4 blow up either like (1  - \alpha ) - 1 as \alpha \rightarrow 1 - , according

to the well-known asymptotic behavior of the Beta function, or like \alpha  - 1 as \alpha \rightarrow 0+.
These dependencies partly exhibit the delicacy of choosing a proper step size schedule
for SGD.

Remark 4.7. We briefly comment on the ``smallness"" conditions on w, \eta 0, and \theta 
in the analysis. The smallness assumption on w in the source condition in Assump-
tion 2.1(iv) appears also for the classical Landweber method [8] and the standard
Tikhonov regularization [5, 11], and thus it is not surprising. The smallness condi-
tion on \eta 0 is to control the influence of the computational variance, and in a slightly
different context of statistical learning theory, similar conditions also appear in the
convergence analysis of variants of SGD. The smallness condition on \theta is only to fa-
cilitate the analysis, i.e., a concise form of the constant c\prime 3, and the assumption can
be removed at the expense of a less transparent (but more benign) expression for c\prime 3;
see the proof in Proposition A.1 and also Remark A.1.
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Finally, we prove the main result in this work, i.e., Theorem 2.5, which gives the
convergence rate of SGD (1.3) for noisy data y\delta .

Proof of Theorem 2.5. The main proof strategy is similar to that of Theorem 4.8.

Let aj \equiv \BbbE [\| e\delta j\| 2] and bj \equiv \BbbE [\| B 1
2 e\delta j\| 2]. Then with c0 = (2+\theta  - \eta )cR

(1+\theta )(1 - \eta ) , repeating the

argument of Theorem 4.8 leads to

ak+1 \leq 
\biggl( k\sum 

j=1

\eta j\phi 
1
2
j

\bigl( 
c0a

1
2
j b

1
2
j + cRa

1
2
j \delta + \delta 

\bigr) 
+ c\nu \| w\| (k + 1) - \nu (1 - \alpha )

\biggr) 2

+ n

k\sum 
j=1

\eta 2j (\phi 
1
2
j )

2(b
1
2
j + \delta )2 + n

\biggl( k\sum 
j=1

\eta j\phi 
1
2
j (c0b

1
2
j + cR\delta )a

\theta 
2
j

\biggr) 2

+ 2n

\biggl( k\sum 
i=1

\eta i\phi 
1
2
i (b

1
2
i + \delta )

\biggr) \biggl( k\sum 
j=1

\eta j\phi 
1
2
j (c0b

1
2
j + cR\delta )a

\theta 
2
j

\biggr) 
,

bk+1 \leq 
\biggl( k\sum 

j=1

\eta j\phi 
1
j

\bigl( 
c0a

1
2
j b

1
2
j + cRa

1
2
j \delta + \delta 

\bigr) 
+ c\nu \| w\| (k + 1) - (\nu + 1

2 )(1 - \alpha )

\biggr) 2

+ n

k\sum 
j=1

\eta 2j (\phi 
1
j )

2(b
1
2
j + \delta )2 + n

\biggl( k\sum 
j=1

\eta j\phi 
1
j (c0b

1
2
j + cR\delta )a

\theta 
2
j

\biggr) 2

+ 2n

\biggl( k\sum 
i=1

\eta i\phi 
1
i (b

1
2
i + \delta )

\biggr) \biggl( k\sum 
j=1

\eta j\phi 
1
j (c0b

1
2
j + cR\delta )a

\theta 
2
j

\biggr) 
.

Like in the proof of Theorem 4.8, the goal is to show

(4.19) ak \leq c\ast \| w\| 2k - \beta and bk \leq c\ast \| w\| 2k - \gamma 

for all k \leq k\ast = [( \delta 
\| w\| )

 - 2
(2\nu +1)(1 - \alpha ) ], with \beta = min(2\nu (1 - \alpha ), \alpha  - \epsilon ) and \gamma = min((1+

2\nu )(1 - \alpha ), 1 - \epsilon ) and the constant c\ast > 0 to be specified. By the choice of k\ast , for any
k \leq k\ast ,

(4.20) k
1 - \alpha 
2 \delta \leq k - \nu (1 - \alpha )\| w\| .

