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Abstract
We consider the ill-posed operator equation  Ax  =  y with an injective and 
bounded linear operator A mapping between �2 and a Hilbert space Y, 
possessing the unique solution { }† †= =

∞x x k k 1. For the cases that sparsity 
†∈ �x 0 is expected but often slightly violated in practice, we investigate in 

comparison with the �1-regularization the elastic-net regularization, where the 
penalty is a weighted superposition of the �1-norm and the �2-norm square, 
under the assumption that †∈ �x 1. There occur two positive parameters in this 
approach, the weight parameter η and the regularization parameter as the 
multiplier of the whole penalty in the Tikhonov functional, whereas only one 
regularization parameter arises in �1-regularization. Based on the variational 
inequality approach for the description of the solution smoothness with 
respect to the forward operator A and exploiting the method of approximate 
source conditions, we present some results to estimate the rate of convergence 
for the elastic-net regularization. The occurring rate function contains the rate 
of the decay →†x 0k  for →∞k  and the classical smoothness properties of †x  
as an element in �2.

Keywords: linear ill-posed problems, sparsity constraints, elastic-net 
regularization, �1-regularization, convergence rates, source conditions
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1.  Introduction

In this paper, we are interested in studying the linear ill-posed problem

 = ∈ ∈�Ax y x y Y, , ,2� (1.1)

where Y is an infinite dimensional real Hilbert space, and →�A Y: 2  an injective and bounded 
linear operator with a non-closed range. Since ( ) →⊂−A A Y: range1  �2 is unbounded in this 
case, the corresponding system (1.1) suffers from ill-posedness in the sense that solutions may 
not exist if the exact data †=y Ax  for †∈ �x 2 comes with noise, namely only the noisy data 
δy  of y is available, where δ> 0 represents the noisy level in the data, i.e. ∥ ∥ ⩽ δ−δy y Y ; and 

when solutions exist they may still be far away from the exact solution †x  to (1.1), even if δ is 
small. In section 2, we will outline that general ill-posed linear operator equations in Hilbert 
spaces can be rewritten into the form (1.1).

The most widely adopted approach for regularizing the ill-posed system (1.1) is the 

Tikhonov regularization, which aims at finding the approximate solutions γ
δx  to problem (1.1) 

as the minimizers of the variational problem

γ= − +γ
δ δ RT x Ax y x:

1

2
min,Y

2( ) ∥ ∥ ( ) →� (1.2)

where γ> 0 is the regularization parameter, and ( )R x  is the penalty that may be chosen appro-

priately, with popular examples like ∥ ∥
�

x 2
2, ∥ ∥x TV, ∥ ∥x H or ∥ ∥ = ∑ | |=

∞
�x x:q

k k
q

1q  for ⩽ <+∞q1 . 
In particular, it was shown in [19] and [30] that the penalty functional ∥ ∥�x 1 ensures that the 

�1-regularized solutions γ
δx  to the variational problem

( ) ∥ ∥ ∥ ∥ →  γ= − + ∈γ
δ δ ��T x Ax y x x:

1

2
min, subject to ,Y

2 1
1� (1.3)

provide stable approximate solutions to equation (1.1) if the exact solution { }† †= =
∞x x k k 1 is 

sparse, i.e. ≠x 0k  occurs only for a finite number of components. The sparsity has been recog-
nized as an important structure in many fields, e.g. geophysics [37], imaging science [14], sta-
tistics [38] and signal processing [10], and hence has received considerable attention. In this 
work, motivated by the recent works on the multi-parameter Tikhonov functional [28, 29, 39],  
we consider the following multi-parameter variational problem

α
β

= − + + ∈α β
δ δ �� �

T x Ax y x x x:
1

2 2
min, subject to ,Y,

2 2 1
1 2( ) ∥ ∥ ∥ ∥ ∥ ∥ →  

�
(1.4)

which is called the elastic-net regularization. The functional α β
δT ,  was originally used in sta-

tistics [43]. The major motivation is the observation that the �1-regularization fails to identify 
group structure for problems with highly correlated features, and tends to select only one 
feature out of a relevant group. It was proposed and confirmed numerically in [43] that the 
elastic-net regularization may retrieve the whole relevant group correctly. For an application 
of the elastic-net regularization to learning theory, one may refer to [11]. Furthermore, the sta-
bility of the minimizer and its consistency have been studied, and convergence rates for both 
a priori and a posteriori parameter choice have been established under suitable source condi-
tions (see [29]). Moreover, we would also like to emphasize that the elastic-net regularization 
can be viewed as a special case of the �1-regularization, due to the identity
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As it was done for the �1-regularization (1.3) in [8], we intend to enrich with the present 
work the analysis on elastic-net regularization by taking into account the case that the solu-
tion †x  is not truly sparse in many applications, but has infinitely many nonzero components 

†x k that decay sufficiently rapidly to zero as →∞k . We shall call this kind of solutions to be 
quasi-sparse in the sequel for convenience, which occur often in practice, e.g. when applying 
wavelets to audio signals or natural images (see [26, 40]), where the compression algorithms 
are usually constructed by making use of the fact that most coefficients are very small and can 
be ignored. We shall model the quasi-sparse solutions with the assumption †∈ �x 1. Following 
[29], we consider for elastic-net regularization the pair ( )β η,  of positive regularization param
eters instead of the pair ( )α β,  by setting /η α β=: , then (1.4) is reformulated as

( ) ∥ ∥ ( ) →  β= − + ∈β η
δ δ

ηRT x Ax y x x X:
1

2
min, subject to ,Y,

2�
(1.5)

with the penalty functional

η= +ηR � �
x x x:

1

2
,21 2( ) ∥ ∥ ∥ ∥� (1.6)

and we denote by β η
δx ,  the minimizers to (1.5). The degenerate form of �1-regularization, i.e. 

