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Abstract We propose a discrete weighted Helmholtz decomposition for edge
element functions. The decomposition is orthogonal in a weighted L2 inner product
and stable uniformly with respect to the jumps in the discontinuous weight function.
As an application, the new Helmholtz decomposition is applied to demonstrate the
quasi-optimality of a preconditioned edge element system for solving a saddle-point
Maxwell system in non-homogeneous media by a non-overlapping domain decom-
position preconditioner, i.e., the condition number grows only as the logarithm of the
dimension of the local subproblem associated with an individual subdomain, and more
importantly, it is independent of the jumps of the physical coefficients across the inter-
faces between any two subdomains of different media. Numerical experiments are
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presented to validate the effectiveness of the non-overlapping domain decomposition
preconditioner.

Mathematics Subject Classification 65N30, 65N55

1 Introduction

The numerical simulation of electromagnetic wave propagation often involves, at each
time step, the solution of the following saddle-point Maxwell system [14,23,27–29]:

curl(α curl u)+ γ0βu = f in �, (1.1)

div(βu) = g in �, (1.2)

where � is a simply-connected open polyhedral domain in R3 with boundary ∂�,
occupied often by more than one physical medium. Coefficients α(x) and β(x) are two
physical parameters, which may have jumps (possibly very large) across the interface
between any two neighboring different media in �. f and g are two source functions
satisfying the compatibility condition γ0 g = divf . The coefficient γ0 in (1.1) is a
constant, taking either value 1 or 0, which is added here deliberately so that the system
(1.1)–(1.2) covers more physical cases. System (1.1)–(1.2) with γ0 = 0 appears in
the Darwin model for Maxwell’s equations [10,12] and the vector potential model for
magneto static fields [3]. When γ0 = 0 in (1.1) or when γ0 = 1 but the coefficient
β in the zero-th order term is much smaller in magnitude than the coefficient α in
the higher order term, system (1.1)–(1.2) becomes more challenging numerically as
the divergence equation in (1.2) must be explicitly reinforced in the discretization in
order to avoid the spurious non-physical solutions. We shall complement the system
(1.1)–(1.2) with the following boundary condition:

u × n = 0 on ∂�, (1.3)

where n is the unit outward normal direction on ∂�.
Efficient preconditioning-type solvers such as multigrid and domain decomposition

methods have been well developed for second order elliptic problems in H1-Sobolev
space, in particular non-overlapping domain decomposition methods have proved also
to be robust and efficient when the elliptic equations have large jumps in coefficients,
see, e.g., [24,29,30]. However, the construction of such efficient solvers for ellip-
tic equations in the H1-space fails to work for the Maxwell equations (1.1)–(1.2) in
the H(curl)-space, especially in three dimensions. One of the reasons for the failure
is due to the type of finite element methods used in the discretizations. Contrary
to the popularity of classical nodal elements in the discretization of elliptic equa-
tions, Nédélec edge elements have been more widely used for the discretization of
the Maxwell system (1.1)–(1.2), see, e.g., [15,25] and the references therein. And the
resulting algebraic systems arising from the discretization of the Maxwell system by
edge element methods is of essentially different nature from the ones arising from
the discretization of elliptic problems by standard nodal element methods. Another
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ingredient causing the failure comes from the fact that the curl operator involved in the
Maxwell system has a much larger null space than the one for the gradient in elliptic
problems. A fundamental tool, which may treat the larger null space and at the same
time take the advantage of some existing methodologies in developing effective multi-
grid and domain decomposition methods for elliptic equations, is the Helmholtz-type
decompositions (see, e.g., [2,15,25]). Based on these decompositions, many variants
of efficient multigrid and domain decomposition methods have been constructed and
analyzed for the edge element systems arising from the discretization of the Maxwell
equations; see [2,14,15,20,21,28,30,31] and the references therein.

However, all the existing Helmholtz-type decompositions do not involve any coef-
ficients in the Maxwell system (1.1)–(1.2), so they can not help analyze in general
how the convergence of the existing methods depend on the coefficients or their jumps
across interfaces between different media. In this work we shall establish a discrete
weighted Helmholtz decomposition based on a decomposition of the global domain
� into a set of nonoverlapping subdomains so that the Helmholtz decomposition is
stable uniformly with respect to the discontinuous coefficients or their jumps across the
interface between any two subdomains. To the best of our knowledge, this is the first
discrete weighted Helmholtz decomposition of the kind in the literature. Considering
the complexity of the construction of such a decomposition, one can imagine that the
subsequent analysis is rather technical and delicate. The new (weighted) Helmholtz
decomposition can be used to analyze convergence of various preconditioners for
Maxwell’s equations with large jumps in coefficients. As an example, we will show
with the help of such a weighted Helmholtz decomposition that the substructuring
preconditioner constructed in [21] converges not only nearly optimally in terms of the
subdomain diameter and the finite element mesh size, but also independently of the
jumps in the coefficients across the interfaces between any two subdomains of different
media.

The outline of the paper is as follows. In Sect. 2 we describe the decomposition of
the original domain into subdomains, the triangulation of the subdomains and some
basic Sobolev and edge element spaces. The results on the new weighted Helmholtz
decomposition and several variants of discrete Helmholtz decomposition are presented
in Sects. 3–4. The new weighted Helmholtz decomposition is constructed for general
edge element functions in Sect. 5 and analysed in Sect. 6. A direct application of the
new discrete weighted Helmholtz decomposition is discussed in Sect. 7.

2 Domain decomposition, finite elements and subspaces

This section shall introduce some Soboleve spaces and edge elements, that are most
frequently used for the discretization and analysis of the system (1.1)–(1.2), as well
as subdomain decompositions and some fundamental edge element subspaces and
concepts to be used in the construction and analysis of a discrete weighted Helmholtz
decomposition.

We will need the following spaces associated with an open bounded domain O
in R3:
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H(curl;O) = {v ∈ L2(O)3; curl v ∈ L2(O)3} ,
H0(curl;O) = {v ∈ H(curl;O); v × n = 0 on ∂O} ,

H(div;O) = {v ∈ L2(O)3; div v ∈ L2(O)3} ,
H0(div;O) = {v ∈ H(div;O); v · n = 0 on ∂O}.

2.1 Subdomains and edge elements

The central aim of the work is to construct a discrete weighted Helmholtz decompo-
sition based on a decomposition of the global domain � into a set of nonoverlapping
subdomains so that the Helmholtz decomposition is stable uniformly with respect to a
desired discontinuous weight function. For this purpose, we first decompose the entire
domain � into subdomains based on the discontinuity of the weight function, which
plays a role as the coefficient β(x) of (1.2) in applications.

Domain decomposition based on the distribution of coefficients. Associated with
the coefficient β(x) in (1.2), we assume that the entire domain � can be decomposed
into N0 open convex polyhedral subdomains�0

1,�
0
2, . . . , �

0
N0

such that �̄ = ∪N0
i=1�̄

0
i

and β(x) is constant on each subdomain, namely for r = 1, 2, . . . , N0,

β(x) = βr ∀ x ∈ �0
r (2.1)

where each βr is a positive constant. Such a convex decomposition is possible in many
applications when� is formed by multiple media. In some cases when a medium forms
an irregular nonconvex subregion in�, one may need to further split such nonconvex
medium subregion into smaller convex subdomains. In this sense our assumption is
not restrictive and does cover many practical cases.

Remark 2.1 The subdomains {�0
r }N0

r=1 are of different nature from those in the context

of the standard domain decomposition methods: {�0
r }N0

r=1 is decomposed based only
on the distribution of the jumps of the coefficient β(x) (so N0 is a fixed integer).
Therefore the size of every such subdomain �0

r is basically irrelevant to the finite
element mesh size or the subdomain size meant in the standard domain decomposition
methods. When applying our results in this work to domain decomposition methods
(see Sect. 7), each subdomain �0

r should be divided into several smaller subdomains.

Edge and nodal element spaces. Next, we further divide each �0
r into smaller tetra-

hedral elements of size h so that the restrictions of the triangulations from any two
neighboring subdomains on their common face match each other. Let Th be the result-
ing triangulation of the domain �, which we assume is quasi-uniform. By Eh and Nh

we denote the set of edges of Th and the set of nodes in Th respectively. Then the
Nédélec edge element space, of the lowest order, is a subspace of piecewise linear
polynomials defined on Th :

Vh(�) =
{

v ∈ H0(curl;�); v|K ∈ R(K ), ∀K ∈ Th

}
,
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where R(K ) is a subset of all linear polynomials on the element K of the form:

R(K ) =
{

a + b × x; a,b ∈ R3, x ∈ K
}
.

It is known that for any v ∈ Vh(�), its tangential components are continuous on
all edges of each element in the triangulation Th , and v is uniquely determined by its
moments on each edge e of Th :

Mh(v) =
{
λe(v) =

∫

e

v · teds; e ∈ Eh

}

where te denotes the unit vector on edge e, and this convention will be used for any
edge or union of edges, either from an element K ∈ Th or from a subdomain. For a
vector-valued function v with appropriate smoothness, we introduce its edge element
interpolation rhv such that rhv ∈ Vh(�), and rhv and v have the same moments as
in Mh(v). The interpolation operator rh will be needed in the construction of a stable
decomposition for any function vh ∈ Vh(�) in Sect. 5.

As we will see, the edge element analysis involves also frequently the nodal element
space. For this purpose we introduce Zh(�) to be the standard continuous piecewise
linear finite element space in H1

0 (�) associated with the triangulation Th .

2.2 Edge- and face-related finite element subspaces

For the subsequent analysis, we need the subspaces of the global edge element space
Vh(�) restricted on a subdomain or the boundary or part of the boundary of �.

Let �̂ be any of the subdomains�0
1, . . . , �

0
N0

of�. We will often use f, e and v to

denote a general face, edge and vertex of �̂ respectively, but use e to denote a general
edge of Th lying on �̂ = ∂�̂. Associated with �̂, we write the natural restriction of
Vh(�) on �̂ by Vh(�̂). Let G be either the entire boundary �̂ = ∂�̂ or a face f of �̂,
then we define the restrictions of the tangential components of functions in Vh(�) on
G as

Vh(G) =
{
ψ ∈ L2(G)3; ψ = v × n on G for some v ∈ Vh(�)

}
.

The following local subspaces of Vh(�̂) and Vh(f) will be important to our analysis:

V 0
h (�̂) =

{
v ∈ Vh(�̂); v × n = 0 on �̂

}
,

V 0
h (f) =

{

 = v × n ∈ Vh(f); λe(v) = 0, ∀ e ⊂ ∂f ∩ Eh

}
.

Similarly, the restrictions of Zh(�) in subdomain �̂, on its boundary �̂ and on a face f,
are written as Zh(�̂), Zh(�̂), and Zh(f), respectively. For a subset G of �̂, we define
a “local” subspace
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Z0
h(G) = {v ∈ Zh(�̂); v = 0 at all nodes on �̂\G}.

