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Abstract. We present some new a priori estimates of the solutions to three-
dimensional elliptic interface problems and static Maxwell interface system
with variable coefficients. Different from the classical a priori estimates, the
physical coefficients of the interface problems appear in these new estimates
explicitly.

1. Introduction. Interface problems arise in many application areas, such as ma-
terial sciences, fluid dynamics and electromagnetics. It is the case when different
materials, fluids and media with different physical properties are involved. In this
paper we are interested in the interface problems which may be modeled by the
second-order elliptic equation

−∇ · (β(x)∇u(x)) = f(x) in Ω (1.1)

or by the following static Maxwell interface system (cf. [9, 10])

∇× E = 0 in Ω, (1.2)

∇× H = J in Ω, (1.3)

∇ · (ε(x)E) = ρ in Ω, (1.4)

∇ · (µ(x)H) = 0 in Ω (1.5)
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where Ω is an open simply-connected bounded domain in R3, and is assumed to
be either a convex polyhedron or a domain with C2-smooth boundary. We shall
consider that Ω is occupied by two different physical media (or materials) Ω1 and
Ω2, see Fig. 1 for a two-dimensional sample. The coefficient β(x) in (1.1) may
represent physical parameters (e.g., diffusion, heat conductivity) of different mate-
rials in different applications, hence is only piecewise smooth in Ω. The coefficients
ε(x) and µ(x) in (1.4) and (1.5) represent the electric permittivity and magnetic
permeability of two different media occupying the physical domain Ω, thus may
have large jumps across the interface Γ between two different media Ω1 and Ω2

(cf. Fig. 1). Due to the importance of interface problems in applications, extensive
studies have been devoted to the mathematical behaviors and numerical solutions
of the systems (1.1) and (1.2)-(1.5) in the past few decades. The regularities of the
solutions to the problem (1.1) and various a priori estimates of the solutions have
been widely investigated (cf. [4, 17, 20, 23]), while regularities and edge/corner sin-
gularities of solutions were also studied, for instance, in [8, 28] for time-dependent
and time-harmonic Maxwell equations, and in [2, 12, 14] for the static Maxwell
system.

The primary interest of this paper is to study the mathematical behaviors of
solutions to the interface systems (1.1) and (1.2)-(1.5) in terms of the discontinu-
ous physical coefficients and how the solutions depend on the coefficients and their
jumps across the interfaces, especially when the jumps are large. We shall achieve
the goal through establishing some new a priori estimates of the interface solutions,
in which the physical coefficients of the PDEs and their jumps appear explicitly,
called uniform a priori estimates (with respect to the coefficients). Such uniform a
priori estimates are essentially different from the existing estimates where physical
coefficients are hidden and no any effects of coefficients on the solutions can be seen
from the estimates. The new uniform a priori estimates are not only interesting
mathematically, but may also provide more insights into physical behaviors of in-
terface solutions. Moreover, a priori estimates are needed in convergence analysis of
every numerical method [4, 6, 7, 23], so the new a priori estimates may help estab-
lish more accurate error estimates where one can see clearly how the convergence
of numerical methods depends on and is affected by the physical coefficients and
their jumps. It may further help construct more effective numerical methods for
interface problems. Very little has been done in the literature about this topic. To
our knowledge, the first such uniform a priori estimates were established in [15] for
the elliptic interface problem (1.1) with piecewise constant coefficients.

In this paper, we shall establish the uniform a priori estimates for the system
(1.1) with general variable coefficients, and this is much more difficult than the
piecewise constant case treated in our early work [15]. The uniform a priori esti-
mates are achieved by using some novel techniques, or an elegant combination of the
theory of single and double layer potentials, Sobolev theory, maximum principle for
elliptic equations, integral representation of piecewise harmonic functions and “for-
mal” asymptotic expansions. The basic idea is to first reduce the a priori estimates
of solutions to interface problems with variable coefficients into the estimates of
piecewise harmonic solutions which are incorporated with the interface conditions
of the original interface system; then the piecewise harmonic solutions will be rep-
resented by the single and double layer potentials through some integral interface
equations. It is this new and elegant representation that enables us to trace closely
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Fig. 1. domain Ω, its subregions Ω1 (shaded region), Ω2 (white
region) and interface Γ (boundary of the shaded region)