β = 0 in (1.4), was studied intensively including convergence rates in [8] (see also the exten-
sions in [17] and references therein) for the cases with quasi-sparse solutions. We will extend 
the results from [8], [22] and [29] to analyze the two-parameter situation of elastic-net regu-
larization with respect to convergence rates when the sparsity assumption fails. It is worth 
mentioning that other modifications of (1.3) have already been discussed in literature, for 
instance, the term ∥ ∥γ �x 1 in the penalty functional may be replaced by some weighted or 
modified versions (see e.g. [30, 34]), or alternatively by non-convex sparsity-promoting terms 
like ∥ ∥γ �x q for 0  <  q  <  1 (see e.g. [7, 42]) or ∥ ∥ ( )γ γ= ∑ | |=

∞
�x x: sgnk k10  (see [39]). However, 

the theory with respect to convergence rates for the cases with quasi-sparse solutions are still 
rather limited compared with the case of truly sparse solutions.

The paper is organized as follows. In section 2 we will fix the basic problem setup, nota-
tions and assumptions, and then proceed to an overview of the smoothness conditions for 
proving convergence rates of single or multi-parameter Tikhonov regularization, where we 
shall show that the source conditions do not hold when the sparsity is violated. In section 3 
we derive the convergence rates of regularized solutions for general linear ill-posed problems 
under variational inequalities, in which the regularization parameter is chosen according to 
three varieties of a posteriori parameter choices, i.e. two-sided discrepancy principle, sequen-
tial discrepancy principle and adapted Lepski principle. These results are then applied to 
�1-regularization (1.2) directly in section 4. In section 5, by deriving an appropriate variational 

inequality, we establish the convergence rates for the regularized solutions β η
δx ,  of elastic-net 

regularization (1.4) for a fixed η> 0 and the case with quasi-sparse solutions.

2.  Problem setting and basic assumptions

Let 
∼
X  (resp. Y) be an infinite dimensional real Hilbert space, endowed with an inner product  

⟨ ⟩⋅ ⋅ ∼, X  (resp. ⟨ ⟩⋅ ⋅, Y) and a norm ∥ ∥⋅ ∼X  (resp. ∥ ∥⋅ Y), 
∼
X  be separable, and ( )∈

∼� LA X Y,  an injective 

D-H Chen et alInverse Problems 33 (2017) 015004
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and bounded linear operator mapping between 
∼
X  and Y. In addition, we assume that ( )�Arange  of 

�A is not closed, which is equivalent to that the inverse ( ) →⊂ ∼−� �A A Y X: range1  is unbounded. 
Thus the operator equation

= ∈ ∈
∼

� ��A x y x X y Y, , ,� (2.1)

with uniquely determined solution † ∈
∼∼

x X  is ill-posed. This means that for noisy data ∈δy Y  
replacing ( )∈ �y Arange  in (2.1), solutions may not exist, and even when they exist the solutions 

may be still far from †∼x  under the deterministic noise model

∥ ∥ ⩽ δ− δy y ,Y� (2.2)

with small noise level δ> 0.
With the setting = ��A A U: , where →∼�U X: 2  is the unitary synthesis operator character-

izing the isometric isomorphy between the separable Hilbert spaces 
∼
X  and �2, the operator 

equation (2.1) can be rewritten in the form

= ∈ ∈�A x y x y Y, , .2� (2.3)

This transforms (2.1) to the desired structure (1.1). We note that A is also injective, so this 

linear operator equation is ill-posed, i.e. ( )Arange  ( )≠ Arange Y.

For any sequence { }= =
∞x xk k 1, we will denote by = ∑ | |=

∞
�x x: k k

q q
1

1
q ( )∥ ∥ /  the norm in the 

Banach spaces �q for ⩽ <∞q1 , and by ∥ ∥ N= | |∈
∞�x x: supk k  the norm in ∞� . The same norm 

∥ ∥ N= | |∈x x: supc k k0  is used for the Banach space c0 of infinite sequences tending to zero. On the 
other hand, the symbol �0 will stand for the set of all sparse sequences x, where ≠x 0k  occurs 
only for a finite number of components. In the sequel we also set for short

= �X : ,1

and consequently X* for the dual space ∞�  of X.
In the sequel, let ⟨ ⟩⋅ ⋅ ×∗, B B denote the dual pairing between a Banach space B and its dual 

space B*, and ⇀v vn 0 stand for the weak convergence in B, i.e. ⟨ ⟩ ⟨ ⟩→ =∞ × ×∗ ∗w v w vlim , ,n n B B B B0  
for all ∈ ∗w B . For a Hilbert space B we identify B and B* such that weak convergence takes 
the form ⟨ ⟩ ⟨ ⟩→ =∞ w v w vlim , ,n n B B0  for all ∈w B. Furthermore, we denote by e(k), with 1 at 
the kth position for k  =  1, 2, ..., the elements of the standard orthonormal basis in �2, which 
also is the normalized canonical Schauder basis in c0 and �q ( ⩽ <∞q1 ). That is, we find 

∥ ∥→
( )−∑ =∞ =x x elim 0n k

n
k

k
c1 0  for all ∈x c0 and ∥ ∥→

( )−∑ =∞ = �x x elim 0n k
n

k
k

1
q  for all ∈ �x q, 

⩽ <∞q1 . For the operator →�A Y: 2  we can consider its adjoint operator →∗ �A Y: 2 by the 
condition

⟨ ⟩ ⟨ ⟩  = ∈ ∈∗ ��v Ax A v x x v Y, , for all , .Y
2

2

Now we are stating a set of assumptions for the further consideration of equation  (1.1) 

with a uniquely determined solution †x  and of the regularized solutions α β
δx ,  and γ

δx  solving the 
extremal problems (1.3) and (1.4), respectively.

Assumption 2.1. 

	 (a)	The operator A in equation (1.1) is an injective and bounded linear operator mapping �2 
to the Hilbert space Y with a non-closed range. i.e. ( ) ( )≠A Arange range Y.

	(b)	Element †∈ �x 1 solves equation (1.1).

D-H Chen et alInverse Problems 33 (2017) 015004
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	 (c)	For each N∈k , there exists ( ) ∈f Yk  such that ( ) ( )= ∗e A fk k , i.e. it holds that 
⟨ ⟩ ⟨ ⟩( ) ( )= =�x e x f Ax, ,k

k k
Y2  for all { }= ∈=

∞ �x xk k 1
2.