Now the proof proceeds by mathematical induction. When k = 1, (4.19) holds trivially
for any sufficiently large c\ast . Now we assume (4.19) holds up to some k < k\ast and prove
it for k + 1 \leq k\ast . Upon substituting the induction hypothesis, with \varrho = c\ast \| w\| 2, we
obtain

ak+1 \leq 
\biggl( k\sum 

j=1

\eta j\phi 
1
2
j

\bigl( 
c0\varrho j

 - \beta +\gamma 
2 + cR\varrho 

1
2 j - 

\beta 
2 \delta + \delta 

\bigr) 
+ c\nu \| w\| (k + 1) - \nu (1 - \alpha )

\biggr) 2

+ n

k\sum 
j=1

\eta 2j (\phi 
1
2
j )

2(\varrho 
1
2 j - 

\gamma 
2 + \delta )2 + 2n

\biggl( k\sum 
i=1

\eta i\phi 
1
2
i (\varrho 

1
2 i - 

\gamma 
2 + \delta )

\biggr) 
(4.21)

\times 
\biggl( k\sum 

j=1

\eta j\phi 
1
2
j (c0\varrho 

1
2 j - 

\gamma 
2 + cR\delta )\varrho 

\theta 
2 j - 

\theta \beta 
2

\biggr) 

+ n

\biggl( k\sum 
j=1

\eta j\phi 
1
2
j (c0\varrho 

1
2 j - 

\gamma 
2 + cR\delta )\varrho 

\theta 
2 j - 

\theta \beta 
2

\biggr) 2

.
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Next, using Proposition A.2, we obtain

ak+1 \leq 
\Bigl( 
(c1(c0\varrho + (cR\varrho 

1
2 + 1)\| w\| ) + c\nu \| w\| )2 + 2n(c2\varrho + c3\| w\| 2)

(4.22)

+ 2nc21(\varrho 
1
2 + \| w\| )(c0\varrho 

1
2 + cR\| w\| )\varrho 

\theta 
2 + nc21(c0\varrho 

1
2 + cR\| w\| )2\varrho \theta 

\Bigr) 
(k + 1) - \beta ,

with the constants c1, . . . , c3 given in Proposition A.2. Similarly, it follows from the
induction hypothesis that

bk+1 \leq 
\biggl( k\sum 

j=1

\eta j\phi 
1
j

\bigl( 
c0\varrho j

 - \beta +\gamma 
2 + cR\varrho 

1
2 j - 

\beta 
2 \delta + \delta 

\bigr) 
+ c\nu \| w\| (k + 1) - (1 - \alpha )(\nu + 1

2 )

\biggr) 2

+ n

k\sum 
j=1

\eta 2j (\phi 
1
j )

2(\varrho 
1
2 j - 

\gamma 
2 + \delta )2 + 2n

\biggl( k\sum 
i=1

\eta i\phi 
1
i (\varrho 

1
2 i - 

\gamma 
2 + \delta )

\biggr) 
(4.23)

\times 
\biggl( k\sum 

j=1

\eta j\phi 
1
j (c0\varrho 

1
2 j - 

\gamma 
2 + cR\delta )\varrho 

\theta 
2 j - 

\theta \beta 
2

\biggr) 

+ n

\biggl( k\sum 
j=1

\eta j\phi 
1
j (c0\varrho 

1
2 j - 

\gamma 
2 + cR\delta )\varrho 

\theta 
2 j - 

\theta \beta 
2

\biggr) 2

,

from which and from Proposition A.2 it follows that

bk+1 \leq 
\Bigl( 
(c0c

\prime 
1\varrho + c\prime 5(cR\varrho 

1
2 + 1)\| w\| + c\nu \| w\| )2 + 2n(c\prime 2\varrho + c3\| w\| 2)

+ 2n(c\prime 3\varrho 
1
2 + c\prime 5\| w\| )(c0c\prime 3\varrho 

1
2 + cRc

\prime 
5\| w\| )\varrho 

\theta 
2 + n(c0c

\prime 
4\varrho 

1
2 + cRc

\prime 
5\| w\| )2\varrho \theta 

\Bigr) 
(k + 1) - \gamma ,

(4.24)

with the constants c\prime 1, . . . , c
\prime 
5 given in Proposition A.2. In view of (4.22) and (4.24),

for small \| w\| and \eta 0, repeating the argument for Theorem 4.8 (and noting that
c1,c2, c3, c

\prime 
2 tend to zero as \eta 0 \rightarrow 0+) concludes the existence of a c\ast > 0 such that

(4.19) hold. This completes the induction step and the proof of Theorem 2.5.

5. Concluding remarks. In this work, we have provided a convergence analysis
of stochastic gradient descent for a class of nonlinear ill-posed inverse problems. The
method employs an unbiased estimate of the gradient, computed from one randomly
selected equation of the nonlinear system, and admits excellent scalability to the
problem size. We proved that it is regularizing under the traditional tangential cone
condition with a priori parameter choice and also showed a convergence rate under a
canonical source condition and a range invariance condition (and its stochastic variant)
for a polynomially decaying step size schedule. The analysis combines techniques from
both nonlinear regularization theory and stochastic calculus, and the results extend
the existing works [8] and [14].

