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Abstract
This work investigates the electrical impedance tomography (EIT) problem in
the case when only one or two pairs of Cauchy data is available, which is
known to be very difficult in achieving high reconstruction quality owing to its
severely ill-posed nature. We propose a simple and efficient direct sampling
method (DSM) to locate inhomogeneous inclusions. A new probing function
based on the dipole potential is introduced to construct an indicator function
for imaging the inclusions. Explicit formulae for the probing and indicator
functions are derived in the case when the sampling domain is of spherical
geometry in n (n = 2, 3). This new method is easy to implement and com-
putationally cheap. Numerical experiments are presented to demonstrate the
robustness and effectiveness of the DSM, which provides a new numerical
approach for solving the EIT problem.

Keywords: electrical impedance tomography, limited data, inhomogeneous
inclusions, probing function, indicator function, reconstruction algorithm

(Some figures may appear in colour only in the online journal)

1. Introduction

Electrical impedance tomography (EIT) is an effective noninvasive evaluation method that
creates images of the electrical conductivity of an inhomogeneous medium by applying
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currents at a number of electrodes on the boundary and measuring the corresponding voltages.
The EIT problem was first considered as a mathematical problem by Calderón in 1980 [15], in
which he considered the inverse problem of whether the electrical conductivity of a medium
can be recovered by the boundary voltage and current measurements. A detailed survey of the
mathematical studies on the EIT problem can be found in [54]. EIT has now found appli-
cations in many areas, such as oil and geophysical prospection [58], medical imaging [28],
physiological measurement [29], early diagnosis of breast cancer [38, 59], monitoring of
pulmonary functions [31] and detection of leaks from buried pipes [37], as well as many other
applications [6, 24, 27, 53]. Our application of EIT is the detection of some embedded
inclusions in a known homogeneous background, e.g., one may think of air bubbles, cracks,
defects or impurities in an otherwise homogeneous medium of building material or biological
tissue.

It is known that the severe ill-posedness makes it more difficult to have high quality
image reconstruction for the EIT problem than for many other imaging problems. Focus has
therefore been put to develop efficient and stable numerical algorithms to achieve some
reasonable EIT imaging, see e.g., [5, 9, 18, 19, 21, 35, 41, 46, 51, 55, 57]. Some of the
algorithms are based on the technique of minimization of a least-squares residual functional
combined with a Tikhnov regularization. Various regularizers have been studied, such as
Sobolev regularization [39, 46, 55], total variation regularization [19, 21, 51], and regular-
izations which incorporate a priori structural information [45]. Numerical analysis for EIT
imaging techniques based on Tikhonov regularization can be found in [46, 50, 51]. The d-bar
method is also proposed to solve the EIT problem [52]. Recently, the concept of sparsity and
statistical inversion approach were also applied to the EIT imaging [40]. We may refer to
[41, 47] for L1-type regularization and [10, 19] for TV-type regularization with sparsity.
Thorough theoretical studies, algorithms and numerical experiments were presented in
[23, 34, 36]. In the last decade, another family of reconstruction algorithms for solving the
EIT problem which are non-iterative in nature starts to flourish [7], most of which can also be
referred as the direct methods. They provide a good alternative to the minimization algorithms
and linearization approximations. Usually these direct methods propose indicator functions
which attains extreme values when the sampling point belongs to the support of the inho-
mogeneities. Some of these newly developed direct techniques are developed based on
spectral analysis, for instance, the sampling and factorization methods [7, 13, 26, 42], and the
MUSIC algorithms [1, 2, 20]. Other direct techniques which involve different philosophy
include the point source method[30] and the topological sensitivity approach [2, 8]. Recent
systematic reviews on both the regularized minimization algorithms and the direct methods
are available in [7, 33].

Now we describe the isotropic EIT model of our interest. Suppose Ω ⊂ n (n = 2, 3) is an
open bounded connected domain with a C2-boundary, containing some conducting media.
Assume that σ is a strictly positive ∞L function, representing an isotropic conductivity in Ω.
Let σ0 be the conductivity of the homogeneous background medium. We shall often denote
the support of σ σ− 0 as D, representing the inhomogeneous inclusions. Then the potential

Ω∈u H ( )1 in the isotropic conductivity model satisfies the following equation [9]

σ Ω

σ
ν

Ω

· =
∂
∂

= ∂

⎧
⎨⎪
⎩⎪
 u

u
g

( ) 0 in ,

on ,
(1.1)

where the Neumann boundary data Ω∈ ∂−g H ( )1 2 represents the current imposed on the
boundary. We shall complement the system (1.1) by the following condition for the
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uniqueness of the solution

∫ =
Ω∂

u sd 0. (1.2)

For a given conductivity σ, we denote by Λσ the Neumann-to-Dirichlet (NtD) operator
Λ Ω Ω∂ → ∂σ

−H H: ( ) ( )1 2 1 2 given by

Λ =σ Ω∂g u . (1.3)

Correspondingly, we shall write Λσ0 for the NtD operataor associated with the homogeneous
medium. From now on, we will often write the surface potential over Ω∂ as f, i.e., = | Ω∂f u .
The inverse problem of our interest is then formulated as follows: given a single pair (g, f) of
the Cauchy data or a small number (say 2 or 3) of pairs (g, f) for the systems (1.1), (1.2), we
shall estimate the number and the supports D of the inhomogeneous media contained in the
sampling domain Ω. We remark that, in general, the EIT problem refers to recovering the
conductivity σ from the knowledge of the full NtD map Λσ , or in practice, from a good matrix
approximation of such a map by measuring a large number of pairs (g, f) of the Cauchy data,
say 32 or 64 pairs. However, in this work, we are mainly interested in the case when only one
or two pairs (g, f) of Cauchy data is available. Theoretical aspects of medium reconstruction
with one or few incidence currents are considered for example in [1, 2, 16], which
affirmatively suggest this possibility. However, in practice, due to the limited data, we usually
can not expect an accurate reconstruction of the conductivity profile, instead we intend to
provide dome reasonable estimate of the number and the supports of all the inhomogeneities.
We shall assume that the potential u is measured on the whole surface Ω∂ or on a part of Ω∂ .

In this work, we propose a new direct sampling method (DSM) for solving the afore-
mentioned EIT problem, which may fall into the vast category of the various direct methods
developed in recent years [1, 2, 7, 8, 13, 20, 26, 30, 42]. We introduce a family of probing
functions based on the dipole potential [4, 25]. We can then use these probing functions to
define an indicator I, which provides the estimation of the supports of inhomogeneities inside
Ω. This DSM is fast and computationally inexpensive, and it may serve as an ideal initi-
alization for any more advanced and more expensive iterative optimization algorithms, e.g.,
[5, 9, 18, 19, 21, 35, 41, 46, 51, 55, 57], for further refinements of the numerical recon-
struction. The proposed DSM has a notable edge that it performs reasonably nice with a very
limited set of measurement data, as confirmed by our numerical experiments. The principle of
our DSM here for the EIT is similar to our earlier work in [32] which aims to solve the inverse
acoustic medium scattering problem. However, the framework and techniques in this work
are completely new.

The following is the outline of this work. In section 2, we first introduce the general
philosophy of a new DSM, then we propose a family of probing functions and an indicator for
the new DSM to solve the EIT problem, as well as provide an alternative characterization of
the indicator function, which helps us find an appropriate probing direction and analyze our
probing method. We then verify some fundamental properties of the probing functions for our
EIT problem in section 3. In section 4 we turn our attention to the domains Ω of special
spherical geometry in n ( =n 2, 3) and use the Poincare–Steklov eigenvalue problem to
explicitly derive the probing function for the cases, and discuss the properties of the probing
function and the proposed indicator index. We then justify in section 5 the optimality of the
choice of the current densities to be used in our numerical experiments. In section 6 we
present some numerical experiments to demonstrate the effectiveness of our proposed DSM
for the EIT problem with just one single pair or two pairs of Cauchy data.