Remark 2.2.  Item (c) above seems to be only a technical condition. If one considers the 
general operator equation (2.1), then it is equivalent to that ( ) ( ) N= ∈∗�u A f k, ,k k  for all ele-
ments of the orthonormal basis { }( )

=
∞u k
k 1 in 

∼
X  characterizing the unitary operator U. However, 

this condition was motivated for a wide class of linear inverse problems by using the Gelfand 
triple [2]. This series of independent source conditions for all e(k) is nothing but a requirement 
on the choice of the basis elements u(k) in 

∼
X . Roughly speaking, the basis elements must be in 

some sense ‘smooth enough’ under the auspices of the operator �A.�

Proposition 2.3.  The range of →∗ �A Y: 2 is a nonclosed subset of �2 but dense in the sense 

of the �2-norm, i.e. ( ) =∗ ��Arange 2
2

. On the other hand, ( )∗Arange  is always a subset of c0 and 

hence not dense in ∞�  in the sense of the supremum norm, i.e. ( ) ≠∗ ∞
∞

��Arange .

Proof.  The proof is based on the properties of A from assumption 2.1(a). Noting that 
⊂� c2

0, we know ( )⊂∗A crange 0 for the adjoint operator →∗ �A Y: 2. On the other hand, the 

condition ( ) =∗ ��Arange 2
2

 is a consequence of the injectivity of A, while the non-closedness 

of ( )∗Arange  in Y follows from the closed range theorem (see [41]).� □

The smoothness of the solution to the ill-posed operator equation (1.1) with respect to the 
forward operator A plays an important role for obtaining error estimates and convergence 
rates in Tikhonov-type regularization, e.g. see [35, 36]. Such smoothness can be expressed by 
source conditions. In particular, for the most prominent form of the �2-regularization

∥ ∥ ∥ ∥ →  γ− + ∈δ �
�

Ax y x x
1

2
min, subject to ,Y

2 2 2
2� (2.4)

the classical theory of the Tikhonov regularization in Hilbert spaces applies (see [13, 20]). By 

making use of the purely quadratic penalty, the minimizers γ
δx  achieve the convergence rate

∥ ∥ ( ) →† δ δ− =γ
δ

� Ox x as 02� (2.5)

under the source condition that

† = ∈∗x A v v Y, ,� (2.6)

when the regularization parameter is chosen a priori as ( )γ γ δ δ= ∼  or a posteriori as 
( )γ γ δ= δy,  based on the discrepancy principle ∥ ∥ τ δ− =γ

δ δAx y Y  for some prescribed ⩾τ 1.
If †x  is not smooth enough to satisfy (2.6), then the method of approximate source condi-

tions may help to bridge this gap when the concave and nonincreasing distance function

( ) ∥ ∥
∥ ∥ ⩽

†
† = − >

∈

∗∗

�d R x A v R: inf , 0,
x
A

v Y v R: Y

2� (2.7)

tends to zero as →∞R . In such case the decay rate of ( ) →†
∗

d R 0
x
A  as →∞R  characterizes the 

degree of violation with respect to (2.6). Then the convergence rate is slower than (2.5) and the 

rate function depends on †
∗

d
x
A  (see [22, 24], and also [4]). From proposition 2.3 we have for all 

elements \ ( )†∉ ∗�x Arange2  that ( )→ † =∞
∗

d Rlim 0R x
A , because ( ) =∗ ��Arange 2

2

.
If the element †∈ �x 2 fails to satisfy the source condition (2.6), however, we know that 

there is an index function g and a source element ∈ �w 2 such that (see [33])

D-H Chen et alInverse Problems 33 (2017) 015004
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( )† = ∗x g A A w� (2.8)

Here we say that ( ) → ( )∞ ∞g : 0, 0,  is an index function if it is continuous, strictly increasing 
and satisfies the condition ( )→ =+g tlim 0t 0 . For ( ) =g t t , the source conditions (2.6) and 
(2.8) are equivalent. For any †∈ �x 2, the connection between g in (2.8) and the distance func-
tions in (2.7) were outlined in [24, section 5.3]. In particular, we can find from [12, theorem 
3.1] that, for any exponents θ< <0 1,

( ) ⩽ ⩾ [( ) ]† /
† ∀ ∈ θ∗

θ
θ

∗

−

d R
K

R
R R x A Aif range ,

x
A 2

1
� (2.9)

with some positive constants K and R. In this case we say that †x  satisfies a Hölder source 
condition with exponent θ.

For a general convex but not purely quadratic penalty functional R, the benchmark source 
condition is given by

†ξ = ∈∗A v v Y, ,� (2.10)

for some subgradient ( )† †ξ ∈∂R x  and source element ∈v Y  (see [9]). As a result of the fol-
lowing proposition, the source condition (2.10) for = ηR R  (see (1.6)) can only hold if the 
solution is sparse, i.e. †∈ �x 0. Hence this condition, which is also important for the conv
ergence rates of elastic-net regularization in [29], completely fails for the quasi-sparsity case 
of our interest in this work. The approximate source condition approach was extended to the 
general Banach space situation with convex penalties R in [21]. As an analog to (2.7), the 
corresponding distance functions for = ηR R  attain the form

( ) ∥ ∥
∥ ∥ ⩽

†
† ξ= − >ξ

∈

∗ ∞�d R A v R: inf , 0.
v Y v R: Y

� (2.11)

However, the proposition below also implies that this approximate source condition also fails, 
i.e. ( ) →†ξd R 0 as →∞R  cannot hold if \†∈ � �x 1 0, which makes it impossible to verify conv
ergence rates based on this approach.