the changes of coefficients from PDEs in every step of our estimates. Due to vari-
able coefficients, the justification of representation of piecewise harmonic solutions
by single and double layer potentials is done through two newly established unique-
ness theorems for piecewise harmonic functions satisfying interface conditions; The
well-posedness of the integral interface equation is demonstrated through Fredholm
index theory, potential and Sobolev embedding theory as well as Hopf’s maximum
principles. The uniform a priori estimates obtained up to this stage are not yet
optimal in terms of the jumps of coefficients in PDEs. These estimates are further
improved by means of a new and powerful “formal” asymptotic expansions in terms
of the jumps of coefficients. We emphasize that the final a priori estimates derived
here are not only valid for variable coefficients, but also have greatly improved the
results we obtained earlier in [15] for piecewise constant cases.

The new uniform a priori estimates for elliptic interface problems will be then
applied to establish similar uniform estimates for the solutions to the static Maxwell
interface system (1.2)-(1.5).

It is very interesting for us to notice a recent related work. Some uniform a priori
estimates were obtained in [23] for the H2-smooth part of the solution to elliptic
interface problems with most general interfaces allowed but piecewise constant co-
efficients. The methodology there is completely different from ours, and can not
be extended to deal with piecewise variable coefficients as the cases treated in the
current work.

The usual notations on Sobolev spaces (cf. [13, 22]) will be adopted in the sequel.
For any m ≥ 0, Hm(Ω) denotes the standard Sobolev spaces of m-th order while
H−m(Ω) stands for the dual space of Hm

0 (Ω). The norms and semi-norms of Hm(Ω)
are denoted by ‖ · ‖m,Ω and | · |m,Ω respectively. We shall write < ·, · >Γ for the

dual product between H−1/2(Γ) and H1/2(Γ); similarly for < ·, · >∂Ω.
For the ease of exposition, we will frequently use the notation “. · · · ” to denote

“≤ C · · · ” for some generic constant C > 0 which depends only on the geometric
properties of Ω1 and Ω2.

2. Interface problems. In this section we shall introduce a three-dimensional
elliptic interface problem and static Maxwell interface system, which will be studied.
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2.1. Elliptic interface problems. The elliptic interface problem to be considered
is of the form

−∇ · (β(x)∇u(x)) = f(x) in Ω (2.1)

where Ω is an open simply-connected bounded domain in R3, and is assumed to
be either a convex polyhedron or a domain with C2-smooth boundary. We will
consider that Ω is occupied by two different materials Ω1 and Ω2, with Ω1 strictly
lying inside Ω, see Fig. 1. The major case of our interest is that the coefficient
β(x) represents physical parameters of two different materials in Ω1 and Ω2, so will
be only piecewise smooth and possibly may have large jumps across the interface
Γ between Ω1 and Ω2. With such background, we assume that βi ∈ C1(Ω̄i) for
i = 1, 2, and satisfies the conditions

c0β̄i ≤ βi(x) ≤ c1β̄i ∀x ∈ Ωi , (2.2)

where β̄1 and β̄2 are two positive constants measuring the magnitude of β1(x) and
β2(x) in Ω1 and Ω2 respectively. For the interface problem, one is often more
interested in the case that the magnitudes of β1(x) and β2(x) are of different scales,
so it is reasonable to assume that β1(x) 6= β2(x) for all x ∈ Γ.

The interface Γ = ∂Ω1 can be of arbitrary shape but is assumed to be C2-
smooth. For any vector-valued function v in Ω, we shall use v1 and v2 to denote its
restrictions to Ω1 and Ω2 respectively. The same convention is adopted for a scalar
function v. And for definiteness, we shall define [v](x) = v2(x) − v1(x) for x ∈ Γ.