Inverse Problems 30 (2014) 095003 Y T Chow et al

3



2. Probing function and DSM

2.1. General philosophy of DSMs

In this section we shall first discuss the general philosophy of DSMs. A DSM was introduced
and studied in [44, 49] using far-field data and in [32] using near-field data for locating
inhomogeneities in inverse acoustic medium scattering. The method provides the location of
the inhomogeneities based on an indicator function, which is defined as the L2 inner product
over the measurement surface between the measured data and the fundamental solution of the
Helmholtz equation. Numerical experiments have shown that this method is effective and
very robust to noise. It is particularly successful in locating multiple clustered objects sitting
inside an acoustic medium with only a single or a few incident plane waves. The success of
the method comes from the following two observations: the scattered field can be approxi-
mated by a finite sum of the fundamental solution of the Helmholtz equation centered at
inhomogeneous inclusions; and the fundamental solutions centered at different points are
nearly orthogonal in the L2 inner product over the measurement surface.

These observations motivate our current development of DSMs to the EIT problem,
when only one pair of Cauchy data is available. We shall construct an appropriate family of
probing functions such that the scattered data can be approximated as a linear combination of
these functions. Let (f, g) be a pair of Cauchy data measured over the surface Ω∂ , i.e.,

Λ= σf g, with the NtD map Λσ defined as in (1.3). In the subsequent discussion, we shall
often write Δ Ω∂ as the surface Laplace operator on Ω∂ . Now we define the following duality
product 〈 · · 〉 γ Ω∂, , :

∫χ ϕ Δ χ ϕ

Δ χ ϕ χ Ω ϕ Ω

= −

= − ∈ ∂ ∈ ∂

γ Ω
Γ

Ω
γ

Ω
γ

Ω
γ

∂ ∂

∂ ∂( )

( ) s

H L

, : d

, for all ( ), ( ) (2.1)L

,

( )
2 22

with γ ⩾ 0. Clearly the space Ω∂L ( )2 can be considered as a subspace of the dual space of
Ω∂γH ( )2 in the following sense:

ϕ Ω ϕ Ω· ∈ ∂ * ∀ ∈ ∂γ Ω
γ

∂ ( )H L, ( ) ( ). (2.2),
2 2

For simplicity, we shall sometimes also write the duality product as 〈 · · 〉 γ, when the
domain of integration is clear in the context. The definition of the above duality product
〈 · · 〉 γ Ω∂, , is advantageous in a sense that it is well-defined even when the function ϕ is
merely an L2 function. Let | · |Y be a semi-norm respectively in the Sobelov space Ω∂γH ( )2 .
Assume that we can select a family of probing functions η Ω⊂ ∂Ω

γ
∈ ∈ H{ } ( )x d x d, ,

2n which
satisfies the following two conditions:

(1) the family is nearly orthogonal with respect to 〈 · · 〉 γ Ω∂, , and | · |Y , namely for any
Ω∈y and ∈ d d,x y

n, the function

η η

η
↦ =

γ Ω∂
x K x y( , ) :

,
(2.3)d d

x d y d

x d Y

,

, , ,

,

x y

x y

x

attains maximum at x = y with a sharply peaked Gaussian like distribution. Here and
throughout this work, a function that attains maximum at x = y with a sharply peaked
Gaussian like distribution refers to a function that behaves like a sharply peaked Gaussian
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kernel −
σ

−( )exp x y

4

2

with small σ, namely it achieves the largest values when x is near
the center y and decays rapidly when x moves away from y;

(2) the family of functions is fundamental, namely the scattered potential Λ− σf g0 can be
approximated by a linear combination of the probing functions in the following form:

∑Λ ξ Λ Λ ξ η ξ ξ Ω− = − ≈ ∀ ∈ ∂σ σ σ( ) ( )f g g g a( ) ( ) ( ) , (2.4)
k

k x d,k k0 0

where x{ }k are some quadrature points sitting inside D, ∈ dk
n and ak are some given

vectors and coefficients respectively.

Under these assumptions, we are now ready to define the following index function

η Λ

η
Ω=

−
∈ ∈

σ γ Ω∂
( )I x d C

f g
x d, :

,
, , , (2.5)x

x d

x d Y

x
n

1
, ,

,

x

x

0

where C1 is a constant independent of x and dx. Then we derive from (2.4) and (2.5) that

∑ ∑
η η

η
≈ =

γ Ω∂
( )I x d C a C a K x x,

,
( , ), (2.6)x

k

k
x d x d

x d Y k

k d d k1
, , ,

,

1 ,
x k k

x

x k

where Kd d,x k is the function defined as in (2.3). From the above representation of the index
function I, we can readily observe that the magnitude of the index is relatively large when x
sits inside D, whereas it is relatively small otherwise. Hence, if we see that the magnitude of
the index function I is relatively large at a point Ω∈x , it is very likely that the point lies in D.
Therefore the index function shall provide us with a good estimate of the number and
supports of the inhomogeneous inclusions D inside Ω.

2.2. Probing functions for DSM

In this subsection, we shall introduce a family of probing functions
η Ω⊂ ∂Ω

γ
∈ ∈ H{ } ( )x d x d, ,

2n which we will use in the DSM for the EIT problem. For this
purpose, we first define for any given Ω∈x and ∈ d n a function wx d, as the solution of the
following equation

∫Δ δ Ω
ν

Ω− = − ·
∂

∂
= ∂ =

Ω∂
w d

w
w sin ; 0 on ; d 0. (2.7)x d x

x d
x d,

,
,

We readily see that the function wx d, is linear with respect to d. For any Ω∈x and ∈ d n, it
is easy to verify that the following dipole potential in the nth dimension [4, 25]:

ξ ξ
ξ

ξ= − ·
−

∈ ⧹D c
x d

x
x( ) :

( )
, { }, (2.8)x d n n

n
,

where cn is a dimensionality constant, satisfies the equation in the entire space

Δ δ− = − · D d in . (2.9)x d x
n

,

By subtracting the first equation in (2.7) from (2.9), we see that the difference
φ = −D wx d x d x d, , , solves the following system

∫ ∫Δφ Ω
φ

ν ν
Ω φ− =

∂

∂
=

∂
∂

∂ =
Ω Ω∂ ∂

D
s D s0 in ; on ; d d . (2.10)x d

x d x d
x d x d,

, ,
, ,
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With the above notions, we are now ready to define a family of probing functions
η ξ Ω⊂ ∂Ω

γ
∈ ∈ H{ ( )} ( )x d x d, ,

2n as the surface potential over Ω∂ created by wx, i.e.,

η ξ ξ ξ Ω= ∈ ∂w( ) : ( ), . (2.11)x d x d, ,

With the definition of the NtD map Λσ in (1.3), we can also write the function ηx d, in the
representation below

η ξ ξ Λ
ν

ξ ξ Ω= −
∂

∂
− ∈ ∂

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥D

D
C( ) ( ) ( ) , , (2.12)x d x d

x d
, , 1

,

where C is a constant such that

∫ η =
Ω∂

sd 0. (2.13)x d,

We will verify in sections 3 and 4 that this family of probing functions satisfy the two
assumptions (2.3) and (2.4) stated in the previous subsection for some special and frequently
used measurement surface Ω∂ .