On the other hand, explicit convergence rates of regularized solutions α β
δx ,  for elastic-net 

Tikhonov regularization (1.4) may require smoothness properties of †x  (see [27]). More pre-
cisely, if for any [ ]∈t 0, 1  there exists wt such that

( )†ξ ψ= ∈∂∗A w x: ,t t t� (2.12)

where ( ) ∥ ∥ ( )∥ ∥ψ = + −� �
x t x t x: 1t

21 2, then the convergence rate

( ) ( )( ) ( )
† δ=ξ α δ β δ

δ
∗ ∗ OD x x,,t

can be established, for Bregman distance ( ) ( ) ( ) ⟨ ⟩† † †ψ ψ ξ= − − −ξ �D x x x x x x, : ,t t tt
2, and 

parameter choice ( ( ) ( ))α δ β δ∗ ∗,  based on the multi-parameter discrepancy principle, i.e. 
( ( ) ( ))α δ β δ∗ ∗,  satisfies

∥ ∥( ) ( )
† δ− =α δ β δ∗ ∗x x cl m,

2
2

with some prescribed constant ⩾c 1m . The proposition below also implies that the condition 
(2.12) fails if †x  is not truly sparse, because ( ) ( ) ( )/( )ψ = − −Rx t x2 1t t t2 2  for all [ )∈t 0, 1 .

For each η> 0 the convex functional ηR  defined in (1.6) attains finite values on X. Moreover 
for each ∈x X, by using the subgradients { } ⊂ζ ζ= =

∞ ∗Xk k 1  of ∥ ∥�x 1, the subdifferential ( )∂ ηR x  
collects all subgradients { } ⊂ξ ξ= =

∞ ∗Xk k 1  of the form

D-H Chen et alInverse Problems 33 (2017) 015004
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ξ η ζ ζ= +
= >

∈ − =
= − <

∈
⎧
⎨
⎪

⎩⎪
Nx

x
x
x

k, where
1 if 0,
1, 1 if 0,
1 if 0,

.k k k k

k

k

k

[ ]
�

(2.13)

Proposition 2.4.  If \†∈ � �x 1 0 and ∈v Y, then for any η> 0 the condition ( )†∈∂ η
∗ RA v x  

cannot hold. Also it does not hold that ( ) →†ξd R 0 as →∞R  (see (2.11)) in this case.

Proof.  Assume that ( )†∈∂ η
∗ RA v x  holds for some \†∈ � �x 1 0 and ∈v Y . Then, by formula 

(2.13) we have for every ( )† †ξ = ∈∂ η
∗ RA v x:  that † †ξ ηζ= ± + xk k k for all N∈k . Then using 

the signum function

( )
⎧
⎨
⎪

⎩⎪
=

>
=

− <
z

z
z
z

sgn :
1 if 0,
0 if 0,
1 if 0,

there is a subsequence { }†
=
∞x k l 1l  of { }†

=
∞x k k 1 such that ( )†| | =xsgn 1kl  for all N∈l  and 

→
†| | =∞ xlim 0l kl . Therefore we have

[ ] †

η
−

=
∗A v x

1,k kl l

which gives a contradiction, because proposition 2.3 implies ∈∗A v c0, and hence that the left-
hand side of this equation tends to zero for →∞l . The second assertion is a simple conse-
quence of the fact that ∥ ∥ ⩾†ξ η− ∞�w  holds for all elements ∈w c0 in this case.� □

From the reasoning above we know that the source conditions always fail for the quasi-
sparse solutions. To overcome the difficulty, we shall use the variational inequalities (vari-
ational source conditions) instead. For more discussions about smoothness of solutions and 
their influences on convergence rates, we refer to [23, 25] and [15, 16, 18] for further details.

3.  Convergence rates under variational inequalities

Throughout this section  we extend our consideration to the more general situation of an  
ill-posed operator equation

= ∈ ∈A x y x Z y Y, , ,� (3.1)

and regularized solutions γ
δx  to (3.1) with regularization parameter γ> 0, which are minimiz-

ers of the functional

( ) ∥ ∥ ( ) →  γ= − + ∈γ
δ δ RT x Ax y x x Z:

1

2
min, subject to ,Y

2� (3.2)

where the nonnegative penalty functional R is convex, lower semi-continuous and stabilizing, 
and Z is a Hilbert space. Here we call R stabilizing if the sublevel sets { ( ) ⩽ }= ∈M Rx Z x c: :c  
are weakly sequentially compact subsets of Z for all ⩾c 0. In this context, the linear forward 
operator →A Z Y:  is assumed to be injective and bounded, and the uniquely determined solu-
tion †x  of (3.1) is required to satisfy the condition that ( )†∈D Rx  with

( ) { ( ) }= ∈ <∞D R Rx Z x: : .
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Under the aforementioned assumptions on R, we know that regularized solutions γ
δx  exist 

for all γ> 0 and ∈δy Y , and are stable with respect to perturbations in the data δy  (see e.g.  
[23, 35, 36]).

For an index function g and an error measure ( ) ( ) →R× +D R D RE : , we need an appro-
priate choice ( )γ γ δ= δ

∗ ∗ y,  of the regularization parameter and certain smoothness of †x  with 
respect to the forward operator A to obtain a convergence rate of the form

( ) ( ( )) →† δ δ=γ
δ
∗

OE x x g, as 0.� (3.3)

In particular, the variational inequalities of the form

λ − + − ∈R R D RE x x x x C g A x x x, for allY( ) ⩽ ( ) ( ) (∥ ( )∥ )   ( )† † †
�

(3.4)

become popular for the description of solution smoothness, which were developed indepen-
dently in [15] and [18], where λ and C are constants satisfying ⩽λ<0 1 and C  >  0, and the 
index function g was assumed to be concave.

Concerning appropriate selection strategies for regularization parameters, we list the fol-
lowing three principles for a posteriori parameter choice ( )γ γ δ= δ

∗ y, , for which proposition 
3.2 below will apply and yield corresponding reasonable convergence rates.

	TDP: � For the prescribed τ1 and τ2 satisfying ⩽ ⩽τ τ <∞1 1 2 , the two-sided discrepancy prin-
ciple (TDP) suggests to choose the regularization parameter γ γ=∗ TDP such that

⩽ ∥ ∥ ⩽τ δ τ δ−γ
δ δAx y .Y1 2

TDP
� (3.5)

		�  Since the discrepancy functional ∥ ∥−γ
δ δAx y Y is continuous and increasing with respect 

to ( )γ∈ ∞0, , the regularization parameter γ > 0TDP  exists for all ∈δy Y  whenever δ> 0 
is sufficiently small. We refer to, e.g. [3] for more details.