Finally we introduce the discrete curl curl-extension operator R̂h : Vh(�̂) →
Vh(�̂). We define R̂h as follows: for any 
 ∈ Vh(�̂), R̂h
 ∈ Vh(�̂) satisfies R̂h
×
n = 
 on �̂ and

(curl R̂h
, curl vh)+ (R̂h
, vh) = 0, ∀ vh ∈ V 0
h (�̂).

3 A stable weighted Helmholtz-type decomposition

As is well known, the Helmholtz decomposition plays an essential role in the
convergence analysis of the multigrid and non-overlapping domain decomposition
methods for solving the Maxwell system (1.1)–(1.2) by edge element methods; see,
e.g., [2,14,15,20,21]. Any edge element function vh from Vh(�) admits a Helmholtz
decomposition of the form

vh = ∇ ph + wh (3.1)

for some ph ∈ Zh(�) and wh ∈ Vh(�), and ph and wh are orthogonal in the inner
product of L2(�), namely (wh,∇ ph) = 0, and have the following stability estimates

‖∇ ph‖0,� ≤ C‖vh‖0,� , ‖wh‖0,� ≤ C‖curl vh‖0,�. (3.2)

But in order to effectively deal with the divergence constraint in (1.2), one needs the
decomposition (3.1) to be orthogonal with respect to the weight function β, namely
(βwh,∇ ph) = 0. This can be done naturally, with the stability estimates (3.2) holding.
But unfortunately, it is unclear how the coefficient C appearing in the two stability
estimates in (3.2) depends on the coefficient β, especially for the practically important
case where β is discontinuous in � and may have large jumps across the interface
between any two different physical media. For this reason, although there are many
multigrid or domain decomposition methods available in the literature for the Maxwell
system (1.1)–(1.2), with optimal or nearly optimal convergence in terms of the mesh
size and subdomain size, it is still unclear how their convergence depend on the jumps
of the coefficients α(x) and β(x) in (1.1)–(1.2).

The aim of this work is to fill in this gap and construct a discrete weighted
Helmholtz-type decomposition, that is stable uniformly with respect to the jumps
of the weight coefficient β(x). The new (weighted) Helmholtz decomposition can be
used to analyze convergence of various preconditioners for Maxwell’s equations with
large jumps in coefficients. For an application, we will show in Sect. 7 with the help
of such a weighted Helmholtz decomposition that the substructuring preconditioner
constructed in [21] converges not only nearly optimally in terms of the subdomain
diameter and the finite element mesh size, but also independently of the jumps in the
coefficients α(x) and β(x) in (1.1)–(1.2).

From now on, we shall frequently use the notations <∼ and =∼. For any two non-

negative quantities x and y, x <∼ y means that x ≤ Cy for some constant C indepen-
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dent of mesh size h, subdomain size d and the possible large jumps of some related
coefficient functions across the interface between any two subdomains. x =∼ y means

x <∼ y and y <∼ x .
We need to introduce a few concepts in order to describe the relation between

different subdomains from {�0
r }N0

r=1, which are described in Sect. 2.1, based on the
distribution of the discontinuity of the coefficient function β(x) in (1.2).

Definition 3.1 For a subdomain�0
r , another subdomain�0

r ′ is called a “child” of�0
r

if �̄0
r ′ ∩ �̄0

r 
= ∅ and βr ′ < βr . In this case, the subdomain �0
r is called a “parent” of

�0
r ′ .

Now we make an assumption on the coefficient β(x). From now on, when we say
two subdomains�0

r and�0
r ′ do not intersect if �̄0

r ∩�̄0
r ′ = ∅; otherwise we say the two

subdomains intersect each other. So based on this definition, two subdomains sharing
only a common vertex are also said to intersect each other. For any subdomain �0

r
(1 ≤ r ≤ N0), we assume that it satisfies one of the following two conditions:

Condition A. At most two “ parent ” subdomains of �0
r do not intersect each other.

Here a “ parent ” subdomain may be the union of all parent subdomains of �0
r on

which β(x) takes the same value.

Condition B. The intersection of �0
r with the union of all parent subdomains of �0

r
is a connected set.

In many applications, one may encounter only two or three different media involved
in the entire physical domain, and in this case Condition A or B should be fulfilled
naturally. In general, these two conditions are also mild and reasonable, and cover a
lot of practical applications with complicated multiple medium cases; see Fig. 1 for an
example with 7 to 12 media, where each block with a different number is a different
medium, and the relation i > j means that the physical coefficients in the two blocks
satisfy βi > β j , so the medium domain i is a parent of medium j if they intersect
each other. One can readily check that the left medium example in Fig. 1 satisfies
Condition A, while the right one satisfies Condition B. Clearly all the cubic blocks
can be of curved shape as well.

The following theorem provides an auxiliary result which is essential to the deriva-
tion of the desired weighted Helmholtz decomposition. The proof of the theorem is
delayed to Sect. 6.

Theorem 3.1 Assume that either Condition A or Condition B holds for each subdo-
main �0

r (1 ≤ r ≤ N0). Then for any edge element function wh ∈ Vh(�) satisfying

(βwh,∇qh) = 0, ∀qh ∈ Zh(�) , (3.3)

we have the following estimate
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Fig. 1 A domain � with multiple media satisfying Condition A (left) or B (right)

‖β 1
2 wh‖2

0,� ≤ C logm+1(1/h)‖β 1
2 curlwh‖2

0,�, (3.4)

where constants m and C are independent of h and the jumps of the coefficient β.

The following theorem presents the main result of this paper.

Theorem 3.2 Assume that either Condition A or Condition B holds for each sub-
domain �0

r (1 ≤ r ≤ N0). Then any vh ∈ Vh(�) admits a decomposition of the
form

vh = ∇ ph + wh (3.5)

for some ph ∈ Zh(�) and wh ∈ Vh(�), and wh satisfies

(βwh,∇qh) = 0, ∀ qh ∈ Zh(�). (3.6)

Moreover, ph and wh have the estimates

‖β 1
2 ∇ ph‖2

0,� ≤ ‖β 1
2 vh‖2

0,� , ‖β 1
2 wh‖2

0,� ≤ C logm+1(1/h)‖β 1
2 curlvh‖2

0,� (3.7)

where constants m and C are independent of h and the jumps of the coefficient β.

Proof For any vh ∈ Vh(�), let ph ∈ Zh(�) be the solution of the problem

(β∇ ph,∇qh) = (βvh,∇qh), ∀qh ∈ Zh(�).

Then the first estimate in (3.7) follows directly from the above definition of ph and the
Cauchy–Schwarz inequality. Now setting wh = vh − ∇ ph , then relations (3.5) and
(3.6) follow immediately also from the definition of ph , while the second estimate in
(3.7) is a direct consequence of (3.6) and Theorem 3.1. ��

The remaining part of this work is devoted to the demonstration of Theorem 3.1
and the application of the new discrete weighted Helmholtz decomposition. To this
end, we need to prepare quite a few technical tools and results.
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4 Several variants of the Helmholtz decomposition

This section is a preparatory section for the establishment of a stable discrete Helmholtz
decomposition as stated in Theorem 3.2. Throughout this subsection, we shall consider
a convex polyhedron �̂ with its diameter of size O(1) (see Remark 2.1), which repre-
sents a generic convex polyhedron from the medium subdomains �0

1,�
0
2, . . . , �

0
N0

.

Let Zh(�̂) and Vh(�̂) be the standard nodal and Nédélec finite element space on
�̂ respectively as defined in Sect. 2.1.

Lemma 4.1 Let �̂ be either an empty set or a (closed) face of �̂ or the union of several
faces of �̂, and vh be a function in Vh(�̂) satisfying vh × n = 0 on �̂. Then vh admits
a decomposition vh = ∇ ph + wh for some ph ∈ Zh(�̂) and wh ∈ Vh(�̂) such that
ph = 0,wh × n = 0 on �̂, and wh satisfies ‖wh‖0,�̂

<∼ ‖curl vh‖0,�̂.

Proof As vh ∈ Vh(�̂), we have vh · n ∈ L2(∂�̂). Consider p ∈ H1(�̂) satisfying

�p = div vh in �̂, (4.1)

p = 0 on �̂, (4.2)
∂p

∂n
= vh · n on ∂�̂\�̂ (4.3)

and w = vh − ∇ p. Then we know w ∈ H(curl; �̂) ∩ H(div; �̂), and w satisfies

curl w = curl vh in �̂, (4.4)

w × n = 0 on �̂, (4.5)

w · n = 0 on ∂�̂\�̂. (4.6)

As in the proof of Theorem 4.3 in [2], we can verify, with some natural modifications,
that

‖w‖
δ,�̂

<∼ ‖curlw‖0,�̂ = ‖curlvh‖0,�̂, (4.7)

where δ ∈ ( 1
2 , 1] depends on the geometric shape of �̂ only. Now by applying the

edge element interpolation rh on both sides of the decomposition vh = ∇ p + w, we
know how to take the desired functions ph and wh in the lemma, i.e., wh = rhw and
∇ ph = rh∇ p. Indeed, we have by the error estimate of the operator rh (cf. [2,11]) and
(4.7) that

‖wh‖0,�̂=‖rhw‖0,�̂
<∼‖w‖0,�̂+‖rhw−w‖0,�̂

<∼‖w‖0,�̂+hδ‖w‖
δ,�̂
<∼‖curlvh‖0,�̂.

��
Lemma 4.2 For any face f of �̂, assume that vh ∈ Vh(�̂) satisfies vh · t∂f = 0 on ∂f.
Then there exist ph ∈ Zh(�̂) and wh ∈ Vh(�̂) such that ph = 0,wh · t∂f = 0 on ∂f,
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and

vh = ∇ ph + wh, (4.8)

with the following estimate

‖wh‖0,�̂
<∼ log(1/h)‖curlwh‖0,�̂. (4.9)

The conclusion is also valid for the case when f is replaced by a union of some faces.

Proof We separate the proof into two steps.
Step 1: Establish the desired decomposition. We first establish a Hodge-type decom-
position on the given two-dimensional face f. To do so, we introduce a space Wh(f)
on f, consisting of tangential vectors:

Wh(f) = {n × (vh × n)|f; vh ∈ Vh(�)},

and define a function vh,f ∈ Wh(f) such that

vh,f = n × (vh × n) on f ; vh,f = 0 on ∂�̂\f.

Then there exist ph,f ∈ Zh(�̂) and wh,f ∈ Vh(�̂) by Lemma 7.12 of [29] such that

vh,f = ∇S ph,f + wh,f on f,

where ∇S is the two-dimensional surface gradient, ph,f and wh,f satisfy ph,f =
0,wh,f = 0 on ∂�̂\f, and have the estimate

‖wh,f‖0,�̂ + ‖curl wh,f‖0,�̂
<∼ ‖curlSvh,f‖− 1

2 ,f
, (4.10)

where curlS is the so-called surface curl; see [29] for its definition. Note that the
surface curl is just the tangential divergence, i.e., curlSvh,f = divτ (n × vh,f); see
[1,2,20].