Physically, the solution u needs to satisfy certain interface conditions. The fre-
quently encountered interface conditions are of the form:

[u] = 0, [β∂nu] = g on Γ (2.3)

where n is the unit outward normal to ∂Ω1. On the exterior boundary ∂Ω, we shall
consider both the Dirichlet boundary condition

u(x) = 0 on ∂Ω, (2.4)

and the Neumann boundary condition (with ν being the unit outward normal to
∂Ω)

∂νu(x) = 0 on ∂Ω . (2.5)

To ensure the solvability of the problem (2.1)-(2.3) with Neumann boundary con-
dition (2.5), the prescribed functions f and g must satisfy the consistency condition

∫

Ω

fdx =

∫

Γ

gdσ.

2.2. Static Maxwell interface system. Another system to be studied in this
work is the following static Maxwell interface problem:

∇× E = 0 in Ω, (2.6)

∇× H = J in Ω, (2.7)

∇ · (ε(x)E) = ρ in Ω, (2.8)

∇ · (µ(x)H) = 0 in Ω (2.9)

where Ω is an open simply-connected bounded domain in R3, and is assumed to
be either a convex polyhedron or a domain with C2-smooth boundary. We will
consider that Ω is occupied by two dielectric materials Ω1 and Ω2, with Ω1 strictly
lying inside Ω, see Fig. 1. E and H are the electric and magnetic fields, and J

and ρ the current and charge density. The major case of our interest is that the
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magnetic permeability µ(x) and the electric permittivity ε(x) of the medium are
discontinuous across the interface Γ between medium Ω1 and medium Ω2. Hence,
we may write

ε(x) =

{

ε1(x) in Ω1,
ε2(x) in Ω2,

µ(x) =

{

µ1(x) in Ω1,
µ2(x) in Ω2,

(2.10)

where εi(x) and µi(x) are C1-smooth in the individual subregion Ω̄i (i = 1, 2). As
illustrated for the elliptic interface problem in Subsection 2.1, we may assume the
following conditions for the parameters εi(x) and µi(x) (i = 1, 2):

c0ε̄i ≤ εi(x) ≤ c1ε̄i, c0µ̄i ≤ µi(x) ≤ c1µ̄i ∀x ∈ Ωi, (2.11)

where ε̄i and µ̄i are positive constants, and ε1(x) 6= ε2(x), µ1(x) 6= µ2(x) for all
x ∈ Γ.

It is well-known (cf. [9, 10]) that the electric and magnetic fields E and H should
satisfy the jump conditions across the interface Γ :

[E× n] = 0, [εE · n] = ρΓ, (2.12)

[H× n] = 0, [µH · n] = 0, (2.13)

where ρΓ is the surface charge density. We supplement the system (2.6)-(2.9) with
the perfect conductor boundary conditions

ν × E = 0, ν · (µH) = 0 on ∂Ω , (2.14)

where ν is the unit outward normal to ∂Ω.

3. Preliminaries. In this section, we shall present some fundamental results from
the theory of single and double layer potentials, uniqueness theorems on piecewise
harmonic functions and integral representations of piecewise harmonic functions
with different boundary conditions. These serve important tools in our subsequent
efforts of establishing uniform a priori estimates for the solution to the elliptic
interface problem (2.1)-(2.3).

3.1. Some fundamental results about single and double layer potentials.

We begin with some basic results on single and double layer potentials. Given a
simply connected domain D with Lipschitz continuous boundary ∂D, let nx be the
unit outward normal to ∂D at x. Then the single and double layer potentials of
any density function q are respectively defined by

SDq(x) =

∫

∂D

E(x − y)q(y)dσy, x ∈ R3,

DDq(x) =

∫

∂D

∂nyE(x− y)q(y)dσy, x ∈ R3,

where E(x) is the fundamental solution associated with the Laplacian:

E(x− y) = −
1

4π

1

|x− y|
,

and dσy the surface measure. Note that SDq (resp. DDq) is defined in the entire
space R3, but we will also frequently use SDq (resp. DDq), restricted on ∂D, as a
boundary integral operator on ∂D when there is no confusion caused. For a function
v defined in R3 and any x ∈ ∂D, we shall adopt

v+(x) = lim
y→x,y∈R3\D̄

v(y), v−(x) = lim
y→x,y∈D

v(y), ∂
n

±
x
v(x) = lim

t→0+
nT

x∇v(x±tnx)
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whenever the limits exist. We have the following classical trace formulas (cf. [5, 18,
26]):

(SDq)
±(x) = SDq(x), (3.1)

∂n±SDq(x) = (±
1

2
I + K∗

D)q(x), (3.2)

(DDq)
±(x) = (∓

1

2
I + KD)q(x), (3.3)

∂n+DDq(x) = ∂n−DDq(x), (3.4)

where KD is the integral operator given by

KDq(x) =
1

4π
p.v.