	SDP:	� For the prescribed τ, q and γ0 satisfying τ> 1, 0  <  q  <  1 and γ > 00 , and the decreasing 
geometric sequence

{ }Nγ γ γ∆ = = ∈q j: : , ,q j j
j

0

		�	  the sequential discrepancy principle (SDP) suggests to choose the regularization 
parameter γ γ=∗ SDP such that γ ∈∆qSDP  satisfies

∥ ∥ ⩽ ∥ ∥/τδ− < −γ
δ δ

γ
δ δAx y Ax y .Y q Y

SDP SDP
� (3.6)

			�  When using the SDP, we are interested in finding the largest value γ from the sequence 

∆q such that ∥ ∥ ⩽ τδ−γ
δ δAx y Y . For the well-definedness of γSDP from SDP, its proper-

ties and convergence of regularized solutions γ
δx

SDP
 as →δ 0, we refer to [1]. In principle, 

one can say that γSDP is uniquely determined for all 0  <  q  <  1 and ∈δy Y  whenever 

γ > 00  is large enough.
	LEP:	� To apply the Lepski principle (LEP) for choosing the regularization parameter γ> 0 

under (3.4), we restrict our consideration to the symmetric error measures E satisfying the 
triangle inequality up to some constant ⩽ <∞C1 E , i.e. for all ( )( )∈ =D Rx i, 1, 2, 3,i

( ) ( )( ) ( ) ( ) ( )=E x x E x x, ,1 2 2 1� (3.7)

			  and
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( ) ⩽ ( ( ) ( ))( ) ( ) ( ) ( ) ( ) ( )+E x x C E x x E x x, , , .E
1 2 1 3 3 2� (3.8)

			�  For such symmetric error measures E, the prescribed q and γ0 satisfying ( )∈q 0, 1   
and γ > 00 , the increasing geometric sequence

{ / }Nγ γ γ∆ = = ∈
∼

q j: : , ,q j j
j

0

			  and the strictly decreasing function

( )γ δ
λγ

Θ =:
17

2

2

			�  with a fixed δ> 0 and λ from the variational inequality (3.4), which characterizes an 

upper bound of ( )†
γ
δE x x,  for all ⩽ ⩽γ γ γ0 apri and a priori parameter choice 

( )
γ = δ

δC gapri

2

, 

the adapted Lepski principle (LEP) suggests to choose the regularization parameter 

γ γ=∗ LEP such that γ∗ is the largest value γ in ∆
∼

q satisfying

( ) ⩽ ( )   ⩽γ γ γ γ γΘ ∈∆ <
∼

′ ′ ′γ
δ

γ
δ

′E x x C, 2 for all with .E q 0

� (3.9)

			�  We like to mention that the LEP is based on a priori parameter choice (see [25,  
section 4.2.1] and [31, section 1.1.5]). Under the variational inequality (3.4) with an 
error measure E, a priori parameter choice γapri yields the convergence rate (3.3) for 
γ γ=∗ apri (see [25, section 4.1]).

For the adapted Lepski principle, the following error estimate holds.

Lemma 3.1  Assume the variational inequality (3.4) holds for a nonnegative error measure 

( )⋅E  satisfying (3.7) and (3.8). If γ0 is sufficiently small such that ( ) ⩽ ( )† γΘγ
δE x x, 00

, then γLEP 

from LEP is uniquely determined for all 0  <  q  <  1 and ∈δy Y and meets the error estimate

( ) ⩽ ( ) ( )†
λ
δ+γ

δE x x C C C
q

g, 2
17

2
,E E

LEP� (3.10)

where the positive constants C and λ are from (3.4), and CE from (3.8).

Proof.  The proof goes along the same line as the one for theorem 3 in [25], in combination 
with proposition 1 from [32]. First we introduce

γ γ γ γ γ γ γ= ∈∆ Θ ∈∆
∼ ∼

′ ′ ′γ
δ

+ ′E x x: max : , for all , .q 0{ ( ) ⩽ ( )   ⩽ ⩽ }†

Then we will show that ⩽ /γ γ γ< qk kapri  for some N∈k  and

( ) ⩽ ( ) ( )† γ+ Θγ
δ

+E x x C C, 2 .E E
LEP

� (3.11)

From [25, lemma 3] we derive that ( ) ⩽ ˆ /† δ γγ
δE x x C, 2  for all ⩽ ⩽γ γ γ0 apri with ˆ =

λ
C 17

2
, which 

yields ( ) ⩽ ( )† γΘγ
δE x x,  for all ⩽ ⩽γ γ γ0 apri and hence ⩾γ γ+ apri. Therefore, we have for all 

⩽ ⩽γ γ γ+0  the estimate

( )( ) ⩽ ( ) ( ) ⩽ ( ( ) ( )) ⩽ ( )† † γ γ γ+ Θ +Θ Θγ
δ
γ
δ

γ
δ

γ
δ

++ +
E x x C E x x E x x C C, , , 2 .E E E
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This ensures the inequality ⩾γ γ+LEP . Then we can find

( )( ) ⩽ ( ) ( ) ⩽ ( ) ( )

( ) ( )

† † γ γ

γ

+ Θ + Θ

= + Θ

γ
δ

γ
δ

γ
δ

γ
δ

+ +

+

+ +
E x x C E x x E x x C C

C C

, , , 2

2 ,

E E E

E E

2
LEP LEP

which gives (3.11). By (3.11) we obtain in analogy to the proof of theorem 3 in [25] that

γ γ
γ

γ
λ

δ

+ Θ + Θ =
+

Θ

+
Θ +

γ
δ

+

⎛
⎝
⎜

⎞
⎠
⎟E x x C C C C

C C

q q

C C

q
C C C

q
g

, 2 2
2

2
2

17

2
,

E E E E k
E E k

E E
E Eapri

LEP

( )

( ) ⩽ ( ) ( ) ⩽ ( ) ( ) ( )

⩽ ( ) ⩽ ( ) ( )

†

which completes the proof.� □

The following convergence rate estimate follows directly from [15, theorem 4.24], [25, 
theorems 2 and 3] and lemma 3.1 for the three aforementioned a posteriori choices of regu-
larization parameters.