Then we define

v̂h,f = vh − (∇ ph,f + wh,f). (4.11)

We can check that v̂h,f × n = 0 on f. By Lemma 4.1 v̂h,f admits the decomposition

v̂h,f = ∇ p̂h + ŵh (4.12)

for some p̂h ∈ Zh(�̂) and ŵh ∈ Vh(�̂) such that p̂h = 0, ŵh × n = 0 on f, and ŵh

satisfies

‖ŵh‖0,�̂
<∼ ‖curlŵh‖0,�̂. (4.13)
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Now by defining

ph = ph,f + p̂h and wh = wh,f + ŵh,

we get the expected decomposition

vh = ∇ ph + wh (4.14)

where ph and wh satisfy ph = 0,wh · t∂f = 0 on ∂f.
Step 2: Verify the desired estimate (4.9) for the decomposition (4.14).

By the definition of wh and the triangle inequality, we have

‖wh‖0,�̂
<∼ ‖wh,f‖0,�̂ + ‖ŵh‖0,�̂.

This, along with (4.11), (4.12) and (4.13), leads to

‖wh‖0, �̂
<∼ ‖wh,f‖0,�̂ + ‖curlwh,f‖0,�̂ + ‖curlvh‖0,�̂.

Then, we further get from (4.10) that

‖wh‖0, �̂
<∼ ‖curlSvh‖− 1

2 ,f
+ ‖curl vh‖0,�̂. (4.15)

On the other hand, using the known face H− 1
2 -extension (cf. [17,29]) and the trace

theorem, we obtain

‖curlSvh‖− 1
2 ,f
<∼ log(1/h)‖curlSvh‖− 1

2 ,∂�̂
<∼ log(1/h)‖curl vh‖0,�̂.

Substituting this into (4.15), yields the desired result (4.9). ��
Remark 4.1 The face H− 1

2 -extension used in the proof of Lemma 4.2 brings in an a
logarithmic factor in the estimate, thus an extra logarithmic factor in the main estimate

of Theorem 3.2. This face H− 1
2 -extension, which seems to be sharp, can be regarded as

a dual result of the well-known face H
1
2 -extension (see, e.g., [32]). To our knowledge,

this kind of face H− 1
2 -extensions was first estimated in [17].

Lemma 4.3 Let e be a (closed) edge of �̂, and vh be a finite element function in
Vh(�̂) such that vh · te = 0 on e. Then vh admits a decomposition

vh = ∇ ph + wh

for some ph ∈ Zh(�̂) and wh ∈ Vh(�̂) such that ph = wh · te = 0 on e and

‖wh‖0,�̂
<∼ log(1/h)‖curl wh‖0,�̂. (4.16)
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Proof We separate the proof into three steps.
Step 1: Establish an edge-related decomposition.

Let f be a face containing the edge e. We first consider a decomposition of the
tangential component vh · t∂f of vh on ∂f. For convenience, we write ec = ∂f\e.

Let s be the arclength along ec, taking values from 0 to l0, where l0 is the total
length of ec. In terms of s, vh · tec is piecewise linear on the interval [0, l0], denoted
by v̂(s). Then we define

Ce = 1

l0

l0∫

0

v̂(s) ds, φe(t) =
t∫

0

(v̂(s)− Ce)ds , ∀ t ∈ [0, l0].

Clearly we see φe(t) vanishes at t = 0 and l0. Now we can extend φe and Ce naturally
by zero onto e, then extend by zero into ∂�̂ and �̂ such that their extensions φ̃e ∈
Zh(�̂) and C̃e ∈ Vh(�̂). One can verify that (cf. [29]) that

vh · t∂f = (∇φ̃e) · t∂f + C̃e · t∂f. (4.17)

Step 2: Construct the desired decomposition in Lemma 4.3. For the purpose, we set

v̂h,e = vh − (∇φ̃e + C̃e). (4.18)

By (4.17) we know v̂h,e · t∂f = 0 on ∂f. For function v̂h,e in (4.18), following the same
way as it was done in the proof of Lemma 4.2 one can find two functions p̂h ∈ Zh(�̂)

and ŵh ∈ Vh(�̂) such that p̂h = 0, ŵh · t∂f = 0 on ∂f, and (see (4.14))

v̂h,e = ∇ p̂h + ŵh,

with the following estimate (see (4.15))

‖ŵh‖0,�̂
<∼ ‖curl ŵh‖0,�̂ + ‖curlS v̂h,e‖− 1

2 ,f
. (4.19)

Now by defining

ph = φ̃e + p̂h and wh = C̃e + ŵh ,

we get the final decomposition

vh = ∇ ph + wh (4.20)

such that ph = 0,wh · te = 0 on e.
Step 3: Derive the desired estimate in Lemma 4.3 for the decomposition (4.20).
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Noting that vh · te = 0 on e, so vh · t∂f = 0 on e, we have by the Green’s formula
on f and change of variables (cf. [29]) that (with l being the total arclength of ∂F)

Ce = 1

l0

l∫

0

v̂(s)ds = 1

l0

∫

F

curlSvh · 1ds. (4.21)

Let I 0
f 1 be the face interpolant of 1, namely I 0

f 1 ∈ Zh(�̂) and takes value 1 at those

nodes in f, and zero at all other nodes on ∂�̂ and in �̂. Similarly we define the edge
interpolant I 0

∂f1. As in the analysis of the face H−1/2-extension (cf. [17,29])), we can
show

‖I 0
f 1‖ 1

2 ,∂�̂
<∼ log

1
2 (1/h), ‖curlSvh‖0,f

<∼ h− 1
2 ‖curlSvh‖− 1

2 ,∂�̂
, ‖I 0

∂f1‖0,f
<∼ h

1
2 ,

thus obtaining

|
∫

f

curlSvh · 1ds| <∼ log
1
2 (1/h)‖curlSvh‖− 1

2 , ∂�̂
<∼ log

1
2 (1/h)‖curl vh‖0,�̂.

This, along with (4.21), leads to

|Ce| <∼ log
1
2 (1/h)‖curl vh‖0,�̂.

By the definition of Ce, we further obtain

‖C̃e · t∂f‖0,∂f
<∼ |Ce| <∼ log

1
2 (1/h)‖curl vh‖0,�̂.

Using this estimate and the definition of C̃e we obtain

‖curlSC̃e‖− 1
2 ,f
<∼ log

1
2 (1/h)‖C̃e · t∂f‖0,∂f

<∼ log(1/h)‖curlvh‖0,�̂ , (4.22)

‖C̃e‖0,�̂ + ‖curl C̃e‖0,�̂
<∼ ‖C̃e · t∂f‖0,∂f

<∼ log
1
2 (1/h)‖curlvh‖0,�̂ , (4.23)

where we have used Lemma 6.8 in [21] for the derivation of the first inequality in

(4.22). By the definition of v̂h,e, combining the H− 1
2 -extension with (4.22), yields

‖curlS v̂h,e‖− 1
2 ,f
<∼ ‖curlSvh‖− 1

2 ,f
+ ‖curlSC̃e‖− 1

2 ,f

<∼ log(1/h)‖curlSvh‖− 1
2 ,∂�̂

+ log(1/h)‖curlvh‖0, �̂ (4.24)

<∼ log(1/h)‖curlvh‖0, �̂.

Now by the triangle inequality, we have

‖wh‖0,�̂
<∼ ‖C̃e‖0,�̂ + ‖ŵh‖0,�̂,
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which, together with (4.23), (4.19) and (4.24), leads to

‖wh‖0,�̂
<∼ log(1/h)‖curlvh‖0,�̂ + ‖curlŵh‖0,�̂. (4.25)

Noting that

curl ŵh = curl wh − curl C̃e = curl vh − curl C̃e,

we obtain by using (4.23) that

‖curl ŵh‖0,�̂
<∼ ‖curl vh‖0,�̂ + ‖curl C̃e‖0,�̂

<∼ log(1/h)‖curl vh‖0,�̂.

Combining this with (4.25), we get the desired estimate (4.16). ��
Lemma 4.4 Let v be a vertex of �̂ and vh a function in Vh(�̂). Then we can write vh

as

vh = ∇ ph + wh

for some ph ∈ Zh(�̂) and wh ∈ Vh(�̂) satisfying ph(v) = 0 and

‖wh‖0,�̂
<∼ log(1/h)‖curl wh‖0,�̂.

Proof Consider a face f containing v as a vertex, and let φ∂f be a function that is linear
on each edge of f and continuous on ∂f such that φ∂f(v) = 0. Then as in the proof
of Lemma 4.3, we can follow [29] to decompose vh · t∂f on ∂f and build the desired
decomposition for vh . ��
Lemma 4.5 Let e be a (closed) edge of �̂, and v be a vertex of �̂ but v 
∈ e. Assume
that vh ∈ Vh(�̂) satisfies λe(vh) = 0 for all e ⊂ e. Then vh can be decomposed as

vh = ∇ ph + wh

for some ph ∈ Zh(�̂) and wh ∈ Vh(�̂) such that

ph(v) = 0 , and ph = 0 on e, λe(wh) = 0 ∀ e ⊂ e,

and wh has the following estimate

‖wh‖0,�̂
<∼ log(1/h)‖curlwh‖0,�̂. (4.26)

Proof Let f be a (closed) face, which has v as one of its vertices, but does not have e
as one of its edges. Let C∂f be the average of vh · t∂f over ∂f, then we can split vh · t∂f
into the sum φ′

∂f + C∂f on ∂f such that φ∂f is continuous on ∂f, and piecewise linear
on each edge of f and satisfies φ∂f(v) = 0. Then we extend φ∂f and C∂f naturally by
zero onto �̂ such that their extensions φ̃∂f ∈ Zh(�̂) and C̃∂f ∈ Vh(�̂).

We will treat the problem separately according to two different cases.
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(i) There is a (closed) face f′ such that f′ ∩ f = ∅ and f′ has e as one of its edges. It
is the case when �̂ is a hexahedron.

In this case, we can directly decompose vh · tec into the sum φ′
e +Ce on ec = ∂f′\e

as in Lemma 4.3, then extend φe and Ce naturally by zero such that their extensions
φ̃e ∈ Zh(�̂) and C̃e ∈ Vh(�̂). Then we define

v̂h = vh − (∇φ̃∂f + ∇φ̃e + C̃∂f + C̃e).

It is clear to see (v̂h · t∂f)|∂f = (v̂h · t∂f′)|∂f′ = 0.Now applying Lemma 4.2 for v̂h , one
can get a decomposition of v̂h based on the two faces f and f′, and further construct
the desired decomposition of vh .

(ii) The edge e has a common vertex with a (closed) edge e′ of f. This is the case
when �̂ is a tetrahedron. Then we set

ṽh = vh − (∇φ̃∂f + C̃∂f).