There are several avenues in both theoretical and practical aspects for further
research. First, it is important to verify the assumptions for concrete nonlinear in-
verse problems, especially nonlinearity conditions in Assumptions 2.1(ii)--(iii) and 2.4,
for e.g., parameter identifications for PDEs, which would justify the usage of SGD.
Several important inverse problems in medical imaging are of the form (1.1), e.g.,
electrical impedance tomography and diffuse optical spectroscopy. These applications
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often involve natural physical constraints, e.g., positivity, which the algorithm should
be adapted to preserve. Second, the source condition employed in the work is canoni-
cal, and alternative approaches, e.g., variational inequalities and conditional stability,
should also be studied for convergence rates [24], or the Frech\'et differentiability of
the forward operator in Assumption 2.1 may be relaxed [3]. Third, the influence of
various algorithmic parameters, e.g., minibatch, random sampling, step size sched-
ules (including adaptive rules), and a posteriori stopping rule, should be analyzed to
provide useful practical guidelines.

Appendix A. Auxiliary estimates. In this appendix, we collect several
auxiliary inequalities that have been used in the convergence rates analysis. Most
estimates follow from routine but rather tedious computations. We begin with a
well-known estimate on operator norms (see, e.g., [19], [14, Lemma A.1]).

Lemma A.1. For any j < k and any symmetric and positive semidefinite operator
S and step sizes \eta j \in (0, \| S\|  - 1] and p \geq 0, there holds

\| 
k\prod 

i=j

(I  - \eta iS)S
p\| \leq pp

ep(
\sum k

i=j \eta i)
p
.

Below we need the Beta function B(a, b) =
\int 1

0
sa - 1(1 - s)b - 1ds for any a, b > 0.

Note that for fixed a, the function B(a, \cdot ) is monotonically decreasing.

Lemma A.2. For \eta j = \eta 0j
 - \alpha with \alpha \in (0, 1), r \in [0, 1), \beta \in [0, 1], and \gamma = \alpha +\beta ,

the following estimates hold:

k\sum 
i=1

\eta i \geq (1 - 2\alpha  - 1)(1 - \alpha ) - 1\eta 0(k + 1)1 - \alpha ,

k - 1\sum 
j=1

\eta j

(
\sum k

\ell =j+1 \eta \ell )
r
j - \beta \leq \eta 1 - r

0 B(1 - r, 1 - \gamma )kr\alpha +1 - r - \gamma , r \in [0, 1), \gamma < 1,

k - 1\sum 
j=1

\eta j\sum k
\ell =j+1 \eta \ell 

j - \beta \leq 

\left\{   2\gamma (1 - \gamma ) - 1k - \beta , \gamma < 1,
4k\alpha  - 1 ln k, \gamma = 1,
2\gamma (\gamma  - 1) - 1k\alpha  - 1, \gamma > 1,

+ 21+\gamma k - \beta ln k.

Proof. The first estimate follows from the fact 1 - (k+1)\alpha  - 1 \geq 1 - 2\alpha  - 1 for k \geq 1
that

k\sum 
i=1

\eta i \geq \eta 0

\int k+1

1

s - \alpha ds = \eta 0(1 - \alpha ) - 1((k + 1)1 - \alpha  - 1)

\geq \eta 0(1 - \alpha ) - 1(1 - 2\alpha  - 1)(k + 1)1 - \alpha .

To prove the second estimate, we note \eta i \geq \eta 0k
 - \alpha for any i = j + 1, . . . , k, and thus

(A.1) \eta  - 1
0

k\sum 
i=j+1

\eta i \geq k - \alpha (k  - j).

Thus, if \gamma = \alpha + \beta < 1 and r < 1,

k - 1\sum 
j=1

\eta j

(
\sum k

\ell =j+1 \eta \ell )
r
j - \beta \leq \eta 1 - r

0 kr\alpha 
k - 1\sum 
j=1

(k  - j) - rj - \gamma \leq \eta 1 - r
0 kr\alpha 

\int k

0

(k  - s) - rs - \gamma ds

= \eta 1 - r
0 B(1 - r, 1 - \gamma )kr\alpha +1 - r - \gamma .
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1444 BANGTI JIN, ZEHUI ZHOU, AND JUN ZOU

Similarly, if r = 1, it follows from (A.1) that

k - 1\sum 
j=1

\eta j\sum k
\ell =j+1 \eta \ell 

j - \beta \leq k\alpha 
k - 1\sum 
j=1

(k  - j) - 1j - \gamma 

= k\alpha 
[ k2 ]\sum 
j=1

j - \gamma (k  - j) - 1 + k\alpha 
k - 1\sum 

j=[ k2 ]+1

j - \gamma (k  - j) - 1

\leq 2k\alpha  - 1

[ k2 ]\sum 
j=1

j - \gamma + 2\gamma k - \beta 
k - 1\sum 

j=[ k2 ]+1

(k  - j) - 1.

Simple computation gives

(A.2)

k - 1\sum 
j=[ k2 ]+1

(k - j) - 1 \leq 2 ln k and

[ k2 ]\sum 
j=1

j - \gamma \leq 

\left\{   (1 - \gamma ) - 1(k2 )
1 - \gamma , \gamma \in [0, 1),

2 ln k, \gamma = 1,
\gamma (\gamma  - 1) - 1, \gamma > 1.