Proposition 3.2.  If the variational inequality (3.4) is valid for a nonnegative error meas-
ure ( ) ( ) →R× +D R D RE :  with constants ⩽λ< >C0 1, 0, and a concave index function g, 

then we have the estimate (3.3) of the convergence rate for the regularized solutions γ
δ
∗

x  if the 
regularization parameter γ∗ is chosen as γ γ=∗ TDP from the two-sided discrepancy principle, 
as γ γ=∗ SDP from the sequential discrepancy, or as γ γ=∗ LEP from the Lepski principle pro-
vided that E satisfies (3.7) and (3.8).

In the subsequent two sections we will apply proposition 3.2 for the penalty functionals 

( ) ∥ ∥= �R x x 1 and η= +R � �
x x x1

2
21 2( ) ∥ ∥ ∥ ∥  (with an arbitrarily fixed η> 0), respectively.

4.  Application to �1-regularization

For = =R� �Z x x: , :2
1( ) ∥ ∥  and ( ) = = �D R X 1, proposition 3.2 applies with λ = 1, C  =  2 and 

ϕ=g  defined by

( ) ∥ ∥† ( )∑ ∑ϕ = | | +
∈ = +

∞

=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

N
t x t f: inf ,

n k n
k

k

n
k

Y
1 1

� (4.1)

as a consequence of [8, theorem 5.2], in which it was proven that the variational inequality 
(3.4) holds with ( ) ∥ ∥† †= − �E x x x x, 1. The error measure E is a metric in ( )D R , and hence 
(3.7) and (3.8) are valid with CE  =  1. Thus, we have

∥ ∥ ⩽ ∥ ∥ ∥ ∥ (∥ ( )∥ )  † † †ϕ− − + − ∈ = �� � �x x x x A x x x X2 for all ,Y
1

1 1 1

�
(4.2)

where ϕ is a concave index function. Here, the rate function g in (3.3) depends on the decay 
rate of the remaining components →†x 0k  as →∞k  and the behaviour of ∥ ∥( )f k

Y (see assump-
tion 2.1 (c)), which is mostly a growth to infinity as →∞k . The studies in [25] ensured that 
the same rate result is valid for all three regularization parameter choices γ γ γ γ= =∗ ∗,TDP SDP 
and γ γ=∗ LEP.

Example 5.3 in [8] makes the convergence rate g in �1-regularization explicit as a Hölder 
rate:
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∥ ∥ →† δ δ− =γ
δ

µ
µ ν+

∗
⎜ ⎟
⎛
⎝

⎞
⎠O�x x as 01� (4.3)

for the case when monomials

⩽ ∥ ∥ ⩽† ( )∑ ∑| | µ ν

= +

∞
−

=

x K n f K n, ,
k n

k
k

n
k

Y
1

1
1

2� (4.4)

with exponents µ ν>, 0 and some constants >K K, 01 2 , characterize the decay of the solution 
components and the growth of the f (k)-norms, respectively.

On the other hand, example 5.3 in [6] outlines the situation that the f (k)-norm growth is of 
power type, but instead of (4.4) the decay of →†x 0k  is much faster, expressed by an exponen-
tial decay rate. Precisely, if

∑ ∑| | − σ ν

= +

∞

=

x K n f K nexp and
k n

k
k

n
k

Y
1

1
1

2⩽ ( ) ∥ ∥ ⩽† ( )
� (4.5)

hold with exponents σ ν>, 0 and some constants >K K, 01 2 , then we have the convergence rate

δ
δ

δ− =γ
δ

ν
σ

∗
⎜ ⎟

⎛

⎝
⎜⎜

⎛
⎝

⎞
⎠

⎞

⎠
⎟⎟O�x x log

1
as 0,1∥ ∥ ( ) →†

� (4.6)

instead of (4.3).
The rate (4.6) is not far from the best rate

∥ ∥ ( ) →† δ δ− =γ
δ
∗ � Ox x as 0,1� (4.7)

which was already established for truly sparse solutions †∈ �x 0 in [19]. We note that, for all 
†∈ �x 0 with some kmax as the largest index N∈k  such that † ≠x 0k , there is a uniform constant 

∥ ∥( )= ∑ =K fk
k k

Y1
max  such that the function ( )ϕ t  in (4.1) can be estimated from above by Kt. Since 

mostly ∥ ∥( )f k
Y grows rapidly to infinity as →∞k , the constant K may be large even if kmax is 

not big. As already mentioned in [29], the super-rate (4.7) of the �1-regularization may not be 
expected when the corresponding constant K explodes.

5.  Application to elastic-net regularization

In this section, we fix the parameter η> 0 arbitrarily and consider the case with 

( ) ( ) ∥ ∥ ∥ ∥η= = = +ηR R� � �
Z x x x x: , :2 1

2
21 2 and ( ) = =η �D R X 1. Evidently, the penalty func-

tional ηR  is convex, lower semi-continuous and stabilizing in Z, which ensures the existence 

and stability of regularized solutions β η
δ
∗

x ,  and its convergence ∥ ∥→
†− =δ β η

δ
∗ �x xlim 00 , 2  for 

any η> 0 if β β=∗ TDP or β β=∗ SDP. We refer to [1, 8, 29] for further discussions. On the 
other hand, the application of proposition 3.2 to the elastic-net regularization (1.5), where β is 
chosen by TDP and SDP, or LEP, requires us to construct an appropriate variational inequality. 
Below (see theorem 5.2) we will perform this construction by a weighted superposition of the 
variational inequality (4.2) used in section 4 and a corresponding one for the �2-term in the 
penalty ηR , which will be the main purpose of lemma 5.1.