By the assumption, we know ṽh · t� = 0 on � = e∪e′. Let f′ be the face with e and e′
as two of its neighboring edges, and set �c = ∂f′\�. As in Lemma 4.3, we can build
a decomposition of ṽh · t�c as follows:

ṽh · t�c = φ′
� + C� on �c,

where φ� vanishes at the two endpoints of �c. Let φ̃� ∈ Zh(�̂) and C̃� ∈ Vh(�̂) be
the natural extensions of φ� and C� by zero, respectively, and set

v̂h = vh − (∇φ̃∂f + ∇φ̃� + C̃∂f + C̃�),

one can easily check that (v̂h · t∂f)|∂f = (v̂h · t∂f′)|∂f′ = 0. Now applying Lemma 4.2
for v̂h , one can get a decomposition of v̂h based on the two faces f and f′, and further
get the desired decomposition of vh as in Lemma 4.3. ��

Following the same arguments as the ones in the proof of Lemma 4.5, we can show

Lemma 4.6 Let �̂ be the union of a set of neighboring (closed) edges and (closed)
faces of �̂ such that it is connected and vh be a function in Vh(�̂) satisfying λe(vh)

= 0 for all e ⊂ �̂. Then vh admits a decomposition

vh = ∇ ph + wh

for some ph ∈ Zh(�̂) and wh ∈ Vh(�̂) such that ph = 0 on �̂ and λe(wh) = 0 for
e ⊂ �̂, and wh satisfies the estimate

‖wh‖0,�̂
<∼ log(1/h)‖curlwh‖0,�̂.
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5 A stable decomposition for any function vh in Vh(�)

With the help of the preliminary results from Sect. 4, we are now ready to address
the central task of this work, namely to construct a discrete weighted Helmholz-
type decomposition for any function vh in Vh(�). For the purpose, we start with a
classification of all the polyhedra {�0

r }N0
r=1 based on the values of β(x) in (2.1).

Let �1 be the set of all polyhedral subdomains �0
r which do not have a parent

subdomain. Namely, �0
r ∈ �1 if and only if it holds that for any subdomain �0

r ′ with
r ′ 
= r , either �̄0

r ′ ∩ �̄0
r = ∅ or βr ′ ≤ βr . Clearly �1 is not empty, as it contains at

least all the subdomains �0
r where it holds that βr = max1≤k≤N0 βk .

Let �2 denote a subset of the children of all polyhedra belonging to �1 such that
each polyhedron in�2 has no parent subdomain in {�0

r }N0
r=1\�1. If�2 = ∅, then there

are no subdomains where β(x) takes values less than its value in �1, and we stop the
process.

Similarly, if�2 
= ∅ we let�3 be a subset of the children of all polyhedra belonging
to�1∪�2 such that each polyhedron in�3 has no parent subdomain in {�0

r }N0
r=1\(�1∪

�2). If �3 = ∅, there are no subdomains where β(x) takes values less than its values
in �1 and �2, then we stop the process.

We continue this procedure to classify a sequence of non-empty sets, �1, �2, . . .,
till we have �m+1 = ∅ for some m ≥ 1, that is, there are no subdomains where β(x)
takes values less than its value in �m . Clearly such integer m exists and m ≤ N0.

We can see from the above classifying process that the sequence�1, . . . , �m satisfy
the following conditions: (1) �l 
= ∅ for 1 ≤ l ≤ m; (2) �l consists of some children
of polyhedra belonging to ∪l−1

i=1�i ; (3) each polyhedron in�l has no parent subdomain

in {�0
r }N0

r=1\(∪l−1
i=1�i ); (4) any two polyhedra in �l either do not intersect each other

or coefficient β(x) takes the same value on both polyhedra; (5) {�0
1,�

0
2, . . . , �

0
N0

} =
{�1, �2, . . . , �m}.

Next, we set n0 = 0. Without loss of generality, we assume that for l = 1, . . . ,m,

�l =
{
�0

nl−1+1, �
0
nl−1+2, . . . , �

0
nl

}

and nl > nl−1. Clearly, we see nm = N0 and that �l contains (nl − nl−1) polyhedra.
We are now ready to construct a desired decomposition for any vh in Vh(�), and

try and achieve this by three steps.

Step 1: Decompose vh on all the polyhedra in �1.

We shall write vh,r = vh |�0
r
. For r = 1, 2, . . . , n1, we can follow the arguments of

Lemma 4.1 to decompose vh,r as follows:

vh,r = ∇ pr + wr = ∇ ph,r + rhwr := ∇ ph,r + wh,r , (5.1)

where pr ∈ H1(�0
r ), and wr ∈ H(curl;�0

r ) ∩ H0(div;�0
r ) and div wr = 0 in �0

r .
Moreover,

‖wh,r‖0,�0
r
+ ‖curl wh,r‖0,�0

r
<∼ ‖curl vh,r‖0,�0

r
∀ r = 1, . . . , n1. (5.2)
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Let p̃h,r ∈ Zh(�) be the standard extensions of ph,r by zero onto �, and w̃h,r ∈
Vh(�) be the discrete curl curl-extension of wh,r in each �0

l such that λe(w̃h,r ) = 0
for every e ⊂ ∂�0

l \∂�0
r for all l 
= r . Then we define

ṽh,r = ∇ p̃h,r + w̃h,r for all r such that �0
r ∈ �1. (5.3)

We remark that if a subdomain �0
r in �1 intersects one or more than one other sub-

domains in �1, then β(x) must take the same values in all these subdomains. In this
case, we should take the union of all these subdomains to replace �0

r when we do the
extensions for p̃h,r and w̃h,r above.

Step 2: Decompose vh on all the polyhedra in �2.

Consider a subdomain�0
r from�2. By the assumption of Theorem 3.2,�0

r satisfies
either Condition A or Condition B. For the sake of exposition, we treat only one case
in each step, namely Condition A in this step, and Condition B in Step 3. The other
case in each step can be handled in a similar manner. As �0

r satisfies Condition A, it
has at most two parent subdomains in �1, which do not intersect each other. Without
loss of generality, assume that�0

r has two parent subdomains in�1, say�0
r1

and�0
r2

,
and �̄0

r1
∩ �̄0

r2
= ∅, while �̄0

r ∩ �̄0
r1

= v (a vertex) and �̄0
r ∩ �̄0

r2
= e (an edge). Set

v∗
h,r = vh,r − (ṽh,r1 + ṽh,r2) on �0

r .

It is easy to see that λe(v∗
h,r ) = 0 for e ⊂ e. Then by Lemma 4.5, there exist p∗

h,r ∈
Zh(�

0
r ) and w∗

h,r ∈ Vh(�
0
r ) such that

v∗
h,r = ∇ p∗

h,r + w∗
h,r on �0

r , (5.4)

and

p∗
h,r (v) = 0 , p∗

h,r = 0 on e , and λe(w∗
h,r ) = 0 for all e ⊂ e. (5.5)

Moreover, for r = n1 + 1, . . . , n2, i.e., for all indices r such that �0
r ∈ �2, it follows

from (5.4) and (5.3) that

‖curlw∗
h,r‖0,�0

r
= ‖curlv∗

h,r‖0,�0
r

= ‖curl(vh,r − (w̃h,r1 + w̃h,r2))‖0,�0
r

<∼ ‖curlvh,r‖0,�0
r
+

2∑
l=1

‖curlw̃h,rl ‖0,�0
r
. (5.6)

We further get by (4.26) that

‖w∗
h,r‖0,�0

r
<∼ log(1/h)‖curl w∗

h,r‖0,�0
r

<∼ log(1/h)

(
‖curl vh,r‖0,�0

r
+

2∑
l=1

‖curl w̃h,rl ‖0,�0
r

)
. (5.7)
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Now we can define the decomposition of vh on �0
r ∈ �2 as

vh,r = ∇
(

p∗
h,r +

2∑
l=1

p̃h,rl

)
+ w∗

h,r +
2∑

l=1

w̃h,rl , (5.8)

where w̃h,r1 = 0 on�0
r , by noting that �̄0

r ∩ �̄0
r1

= v, with v being a common vertex.
For functions p∗

h,r and w∗
h,r in (5.4), we shall extend them onto the entire domain�.

Let p̃∗
h,r ∈ Zh(�) be the standard extension of p∗

h,r by zero onto�, and w̃∗
h,r ∈ Vh(�)

be an extension of w∗
h,r such that λe(w̃∗

h,r ) = 0 for every e ⊂ ∂�0
l \∂�0

r with all l’s

such that l 
= r , and w̃∗
h,r is the discrete curl curl-extension on each �0

l . Then we set

ṽ∗
h,r = ∇ p̃∗

h,r + w̃∗
h,r for all r such that �0

r ∈ �2. (5.9)

We remark that if a subdomain �0
r in �2 intersects one or more than one other sub-

domains in �2, then β(x) must take the same value in all these subdomains. In this
case, we should take the union of all these subdomains to replace �0

r when we do the
extensions for p̃∗

h,r and w̃∗
h,r above.

Step 3: Obtain the final desired decomposition of vh .

We now consider the index l ≥ 3, and assume that the decompositions of vh on all
polyhedra belonging to �1 �2, . . . , �l−1 are done as in Steps 1 and 2. Next, we will
build up a decomposition of vh in all subdomains �0

r ∈ �l .
Without loss of generality, we assume that�0

r satisfies Condition B; see the remark
at the first part of Step 2. Then by Condition B, we use �r to denote the corresponding
connected set, which is the union of some edges and faces. For the ease of notation,
we introduce two index sets:

�1
r = { i ; 1 ≤ i ≤ n1 such that ∂�0

i ∩ ∂�0
r 
= ∅} ,

�l−1
r = { i ; n1 + 1 ≤ i ≤ nl−1 such that ∂�0

i ∩ ∂�0
r 
= ∅}.

Define

v∗
h,r = vh,r −

∑

i∈�1
r

ṽh,i −
∑

i∈�l−1
r

ṽ∗
h,i on �0

r . (5.10)

By the definitions of ṽh,i and ṽ∗
h,i , we know λe(v∗

h,r ) = 0 for all e ⊂ �r . So by

Lemma 4.6, one can find p∗
h,r ∈ Zh(�

0
r ) and w∗

h,r ∈ Vh(�
0
r ) such that

v∗
h,r = ∇ p∗

h,r + w∗
h,r on �0

r , (5.11)

and

p∗
h,r = 0 on �r and λe(w∗

h,r ) = 0 for all e ⊂ �r . (5.12)
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Using (5.10) and (5.11), we have the following decomposition for vh on each�0
r ∈�l :

vh,r =∇
⎛
⎝p∗

h,r +
∑

i∈�1
r

p̃h,i +
∑

i∈�l−1
r

p̃∗
h,i

⎞
⎠+ w∗

h,r +
∑

i∈�1
r

w̃h,i +
∑

i∈�l−1
r

w̃∗
h,i on �0

r .