Actually, the application of the above family of dipole functions for solving the EIT
problem is not new. Theoretical aspect of investigating the possibility of medium recon-
struction by dipole functions is first considered in an notable work of [16]. An asymptotic
formula for the steady-state voltage potential for a conductor with a finite number of well
separated and small inhomogeneities is derived in terms of polarization tensors (GT) and the
derivative of Neumann function (hence the dipole). A ∞L -Lipschitz estimate of continuous
dependence was also established, which provides a theoretical basis for identifiability and its
performance with few incidence currents. Using the asymptotic relation and the estimate of
continuous dependence, a reconstruction method was proposed for the EIT problem based on
a minimization procedure. Full asymptotic expansions using the dipole and generalized
polarization tensors (GPT) were then developed in [1, 2] with some theoretical investigation
for the medium reconstruction from remote measurement. Based on these expansions several
reconstruction methods are developed, for example, the GPTs matching approach under the
level-set framework. The dipole probing function ηx d, was also adopted in [42] to define an
indicator function of the factorization method:

∑
η

λ
= Ω

=

∞
∂

F x
v

( )
,

, (2.14)
k

x d k L

k1

, ( )
2

2

where λ v( , )k k are the eigenpairs of the map Λσ defined as in (1.3). Assume that the
conductivity coefficient σ is a piecewise constant function which attains the values
σ =i N, 0 ,...,i , where σ0 is the homogeneous background medium. Provided that all
conductivities inside the inclusions satisfy either σ σ>i 0 for all ≠i 0, or σ σ<i 0 for all ≠i 0,
then the series in (2.14) converges if and only if Ω∈x is outside the inclusions D. If there are
only L pairs of Cauchy data available, we can only obtain an approximation of Λσ as an

×L L matrix, and consequently only an approximation FL(x) of the series (2.14) as a sum of
L terms. In practice, we need a practical criterion to determine if the series F(x) converges. It
is suggested in [11–13] to use a linear regression over the numerator and denominator of the
terms in (2.14) and declare that the series converges if the numerator decays more rapidly than
the denominator. As we may have noticed, in order to evaluate the above indicator function,
many incident fields may be required and then a factorization of the ×L L matrix is
performed which approximates the operator Λσ .
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On the other hand, we shall use this dipole function for a very different purpose in our
DSM. We introduce the dipole potential as a family of probing functions, and use them to
define an index function in the next subsection, which helps us estimate the supports of the
inhomogeneous media D. The evaluation of our index function does not involve matrix
factorizations or iterations, and it can be carried out with a single or a very small number of
incident fields.

2.3. Index function for DSM

In this subsection, we shall introduce an index function for solving the EIT problem based on
the family of dipole functions η Ω∈ ∈{ }x d x d, , n introduced in the last section.

For the ease of exposition, we shall focus on the duality product 〈 · · 〉 Ω∂, 2, , and
consider | · |Y to be the semi-norm of Ω∂H ( )3 2 . If we choose C1 to be a normalization
constant Λ|| − ||σ Ω∂f g1 L ( )0

2 , and substitute these expressions into (2.5), we come up with the
following expression of the index function for Ω∈x and ∈ dx

n:

∣ ∣
η Λ

Λ η
Ω=

−

−
∈ ∈

σ Ω

σ Ω Ω

∂

∂ ∂
( )I x d

f g

f g
x d, :

,
, , . (2.15)x

x d

L x d H
x

n
, 2,

( ) , ( )

x

x

0

0
2 3

2

One point to note is that, with our definition of the duality product 〈 · · 〉 Ω∂, 2, in (2.1), the
surface Laplace operator is only acting on the probing function ηx d, (on the left-hand side of
the duality product) which is itself infinitely smooth over the measurement surface, and
therefore (2.15) makes sense even when Λ− σf g0 contains noise and is merely in L2. The
noise enters the index function directly and is smoothed by the duality product via integration
over the measurement surface. This may provide a reason for the robustness of our DSM
against noise that we have observed from our numerical experiments in section 6 when the
index function (2.15) is used to locate inhomogeneities in a sampling domain.

Actually, the introduction of the duality product 〈 · · 〉 γ Ω∂, , in the above index
function is motivated from the following intuitive observation. From the fact that Δ =w 0x

near the boundary Ω∂ , we have

Δ η
ν

− =
∂
∂

+ ∂Ω∂
w

g w( ) , (2.16)x
x

x

2

2

where ∂g ( ) is a first order differential operator. Therefore for any γ ⩾ 0 , we have

Δ η
ν

− = ∂
∂

+ ∂Ω
γ

γ

∂ ⎜ ⎟⎛
⎝

⎞
⎠( ) w h w( ) , (2.17)x x x

2

where ∂h ( ) is a pseudo-differential operator of order less than γ2 . Therefore, we can observe
that the action of Δ− Ω∂( )1 2 on the functions along the boundary is equivalent to taking the
normal derivative at the boundary up to a lower order term. Hence, the introduction of the
duality product 〈 · · 〉 γ Ω∂, , gives more sensitivity of the index function for the data. From
our numerical experiments, we can actually observe that the kernel ·K y( , )d d,x y provides a
much sharper distribution with γ = 2 and | · |Y being the Ω∂H ( )3 2 semi-norm than γ = 0
and | · |Y being the L2-norm (see figure 1), therefore significantly improves the performance
of the index function to locate the inhomogeneities. These observations will be further
confirmed in sections 2.4 and 4 for some special domains Ω.
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2.4. An alternative characterization of index function

In this subsection, we shall give an alternative characterization of the index function I x d( , )x

defined in (2.15). With this representation of the index function, we can find an optimal
probing direction ∈ dx

n for the index function at each point of Ω∈x . We now define an
auxiliary function which will be very useful to our subsequent discussion. Suppose that

Λ Ω− ∈ ∂σ
αf g H ( )0 for some α ⩾ 1

2
. For a γ ⩾ 0 such that α γ− ⩾ −2 4 1, let ϕ be the

solution to the following system:

∫Δϕ Ω ϕ
ν

Δ Λ Ω ϕ− = ∂
∂

= − − ∂ =Ω
γ

σ
Ω

∂
∂

( )( ) f g s0 in ; on ; d 0 . (2.18)0

Then, from the Greenʼs identity, we have that

∫ ∫Δϕ ϕΔ η ϕ
ν

ϕ
ν

− = ∂
∂

−
∂

∂Ω Ω∂

⎛
⎝⎜

⎞
⎠⎟( )w w x

w
sd d , (2.19)x d x d x d

x d
, , ,

,
x x x

x

where wx d, x is defined as in (2.7) for Ω∈ ∈ x d, x
n. From the definition of wx d, x in (2.7) and

ϕ in (2.18), we therefore derive the following equation:

∫ ∫ϕ η ϕ
ν

η Δ Λ· = ∂
∂

= − −
Ω Ω

Ω
γ

σ
∂ ∂

∂ ( )( )d x s f g s( ) d d . (2.20)x x d x d, ,x x 0

Noting that Λ Ω Ω− ∈ ∂ ⊂ ∂σ
α γf g H H( ) ( )0 and Ω∂ is a smooth closed surface, we arrive at,

by comparing the above equation with (2.1), the following for all Ω∈ ∈ x d, x
n,

∫η Λ Δ η Λ ϕ− = − − = ·σ γ Ω
Ω

Ω
γ

σ∂
∂

∂ ( )( )f g f g s d x, d ( ). (2.21)x d x d x, , ,x x0 0

Then we can see, by comparing the definition (2.15) of the index function with the above
relation, that

∣ ∣
ϕ

Λ η
Ω=

·
−

∈ ∈
σ Ω Ω∂ ∂




( )I x d
d x

f g
x d,

( )
, , , (2.22)x

x

L x d H
x

n

( ) , ( )x0
2 3

2

where ϕ is defined as in (2.18) with γ = 2. So we know the index function is maximized

when dx is chosen to be = ϕ
ϕ| |




dx
x

x

( )

( )
for each Ω∈x . From the definition of the probing

function ηx d, x
in (2.7), we can easily see that η η= ∑ = dx d i

n
i x e, 1 ,x i

, where = ⋯d d d d( , , , )x n1 2

Figure 1. Values of ·K y( , )d d,x y for Ω = −[ 1, 1]2 with = −y ( 0.41, 0) and
= =d d (0, 1)x y . Left: γ = 0 and | · | = | · |Y L2; right: γ = 2 and | · | = | · |Y H3 2.
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and ei is an orthonormal basis in n. Therefore the probing direction dx can be selected
pointwise cost-effectively for numerical purpose. As we observe from numerical experiments,
such a choice of dx may effectively avoid accidental removal of existing inhomogeneities in
the reconstructed image when one might wrongly choose a probing direction which is
orthogonal to ϕ x( ) at a point Ω∈x .