∫

∂D

〈ny, y − x〉

|x− y|3
q(y)dσy ,

and K∗
D is the L2-adjoint of KD,

K∗
Dq(x) =

1

4π
p.v.

∫

∂D

〈nx, x− y〉

|x− y|3
q(y)dσy .

The following two lemmas collect some properties about the operators SD, DD

and K∗
D:

Lemma 3.1. If D is a bounded domain with Lipschitz boundary, we have

1. SD maps L2(∂D) into H1(∂D), and has a bounded inverse (cf. [18, p. 56]).
2. For any q ∈ L2(∂D), there holds (cf. [5, p. 259 and p. 280])

lim
|x|→+∞

SDq(x) = O
( 1

|x|

)

, lim
|x|→+∞

DDq(x) = O
( 1

|x|2
)

.

Lemma 3.2. If ∂D is of class C1+r with some r ∈ (0, 1), we have (cf. [25, pp.
165-169])

1. SD is an isomorphism from Ht(∂D) onto H1+t(∂D) for −r < t < r.
2. Both KD and K∗

D are two linear bounded operators from Hs(∂D) intoHt+s(∂D)
for 0 ≤ t < r, −r < s ≤ 0.

3. 1
2I + KD is an isomorphism on W s,p(∂D) for −r < s < r, 1 < p <∞.

We shall need the boundedness of the single and double layer potentials as stated
in the following two lemmas.

Lemma 3.3. If D is a bounded (not necessarily convex) polyhedron or a bounded
domain with a boundary of class C2, then SDq is a bounded function in R3 for any
function q ∈ H1/2(∂D).

Proof. We first consider the case where D is a bounded domain with a boundary of
class C2. For any q ∈ H1/2(∂D), it follows from Lemma 3.2 that SDq ∈ H3/2(∂D)
and hence continuous on ∂D by the Sobolev embedding theorem (cf. [1, 3]). Since
SDq is harmonic in D, this implies the boundedness of SDq in D by the maximum
principle on harmonic functions (cf. [11], [24, p. 64]). To see the boundedness of

SDq in R3\D̄, it suffices to show its boundedness in D̃\D̄ with D̃ being a suitably
large domain (containing D), due to the fact that lim|x|→+∞ SDq(x) = O

(

1
|x|

)

. But

the conclusion follows directly from the infinite differentiability of SDq on ∂D̃ and
the harmonicity of SDq in D̃\D̄.
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We now consider the case where D is a bounded polyhedron. We start to show
the single layer SDq is well-defined for each x ∈ ∂D. For any ε such that 0 < ε≪ 1,
let

Γε = {z ∈ ∂D; |z − x| ≤ ε}.

Then for all ε1 and ε2 satisfying 0 < ε1 < ε2 ≪ 1, we easily see
∣

∣

∣

∣

∣

∫

∂D\Γε1

E(x− z)q(z)dσz −

∫

∂D\Γε2

E(x − z)q(z)dσz

∣

∣

∣

∣

∣

≤

∫

Γε2

|E(x − z)q(z)|dσz.

(3.5)
Noting q ∈ H1/2(∂D), we know q ∈ L4(∂D) by the Sobolev embedding theorem.
Thus we derive by the Hölder inequality that

∫

Γε2

|E(x − z)q(z)|dσz ≤
1

4π
‖

1

|x− z|
‖L4/3(Γε2

)‖q‖L4(∂D). (3.6)

As D is a polyhedron, there are only three possible locations for the point x: in the
interior of a face, or on an edge or at a vertex of D. In all three cases, we can easily
show by direct computations that

∫

Γε2

1

|x− z|4/3
dσz .