(5.13)

By (5.11) and the estimate for w∗
h,r in Lemma 4.6, one can verify for all�0

r ∈ �l that
(see Step 2)

‖curlw∗
h,r‖0,�0

r
<∼ ‖curlvh,r‖0,�0

r
+

∑

i∈�1
r

‖curlw̃h,i‖0,�0
r
+

∑

i∈�l−1
r

‖curlw̃∗
h,i‖0,�0

r

(5.14)

‖w∗
h,r‖0,�0

r
<∼ log(1/h)

⎛
⎝‖curl vh,r‖0,�0

r
+

∑

i∈�1
r

‖curl w̃h,i‖0,�0
r

+
∑

i∈�l−1
r

‖curl w̃∗
h,i‖0,�0

r

⎞
⎠ . (5.15)

As it was done in Steps 1 and 2, we can extend p∗
h,r and w∗

h,r by zero onto the entire
domain � to get p̃∗

h,r and w̃∗
h,r . Then we define

ṽ∗
h,r = ∇ p̃∗

h,r + w̃∗
h,r for all r such that �0

r ∈ �l . (5.16)

By the definition of ṽ∗
h,r and the property (5.12), we know λe(ṽ∗

h,r ) = 0 for all e ∈ �r .
Continuing with the above procedure for all l’s till l = m, we will have built up the

decomposition of vh over all the subdomains �0
1,�

0
2, . . . , �

0
N0

such that

vh =
n1∑

r=1

ṽh,r +
nm∑

r=n1+1

ṽ∗
h,r = ∇ ph + wh (5.17)

where ph ∈ Zh(�) and wh ∈ Vh(�) are given by

ph =
n1∑

r=1

p̃h,r +
nm∑

r=n1+1

p̃∗
h,r and wh =

n1∑
r=1

w̃h,r +
nm∑

r=n1+1

w̃∗
h,r . (5.18)

6 Proof of the key auxiliary result

This section is devoted to the proof of the key auxiliary result of this paper,
Theorem 3.1. For this purpose a few important concepts about the relation between
different subdomains are first introduced. It is reminded that all the subdomains
�0

1,�
0
2, . . . , �

0
N0

below are the same as the ones described in Sect. 3.
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Definition 6.1 A parent of subdomain �0
r is called a level-1 ancestor of �0

r , and a
parent of a level-1 ancestor of�0

r is called a level-2 ancestor of�0
r . In general, a parent

of a level- j ancestor of �0
r is called a level-( j + 1) ancestor of �0

r .

Definition 6.2 A child of�0
r is called a level-1 offspring of�0

r , and a child of a level-
1 offspring of �0

r is called a level-2 offspring of �0
r . In general, a child of a level-l

offspring of �0
r is called a level-(l + 1) offspring of �0

r .

By �( j)
r (a) we shall denote the set of all level- j ancestors of �0

r , and Lr (a) the
number of all the levels of the ancestors of �0

r . By �(l)r (o) we shall denote the set of
all l-level offsprings of�0

r , and Lr (o) the number of all the levels of the offsprings of
�0

r .
The following auxiliary estimate is needed in the proof of Theorem 3.1.

Lemma 6.1 For any subdomain �0
r from �l(l ≥ 2), let w∗

h,r be defined as in Steps 2
and 3 for the construction of the decomposition of any vh ∈ Vh(�) in Sect. 5. Then
w∗

h,r admits the following estimate

‖curl w∗
h,r‖0,�0

r
<∼ ‖curl vh‖0,�0

r
+

Lr (a)∑
j=1

log j (1/h)
∑

i∈�( j)
r (a)

‖curl vh‖0,�0
i
. (6.1)

Proof We prove by induction, and start with the case of l = 2. It follows from (5.6)
that

‖curl w∗
h,r‖0,�0

r
<∼ ‖curl vh,r‖0,�0

r
+

2∑
l=1

‖curl w̃h,rl ‖0,�0
r
. (6.2)

As w̃h,r2 is the discrete curl curl-extension in�0
r , we have (cf. Lemmata 4.5 and 6.10,

[20])

‖curlw̃h,r2‖0,�0
r
<∼ log1/2(1/h)‖w̃h,r2 × n‖0,e <∼ log(1/h)‖curlwh,r2‖0,�0

r2

= log(1/h)‖curlvh‖0,�0
r2
, (6.3)

where e denotes the common edge of�0
r and�0

r2
or the union of these common edges.

This, combining with (6.2) and the fact that w̃h,r1 = 0 on �0
r , yields

‖curl w∗
h,r‖0,�0

r
<∼ ‖curl vh‖0,�0

r
+ log(1/h)‖curl vh‖0,�0

r2

<∼ ‖curl vh‖0,�0
r
+ log(1/h)

∑

i∈�(1)r (a)

‖curl vh‖0,�0
i
. (6.4)

So (6.1) is verified for all the subdomains �0
r in �2.
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Now, assume that (6.1) is true for all subdomains �0
r ∈ �l with l ≤ n. Then we

need to verify (6.1) for all subdomains �0
r ∈ �n+1. It follows from (5.14) that

‖curl w∗
h,r‖0,�0

r
<∼ ‖curl vh,r‖0,�0

r
+

∑

i∈�1
r

‖curl w̃h,i‖0,�0
r
+

∑
i∈�n

r

‖curl w̃∗
h,i‖0,�0

r
.

(6.5)

Similarly as (6.3) was derived, one can check that for each i ∈ �n
r ,

‖curl w̃h,i‖0,�0
r
<∼ log(1/h)‖curl wh,i‖0,�0

i
= log(1/h)‖curl vh,i‖0,�0

i
,

‖curl w̃∗
h,i‖0,�0

r
<∼ log1/2(1/h)‖w̃∗

h,i × n‖0,e = log1/2(1/h)‖w∗
h,i × n‖0,e

<∼ log(1/h)‖curl w∗
h,i‖0,�0

i
,

where e denotes the common edge of�0
r and�0

i or the union of these common edges.
Combining these estimates with (6.5) gives

‖curl w∗
h,r‖0,�0

r
<∼ ‖curl vh,r‖0,�0

r
+ log(1/h)

∑

i∈�1
r

‖curl vh,i‖0,�0
i

+ log(1/h)
∑
i∈�n

r

‖curl w∗
h,i‖0,�0

i
. (6.6)

Noting that for i ∈ �n
r , we have �0

i ∈ �l for some l ≤ n. Thus by the inductive
assumption,

∑
i∈�n

r

‖curl w∗
h,i‖0,�0

i
<∼

∑
i∈�n

r

‖curl vh‖0,�0
i

+
∑
i∈�n

r

Li (a)∑
j=1

log j (1/h)
∑

k∈�( j)
i (a)

‖curl vh‖0,�0
k
. (6.7)

But for all subdomains �0
r ∈ �n+1 and i ∈ �n

r , we know Li (a) ≤ Lr (a) and

�
( j)
i (a) = ∅ for j > Li (a) by definition, so we have the relation

∑
i∈�n

r

Li (a)∑
j=1

∑

k∈�( j)
i (a)

=
Lr (a)∑
j=1

∑
i∈�n

r

∑

k∈�( j)
i (a)

=
Lr (a)∑
j=1

∑

k∈�( j+1)
r (a)

. (6.8)

Combining this with the fact that �( j+1)
r (a) = ∅ for j ≥ Lr (a), we get

∑
i∈�n

r

Li (a)∑
j=1

∑

k∈�( j)
i (a)

=
Lr (a)−1∑

j=1

∑

k∈�( j+1)
r (a)

.
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From this identity and (6.7) it follows that

∑
i∈�n

r

‖curl w∗
h,i‖0,�0

i
<∼

∑
i∈�n

r

‖curl vh‖0,�0
i
+

Lr (a)∑
j=2

log j (1/h)
∑

k∈�( j)
r (a)

‖curl vh‖0,�0
k
.

(6.9)

Substituting this into (6.6), and using the identity

∑

i∈�1
r

+
∑
i∈�n

r

=
∑

i∈�(1)r (a)

for �0
r ∈ �n+1,

we can immediately derive that

‖curl w∗
h,r‖0,�0

r
<∼ ‖curl vh‖0,�0

r
+

Lr (a)∑
j=1

log j (1/h)
∑

k∈�( j)
r (a)

‖curl vh‖0,�0
k
.

(6.10)

This proves (6.1) for all subdomains �0
r ∈ �n+1, thus completes the proof of

Lemma 6.1 by the mathematical induction. ��
Proof of Theorem 3.1 We are now ready to show Theorem 3.1. Let vh ∈ Vh(�) satisfy
the orthogonality (3.3), then we can have the decomposition (5.17) for vh .

By means of (5.17) and the orthogonality (3.3), we first see

(βvh, vh) = (β∇ ph,∇ ph)+ (βwh,wh)+ 2(β∇ ph,wh)

= (β∇ ph,∇ ph)+ (βwh,wh)+ 2(β∇ ph, vh − ∇ ph)

= (βwh,wh)− (β∇ ph,∇ ph) ≤ (βwh,wh) ,

which implies

(βvh, vh) ≤
N0∑

r=1

‖β 1
2 wh‖2

0,�0
r
. (6.11)

So it remains to estimate ‖β 1
2 wh‖2

0,�0
r

for each subdomain �0
r .

We start with the estimate of ‖β 1
2 wh‖2

0,�0
r

for each subdomain �0
r in �1, i.e.,

1 ≤ r ≤ n1.
By the definition of w̃∗

h,i in (5.18), we have λe(w̃∗
h,i ) = 0 for e ∈ ∂�0

r . Moreover,

any two of the subdomains �0
1, . . . , �

0
n1

do not intersect, so we have

‖β 1
2 wh‖2

0,�0
r

= ‖β 1
2 w̃h,r‖2

0,�0
r

= βr‖wh,r‖2
0,�0

r
.
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This, along with (5.2), yields the following estimate for r = 1, . . . , n1,

‖β 1
2 wh‖2

0,�0
r
<∼ βr‖curl vh,r‖2

0,�0
r

= ‖β
1
2

r curl vh‖2
0,�0

r
. (6.12)

Next, we consider all the subdomains �0
r in �2. As in Step 2 of the construction of

the stable decomposition for vh , we assume that�0
r satisfies Condition A and has just

two parent subdomains in�1,�
0
r1

and�0
r2

, which satisfy that �̄0
r ∩�̄0

r1
= v (a vertex)

and �̄0
r ∩ �̄0

r2
= e (an edge). Then we have

wh |�0
r

= w∗
h,r + w̃h,r2 |�0

r
.