3. Verification of the fundamental property

In this section we shall show that the scattered potential in the EIT problem,
Λ Λ− = −σ σf f g g:0 0 , can be written as a finite sum as in (2.4) of the functions wx d, defined

in (2.7). In the subsequent discussion, we shall often write u0 to be the incident potential
satisfies the following homogeneous equation

∫Δ Ω σ
ν

Ω− =
∂
∂

= ∂ =
Ω∂

u
u

g u s0 in ; on ; d 0. (3.1)0 0
0

0

Comparing the above system with (1.1), (1.2), we can see from (1.3) that Λ= = |σ Ω∂f g u0 00 . We
shall also let Gx to be the Greenʼs function of Δ− with Neumann boundary condition, namely

∫Δ δ Ω
ν Ω

Ω− =
∂
∂

=
∂

∂ =
Ω∂

G
G

G sin ;
1

on ; d 0. (3.2)x x
x

x

From (2.11), we can see that our probing function η = wx d x d, , on the boundary Ω∂ . Therefore,
comparing (3.2) with (2.7), we can readily verify that

η ξ ξ ξ Ω= − · ∈ ∂d G( ) ( ), . (3.3)x d x,

This follows directly from the fact that

Δ ξ Δ ξ δ− − · = · = − ·  ( ) ( )d G d G d( ) ( ) . (3.4)x x x

In the next two subsections, we will demonstrate the fundamental property (2.4) for the
following two important cases: σ is a piecewise constant function, and σ is a smooth function.

3.1. Medium with piecewise constant inhomogeneities

Suppose that the coefficient σ in (1.1) is a piecewise constant function and that the support D
of the function σ σ− 0 is in the form of Ω Ω= ⋃ ⋐=D i

m
i1 where Ωi is an open domain

representing the ith open inclusion sitting inside Ω for = …i m1, , . For notational sake, we
shall often write Ω Ω= ⧹D:0 . Assume that σ takes the value σi inside each of the domain Ωi.
Then we can readily derive from the potential equation (1.1) of u that for any ϕ Ω∈ H ( )1 ,

∫ ∫ ∫

∫

∑ ∑

∑

σ ϕ ϕ σ ϕΔ

σ
ν

σ
ν

ϕ

= · + = −

+ ∂
∂

− ∂
∂

Ω Ω Ω

Ω

=
∂

=

=
∂

− +⎛
⎝⎜

⎞
⎠⎟

 u x g s u x

u u
s

0 d d d

d .

i

m

i

i

n

i

i

m

i

0 0

1

0

i i

i

Here and through this paper, the superscripts ± indicates the limits from outside and inside of
the domains Ωi for = …i m1, , . Let the function σ=v u: , then we get from the above and
(1.2) that v satisfies the following system
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∫

Δ Ω Ω
ν

Ω
ν ν

− = ⧹ ⋃ ∂ ∂
∂

= ∂ ∂
∂

= ∂
∂

=

Ω
Ω

Ω

=

−
∂

+

∂

∂

⎛
⎝⎜

⎞
⎠⎟v

v
g

v v

v ds

0 in ; in ; ;

0. (3.5)

i

m

i
1

i

i

Moreover, we notice that the flux of v is continuous, i.e. = − =
ν ν ν

∂
∂

∂
∂

∂
∂

+ −⎡⎣ ⎤⎦ 0v v v , whereas the
function v is itself discontinuous, i.e. its jump = −+ −v v v[ ] : is non-zero. Define the function
η σ σ= −u u: 0 0 where u0 satisfies (3.1), then we can see from the above and (3.1) that η
satisfies the following system

∫Δη Ω Ω η
ν

Ω η− = ⧹ ⋃ ∂ ∂
∂

= ∂ =
Ω= ∂

⎛
⎝⎜

⎞
⎠⎟ s0 in ; 0 in ; d 0 (3.6)

i

m

i
1

with further properties that η = v[ ] [ ] and = =η
ν ν

∂
∂

∂
∂[ ] [ ] 0v on Ω∂ i. Therefore, combining the

above several properties of the function η, we can deduce the following expression from the
Greenʼs representation and (3.2), (3.6) that, for any ξ Ω∈ 0

∫ ∫

∫ ∫ ∫

∫

∑

∑ ∑

∑

η ξ η η

η η η

η

= − + −

= − + − −

= −

Ω
ξ

η
ν ν Ω

ξ
η
ν ν

Ω
ξ

η
ν ν Ω

ξ
η
ν ν Ω ν

Ω ν

∂

∂
∂

∂
∂

=
∂

∂
∂

+ ∂
∂

∂

∂
∂

∂
∂

=
∂

∂
∂

− ∂
∂

=
∂

∂
∂

=
∂

∂
∂

ξ ξ

ξ ξ ξ

ξ

+

−

( ) ( )
( ) ( )

G s G s

G s G s s

s

( ) d d

d d [ ] d

[ ] d . (3.7)

G

i

m
G

G

i

m
G

i

m
G

i

m
G

1

1 1

1

i

i i

i

Since η is continues near Ω∂ , and that η = −u u0 on Ω∂ , we have the following
representation of the scattered field for ξ Ω∈ ∂

∫∑ξ ξ η ξ η
ν

− = − = = −
∂
∂Ω

ξ

=
∂

( )f f u u
G

s( ) ( )( ) ( ) [ ] d . (3.8)
i

m

0 0

1 i

From the above representation and numerical quadrature rule, we can therefore approximate
the scattered potential −f f0 by a finite sum of probing functions as follows

∑ξ η ξ ξ Ω− ≈ ∈ ∂( )f f a( ) ( ), , (3.9)
k

k x d0 ,k k

where xk are some quadrature points located along Ω⋃ ∂ ⊂= Di
m

i1 , ak are some coefficients,
and ν= ∈ d x( )k k

n. Therefore property (2.4) follows when σ is a piecewise constant
function.

3.2. Medium with smooth conductivity

In this subsection, we assume the coefficient σ in (1.1) to be a αC1, function with α< <0 1
and Ω⋐D . Then we know the solution u of the potential equation (1.1) is in αC2, . Sub-
tracting (3.1) from (1.1)

∫
σ Δ σ σ Ω

ν
Ω

− + · − =
∂ −

∂
=

∂ − =
Ω∂

 ( )u u u
u u

u u s

( ) ( ) 0 in ;
( )

0 on

; ( ) d 0. (3.10)

0 0 0
0

0

We further deduce from the Greenʼs representation theorem and (3.2), (3.10) the following for
all ξ Ω∈
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∫ ∫
∫ ∫
∫

σ σ σ Δ

σ σ σ ξ σ

σ σ σ ξ

= − − · + −

= − − · − − − −

= − − · − −

Ω
ξ

Ω
ξ

Ω
ξ

Ω ν

Ω
ξ

∂

∂
∂

ξ

 

 

 

u G x G u u x

u G x u u u u s

u G x u u

0 ( ) d ( ) d

( ) d ( )( ) ( ) d

( ) d ( )( ). (3.11)

G

0 0 0

0 0 0 0 0

0 0 0

Since −u u0 is continues near the boundary Ω∂ , we get from the above equality that for all
ξ Ω∈ ∂

∫ξ ξ
σ

σ σ− = − = − − · ξ ( )f f u u u G x( ) ( )( )
1

( ) d . (3.12)
D

0 0
0

0

Therefore, from the above representation and numerical quadrature rule, we can approximate
the scattered potential −f f0 by a finite sum of probing functions as follows

∑ξ η ξ ξ Ω− ≈ ∈ ∂( )f f a( ) ( ), , (3.13)
k

k x d0 ,k k

where xk are some quadrature points located in D, ak are some coefficients, and
= ∈ d u x( )k k

n. This validates the fundamental property (2.4) for the case when σ is a
smooth function.