Combining the last three estimates gives the assertion for the case r = 1.

Next we recall two useful estimates.

Lemma A.3. For \eta j = \eta 0j
 - \alpha with \alpha \in (0, 1), \beta \in [0, 1], and r \geq 0, there hold

[ k2 ]\sum 
j=1

\eta 2j

(
\sum k

\ell =j+1 \eta \ell )
r
j - \beta \leq c\alpha ,\beta ,rk

 - r(1 - \alpha )+max(0,1 - 2\alpha  - \beta ),

k - 1\sum 
j=[ k2 ]+1

\eta 2j

(
\sum k

\ell =j+1 \eta \ell )
r
j - \beta \leq c\prime \alpha ,\beta ,rk

 - ((2 - r)\alpha +\beta )+max(0,1 - r),

where we slightly abuse the notation k - max(0,0) for ln k and c\alpha ,\beta ,r and c\prime \alpha ,\beta ,r are given
by

c\alpha ,\beta ,r = 2r\eta 2 - r
0

\left\{     
2\alpha +\beta 

2\alpha +\beta  - 1 , 2\alpha + \beta > 1,

2, 2\alpha + \beta = 1,
22\alpha +\beta  - 1

1 - 2\alpha  - \beta , 2\alpha + \beta < 1,

and c\prime \alpha ,\beta ,r = 22\alpha +\beta \eta 2 - r
0

\left\{   
r

r - 1 , r > 1,

2, r = 1,
2r - 1

1 - r , r < 1.

Proof. The proof is based on (A.1) and (A.2) and essentially given in [14, Lemma
A.3], but the constants are corrected.

The next result collects some lengthy estimates needed in the proof of Theo-
rem 4.8.

Proposition A.1. Let \beta = min(2\nu (1 - \alpha ), \alpha  - \epsilon ), \gamma = min((1+2\nu )(1 - \alpha ), 1 - \epsilon ),
and r = min( 12+\nu , 1 - \epsilon 

2(1 - \alpha ) ). Then under the conditions in Theorem 4.8, i.e., \| B\| \leq 1,

\eta 0 \leq 1, and \theta being sufficiently small, with \zeta = ( 12  - \nu )(1 - \alpha ), the following estimates
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hold:

k\sum 
j=1

\eta j\phi 
1
2
j j

 - \gamma 
2 \leq c1(k + 1) - 

\beta 
2 ,

k\sum 
j=1

\eta 2j (\phi 
1
2
j )

2j - \gamma \leq c2(k + 1) - \beta ,

(A.3)

[ k2 ]\sum 
j=1

\eta 2j (\phi 
r
j)

2j - \gamma +

k\sum 
j=[ k2 ]+1

\eta 2j (\phi 
1
2
j )

2j - \gamma \leq c3(k + 1) - \gamma ,

k\sum 
j=1

\eta j\phi 
1
jj

 - \beta +\gamma 
2 \leq c4(k + 1) - 

\gamma 
2 ,

(A.4)

\biggl( k\sum 
i=1

\eta i\phi 
1
i i

 - \gamma 
2

\biggr) \biggl( k\sum 
j=1

\eta j\phi 
1
jj

 - \gamma +\theta \beta 
2

\biggr) 
\leq c5(k + 1) - \gamma ,

k\sum 
j=1

\eta j\phi 
1
jj

 - \gamma +\theta \beta 
2 \leq c6(k + 1) - 

\gamma 
2 ,

(A.5)

with c1 = 2
\beta 
2 \eta 

1
2
0 (2

 - 1B( 12 , \zeta ) + 1), c2 = 2\beta \eta 0(\alpha 
 - 1 + 2), c3 = 2\gamma \eta 2 - 2r

0 (3\alpha  - 1 + 1),

c4 = 2
\gamma 
2

\bigl( 
\zeta  - 1 + 2\beta  - 1 + 1), c5 = 2\gamma ((( 12  - \nu  - \theta \nu )(1  - \alpha )) - 1 + 4(\theta \beta ) - 1 + 1)2, and

c6 = 2
\gamma 
2 (\zeta  - 1 + 2(\theta \beta ) - 1 + 1).

Proof. It follows from Lemma A.1 and the condition \| B\| \leq 1 that

k\sum 
j=1

\eta j\phi 
1
2
j j

 - \gamma 
2 \leq (2e) - 

1
2

k - 1\sum 
j=1

\eta j

(
\sum k

\ell =1 \eta \ell )
1
2

j - 
\gamma 
2 + \eta 0k

 - \alpha  - \gamma 
2

\leq (\eta 
1
2
0 2

 - 1B( 12 , 1 - \alpha  - \gamma 
2 ) + \eta 0)k

1 - \alpha 
2  - \gamma 

2 .