By the triangle inequality,

‖wh‖0,�0
r
<∼ ‖w∗

h,r‖0,�0
r
+ ‖w̃h,r2‖0,�0

r
. (6.13)

Noting that w̃h,r2 is the discrete curl curl-extension in �0
r , we can deduce by using

Lemmata 4.5 and 6.10 in [20] that

‖w̃h,r2‖0,�0
r
<∼ log

1
2 (1/h)‖w̃h,r2 × n‖0,e <∼ log(1/h)‖curl vh‖0,�0

r2
.

Using this estimate, (5.7) and (6.4) we derive from (6.13) that

‖wh‖0,�0
r
<∼ log(1/h)‖curl vh‖0,�0

r
+ log2(1/h)‖curl vh‖0,�0

r2
. (6.14)

Then by inserting the coefficient β, we readily have for all subdomains �0
r ∈ �2 that

‖β 1
2 wh‖0,�0

r
<∼ log(1/h)‖β

1
2

r curl vh‖0,�0
r
+ log2(1/h)‖β

1
2

r curl vh‖0,�0
r2

<∼ log(1/h)‖β
1
2

r curl vh‖0,�0
r
+ log2(1/h)

√
βr

βr2

‖β
1
2

r2 curl vh‖0,�0
r2
.

(6.15)

Finally we consider all the subdomains �0
r from the general class �l with l ≥ 3.

By the definition of wh , we can establish the same decomposition for wh |�0
r

as we did
for vh,r = vh |�0

r
in Sect. 5; see (5.10), which leads to the following decomposition in

�0
r for wh :

wh = w∗
h,r +

∑

i∈�1
r

w̃h,i +
∑

i∈�l−1
r

w̃∗
h,i .
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In an analogous way as deriving (6.14), one can verify by using (5.15) that

‖wh‖0,�0
r
<∼ log(1/h)‖curl vh‖0,�0

r
+ log2(1/h)

∑

i∈�1
r

‖curl vh‖0,�0
i

+ log2(1/h)
∑

i∈�l−1
r

‖curl w∗
h,i‖0,�0

i
. (6.16)

But it follows from Lemma 6.1 that

‖curl w∗
h,i‖0,�0

i
<∼ ‖curl vh‖0,�0

i
+

Li (a)∑
j=1

log j (1/h)
∑

k∈�( j)
r (a)

‖curl vh‖0,�0
k
.

Then we further deduce from (6.16) that

‖wh‖0,�0
r
<∼ log(1/h)‖curl vh‖0,�0

r
+

Lr (a)∑
j=1

log j+1(1/h)
∑

i∈�( j)
r (a)

‖curl vh‖0,�0
i
.

Inserting the coefficient β gives

‖β 1
2 wh‖0,�0

r
<∼ log(1/h)‖β 1

2 curl vh‖0,�0
r

+
Lr (a)∑
j=1

log j+1(1/h)
∑

i∈�( j)
r (a)

√
βr

βi
‖β 1

2 curl vh‖0,�0
i
.

Summing up this estimate with the ones in (6.12) and (6.15), we come to

‖β 1
2 wh‖2

0,�
<∼ log(1/h)‖β 1

2 curl vh‖2
0,�

+
N0∑

r=n1+1

Lr (a)∑
j=1

log j+1(1/h)
∑

i∈�( j)
r (a)

βr

βi
‖β 1

2 curl vh‖2
0,�0

i
. (6.17)

By the definitions of Lr (a),�
( j)
r (a) and �( j)

r (o), we can verify that

N0∑
r=n1+1

Lr (a)∑
j=1

log j+1(1/h)
∑

i∈�( j)
r (a)

βr

βi
‖β 1

2 curl vh‖2
0,�0

i

=
N0∑

r=1

⎛
⎜⎝β−1

r

Lr (o)∑
j=1

log j+1(1/h)
∑

i∈�( j)
r (o)

βi

⎞
⎟⎠‖β 1

2 curl vh‖2
0,�0

r

≤ logm+1(1/h)
N0∑

r=1

Cr‖β 1
2 curl vh‖2

0,�0
r
, (6.18)
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where m = max1≤r≤N0 Lr (o) and Cr is a constant given by

Cr = β−1
r

Lr (o)∑
j=1

∑

i∈�( j)
r (o)

βi .

Noting the facts that βi < βr for all i ∈ �( j)
r (o), Lr (o) is a finite number and the set

�
( j)
r (o) contains only a few elements, the constant Cr must be uniformly bounded for

all r ’s. Applying (6.18) to (6.17), we obtain

‖β 1
2 wh‖2

0,�
<∼ C logm+1(1/h)‖β 1

2 curl vh‖2
0,�

where C is a constant given by C = max1≤r≤N0 Cr . This completes the proof of
Theorem 3.1. ��

7 Application

In this section we shall apply the discrete weighted Helmholtz decomposition
(cf. Theorem 3.2) developed in Sect. 3 to analyse how the condition number of the
preconditioned edge element system by the non-overlapping domain decomposition
preconditioner proposed in [21] depends on the jumps of the coefficients in (1.1) and
(1.2) across the interfaces between any two subdomains of different media. We will
adopt the same notations below as the ones in Sect. 2.1.

Associated with the Maxwell system (1.1)–(1.2), we may consider (cf. [21]) the
following variational saddle-point formulation: Find (u, p) ∈ H0(curl;�)× H1

0 (�)

such that

{
(αcurl u, curl v)+ γ0(βu, v)+ (∇ p, βv) = (f, v), ∀ v ∈ H0(curl;�)
(βu,∇q) = (g, q), ∀ q ∈ H1

0 (�)
(7.1)

and its edge element approximation: Find (uh, ph) ∈ Vh(�)× Zh(�) such that

{
(αcurl uh, curl vh)+γ0(βuh, vh)+(∇ ph, βvh)=(f, vh), ∀ vh ∈Vh(�)

(βuh,∇qh) = (g, qh), ∀ qh ∈ Zh(�).
(7.2)

It is well known (cf. [11,15,25]) that the system (7.2) can be simplified to a
symmetric and positive definite one, namely we can set the Lagrange multiplier ph = 0
and remove the second equation, when γ0 = 1 or the zeroth order term is present in
the Maxwell equation (1.1). The most challenging case in the numerical solution of
system (7.2) is the real saddle-point case when γ0 = 0, where we have to keep ph and
the second equation there. Still no efficient iterative methods have been proposed in the
literature for this saddle-point system by using non-overlapping domain decomposition
preconditioners, except the one developed in [21], in combination with a precondi-
tioned iterative Uzawa method. The preconditioned system using the substructuring
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preconditioner from [21] for the whole saddle-point system (7.2) was shown to be
nearly optimal in the sense that its condition number grows only as the logarithm
of the ratio between the subdomain diameter and the finite element mesh size, but
no conclusion was achieved in [21] about how the condition number of the global
preconditioned system depends on the jumps of the coefficients α and β in (7.2). We
are able to show in the rest of this section, with the help of the novel stable discrete
weighted Helmholtz decomposition developed in Sect. 3, that this condition number
is indeed also independent of the jumps of the coefficients.

7.1 Augmented saddle-point system and Uzawa methods

In this and next subsections, we shall recall the non-overlapping domain decomposition
preconditioner developed in [21] for the saddle-point system (7.2). We first write the
system into an equivalent operator form by introducing the operators Ā : Vh(�) →
Vh(�) and B : Zh(�) → Vh(�) by

( Āuh, vh) = (α curl uh, curl vh) , (Bph, vh) = (∇ ph, βvh)

for all uh, vh ∈ Vh(�) and ph ∈ Zh(�), and the dual operator Bt : Vh(�) → Zh(�)

of B by

(Bt uh, qh) = (β uh,∇qh), ∀qh ∈ Zh(�). (7.3)

Let f̄h ∈ Vh(�), gh ∈ Zh(�) be the L2-projections of f and g. Then we can rewrite
the system (7.2) into

( Ā + γ0 β I )uh + Bph = f̄h , Bt uh = gh . (7.4)

Noting that Ā is singular, we can transform the system (7.4) into the following
equivalent augmented saddle-point problem:

Auh + Bph = fh , Bt uh = gh . (7.5)

where A and fh are given by [21]

A = Ā + γ0 β I + BĈ−1 Bt and fh = f̄h + BĈ−1gh (7.6)

and Ĉ : Zh(�) → Zh(�) will be chosen to be a symmetric and positive definite
preconditioner for the discrete Laplace operator on Zh(�). Let Â be a preconditioner
for operator A. Then the system (7.5) can be solved by many existing preconditioned
iterative methods, e.g., the nonlinear preconditioned Uzawa-type algorithm developed
in [19]. As shown in [19], the efficiency of the Uzawa-type algorithm is completely
determined by the condition numbers κ( Â−1 A) and κ(Ĉ−1 Bt A−1 B). Two efficient
preconditioners Â and Ĉ were developed in [21], based on a domain decomposition
method. And it was shown that κ( Â−1 A) and κ(Ĉ−1 Bt A−1 B) are nearly optimal, i.e.
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nearly independent of the subdomain size d and fine mesh size h, but it is unclear
how they depend on the jumps of the coefficients in (1.1)–(1.2). The remaining part
of this work will clarify this important issue. We will propose an improved variant of
Â introduced in [21], and demonstrate rigorously that the condition numbers of the
preconditioned systems is independent of the jumps in the coefficients.

7.2 Construction of a preconditioner for A

In this section we present a substructuring preconditioner for A that improves the
one proposed in [21]. First we recall the decomposition of the global domain � in
Sect. 2.1 into a set of medium subdomains�0

1,�
0
2, . . . , �

0
N0

, based on the distribution

of the coefficient β(x). Then we further decompose each medium subdomain �0
r

(1 ≤ r ≤ N0) into a set of smaller polyhedral subdomains of size d (see [4,32]),
thus leading to a domain decomposition of the global domain �: �1,�1, . . . , �N .
We assume that each �k (1 ≤ k ≤ N ) is formed by a set of fine elements of the
triangulation Th over �.

We will write the common face of two subdomains �i and � j by �i j , and set

� = ∪i j�i j , �i = � ∩ ∂�i , �i j = �i ∪� j ∪ �i j .

� is called the interface associated with the domain decomposition �1,�1, . . . , �N .
For the definiteness, a unique unit normal direction n is assigned to each face f of �.
On each subdomain�k (k = 1, . . . , N ) let Vh(�k) be the restriction of Vh(�) on�k .
Then we define operator Ak : Vh(�k) → Vh(�k) by

(Akv,w)�k = (α curl u, curl v)�k + (β u, v)�k ∀ u, v ∈ Vh(�k) ,

and a local subspace

V k(�) = {v ∈ Vh(�); λe(v) = 0 for each e ∈ �\�k}.
We now introduce a subspace which is defined globally in � but is discrete
Ak-harmonic in each subdomain:

V H (�)=
{

v ∈ Vh(�); v is the discrete Ak-extension of (v × n)|∂�k in each �k

}
.