Let us recall the distance function ( )† ⋅
∗

d
x
A  defined in (2.7), and introduce a continuous and 

strictly decreasing auxiliary function for R  >  0 and \ ( )†∈ ∗�x Arange2 :

( ) [ ( )] /†Φ =
∗

R d R R: .
x
A 2� (5.1)
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Using the limit conditions

( ) ( )
→ →
Φ = +∞ Φ =

∞
R Rlim and lim 0,

R R0� (5.2)

it is not difficult to see that the function

( ) [ ( ( ))]†ψ = Φ >−∗� t d t t: , 0,
x
A 1 2� (5.3)

is an index function. On the other hand, for ( )†∈ ∗x Arange  we can always find R0  >  0 such 
that ( )† =∗d R 0

x 0 .

Lemma 5.1.  The variational inequality (4.2) holds true for ( ) ∥ ∥= =� �RZ x x: , :2 1

2
2 and 

( ) = = �D R X 2, ( ) ∥ ∥† †= −
�

E x x x x, : 2
2 and some index functions ψ=g : , and positive con-

stants λ and C. More precisely, if \ ( )†∈ ∗�x Arange2 , we can take ψ as a concave index func-
tion [ ) →Rψ ∞: 0,  such that ( ) ⩾ ( )ψ ψ�t t  for all t  >  0, λ =: 1

4
 and =C : 2; if ( )†∈ ∗x Arange , 

we can set ( )ψ =t t: , λ =: 1

2
 and C  :=  R0 with R0  >  0 satisfying ( )† =

∗
d R 0

x
A

0 .

Proof.  It is readily checked that

− = − − −
� � � �x x x x x x x

1

2

1

2

1

2
, .2 2 2

2 2 2 2∥ ∥ ∥ ∥ ∥ ∥ 〈 〉† † † †� (5.4)

Now we separate two cases. In the first case, characterized by ( )†∉ ∗x Arange , we decom-
pose for arbitrary fixed R  >  0 the element †x  as † = +∗x A v uR R, where ∥ ∥ =v RR Y  and 

= >
∗

�u d R 0R x
A2∥ ∥ ( )† . It is known (see [5, pp 377–8]) that the infimum in (2.7) is a minimum in 

this case and for all R  >  0, and that such elements ∈v YR  and ∈ �uR
2 always exist. Using this 

fact, we can conclude that

− − = − + − = − + −∗
� � � �x x x A v x x u x x v A x x u x x, , , , , ,R R R Y R2 2 2 2〈 〉 〈 〉 〈 〉 〈 ( )〉 〈 〉† † † † † †

which yields the estimate

〈 〉 ⩽ ∥ ( )∥ ( )∥ ∥† † † †
†− − − + −
∗

� �x x x R A x x d R x x, Y x
A2 2

for the third term in the right-hand side of the identity (5.4). Hence, we may employ for 
\ ( )†∈ ∗�x Arange2  the auxiliary function Φ, defined by (5.1). Thanks to the limit conditions 

(5.2), we can choose (∥ ( )∥ )†= Φ −−R A x x: Y
1 . Then we obtain upon Young’s inequality that

− − − + +
−

= Φ − +
−

−

∗

∗

�
�

�

x x x R A x x d R
x x

d A x x
x x

,
4

2
4

.

Y x
A

x
A

Y

2
2

1 2
2

2

2

2

〈 〉 ⩽ ∥ ( )∥ [ ( )]
∥ ∥

[ ( (∥ ( )∥ ))]
∥ ∥

† † †
†

†
†

†

†

Consequently, recalling (5.4) we know that for \ ( )†∈ ∗�x Arange2  the variational inequality

⩽ ∥ ∥ ⩽ ∥ ∥ ∥ ∥ [ ( (∥ ( )∥ ))]† † †
†− − + Φ −−∗

� � �
x x x x d A x x0

1

4

1

2

1

2
2

x
A

Y
2 2 2 1 2

2 2 2

�
(5.5)

is valid for all ∈ �x 2. Recalling the definition of ψ� and ψ, we know that the last term in the 
right hand-side of the inequality (5.5) is exactly (∥ ( )∥ ))†ψ −� A x x2 Y , and this inequality holds 
still true if this term is replaced by (∥ ( )∥ )†ψ −A x x2 Y .
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In the second case, where a source condition ( )†∈ ∗x Arange  is satisfied, we know that there 
exists some R0  >  0 such that ( )† =

∗
d R 0

x
A

0 , and we can simply estimate the third term in the 
right-hand side of (5.4) as

⟨ ⟩ ⩽ ∥ ( )∥† † †− − −�x x x R A x x, .Y02

Then the variational inequality attains the simpler form

− − + −
� � �

x x x x R A x x0
1

2

1

2

1

2
,Y

2 2 2
02 2 2⩽ ∥ ∥ ⩽ ∥ ∥ ∥ ∥ ∥ ( )∥† † †� (5.6)

thus we can set ψ(t)  :=  t.� □

Theorem 5.2.  Let η= − + −η � �
E x x x x x x, : 1

4
21 2( ) ∥ ∥ ∥ ∥† † †  be an error functional, and ηg  be 

a concave index function given by

( ) ( ) ( )η ϕ ψ= + >ηg t t K t t: 2 , 0,� (5.7)

where ϕ is from (4.1) and ψ is defined in lemma 5.1, and the constants K  =  2 for 
\ ( )†∈ ∗�x Arange1  and K  =  R0 for ( )†∈ ∩ ∗�x Arange1  satisfying ( )† =∗d R 0

x 0 . Then the follow-
ing variational inequality

( ) ⩽ ( ) ( ) (∥ ( )∥ )† † †− + − ∀ ∈η η η η �R RE x x x x g A x x x, Y
1� (5.8)

holds for the elastic-net regularization (1.5)–(1.6) and an arbitrary weight parameter η> 0.
Moreover, as an immediate consequence of the inequality (5.8), the convergence rate

( ) ( ( )) →† δ δ=η β η
δ

η∗
OE x x g, as 0,� (5.9)

holds for the elastic-net regularized solutions β η
δ
∗

x ,  when the regularization parameter β∗ is 
chosen from TDP, SDP or LEP. Thus the following alternative rate estimate follows

∥ ∥ ⩽ ∥ ∥ ( ( ) ( )) →† † ϕ δ ψ δ δ− − = +β η
δ

β η
δ

∗ ∗� � Ox x x x as 0., ,2 1� (5.10)

Proof.  Taking into account (5.5) and (5.6), we can deduce from (4.2) the variational  
inequality

( ) ⩽ ( ) ( ) [ ] (∥ ( )∥ )† † †η ϕ ψ− + + −η η ηR RE x x x x K A x x, 2 Y� (5.11)

of type (3.4) for all ∈ �x 1, with the constants K  =  2 for \ ( )†∈ ∗�x Arange1  and K  =  R0 for 
( )†∈ ∩ ∗�x Arange1  satisfying ( )† =∗d R 0

x 0 . We also note that the error functional ηE  satisfies the 
conditions (3.7) and (3.8) with CE  =  2, and that the function ( )ηg t  is a concave index function.