By the definitions of \beta and \gamma , we have 1 - \alpha 
2  - \gamma 

2 =  - \beta 
2 and 1 - \alpha  - \gamma 

2 \geq ( 12 - \nu )(1 - \alpha ) := \zeta .
Thus, the monotonicity of the Beta function and the inequality 2k \geq k + 1 for k \geq 1
imply the first inequality of (A.3). Now by Lemmas A.1 and A.3,

k\sum 
j=1

\eta 2j (\phi 
1
2
j )

2j - \gamma \leq (2e) - 1
k - 1\sum 
j=1

\eta 2j\sum k
\ell =j+1 \eta j

j - \gamma + \eta 20\| B
1
2 \| 2k - 2\alpha  - \gamma 

(A.6)

\leq \eta 0

\Bigl( 
(2e) - 1 2(2\alpha + \gamma )

2\alpha + \gamma  - 1
k - (1 - \alpha ) + (2e) - 121+2\alpha +\gamma k - \alpha  - \gamma ln k + \eta 0\| B

1
2 \| 2k - 2\alpha  - \gamma 

\Bigr) 
.

Now, for any r > 0, there holds

(A.7) s - r ln s \leq (er) - 1 \forall s \geq 0,

and thus k - \alpha  - \gamma ln k = k - \beta (k - 1 ln k) \leq e - 1k - \beta . Further, by the definition of \gamma ,
2\alpha + \gamma \leq min(2, 1 + 2\alpha ) \leq 2, and since \epsilon < \alpha 

2 , 2\alpha + \gamma  - 1 \geq \alpha ,

(A.8) 2\alpha +\gamma 
2\alpha +\gamma  - 1 = 1 + 1

2\alpha +\gamma  - 1 \leq 1 + \alpha  - 1.

Then the last three estimates (with \| B\| \leq 1) imply

k\sum 
j=1

\eta 2j (\phi 
1
2
j )

2j - \gamma \leq 2\beta \eta 0
\bigl( 
\alpha  - 1 + 2

\bigr) 
(k + 1) - \beta .

This proves the second inequality in (A.3).
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1446 BANGTI JIN, ZEHUI ZHOU, AND JUN ZOU

Next, by letting r = min( 12 + \nu , 1 - \epsilon 
2(1 - \alpha ) ) \in ( 12 , 1) and using (A.7) and (A.8),

Lemmas A.1 and A.3, and the monotonicity of ss

es for s \in [0, 1], the first part of (A.4)
follows from

[ k2 ]\sum 
j=1

\eta 2j (\phi 
r
j)

2j - \gamma +

k\sum 
j=[ k2 ]+1

\eta 2j (\phi 
1
2
j )

2j - \gamma 

\leq (2e) - 1

\biggl( [ k2 ]\sum 
j=1

\eta 2j

(
\sum j

\ell =1 \eta \ell )
2r
j - \gamma +

k - 1\sum 
j=[ k2 ]+1

\eta 2j\sum k
\ell =j+1 \eta \ell 

j - \gamma 

\biggr) 
+ \eta 20k

 - 2\alpha  - \gamma 

\leq \eta 2 - 2r
0

22r(2\alpha + \gamma )

2e(2\alpha + \gamma  - 1)
k - \gamma +

21+2\alpha +\gamma 

2e
\eta 0k

 - (\alpha +\gamma ) ln k + \eta 20k
 - 2\alpha  - \gamma \leq c3(k + 1) - \gamma .

Now we bound the sum
\sum k

j=1 \eta j\phi 
1
jj

 - \sigma for any \sigma \in [\gamma 2 ,
\gamma +\beta 
2 ] and then set \sigma to \gamma 

2 ,
\gamma +\theta \beta 

2 , and \gamma +\beta 
2 to complete the proof. By Lemmas A.1 and A.2, there hold

[ k2 ]\sum 
j=1

\eta j\phi 
1
jj

 - \sigma \leq e - 1

\left\{       
2\alpha +\sigma 

1 - \alpha  - \sigma k
 - \sigma , \alpha + \sigma < 1,

4k\alpha  - 1 ln k, \alpha + \sigma = 1,

2(\alpha +\sigma )
\alpha +\sigma  - 1k

\alpha  - 1, \alpha + \sigma > 1,

(A.9)

k\sum 
[ k2 ]+1

\eta j\phi 
1
jj

 - \sigma \leq e - 121+\alpha +\sigma k - \sigma ln k + \eta 0k
 - \sigma .(A.10)

First, we choose \sigma = \beta +\gamma 
2 . By (A.7), since (1 - \alpha  - \gamma 