Let Ã : Vh(�) → Vh(�) be the self-adjoint operator defined by

( Ãu, v) = (α curl u, curl v)+ (β u, v) ∀ u, v ∈ Vh(�),

then one can easily see that Vh(�) has the following orthogonal decomposition with
respect to the inner product ( Ã·, ·) :

Vh(�) =
N∑

k=1

V k(�)⊕ V H (�). (7.7)
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For any face f of �i , we use fb to denote the union of all Th-induced (closed)
triangles on f, which have either one single vertex or one edge lying on ∂f, and f∂ to
denote the open set f\fb. Furthermore, we define two subspaces of V H (�):

V i j (�) =
{

v ∈ V H (�); λe(v) = 0 for each e ∈ �\�i j

}
,

V 0(�) =
{

v ∈ V H (�); λe(v) = 0 for each e ∈ f∂ with f ⊂ �
}
.

The space V 0(�) is called the coarse subspace.
It is easy to see that the space Vh(�) has the following decomposition (not a direct

sum):

Vh(�) =
N∑

k=1

V k(�)⊕ (V 0(�)+
∑
�i j

V i j (�)). (7.8)

Next, we introduce a substructuring preconditioner for operator A, that improves
the one proposed in [21]. Corresponding to the decomposition (7.8), we will define the
local solvers and global coarse solver respectively on the subspaces V k(�), V i j (�)

and V 0(�).
On each subdomain �k and each face �i j , the local solver Âk : V k(�) → V k(�)

and Âi j : V i j (�) → V i j (�) can be naturally defined such that

( Âkv, v) =∼ (Akv, v)�k ∀v ∈ V k(�) ; ( Âi j v, v) =∼ (Ai v, v)�i

+(A j v, v)� j ∀v ∈ V i j (�).

But the definition of an efficient global coarse solver on V 0(�) is much more tricky.
For the sake of exposition, we assume that the coefficients α(x) and β(x) in (1.2)
are piecewise constant with respect to the medium domain decomposition {�0

r }N0
r=1,

namely α(x) = αr and β(x) = βr for x ∈ �0
r . Then we set α∗

k = α|�k and β∗
k =

β|�k . Clearly we have α∗
k = αl and β∗

k = βl for �k ⊂ �0
l . For any subdomain �k

(k = 1, . . . , N ), we introduce an important set on its boundary:

�k =
⋃

f⊂�k

fb.

Then we define the global coarse solver Â0 on V 0(�) as follows: for any v,w ∈
V 0(�),

( Â0v,w) = h[1 + log(d/h)]
N∑

k=1

{
α∗

k 〈divτ (v × n)|�k , divτ (w × n)|�k 〉�k

+β∗
k 〈v × n,w × n〉�k

}
.
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This is an improved coarse solver compared to the one proposed in [21], where β∗
k is

taken to be the same as α∗
k . We note that the entries of the stiffness matrix associated

with Â0 can be easily computed [21].
With the above preparations, we are ready to define our new preconditioner Â

for A:

Â−1 =
N∑

k=1

Â−1
k Qk + Â−1

0 Q0 +
∑
�i j

Â−1
i j Qi j (7.9)

where Qk, Q0 and Qi j are the L2-projections from Vh(�) onto V k(�), V 0(�) and
V i j (�) respectively.

In the subsequent analysis, we assume the coefficients α(x) and β(x) satisfy that

1 <∼
β∗

i

α∗
i
/
β∗

j

α∗
j

<∼ 1 for each face �i j and β∗
k
<∼ α∗

k for each �k , (7.10)

and for convenience, we introduce an operator J : Zh(�) → Zh(�) by

(Jφh, ψh) = (β∇φh,∇ψh), ∀φ, ψ ∈ Zh(�). (7.11)

We will show the following estimate for the preconditioner Â defined in (7.9).

Theorem 7.1 Let G(·) ≥ 1 be some given function, and the operator Ĉ satisfy

(Jφ, φ) <∼ (Ĉφ, φ) <∼ G(d/h)(Jφ, φ), ∀φ ∈ Zh(�),

or equivalently,

(Ĉ−1φ, φ) <∼ (J−1φ, φ) <∼ G(d/h)(Ĉ−1φ, φ), ∀φ ∈ Zh(�) , (7.12)

then we have the following estimate (with the integer m from Theorem 3.2)

cond( Â−1 A) <∼ [G(d/h)+ logm+1(1/h)][1 + log(d/h)]2. (7.13)

A similar preconditioner to Â in (7.9) was constructed in [21] and proved to be
nearly optimal: the condition number of the resulting preconditioned system grows
only as the logarithm of the dimension of the local subproblem associated with an
individual subdomain, but possibly depends on the jumps of the coefficients α(x) and
β(x) in (1.1)–(1.2). In the next subsection, we can show that the estimate (7.13) is
independent of possible large jumps in the coefficients α(x) and β(x).

Now we introduce a preconditioner for the Schur complement Bt A−1 B associated
with the saddle-point system (7.5). Assume that Ĉ is a preconditioner for the discrete
Laplacian and satisfies the condition (7.12), then we have
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Theorem 7.2 The condition number of the preconditioned Schur complement system
can be estimated by

cond(Ĉ−1 Bt A−1 B) <∼ G(d/h)[G(d/h)+ logm+1(1/h)]. (7.14)

Proof Using (7.12) we can show [21] that for any q ∈ Zh(�),

(Bt A−1 Bq, q) =∼ sup
vh∈Vh(�)

(βvh,∇q)2

(Avh, vh)
, (7.15)

(Bt A−1 Bq, q) ≥ (β∇q,∇q)2

(BĈ−1 Bt (∇q),∇q)
>∼ (β∇q,∇q). (7.16)

On the other hand, by means of Theorem 3.2 and (7.12) we can verify that (see (7.29)
and (7.31) in Sect. 7.3)

(βvh, vh) <∼ (β∇ ph, ph)+ (βwh,wh) <∼ [G(d/h)

+ log(m+1)(1/h)](Avh, vh), ∀vh ∈ Vh(�).

Now it follows from (7.15), the above estimate and the Cauchy–Schwarz inequality
that

(Bt A−1 Bq, q) <∼ [G(d/h)+ logm+1(1/h)] sup
vh∈Vh(�)

‖β 1
2 vh‖2

0,� ‖β 1
2 ∇q‖2

0,�

(βvh, vh)

<∼ [G(d/h)+ logm+1(1/h)](β∇q,∇q), ∀q ∈ Zh(�).

The desired estimate is now a consequence of this estimate, (7.16) and (7.12). ��
Remark 7.1 When Ĉ is chosen as the usual multigrid preconditioner and the substruc-
turing preconditioner (cf. [4,32]) for the Laplacian operator, the function G(d/h) in
(7.12) can be taken to be 1 and [1 + log(d/h)]2 respectively. For these two standard
choices of Ĉ , the estimates (7.13) and (7.14) can be simplified respectively as (note
that m ≥ 1)

cond( Â−1 A) <∼ logm+1(1/h)[1 + log(d/h)]2

and

cond(Ĉ−1 Bt A−1 B) <∼ G(d/h) logm+1(1/h).

7.3 Proof of Theorem 7.1

We devote this section to the proof of our main theorem of this paper, Theorem 7.1.
We first present some important auxiliary results. On each subdomain �k , we define
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a norm on its boundary �k :

‖
‖X�k
=

(
α∗

k ‖divτ
‖2
− 1

2 , �k
+ β∗

k ‖
‖2
− 1

2 , �k

) 1
2 ∀
 ∈ Vh(�k).

The proof of the next lemma 7.1 follows the one of lemma 4.9 in [21] by means of
the assumption (7.10) and the inverse estimates for ‖divτ
‖2

0,�k
and ‖
‖2

0,�k
, while

the proof of lemma 7.2 is a consequence of the Green formulae and the assumption
(7.10) (e.g., see [1]).

Lemma 7.1 For any
 ∈ Vh(�k), there exists an extension Rk
 ∈ Vh(�k), such that

α∗
k ‖curl(Rk
)‖2

0,�k
+ β∗

k ‖Rk
‖2
0,�k

<∼ ‖
‖2
X�k

. (7.17)

Lemma 7.2 For any v ∈ Vh(�k), we have

‖v × n‖2
X�k

<∼ α∗
k ‖curl v‖2

0, �k
+ β∗

k ‖v‖2
0, �k

. (7.18)

The following lemma can be proved in nearly the same manner as it was done in
[21] (see pp. 52–56), with the help of condition (7.10) and Lemmas 7.1, 7.2.

Lemma 7.3 For any wh ∈ Vh(�), we can write

wh = w0
h +

N∑
k=1

wk
h +

∑
�i j

wi j
h (7.19)

for some w0
h ∈ V 0(�),wk

h ∈ V k(�) and vi j
h ∈ V i j (�) such that

( Â0w0
h,w0

h)+
N∑

k=1

( Âkwk
h,wk

h)+
∑
�i j

( Âi j w
i j
h ,wi j

h )
<∼ [1 + log(d/h)]2( Ãwh,wh).

(7.20)

Throughout this section we will use f to denote a face of some subdomain�k , and
W the set of the (coarse) edges of all subdomains �k . For any given subset G of �
and a function ϕ ∈ L2(G), we use γG (ϕ) to denote the average value of ϕ on G. Then
for any function ϕ ∈ Zh(�), we define π0ϕ ∈ Zh(�) as follows:

π0ϕ(x) =
{
ϕ(x), for x ∈ W ∩ Nh,

γ
f
(ϕ), for x ∈ f ∩ Nh (f ⊂ �).

(7.21)

For any ph ∈ Zh(�), define p0
h ∈ Zh(�) such that p0

h = π0(ph |�) on � and is
discrete harmonic in each subdomain �k . One can check that ∇ p0

h ∈ V 0(�), and
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p0
h meets the following estimate which can be proved using the definition of Â0 (see

(5.17)–(5.18), [21]):

( Â0(∇ p0
h),∇ p0

h)
<∼ [1 + log(d/h)]2

N∑
k=1

β∗
k |ph |21,�k

. (7.22)

Furthermore, for each �i j we define pi j
h ∈ Zh(�) such that pi j

h = ph − p0
h on

�i j , pi j
h = 0 on �\�i j , and pi j

h is discrete harmonic in each � j (1 ≤ j ≤ N ). Also,

for each subdomain�k we define pk
h ∈ Zh(�): pk

h = (ph − p0
h − ∑

i j
pi j

h )|�k . Clearly

∇ pi j
h ∈ V i j (�) and ∇ pk

h ∈ V k(�). And by the standard arguments (see, e.g., [32])

we can show that pi j
h and pk

h satisfy

∑
�i j

(β∇ pi j
h ,∇ pi j

h )+
N∑

k=1

(β∇ pk
h,∇ pk

h)
<∼[1+log(d/h)]2

N∑
k=1

β∗
k |ph |21,�k

. (7.23)

Now for any v0
h ∈ V 0

h (�), we can verify (cf. (4.47), [21]) that

‖v0
h × n‖2

X�k

<∼ h[1 + log(d/h)](β∗
k ‖v0

h × n‖2
0,�k

+α∗
k ‖divτ (v0

h × n)‖2
0,�k

), ∀v0
h ∈ V 0

h (�),

which implies

N∑
k=1

‖v0
h × n‖2

X�k

<∼ ( Â0v0
h, v0

h). (7.24)

Using the above preparations, we can now build up a stable decomposition for any vh

∈Vh(�). First by Theorem 3.2 we have the following Helmholtz-type decomposition:

vh = ∇ ph + wh (7.25)

for some ph ∈ Zh(�) and wh ∈ Vh(�), and they are orthogonal in the sense of (3.6)
and satisfies the a priori estimates (3.7). For ph and wh in (7.25), let p0

h, pi j
h , pk

h be

defined as above and w0
h,wi j

h ,wk
h be the functions as those given in (7.19). Then we

set

v0
h =∇ p0

h +w0
h ∈ V 0(�), vk

h =∇ pk
h +wk

h ∈ V k(�), vi j
h =∇ pi j

h +wi j
h ∈ V i j (�).