4. Explicit formulae for probing functions and index function

In the previous sections, we have discussed our probing method and techniques that we use in
the DSM for the EIT problem for a general domain Ω. From now on, we turn our attention to
another interesting topic namely, we come to some special cases of the domain Ω to work out
the analytical expressions for both the probing functions and their duality products
〈 · · 〉 γ Ω∂, , , therefore the distribution kernel K defined in (2.3). We consider the two cases:
Ω = = ∈ | | < ⊂ B x x(0) : { ; 1}n n

1 for =n 2, 3. Such spherical geometric shapes are
popular ones for measurement surfaces in applications. These analytical expressions of the
probing functions and duality products help us to understand the behaviour of the distribution
kernel K and thus the index function I in (2.15). We may also observe from these analytical
expressions that, in these special cases, the family of probing functions is nearly orthogonal
with respect to 〈 · · 〉 γ Ω∂, , and | · |Y as stated in section 2, namely for any Ω∈y and

∈ d d,x y
n, the function

η η

η
↦ =

γ Ω∂
x K x y( , ) :

,

(4.1)d d

x d y d

x d
Y

,

, ,
,

,

x y

x y

x

attains maximum at x = y with a sharply peaked Gaussian like distribution. For this purpose,
we first calculate the eigenvalues and eigenfunctions of the NtD map Λσ for these special
domains Ω. In fact, explicit calculations of these eigenvalue and eigenfunctions and related
research have been investigated in [11, 14, 48]. However, since these results are of
fundamental importance in obtaining formulae for the probing functions and their duality
products, we would like to briefly go through some of these results below.
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4.1. Poincare–Steklov eigenvalue problem

Let Λσ be defined as in (1.3). We know that Λσ is a compact self-adjoint operator in Ω∂L ( )2 ,
so by the Hilbert–Schmidt theorem, there exists a complete orthogonal basis ∈v{ }m m such
that Λ λ=σ v vm m m with λ → 0m if → ∞m . In this section we shall find the explicit formulae
for the eigenpairs λ v( , )m m when the domain is a unit disk Ω = ⊂ B (0)1

2 and the con-
ductivity distribution is piecewise constant in the radial direction. For this purpose, let us first
consider the following conductivity distribution:

σ
κ ρ

ρ
=

⩽
< <

⎧⎨⎩x
x

x
( )

for ,
1 for 1

(4.2)

with κ and ρ being two positive constants. Now we consider the current g in (1.1) to be of the
form = θg x( ) eim where θ= ∈ = ∂x B(1, ) (0)1

1 and ∈ ⧹m {0}. Then, following the
same arguments as in [48], rewriting equation ((1.1) in polar coordinates, we can derive the
following expansions of the eigenpairs of Λσ :

λ ρ μ
ρ μ π

θ
π

θ= −
+

= ∈ ⧹
m

v m m m
1 1

1
,

1

2
cos or

1

2
sin for {0}, (4.3)m

m

m m

2

2

where μ κ κ= − +(1 ) (1 ). In particular, if σ ≡ 1 in Ω, we have the simplified
eigenpairs in (4.3) with μ = 0, and the corresponding solution to the system (1.1) when

= θg x( ) eim for ∈ ⧹m {0} is given by

Ω= ∈θu x
r

m
x( ) e , . (4.4)m

m
mi

A similar result can be derived for Ω = ⊂ B (0)1
3 with the help of the spherical harmonics.

Using the above eigenpairs of Λσ , we are now ready to explicitly construct some probing
functions.

4.2. Probing functions for circular domains

In this subsection we shall explicitly calculate, for a given Ω∈x and ∈ d n, the probing
function ηx d, defined in (2.11) for the unit circular domain, namely Ω = B (0)1 in 2 and when
the homogeneous background coefficient σ = 10 . The results can be easily extended to the
general circular domains or when the homogeneous background coefficient σ ≠ 10 . For this
purpose, we first consider, for any smooth function ψ on Ω∂ , the solution φ to the following
Neumann problem:

∫Δφ Ω φ
ν

ψ Ω φ− = ∂
∂

= ∂ =
Ω∂

s0 in ; on ; d 0. (4.5)

Since φ is smooth, we have, from the Greenʼs identity and the definition of wx d, in (2.7), that

∫ ∫
∫

φ
ν ν

φ φ
ν

φΔ Δφ φ

− ∂
∂

=
∂

∂
− ∂

∂

= − = − ·

Ω Ω

Ω

∂ ∂

⎛
⎝⎜

⎞
⎠⎟

( )

w s
w

w s

w w y d x

d d

d ( ). (4.6)

x d
x d

x d

x d x d

,
,

,

, ,

Putting (2.11) and (4.5) into the above equality, we get that

∫ ψη φ= ·
Ω∂

s d xd ( ). (4.7)x d,
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From section 4.1, we can see that, for ∈ ⧹m {0}, if ψ = θe mi with θ π∈ (0, 2 ] is the
boundary condition in (4.5), then from the discussion of the Poincare–Steklov eigenlaue
problem in the last subsection, the solution φ to the system (4.5) is actually given by
φ = = θ

| |

| |
u em

r

m
mi

m

. Therefore we get that

∫ η θ = ·θ θ
⎛
⎝⎜

⎞
⎠⎟

s d
r

m
( )e d e , (4.8)x d

m x
m

m
,

i i x

1

where θ=x r( , )x x is in the polar coordinate. We recall the Fourier coefficients F g( ) of
∈ g L ( )2 1 :

F ∫
π

θ θ= ∈
π

θ− g m g m[ ( )]( )
1

2
( )e d , . (4.9)m

0

2
i

Comparing (4.8) with (4.9), and from the fact that the probing function ηx d, has zero mean, we
obtain

F Fη
π

η= · ∀ ∈ ⧹ =θ−⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟

⎡⎣ ⎤⎦( ) ( )m d
r

m
m( )

1

2
e {0} ; (0) 0 (4.10)x d

m
m

x d,
i

,

which directly gives, for ≠m 0,

F η =
>

<

θ θ θ

θ θ θ

− − − −

− − −

⎪
⎪

⎡⎣ ⎤⎦
⎧
⎨
⎩

( )
( )

( )
m

r m

r m
( )

e e if 0,

e e if 0.
(4.11)x d

x
m m

x
m m

,

i 1 i

i 1 i

d x x

d x x

With some basic calculations, we can then deduce the following explicit expression for ηx d, :

η ξ
π

ξ
ξ

ξ= − ·
−

∈ 
x d

x
( )

1 ( )
, for . (4.12)x d, 2

1

Similarly, we may also calculate explicitly the duality product 〈 · · 〉 γ, between the
probing functions which lie in Ω∂γH ( ) with γ ⩾ 0. Since the complete orthonomal set

θ
∈{e }m

m
i in πL (0, 2 )2 are the eigenfunctions of the surface Laplacian operator Δ− 1 with

each of their corresponding eigenvalues as m2, the definition of the duality product
〈 · · 〉 γ , , 1 on 1 (see (2.1)) between ηx d, x

and ηy d, y
gives

F F∑η η η η=γ
γ

∈




[ ( )]( )[ ( )]( )m m m, . (4.13)x d y d
m

x d y d, , ,
2

, ,x y x y
1

Substituting (4.11) into the above expression, we have for any γ ⩾ 0

∑η η =
γ

θ θ θ θ γ θ θ− − +

=

∞
− −

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟



( )m r r, 2 Re e ( ) e , (4.14)x d y d
m

x y
m m

, ,
,

i( )

1

2 1 i
x y

d x d y x y x y

1

where θ=x r( , )x x , θ=y r( , )y y , θ=d r( , )x d dx x and θ=d r( , )x d dx x are in their polar
coordinates. This directly gives the γ H ( )1 Sobolov semi-norms of ηx d, x

:

∑η =
γ

γ

=

∞
−


m r2 . (4.15)x d

m
x

m
,

,

2

1

2 2 2
x 1

We now calculate the above two series explicitly for γ ∈ 2 . For this purpose, we define an
auxiliary function βG z( ). For ∈ z such that | | <z 1, βG z( ) is defined for all β ∈  by
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∑= ∂
∂ −

=β
β

β

=

∞
⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠G z z

z z
m z( ) :

1

1
, (4.16)

m

m

0

which holds true since the series converges absolutely, and can be explicitly calculated for
any β ∈  recursively using expression (4.16). Comparing the above function with (4.15), we
have

η η γ= = >
γ

γ
 

( ) ( )G r
r

G r2 ,
2

for 0 (4.17)x d x x d
x

x,
0,

2
0 2

,
,

2

2
2

x x1 1

which yields, for instance,

η η η=
−

=
−

=
+

−  ( )
( )

( )r r

r

r

2

1
,

2

1
,

2 1

1
.x d

x
x d

x

x d

x

x

,
0,

2

2 , 1
2

,

2

2 2 ,
1,

2
2

2 3x x x1 1 1

This gives an explicit formula for calculation of the γ H ( )1 Sobolov semi-norms of ηx d, x
for

γ ∈ 2 . Whereas, for the duality product 〈 · · 〉 γ , , 1, a direct comparison between the
function (4.16) with (4.14) gives, for γ = 0, that

η η
θ θ θ θ θ θ

θ θ
=

− − − − +

− − +


( ) ( )
( )

r r

r r r r
,

2 cos 2 cos

1 2 cos
(4.18)x d y d

d d x y d d x y

x y x y x y
, , 0, 2 2x y

x y x y

1

while, for γ > 0, that

η η =γ

θ θ θ θ
γ θ θ

− − +
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ( )( ) ( )

r r
G r r, 2 Re

e
e (4.19)x d y d

i

x y
x y

i
, , ,

2
x y

d x d y x y
x y1

which yields, for instance, the duality product 〈 · · 〉, 1
2
as

η η

θ θ θ θ θ θ θ θ θ θ

θ θ

=

− − − − + + − − +

− − +



( )
r r r r

r r r r

,

2 cos ( ) 4 cos ( ) 2 cos ( 2 2 )

1 2 cos ( )
.

x d y d

d d x y d d x y x y d d x y

x y x y x y

, , ,

2 2

2 2 2

x y

x y x y x y

1
2

1

This gives an explicit formula for computing the duality product 〈 · · 〉 γ, of ηx d, x
for

γ ∈ 2 . Although the four terms x y d d, , ,x y in the duality products are deeply coupled, we
can see by substituting (4.17)–(4.19) into (2.3) that the kernel (2.3) attains maximum when x
is near y and when ≈d dx y, and that it gives a sharper peak as γ increases. This justifies the
validity of the DSM for EIT for the circular domain. We show, as an example, the values of
the duality products 〈 · · 〉 γ, between the probing functions for γ = 0; see figure 2 (left);
and γ = 1

2
; see figure 2 (right).

4.3. Probing function for an open ball

In this subsection we shall construct the probing function ηx d, defined in (2.11) for Ω∈x and
∈ d n when Ω is an open ball Ω = ⊂ B (0)1

3 and σ = 10 . Same as in the previous section,
the result can be easily extended to the general open balls or the case with σ ≠ 10 . In order to
construct the probing function, for any smooth function ψ over the boundary Ω∂ , we first
consider the function φ to be the solution to (4.5) when Ω is now replaced by the ball B (0)1 :
with the same argument as in the previous section, we again apply the Greenʼs identity to get
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equation (4.7) with this new domain. Next, we would like to choose a set of smooth functions
ψ over 2 in (4.5) so as to obtain enough information to construct the probing function ηx d, .
For this purpose, we consider the set of spherical harmonics on 2, for any

∈ − ⩽ ⩽l m l m,

θ ϕ θ= + − !
+ !

ϕY
l l m

l m
P( , ) :

(2 1)( )

( )
(cos ( ))e , (4.20)l

m
l
m mi

where θ ϕ π π π∈ − ×( , ) ( , ) (0, 2 ) and Pm
l are the associated Legendre polynomials. From

the fact that the family of θ ϕ ∈ − ⩽ ⩽Y{ ( , )}l
m

l m l m, form a complete orthonormal set in L ( )2 2

and that the function ηx d, has a zero mean along 2, we have for ξ ∈ 2 that

∑ ∑η ξ
π

θ ϕ=
=

∞

=−
( )g Y( )

1

4
( , ), (4.21)x d

l m l

l

x d
l m

l
m

,
1

,
,

where θ ϕ=x ( , ) and the coefficients g( )x d l m, , are defined by

∫
π

η θ ϕ θ ϕ=


( )g Y s:
1

4
( , ) ( , )d . (4.22)x d l m x d l

m
, , ,2

If we let ψ θ ϕ θ ϕ= Y( , ) ( , )l
m in (4.5) with Ω replaced by B (0)1 in 3, then by separation of

variables, we derive the following formula for the solution φ to (4.5):

φ ξ θ ϕ ξ= ∀ ∈r

l
Y B( ) ( , ) (0),

l

l
m

1

where ξ θ ϕ= r( , , ) is in its spherical coordinate. Therefore, we deduce by substituting the
above expression and (4.7) into (4.22) that

∫
π

η θ ϕ θ ϕ θ ϕ= = ·
=

⎛
⎝⎜

⎞
⎠⎟

( ) ( )g Y s d
r

l
Y

1

4
( , ) ( , )d , . (4.23)x d l m x d l

m
k

k
l

l
m

k k

k x

, , ,2

Now from (4.7) and the above expression the coefficients g( )x d l m, , , together with the well-
known addition formula of spherical harmonic functions [56]:

Figure 2. The values of duality products 〈 · · 〉 γ, between the probing functions for
γ = 0 (left) and γ = 1

2
(right) when θ θ π π= − ∈ −tx : ( , )x y and

θ θ π π= − ∈ −td : ( , )d dx y , rx = 0.5, ry = 0.4.
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∑ θ ϕ θ ϕ ξ= ·ξ ξ
=−

  ( ) ( )( )Y Y P k, , (4.24)
m l

l

l
m

k k l
m

l
0

whenever ξ ∈ k , 2, as well as the following generating function [3] of the Legendre
polynomials =P P:l l

0:

∑
− +

= ∀ ∈
=

∞


r zr

r P z z r
1

2 1
( ), , (4.25)

l

l
l

2
0

we can derive, after some basic calculations, the following explicit expression of the probing
function ηx d, :

η ξ
ξ

π ξ ξ
ξ=

· −

− − · +
∈

ξ
ξ

− ·
−


d

x x
( )

4 ( 1)
, for . (4.26)x d

x d

x
,

( )

2

In what follows, we would also like to calculate explicitly the duality product 〈 · · 〉 γ,
between the probing functions with γ ⩾ 0. We note the facts that ηx d, x

and ηy d, y
are in

Ω∂γH ( ), and that the complete orthonomal set θ ϕ ∈ − ⩽ ⩽Y{ ( , )}l
m

l m l m, in L ( )2 2 are the
eigenfunctions of the surface Laplacian operator Δ− 2 with each of their corresponding
eigenvalues as +l l( 1). Therefore, by the definition of the duality product 〈 · · 〉 γ, on 2

in (2.1) and using the fact that the probing functions have a zero mean over 2, we obtain the
following explicit expression for the duality product 〈 · · 〉 γ Ω∂, , for ηx d, x

and ηy d, y
:

∑ ∑η η = +
γ

γ γ

=

∞

=−
( )( )l l g g, ( 1) . (4.27)x d y d

l m l

l

x d
l m

y d
l m

, ,
, 1

,
,

,
,

x y x y2

Then applying (4.23) and (4.24), we further derive

∑

η η = · ∘ ·

· + ·

γ

γ γ

=

∞
−

=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟


 



( )