∫ ε2

0

1

r1/3
dr =

3

2
(ε2)

2/3.

Applying this to the inequality (3.6), we obtain
∫

Γε2

|E(x− z)q(z)|dσz . ε
1/2
2 ‖q‖H1/2(∂D) . (3.7)

Now this, along with (3.5), ensures the existence of the limit

lim
ε→0+

∫

∂D\Γε

E(x − z)q(z)dσz ,

i.e., SDq is well-defined for every x ∈ ∂D. Finally, applying the technique in [5, p.
226] and the estimate (3.7), we immediately get

lim
y→x

SDq(y) = SDq(x).

This shows SDq is continuous in R3, which with the decay property of SDq (cf.
Lemma 3.1) leads to the boundedness of SDq in R3. 2

Lemma 3.4. If D is a bounded (not necessarily convex) polyhedron or a bounded
domain with a boundary of class C2, then DDq is a bounded function in R3 for any
q, which is the restriction of some function v ∈ H2(D) on ∂D.

Proof. We first consider the case that D is a bounded domain with a C2-smooth
boundary. By the trace theorem, it is clear that q ∈ H3/2(∂D) and thus embedded
in W 1,4(∂D). Noting that W 1,4(∂D) →֒ W 3/4,4(∂D) and the last statement of
Lemma 3.2, we know KDq is in W 3/4,4(∂D), thus continuous on ∂D by Sobolev
embedding theorem. This further implies the continuity of (DDq)

−(x) on ∂D using
the evaluation formula (3.3). Then using the harmonicity of DDq(x) in D, DDq(x)
must be bounded in D̄ by the maximum principle on harmonic functions. Applying
the same argument in the domain R3\D̄, and noting the evaluation formula (3.3)
and the last statement of Lemma 3.1, we can show the boundedness of DDq in
R3\D.
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Now consider the domain D to be a bounded polyhedron. As v ∈ H2(D), we
know v ∈ C0,1/2(D̄) by the Sobolev embedding theorem (cf. [1]). Here C0,1/2(D̄)
(cf. [11]) consists of all continuous functions such that for all x, y ∈ D̄,

|v(x) − v(y)| . |x− y|1/2‖v‖C0,1/2(D̄),

with ‖ · ‖C0,1/2(D̄) being the Hölder norm. Therefore, q(x) ∈ C(∂D). Let {Fi}
M
i=1 be

M disjoint faces of D, then

KDq(x) =
1

4π

M
∑

i=1

p.v.

∫

Fi

〈ny, y − x〉

|x− y|3
q(y)dσy . (3.8)

Using a similar argument as for proving Theorem 6.5.2 in [5, pp. 231-236], we find
that each function on the right-hand side of (3.8) is continuous in R3, so is the
function KDq. Now the desired boundedness follows from the same argument as
used in the first part. 2

3.2. Uniqueness about piecewise harmonic functions. In this subsection, we
present two uniqueness results, which will play an important role in the justification
of an integral representation of piecewise harmonic functions.

Theorem 3.1. Let v be a function in R3 with ṽ1 and ṽ2 being its restrictions to
Ω1 and R3\Ω̄1 respectively. Assume ṽ1 ∈ H2(Ω1), and ṽ1, ṽ2 solve the problem:

∆ṽ1 = 0 in Ω1,

∆ṽ2 = 0 in R3\Ω̄1,

ṽ1(x) = ṽ2(x), β2(x)∂nṽ2 = β1(x)∂nṽ1 on Γ, (3.9)

lim
|x|→+∞

|v(x)| = O
( 1

|x|

)

. (3.10)

Then v is identically zero in R3.

Proof. Let p(x) = ṽ1(x) = ṽ2(x) on Γ. As ṽ1 ∈ H2(Ω1), so p(x) ∈ H3/2(Γ). By
virtue of Lemma 3.2, there exists a unique density function q(x) in H1/2(Γ) such
that

SΩ1
q(x) = p(x) on Γ.