We can easily verify that

vh = v0
h +

N∑
k=1

vk
h +

∑
�i j

vi j
h .
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Next we show the stability of this decomposition:

( Â0v0
h, v0

h)+
N∑

k=1

( Âkvk
h, vk

h)+
∑
�i j

( Âi j v
i j
h , vi j

h )

<∼ [G(d/h)+ logm+1(1/h)][1 + log(d/h)]2(Avh, vh). (7.26)

But we obtain readily from (7.20) and (7.22)–(7.23) that

( Â0v0
h, v0

h)+
N∑

k=1

( Âkvk
h, vk

h)+
∑
�i j

( Âi j v
i j
h , vi j

h )

<∼ [1 + log(d/h)]2(β∇ ph, ph)+ [1 + log(d/h)]2( Ãwh, wh). (7.27)

Then (7.26) will follow if we can show

(β∇ ph, ph) <∼ G(d/h)(Avh, vh) and ( Ãwh, wh) <∼ logm+1(1/h)(Avh, vh).

(7.28)

The second estimate in (7.28) follows immediately from (7.25), (3.7) and (7.10):

( Ãwh,wh) = (αcurl vh, curl vh)+ (βwh,wh)

<∼ (αcurl vh, curl vh)+ logm+1(1/h)(βcurl vh, curl vh)

<∼ logm+1(1/h)(Avh, vh). (7.29)

Using (7.25) and the definitions of operators J in (7.11) and Bt in (7.3), we can write

(β∇ ph,∇ ph) = (βvh,∇ ph) = (Bt vh, ph)

= (J ph, J−1 Bt vh) = (β∇ ph,∇(J−1 Bt vh))

= (βvh,∇(J−1 Bt vh)) = (Bt vh, J−1 Bt vh).

Using this relation and the estimate (3.7), we derive

(B J−1 Bt vh, vh) = (β∇ ph,∇ ph) ≤ (βvh, vh). (7.30)

Combining this relation with (7.12) gives

(β∇ ph, ∇ ph) <∼ G(d/h)(BĈ−1 Bt vh, vh) ≤ G(d/h)(Avh, vh), (7.31)

so the first estimate in (7.28) is proved. Now we readily get the estimate of the smallest
eigenvalue of the preconditioned system Â−1 A from (7.27):

λmin( Â
−1 A) >∼ 1/([G(d/h)+ logm+1(1/h)][1 + log(d/h)]2).
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To estimate the largest eigenvalue, we use (7.12) and (7.30) to obtain that

(Avh, vh) <∼ (αcurl vh, curl vh)+ γ0(βvh, vh)+ (B J−1 Bt vh, vh)

≤ (αcurlvh, curlvh)+ (βvh, vh)+ (βvh, vh)

<∼ ( Ãvh, vh), ∀vh ∈ Vh(�). (7.32)

Let v0
h ∈ V 0(�). Since v0

h is discrete Ak-harmonic in �k for each k, it possesses the
minimum energy property on each �k . Then it follows from (7.32), Lemma 7.1 and
(7.24) that

(Av0
h, v0

h)
<∼ ( Ãv0

h, v0
h) =

N∑
k=1

(α∗
k ‖curlv0

h‖2
0,�k

+ β∗
k ‖v0

h‖2
0,�k

)

<∼
N∑

k=1

(α∗
k ‖curl(Rk(v0

h × n|�k ))‖2
0,�k

+ β∗
k ‖Rk(v0

h × n|�k )‖2
0,�k

)

<∼ ( Â0v0
h, v0

h), ∀v0
h ∈ V 0(�).

This, along with the following bounds directly from the definitions of Âk and Âi j ,

(Avk
h, vk

h)
<∼( Âkvk

h, vk
h) ∀vk

h ∈V k(�); (Avi j
h , vi j

h )
<∼( Âi j v

i j
h , vi j

h ) ∀vi j
h ∈V i j (�),

gives the estimate of the largest eigenvalue, λmax( Â−1 A) <∼ 1, thus completes the
proof of Theorem 7.1. ��
Remark 7.2 The key step in the proof of Theorem 7.1 is the derivation of (7.29),
by using the weighted discrete Helmholtz decomposition newly developed in Theo-
rem 3.2. If the standard Helmholtz decomposition is used, no conclusion can be made
about how the constant in the upper bound of (7.29) depends on the possible large
jumps of the coefficient β(x).

8 Numerical experiments

In this section we present some numerical experiments to verify the convergence of
the newly proposed preconditioner in Sect. 7.2. For the purpose we construct a test
example with an exact solution. We consider the most difficult saddle-point case of
system (1.1)–(1.2), namely γ0 = 0, and the cubic domain� = (0, 1)× (0, 1)× (0, 1).
In order to test the case of non-homogeneous media, we take

D =
[

1

4
,

1

2

]3 ⋃ [
1

2
,

3

4

]3

,

and choose the coefficients α(x) and β(x) to be
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α(x) = 2 β(x) =
{
α0 , x ∈ D
1 , x ∈ �\D.

We will test α0 = 1 and α0 = 105. Clearly there are no jumps in the coefficients α(x)
and β(x) for α0 = 1, but there is a large jump in both coefficients and two cross-points
appear in � for α0 = 105. The source terms f and g are taken such that the exact
solution u = (u1, u2, u3)

T of the system (1.1)–(1.2) is given by

u1 = xyz(x − 1)(y − 1)(z − 1) ,

u2 = sin(πx) sin(πy) sin(π z) ,

u3 = (1 − ex )(1 − ex−1)(1 − ey)(1 − ey−1)(1 − ez)(1 − ez−1).

To generate the subdomain decomposition of the whole domain�, we first partition
the three edges of � on the x-, y- and z-axis respectively into equally distributed n
subintervals, then we can naturally generate n3 equal smaller cubes of size d = 1/n.
This yields the desired subdomain decomposition in our experiments: �1, . . . , �N ,
with N = n3.

To generate a fine triangulation Th of size h over the entire domain�, we divide each
subdomain�k into m3 equal smaller cubes of size h = 1/(mn), in the same manner as
we generated the subdomains above. Then Th is obtained by triangulating each small
cube into 6 tetrahedra. For the easy reference we shall denote the triangulation Th by
m3(n3) below.

Our numerical experiment is to solve the saddle-point system (7.5), which is equiv-
alent to the edge and nodal element saddle-point system (7.2), by the Nonlinear Inexact
Preconditioned Uzawa Algorithm mentioned in Sect. 7.1, with the preconditioners Â
given in Sect. 7.2 and Ĉ being the standard multigrid preconditioner for the discrete
Laplacian (thus satisfying the condition (7.12) with G(d/h) = 1; see Remark 7.1). For
any φ ∈ Vh(�), let�(φ) be an approximation of the solution ξ to the system Aξ = φ

obtained by the PCG method with preconditioner Â. Then the inexact Uzawa-type
algorithm for solving (7.5) can be described below (see [19]).

Nonlinear Inexact Preconditioned Uzawa Algorithm.

Step 1. Compute fi = fh − (Aui
h + Bpi

h) and �( fi ), update ui+1
h = ui

h +�( fi );
Step 2. Compute gi = Bt ui+1

h − gh, di = Ĉ−1gi and

τi = 1

2

(gi , di )

(�(Bdi ), Bdi )
for gi 
= 0 ; τi = 1 for gi = 0.

Then update pi+1
h = pi

h + τi di .

Note that the above algorithm involves two inner iterations, namely computing
two approximations �( fi ) and �(Bdi ) by the PCG method with preconditioner Â.
However, the approximations �( fi ) and �(Bdi ) are not required to be accurate and
suffice when the energy-norm errors are reduced respectively by a factor 1/2 and 1/3
(cf. [19]). The inexact Uzawa iteration will terminate when the global relative residual
(cf. [19]) is less than 10−6, and the corresponding number of iterations will be reported;
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Table 1 Number of iterations of the inexact Uzawa algorithm

m\n α0 = 1 α0 = 105

4 8 4 8

Iter n f nd Iter n f nd Iter n f nd Iter n f nd

4 17 4.7 3.4 18 5.3 3.0 22 4.8 3.2 23 5.2 3.5

8 19 6.8 5.0 18 6.4 4.3 25 7.1 4.7 24 6.8 5.0

16 19 9.8 6.7 19 8.5 5.8 25 9.9 6.4 25 9.5 6.8

see iter in Table 1. To show the efficiency of the preconditioner Â, we will also report
the averaging number of iterations for the approximations �( fi ) and �(Bdi ); see n f

and nd in Table 1.
We can see from Table 1 that the numerical results confirm our theoretical

predictions in Theorem 7.1: the preconditioner Â is nearly optimal in the sense that
the condition number depends weakly on the ratio m = d/h (see the growth of n f and
nd with respect to m in Table 1 when n is fixed) and is almost independent of n = 1/d
and the jumps of the coefficients in α(x) and β(x) (see the growth of n f and nd with
respect to n or α0 in Table 1 when m is fixed). In particular, the convergence rates for
the case with jumps in the coefficients deteriorate only slightly compared to the case
without jumps, namely, the condition number for the case with jumps is slightly more
sensitive to the ratio mn = 1/h than the case without jumps.

Finally we would like to mention the very satisfactory convergence of the resulting
global inexact Uzawa algorithm, the maximum number of iterations is less than 25
iterations as we see from Table 1 for the very large discrete saddle-point system (7.2),
with a total number of degrees of freedom being 14,532,992 (when n = 8 and m = 16).
In addition, we can see clearly from Table 1 that the resulting global inexact Uzawa
algorithm converges nearly optimally in terms of mesh size h (see the growth of Iter
with respect to m in Table 1 when n is fixed) and subdomain size d (see the growth of
Iter with respect to n when m is fixed), and the convergence rate is affected slightly
by the jumps in the coefficients α(x) and β(x).
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