( ) ( )
( )

d d

l l r r P k k

,

( 1) . (4.28)

x d y d x k y k

l

k k
l

l x y

k k x y

, ,
,

1

2

, ( , )

x y x y

x y

x y

2

Using (4.25), the expression (4.28) with γ = 1 directly reduces to

η η = −

+

+ −

− − ·

− · + − · +

− · − ·

− · + − · +

· − · · − ·

− · +

· · − ·

− · +

· · − ·

− · +

· − · · − ·

− · +

· − ·

− · +

· − ·

− · +

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟



( )
( )( )

( ) ( )
( )

( )( )
( )

( )

,

. (4.29)

x d y d

d d

x y x y x y

x d y d

x y x y x y

x y d x d y x d y d

x y x y

x d y d d d

x y x y

, ,
1, 2 1 1

2 1 1

3

2 1

2

2 1

x y

x d xy d y d x d y

x y x y

x y d y x d y y x d x y d x

x y x y

x y

x y d y x d y

x y x y
y

y x d x y d x

y x y x
x

y y x x x y x y

2

2

2 2 2 1

2 2

2 2 2 1
3
2

2 2

2

2 2 2 1

2

2 2 2 1

2 2
2

2 2

2 2
5
2 2 2

3
2

On the other hand, for the sake of exposition, we define for the case with γ ⩾ 2, γ ∈  the
following auxiliary function βF r x( , ) for β ∈ , >r 0 and ∈ x such that | | <x 1
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∑= ∂
∂ − +

=β
β

β

=

∞
⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟F r x r

r r rx
l r P x( , ):

1

2 1
( ), (4.30)

l

l
l

2
0

where the second equality comes from (4.25). This function can be explicitly calculated for
any β ∈  in a recursive way. Using this function and (4.28), we directly deduce the
following expression of the duality products 〈 · · 〉 γ, for γ ⩾ 2:

∑η η = · ∘ · ·γ

γ
γ γ

=

+ −

=

   ( )( ) ( )
( )

C d d F r r k k, , (4.31)x d y d
m

m x k y k
m

k k x y

k k x y

, , ,

0

2

, ( , )
x y x y x y

x y

2

which can be calculated explicitly with the help of (4.30) up to any order recursively. We
again observe that the terms x y d d, , ,x y in the duality products 〈 · · 〉 γ Ω∂, , are deeply
coupled. However, we can see, substituting (4.31–4.29) into (2.3), that the kernel (2.3) still
attains maximum when x is near y and when ≈d dx y. We can therefore use the index function
to locate inclusions efficiently, and this justifies the validity of the DSM for EIT for the open
ball. As an example, we plot the duality product 〈 · · 〉, 1 with = x r x( , )x , rx = 0.4, ∈ x 2,

=y (0.5, 0, 0) for different probing directions; see figure 3. We can see that for the case
when ≈d dx y, it gives a larger value when ≈x y with a sharply peaked Gaussian like
distribution. However, for the case when dx is not approximately equal to dy, the duality
product 〈 · · 〉, 1 gives two local extrema when x is near y, and we cannot conclude that it
attains maximum when ≈x y with a sharply peaked Gaussian like distribution.

With a similar argument as above, we may also derive an explicit expression of the
probing functions and their duality products 〈 · · 〉 γ Ω∂, , on an n-dimensional open ball
where ∈ n with the help of the −n( 1) th ultraspherical harmonic functions.

5. Optimal current density

In this section, we shall analyze the sensitivity of the scattered potential field −u u0, where u
is the total field satisfying (1.1) and u0 is the incidence field satisfying the homogeneous
system (3.1), with respect to different choice of current density g in (1.1). From such analysis,
we can thereby obtain a choice of g which is optimal for the reconstruction of the inhomo-
geneities D, which we will use in our numerical experiments in the next section. In order to

Figure 3. Duality product 〈 · · 〉, 1 for = x r x( , )x , rx = 0.4, ∈ x 2, =y (0.5, 0, 0),
when = =d d (1, 0, 0)x y (left) and when = =d d(1, 0, 0), (0, 1, 0)x y (right).
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carry out our desired analysis, we first subtract (3.1) from (1.1) to obtain

∫
σ σ σ Ω

ν
Ω

· − + − =
∂ −

∂
= ∂ − =

Ω∂

  ( )u u u

u u
u u s

( ) ( ) 0 in

( )
0 on ; ( )d 0 . (5.1)

0 0 0

0
0

Multiplying both sides of the equation with −u u0, then integrating over Ω and using the fact
that σ σ= 0 on Ω∂ , we obtain the following equation

∫ σ σ σ− + − · − =
Ω

  ( )u u u u u x( ) ( ) ( ) d 0. (5.2)0
2

0 0 0

Then it follows from the Cauchy–Schwartz inequality that the following estimate for the
energy of −u u0 holds

∫ ∫ ∫σ
σ σ

σ
σ σ

σ
− ⩽

−
=

−
Ω Ω

  u u x u x u x( ) d
( )

d
( )

d . (5.3)
D

0
2 0

2

0
2 0

2

0
2

This estimate is important in the sense that it tells us that the energy of the scattered potential
field is controlled by that of the incidence field u0 inside the inhomogeneities D.

Next, we restrict ourselves to the special domain of spherical geometry, namely
Ω = ⊂ B (0)1

2, and Ω∂ = 1, in order to achieve a more explicit and quantitative estimate.
In this case, we can write g in (1.1) in the following form

F∑θ
π

θ π= ∈θ

∈ ⧹

g g m( )
1

2
[ ( )]( )e , (0, 2 ), (5.4)

m

m

{0}

i

where F g m[ ( )]( ) are the Fourier coefficients of g defined as in (4.9) for all ∈ ⧹m {0}. Then
we can see that the solution u0 to (3.1) can be expressed as

F∑ Ω= ∈
∈ ⧹

u x g m u x x( ) [ ( )]( ) ( ), , (5.5)
m

m0

{0}

where um is defined by (4.4). We hope to calculate explicitly the term at the right-hand side of
the inequality (5.3). By direct computings, we obtain that

∂
∂

= −
∂
∂

= +θ θ− −( ) ( )
u

x
x ix m r

u

x
x ix m rsgn ( ) e , sgn ( ) e . (5.6)m m m m m m

1
1 2

2 i

2
2 1

2 i

For convenience, we shall often write below that for ∈ ⧹m {0} and ∈ z , =f z m z( , ) if
>m 0 and =f z m z( , ) if <m 0, and

θ = + −θ θ θ θ− −( ) ( ) ( ) ( )C m l f l f m f i l f i m( , , ) e , e , e , e , (5.7)i i i i

for θ π∈ (0, 2 ) and ∈ ⧹l m, {0}. We notice that θC m l( , , ) is at most of modulus 2 with
θ =C m m( , , ) 2. combining (5.6) with the above expressions, we have for all ∈ ⧹l m, {0}

that

∫ ∫σ σ
σ

θ
σ σ

σ
−

· =
−θ− + − 

( )
u u x C m l r

x

x
x

( )
d ( , , )e

( )

( )
d , (5.8)

D
l m

D

m l m l0
2

i( ) 2 0
2

where θ=x r( , ) is in its polar coordinate. Therefore, given ∈ N , if the current g in (1.1) is
such that F =g m[ ( )]( ) 0 for | | <m N , we obtain from the estimates above that
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∫

σ − ⩽
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+ − +

Ω

σ σ
σ

σ σ
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 

(
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(
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u u x u x
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g N r O r x

( ) d d
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D
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Therefore the Fourier modes F θg m[ ( )]( )eim with | | =m N in g dominate in (5.9), whereas
the effects of higher frequency components decrease rapidly since <r 1 in B (0)1 . It means
that currents of the form = θg eim where ∈ ⧹m {0} are the optimal currents that maximize
the sensitivity of the scattered potential −u u0. Therefore, choosing currents of such a form
shall give the best scattered potential for the reconstruction of the inhomogeneities D inside Ω
for the EIT problem.