2 )
 - 1 \leq \zeta  - 1, \alpha + \gamma 

2 < 1, \| B\| \leq 1,
and \eta 0 \leq 1, we obtain

k\sum 
j=1

\eta j\phi 
1
jj

 - \beta +\gamma 
2 \leq 

[ k2 ]\sum 
j=1

\eta j\phi 
1
jj

 - \gamma 
2 +

k\sum 
j=[ k2 ]+1

\eta j\phi 
1
jj

 - \beta +\gamma 
2

\leq 2\alpha +
\gamma 
2 e - 1(1 - \alpha  - \gamma 

2 )
 - 1k - 

\gamma 
2 + 21+\alpha + \gamma +\beta 

2 e - 1k - 
\gamma +\beta 

2 ln k + \eta 0k
 - \gamma 

2 \leq c4(k + 1) - 
\gamma 
2

due to the inequality 21+\alpha + \beta +\gamma 
2 < e2 from the definitions of the exponents \beta and

\gamma . This shows the second inequality of (A.4). Since \theta is small, we may assume
\theta < 1

2\nu  - 1 \leq 1 - \alpha 
\beta  - 1. Then by the relations \gamma = 1  - \alpha + \beta and \beta \leq 2\nu (1  - \alpha ),

direct computation shows 1  - \alpha  - \gamma +\theta \beta 
2 \geq ( 12  - \nu  - \theta \nu )(1  - \alpha ) > 0. Further, since

\theta < 1 - \alpha 
\beta  - 1, min( \theta \beta 2 , 1 - \alpha  - \gamma 

2 ) =
\theta \beta 
2 . Hence, it follows from (A.9) and (A.10), with

\sigma = \gamma 
2 and \gamma +\theta \beta 

2 , that

\biggl( k\sum 
i=1

\eta i\phi 
1
i i

 - \gamma 
2

\biggr) \biggl( k\sum 
j=1

\eta j\phi 
1
jj

 - \gamma +\theta \beta 
2

\biggr) 
\leq 

\biggl( 
2\alpha +

\gamma 
2

e(1 - \alpha  - \gamma 
2 )

+
21+\alpha + \gamma 

2

e
ln k + 1

\biggr) 

\times 
\biggl( 

2\alpha +
\gamma +\theta \beta 

2

e(1 - \alpha  - \gamma +\theta \beta 
2 )

k - min( \theta \beta 
2 ,1 - \alpha  - \gamma 

2 ) +
21+\alpha + \gamma +\theta \beta 

2

e
k - 

\theta \beta 
2 ln k + k - 

\theta \beta 
2

\biggr) 
k - \gamma .
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Then we move one factor k - 
\theta \beta 
4 from the second bracket to the first and bound by

(A.7),\biggl( k\sum 
i=1

\eta i\phi 
1
i i

 - \gamma 
2

\biggr) \biggl( k\sum 
j=1

\eta j\phi 
1
jj

 - \gamma +\theta \beta 
2

\biggr) 
\leq 

\biggl( 
2\alpha +

\gamma 
2

e(1 - \alpha  - \gamma 
2 )

+
21+\alpha + \gamma 

2

e
k - 

\theta \beta 
4 ln k + 1

\biggr) 

\times 
\biggl( 

2\alpha +
\gamma +\theta \beta 

2

e(1 - \alpha  - \gamma +\theta \beta 
2 )

+
21+\alpha + \gamma +\theta \beta 

2

e
k - 

\theta \beta 
4 ln k + 1

\biggr) 
k - \gamma 

\leq 2\gamma ((( 12  - \nu  - \theta \nu )(1 - \alpha )) - 1 + 4(\theta \beta ) - 1 + 1
\bigr) 2
(k + 1) - \gamma ,

proving the first inequality of (A.5). The other estimate in (A.5) follows similarly by
choosing \sigma = \gamma +\theta \beta 

2 and hence is omitted.

Remark A.1. The proof of Proposition A.1 implies
\sum k - 1

j=1 \eta j\phi 
1
jj

 - \gamma 
2 \leq (\zeta  - 1 +

2 ln k)k - 
\gamma 
2 . The log factor ln k seems not removable and precludes a direct application

of mathematical induction in the proof of Theorem 4.8. The extra factor j - 
\theta \beta 
2 due

to Assumption 2.4 gracefully compensates the log factor ln k using (A.7). The small-
ness condition on \theta can be removed at the expense of less transparent dependence.
Specifically, by Lemma A.2, with \sigma = \alpha + \gamma +\theta \beta 

2 , there holds

k\sum 
j=1

\eta j\phi 
1
jj

 - \gamma +\theta \beta 
2

\leq 1

ek
\gamma 
2

\left\{     
2\sigma 

1 - \sigma k
 - \theta \beta 

2 , \sigma < 1

4k - (1 - \alpha  - \gamma 
2 ) ln k, \sigma = 1

2\sigma 
\sigma  - 1k

 - (1 - \alpha  - \gamma 
2 ), \sigma > 1

+ 21+\sigma e - 1k - 
\gamma 
2  - 

\theta \beta 
2 ln k + k - (\alpha + \gamma +\theta \beta 

2 ).