Then we can apply proposition 3.2 with λ = 1, = ηE E , = ηg g  and C  =  1 for all three a 
posteriori parameter choices of β under consideration to obtain the desired results.� □

Example 5.3.  We discuss now the convergence rate in (5.10) under the assumptions that †x  
satisfies the Hölder source condition with exponent θ> 0, implying a power-type decay of the 
distance function (2.9), and that the power-type decay of solution components and power-type 
growth of the f(k)-norms (4.4) hold. Note that †∈ �x 0 implies ( )†∈ ∗x Arange , which is a direct 
consequence of assumption 2.1 (c). Then (4.3) and (4.7) show that ( )ϕ δ δ∼

µ
µ ν+  if \†∈ � �x 1 0 and 
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( )ϕ δ δ∼  if †∈ �x 0. On the other hand, the concave index function ( ) ( )ψ δ ψ δ δ= ∼ θ
θ+� 2

1 can be 
seen from formula (5.3) if \ ( )†∈ ∗�x Arange1 , while it occurs that ( )ψ δ δ∼  if ( )†∈ ∩ ∗�x Arange1 . 
In summary, we have by theorem 5.2 the Hölder convergence rate

δ− =β η
δ κ
∗

O�x x ,, 1∥ ∥ ( )†� (5.12)

where κ is given by

κ

µ
µ ν

µ
µ ν

θ
θ

=

∈

+
∈ ∩

+ +
∈

∗

∗

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪⎪

⎛
⎝
⎜

⎞
⎠
⎟

�

� �

�

x

x A

x A

1 if ,

if range ,

min ,
2

1
if range .

0

1 0

1

( ( )) \

\ ( )

†

†

†

� (5.13)

In the case \†∈ � �x 1 0, we observe the behaviour of the exponent (5.13) for the Hölder conv
ergence rate (5.12) that fast convergence rates occur only for almost sparse solutions. There 
is a trade-off here in the sense that the closer the exponent κ is to one the more drastic must 
be the decay of the components †x k of the solution †x  if k tends to infinity. More precisely, for 
κ close to one, the decay exponent μ from (4.4) for the solution components has to be suf-
ficiently large and the exponent θ of the range-type source condition occurring in (2.9) has to 
be sufficiently close to one.

Remark 5.4.  Taking into account the estimates from [25], we can distinguish upper bounds 

of ( )†
η β η
δ
∗

E x x,,  in theorem 5.2 for β β=∗ TDP and β β=∗ SDP, which, however, yield the same 
convergence rate (5.9). To be more precise, we find for sufficiently small δ> 0 that

η η ϕ δ ψ δ− + − +β η
δ

β η
δ

∗∗ ∗� �
x x x x C K

1

4
2, ,

21 2∥ ∥ ∥ ∥ ⩽ ( ( ) ( ))† †� (5.14)

holds with

( ) ( )
( ) ( )

τ β β

τ
τ

τ τ
β β

=

+ =

+
+

− +
=∗

∗

∗

⎧
⎨
⎪

⎩
⎪

⎧
⎨
⎩

⎫
⎬
⎭

C

q

1 for ,

1 max
2 1

1 1
, 1 for

2 TDP

2

2 SDP.
� (5.15)

From (5.14) we derive the �1-norm estimate

∥ ∥ ⩽ ( ) ( )† ϕ δ
η
ψ δ− +β η

δ
∗

∗
∗ �x x C

C
K2 ., 1� (5.16)

In contrast to the approach for (5.10), we may derive directly from (5.14) an �2-norm estimate 
of the form

∥ ∥ ⩽ ( ( ) ( ))† η ϕ δ ψ δ− +β η
δ

∗∗ �x x C K2 2, 2� (5.17)

with a lower (square root) rate as →δ 0. On the other hand, it follows from the formula (3.10) 
that the estimate (5.14) holds true for β β=∗ LEP with constant /=∗C q34 .

Remark 5.5.  By introducing the weight parameter η> 0 in section  1, the natural  
two-parameter regularization (1.4) of the elastic-net approach reduces to the one-parameter  
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regularization (1.5). If the weight η is fixed for all δ> 0, then the convergence rate in (5.10), 
also the Hölder rate expressed by the exponents κ in Example 5.3, is the same for all η< <∞0 , 
but the upper bounds on the right-hand side of (5.16) and (5.17) depend on η. A very illustra-
tive situation occurs when we consider TDP with τ τ τ= =: 1 2. At least for sufficiently small 
δ> 0, the regularization parameter ( )β η∗  is well-defined for all η> 0 and the pairs ( ( ) )β η η∗ ,  

form a ‘discrepancy curve’ with ∥ ∥( ) τδ− =β η η
δ δ
∗

Ax y Y,  and the uniform convergence rates of 

all associated regularized solutions. Then we can select one pair from the curve with the goal 
to implement additional solution features; see more discussions in [31, p 166].

6.  Conclusions

In this work we have derived some variational inequalities for both �1- and elastic-net regu-
larizations. Then we have applied these variational inequalities to obtain some explicit conv
ergence rates, and compared the results with the ones from the classical source conditions. 
This increases significantly the range of the regularized solutions, for which the convergence 
rates can be achieved. Three different principles of a posteriori parameter choices are also dis-
cussed, and their influences on convergence rates are analyzed. The basic principles, analysis 
tools, and the selection strategies for the choice of regularization parameters can be equally 
applied to general multi-parameter Tikhonov-type regularizations.
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