6. Numerical experiments

In this section we shall present some numerical examples to demonstrate the efficiency and
accuracy of the newly proposed DSM for the reconstruction of inhomogeneous inclusions in
the EIT problem.

In the following four examples, we first consider the sampling region Ω = −[ 1, 1]2 as a
square domain with the homogeneous background conductivity being σ = 10 . In each of the
four examples, there are some inhomogeneous inclusions inside the sampling domain, with
their conductivity always set to be σ = 5. In order to generate the observed data of the
forward problem, we solve (1.1) by second order centered finite difference scheme with a fine
mesh size =h 1 100 and the current g being of the form π=g kxcos (2 ) where ∈ k is to be
chosen. This choice of g maximizes the sensitivity for reconstructing the inclusions (see
section 5 for a detailed explanation). When the domain Ω is a square, we have to map the
cosine function to the four boundaries of the square domain. This is performed via a com-
position ϕ∘ ∘π

−mcos 2
1 of the cosine function with the inverse of a parametrization ϕ on the

boundary, where ϕ is the mapping that maps the interval [0, 1] onto the boundary with unit
speed in the clockwise direction and πm2 stands for the multiplication by π2 . We would like
to emphasize that, in each of our numerical experiments, only one incident current is made to
generate the observed data, therefore we have only a single pair of Cauchy data available in
our numerical reconstruction. In addition, we introduce some random noise in the scattered
potential field Λ Λ= −σ σu g g:s 0 pointwisely in the form:

εδ= +δu x u x u x( ) ( ) ( ) , (6.1)s s s

where δ is uniformly distruted between −[ 1, 1] and ε refers to the relative noise level. In the
following four examples, we always set the noise level to be ε = 5%.

We then use the new DSM introduced in section 2.3 to recover the location of inho-
mogeneities D from the noisy observed data δus by calculating the index function I x d( , )x

defined as in (2.15), where the integration over Ω∂ is performed by the rectangular quadrature
rule with mesh size1 90. From our numerical experiments, we observe that the squared index
( )I x d( , )x

2 gives us sharper images of the inclusions, hence providing a more accurate
estimate of the support of the inhomogeneities D. Therefore, in each of the following
examples, we provide both the reconstructed images from the index function I and the
squared index I2. In all our experiments, we always choose the probing direction = ϕ

ϕ| |



dx
x

x

( )

( )
at each point Ω∈x where ϕ is defined as in (2.18) (see section 2.4 for further explanation).
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Example 1. In this example, the medium consists of two inclusions of size ×0.1 0.1
centered at − −( 0.44, 0.44) and (0.36, 0.36) respectively; see figure 4 (left). The current g is
chosen to be π=g xcos(2 ). Figure 4 (middle and right) show the respective reconstructed
images from the index function I and the squared index I2. From the figures, we can see that
both scatterers are well separated, and their locations are recovered pretty satisfactorily,
considering that only a single pair of Cauchy data is used.

Example 2. This example tests a medium with two inclusions sitting on the same row
horizontally, located respectively at the positions −( 0.47, 0.38) and (0.38, 0.38); see figure 5
(left). The size of the inclusions and the current g are of the same as in example 1. The
reconstructed images are shown in figure 5 (middle and right). From the figure, we observe
now that the scatterers are closer to each other and there are coupling effect between them
such that they tend to merge. However, the locations of both scatterers are still recognizable,

Figure 4. Exact medium image of example 1 (left); reconstructed images by index
function I (middle) and the squared index I2 (right).

Figure 5. Exact medium image of example 2 (left); reconstructed images by index
function I (middle) and the squared index I2 (right).

Figure 6. Exact medium image of example 3 (left); reconstructed images by index
function I (middle) and the squared index I2 (right).
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and the reconstruction is pretty satisfactory, considering that only a single pair of Cauchy data
is used.

Example 3. Four inclusions are considered in this example; see figure 6 (left), with the
current and each inclusion being the same size as the one in example 1. The respective
positions of the scatterers are − −( 0.51, 0.51) (0.44, 0.44), −( 0.58, 0.38) and

−(0.38, 0.58). figure 6 (middle and right) show the reconstructed images. We can clearly
observe a close coupling effect among all the scatterers, and the scatterers shift towards
inward. But considering the severe ill-posedness of the EIT problem and the fact that only a
single pair of Cauchy data is used, we think the numerical reconstruction is quite satisfactory
under a 5% noise in the data, as the four scatterers are well separated and located also
reasonably well.

Example 4. In this example we investigate a medium case with an inclusion of a
rectangular annulus of width 0.05 and length 0.28 of the inner square centered at (0.02, 0.02);
see figure 7 (left). We choose the current density g to be π=g xcos (4 ). Figure 7 (middle and
right) show the reconstructed images. This is a difficult example for numerical reconstruction
as there is a hole inside the inclusion and the annulus has a very small width. However,
considering the severe ill-posedness of the problem and the 5% noise present in the observed
data, our reconstruction appears to be quite satisfactory. We can clearly see the hole inside the
reconstructed annulus, and both the location and the shape of the scatterer are accurately
reconstructed.

In the remainder of this section, we shall consider another widely used sampling domain
in applications, the circular domain Ω = ⊂ B (0)1

2. Again, in each of the following
examples, there are some inhomogeneous inclusions with conductivity σ = 5 inside the
sampling domain, whereas the homogeneous background conductivity is always set to be
σ = 10 . Noisy data is generated according to (6.1) with ε always set to be ε = 3%. In all our
tests, we take the incident current g to be πθ=g cos (2 ). The reconstruction process from the
index function is similar to the previous examples except that the integration over Ω∂ = 1 is
now performed by the rectangular quadrature rule with mesh size π 64. Same as in the
previous examples, we always choose the probing direction = ϕ

ϕ| |



dx
x

x

( )

( )
for Ω∈x where ϕ is

defined as in (2.18) when we calculate our reconstructed images based on the index function
I x d( , )x in (2.15) and the squared index ( )I x d( , )x

2.
Example 5. In this example, we consider the case with two inclusions of size ×0.1 0.1

respectively at the positions −( 0.44, 0.36) and −(0.36, 0.44); see figure 8 (left). Recon-
structed images are shown on figure 8 (middle and right). From the figure, we can see that the
scatterers are located quite well, although the coupling effect is now more apparent when we
compare with the case of the sampling domain being a square, and that the location of the
inclusions are a bit scattered.

Figure 7. Exact medium image of example 4 (left); reconstructed images by index
function I (middle) and the squared index I2 (right).
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Example 6. In this example, two inclusions of the same size as in example 5 are
respectively placed at the positions −( 0.36, 0.36) and (0.36, 0.36) inside the domain; see
figure 9 (left). The reconstructed images are shown in figure 9 (middle and right). From the
figure, we notice that even the inclusions are put very close to each other, the positions of the
scatterers are recovered very well with no obvious coupling effect, although they are now a
bit shifted.

Example 7. We now investigate an example with four inclusions inside the sampling
region, which are placed at positions of (0.36, 0.36), −(0.36, 0.44), −( 0.44, 0.36) and
− −( 0.44, 0.44) with same size as in example 5; see figure 10 (left). The reconstructed
images are shown on figure 10 (middle and right). We can see that there are strong coupling
effects among all the scatterers. However, the locations of the scatterers are still recovered
with a reasonable accuracy.

Figure 8. Exact medium image of example 5 (left); reconstructed images by index
function I (middle) and the squared index I2 (right).

Figure 9. Exact medium image of example 6 (left); reconstructed images by index
function I (middle) and the squared index I2 (right).

Figure 10. Exact medium image of example 7 (left); reconstructed images by index
function I (middle) and the squared index I2 (right).
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We can observe from examples 5–8 that the reconstructions with the circular sampling
domain is not that good as those for the rectangular domain. This may be caused by the
extreme symmetry of the circular domain. However, considering the severe ill-posedness of
the EIT problem and the fact that only a single pair of noisy Cauchy data is used, the
numerical reconstructions are quite satisfactory with the newly proposed simple DSM.
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