Instead of applying (A.7) directly, we rearrange the terms and discuss the cases \sigma < 1,
\sigma = 1, and \sigma > 1 separately with the argument in the proof of Proposition A.1 and
obtain \biggl( k\sum 

i=1

\eta i\phi 
1
i i

 - \gamma 
2

\biggr) \biggl( k\sum 
j=1

\eta j\phi 
1
jj

 - \gamma +\theta \beta 
2

\biggr) 
\leq c\sigma 2

\gamma (k + 1) - \gamma ,

with the constant c\sigma given by

c\sigma =

\left\{   (1 - \sigma ) - 1 + 4(\theta \beta ) - 1 + 1, \sigma < 1,
\zeta  - 1 + 8(\theta \beta ) - 1 + 1, \sigma = 1,
2(\sigma  - 1) - 1 + 3\zeta  - 1 + 1, \sigma > 1.

The next result gives some basic estimates used in the proof of Theorem 2.5.

Proposition A.2. Under the induction hypothesis of Theorem 2.5 and (4.20),
there hold

ak+1 \leq 
\Bigl( 
(c1(c0\varrho + (cR\varrho 

1
2 + 1)\| w\| ) + c\nu \| w\| )2 + 2n(c2\varrho + c3\| w\| 2)

+ 2nc21
\bigl( 
\varrho 

1
2 + \| w\| 

\bigr) \bigl( 
c0\varrho 

1
2 + cR\| w\| 

\bigr) 
\varrho 

\theta 
2 + nc21(c0\varrho 

1
2 + cR\| w\| )2\varrho \theta 

\Bigr) 
(k + 1) - \beta ,

bk+1 \leq 
\Bigl( 
(c0c

\prime 
1\varrho + c\prime 5(cR\varrho 

1
2 + 1)\| w\| + c\nu \| w\| )2 + 2n(c\prime 2\varrho + c3\| w\| 2) + 2n(c\prime 3\varrho 

1
2 + c\prime 5\| w\| )

\times (c0c
\prime 
3\varrho 

1
2 + c\prime 5cR\| w\| )\varrho 

\theta 
2 + n(c0c

\prime 
4\varrho 

1
2 + c\prime 5cR\| w\| )2\varrho \theta 

\Bigr) 
(k + 1) - \gamma ,

where the constants c1, c2, c3, and c\prime 1, . . . , c
\prime 
5 are given in the proof.
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Proof. First, it follows directly from Lemmas A.1, A.2, and A.3 and the assump-
tions \| B\| \leq 1 and \eta 0 \leq 1 that for any \sigma \in [0, 1 - \alpha ),

k\sum 
j=1

\eta j\phi 
1
2
j j

 - \sigma \leq \eta 
1
2
0 (2

 - 1B( 12 , 1 - \alpha  - \sigma ) + 1)k
1 - \alpha 
2  - \sigma ,(A.11)

k\sum 
j=1

\eta 2j (\phi 
1
2
j )

2 \leq \eta 0(| 1 - 2\alpha |  - 1 + \alpha  - 1 + 1) := c3,(A.12)

where we have abused the writing 0 - 1 for 1. Meanwhile, by Proposition A.1, we have

k\sum 
j=1

\eta j\phi 
1
2
j j

 - \gamma 
2 \leq c1(k + 1) - 

\beta 
2 and

k\sum 
j=1

\eta 2j (\phi 
1
2
j )

2j - \gamma \leq c2(k + 1) - \beta ,(A.13)

with c1 = 2
\beta 
2 \eta 

1
2
0 (2

 - 1B( 12 , \zeta ) + 1), \zeta = ( 12  - \nu )(1  - \alpha ), and c2 = 2\beta \eta 0(\alpha 
 - 1 + 2). By

(A.11)--(A.13) and the monotonicity of the Beta function and k + 1 \leq k\ast (cf. (4.20)),
we obtain

k\sum 
j=1

\eta j\phi 
1
2
j

\bigl( 
c0\varrho j

 - \beta +\gamma 
2 + cR\varrho 

1
2 j - 

\beta 
2 \delta + \delta 

\bigr) 
\leq c0c1\varrho (k + 1) - 

\beta 
2 + (cR\varrho 

1
2 + 1)c1(k + 1)

1 - \alpha 
2 \delta 

\leq c1
\bigl( 
c0\varrho + (cR\varrho 

1
2 + 1)\| w\| 

\bigr) 
(k + 1) - 

\beta 
2 ,

k\sum 
j=1

\eta 2j (\phi 
1
2
j )

2(\varrho 
1
2 j - 

\gamma 
2 + \delta )2 \leq 2(c2\varrho + c3\| w\| 2)(k + 1) - \beta .

Likewise, by the monotonicity of the Beta function, we deduce\biggl( k\sum 
i=1

\eta i\phi 
1
2
i (\varrho 

1
2 i - 

\gamma 
2 + \delta )

\biggr) \biggl( k\sum 
j=1

\eta j\phi 
1
2
j (c0\varrho 

1
2 j - 

\gamma 
2 + cR\delta )\varrho 

\theta 
2 j - 

\theta \beta 
2

\biggr) 
\leq c21(\varrho 

1
2 + \| w\| )(c0\varrho 

1
2 + cR\| w\| )\varrho 

\theta 
2 (k + 1) - \beta ,

k\sum 
j=1

\eta j\phi 
1
2
j (c0\varrho 

1
2 j - 

\gamma 
2 + cR\delta )\varrho 

\theta 
2 j - 

\theta \beta 
2 \leq c1(c0\varrho 

1
2 + cR\| w\| )\varrho 

\theta 
2 (k + 1) - 

\beta 
2 .

The last four estimates give (4.21). Now we prove (4.23). By Proposition A.1, we
have

k\sum 
j=1

\eta j\phi 
1
jj

 - \beta +\gamma 
2 \leq c\prime 1(k + 1) - 

\gamma 
2 ,

[ k2 ]\sum 
j=1

\eta 2j (\phi 
r
j)

2j - \gamma +

k\sum 
j=[ k2 ]+1

\eta 2j (\phi 
1
2
j )

2j - \gamma \leq c\prime 2(k + 1) - \gamma ,

\biggl( k\sum 
i=1

\eta i\phi 
1
i i

 - \gamma 
2

\biggr) \biggl( k\sum 
j=1

\eta j\phi 
1
jj

 - \gamma +\theta \beta 
2

\biggr) 
\leq c\prime 23 (k + 1) - \gamma ,

k\sum 
j=1

\eta j\phi 
1
jj

 - \gamma +\theta \beta 
2 \leq c\prime 4(k + 1) - 

\gamma 
2 ,

with c\prime 1 = 2
\gamma 
2 (\zeta  - 1 + 2\beta  - 1 + 1), c\prime 2 = 2\gamma \eta 2 - 2r

0 (3\alpha  - 1 + 1), c\prime 3 = 2
\gamma 
2 ((( 12  - \nu  - \theta \nu )(1  - 

\alpha )) - 1+4(\theta \beta ) - 1+1), and c\prime 4 = 2
\gamma 
2 (\zeta  - 1+2(\theta \beta ) - 1+1). Further, by (A.9) and (A.10),

for any \sigma \in [0, \gamma 
2 ],

k - \nu (1 - \alpha )
k\sum 

j=1

\eta j\phi 
1
jj

 - \sigma \leq \zeta  - 1 + 2(\nu (1 - \alpha )) - 1 + 1 := c\prime 5.
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With these estimates and (4.20), we deduce

k\sum 
j=1

\eta j\phi 
1
j

\bigl( 
c0\varrho j

 - \beta +\gamma 
2 + cR\varrho 

1
2 j - 

\beta 
2 \delta + \delta 

\bigr) 
\leq (c0c

\prime 
1\varrho + c\prime 5(cR\varrho 

1
2 + 1)\| w\| )(k + 1) - 

\gamma 
2 ,

k\sum 
j=1

\eta 2j (\phi 
1
j )

2(\varrho 
1
2 j - 

\gamma 
2 + \delta )2 \leq 2(c\prime 2\varrho + c3\| w\| 2)(k + 1) - \gamma ,

k\sum 
j=1

\eta j\phi 
1
j (c0\varrho 

1
2 j - 

\gamma 
2 + cR\delta )\varrho 

\theta 
2 j - 

\theta \beta 
2 \leq (c0c

\prime 
4\varrho 

1
2 + c\prime 5cR\| w\| )\varrho 

\theta 
2 (k + 1) - 

\gamma 
2 ,

where the second line is due to (A.12) and the inequality
\sum k

j=1 \eta 
2
j (\phi 

1
j )

2 \leq 
\sum k

j=1 \eta 
2
j (\phi 

1
2
j )

2

(since \| B\| \leq 1). Finally, repeating the argument in Proposition A.1 gives\biggl( k\sum 
i=1

\eta i\phi 
1
i (\varrho 

1
2 i - 

\gamma 
2 + \delta )

\biggr) \biggl( k\sum 
j=1

\eta j\phi 
1
j (c0\varrho 

1
2 j - 

\gamma 
2 + cR\delta )\varrho 

\theta 
2 j - 

\theta \beta 
2

\biggr) 
\leq (c\prime 3\varrho 

1
2 + c\prime 5\| w\| )(c0c\prime 3\varrho 

1
2 + c\prime 5cR\| w\| )\varrho 

\theta 
2 (k + 1) - \gamma .

Then combining the last four estimates yields the desired bound on bk+1.
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