Then we get

v(x) ≡ SΩ1
q(x) in R3,

since a harmonic function is uniquely determined by its boundary values. Now using
the evaluation formula (3.2), we can write the second interface condition in (3.9) as

β2(x){
1

2
q(x) + K∗

Ω1
q(x)} − β1(x){−

1

2
q(x) + K∗

Ω1
q(x)} = 0,

which implies

q(x) =
2(β1(x) − β2(x))

β1(x) + β2(x)
K∗

Ω1
q(x) on Γ. (3.11)

Noting q(x) ∈ H1/2(Γ) →֒ L2(Γ), we know from Lemma 3.2 that

K∗
Ω1
q(x) ∈ Ht(Γ), ∀ t ∈ [0, 1),

which, together with (3.11) and the regularity assumptions on β1(x) and β2(x),
yields

q(x) ∈ Ht(Γ), ∀ t ∈ [0, 1).
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Using this and Lemma 3.2, we know on the interface Γ,

p(x) = SΩ1
q(x) ∈ H1+t(Γ), ∀ t ∈ [0, 1).

Taking t = t∗ = 7
8 , then by the Sobolev embedding theorem we have

SΩ1
q ∈ H1+t∗(Γ) = W

3
2
+(t∗− 1

2
),2(Γ) →֒W

3
2
,s∗

(Γ)

with s∗ = 16
5 > 3.

Now applying the regularity theory for elliptic problems (cf. [11, p. 241]), we
obtain

SΩ1
q ∈ W 2,s∗

(Ω1).

Then by the Sobolev embedding theorem again we know

ṽ1 = SΩ1
q ∈ C1,r∗

(Ω̄1)

with r∗ = 1−3/s∗. In the same manner, we can show that ṽ2 = SΩ1
q ∈ C1,r∗

(D̃\Ω̄1)

for any domain D̃ such that Ω1 ⊂⊂ D̃ by noting the infinite differentiability of SΩ1
q

in D̃\Ω̄1.
We are now ready to show the desired result, using the classical maximum prin-

ciple. We first assume that both functions ṽ1 and ṽ2 are not constant functions.
By the maximum principle on harmonic functions, both ṽ1 and ṽ2 must take their
maxima at a common point x0 on Γ. But by the Hopf’s maximum principle on
harmonic functions (cf. [11], [24, p. 65]), we further have

∂nṽ1(x0) > 0, ∂nṽ2(x0) < 0,

which contradicts with the second interface condition in (3.9). Hence it is possible
that either ṽ1 or ṽ2 is a constant function.

If ṽ1 is constant in Ω1, then the second interface condition in (3.9) gives ∂nṽ2 = 0
on Γ. This with the decay condition (3.10) implies ṽ2 ≡ 0 in R3\Ω̄1, since ṽ2 is
harmonic in R3\Ω̄1. Then the first interface condition also tells ṽ1 = 0 on Γ. But
ṽ1 is harmonic in Ω1, that proves ṽ1 ≡ 0 in Ω1.

On the other hand, if ṽ2 is constant, then ṽ2 ≡ 0 in R3\Ω̄1 by the decay condition
(3.10). Clearly we also have ṽ1 = 0 on Γ from the first interface condition, then ṽ1
must be identically zero as it is harmonic in Ω1. 2

Borrowing the proof of Theorem 3.1, we can now show the unique solvability of
the following integral equation, which will be essential to our subsequent analysis:

Lemma 3.5. The integral equation
(

β1 + β2

2(β1 − β2)
I −K∗

Ω1

)

φ = h

is uniquely solvable on L2(Γ) and H1/2(Γ).

Proof. By Lemma 3.2 and noting that Ht(Γ) ( 1
2 < t < 1) is compactly embedded in

H1/2(Γ) and L2(Γ), K∗
Ω1

is a compact operator on L2(Γ) and H1/2(Γ) respectively.

Hence, by the Fredholm theory for linear operators (cf. [5, p. 111]), β1+β2

2(β1−β2)
I−K∗

Ω1

is a Fredholm operator with zero index. Therefore, for Lemma 3.5 it suffices to prove

Ker

(

β1 + β2

2(β1 − β2)
I −K∗

Ω1

)

= {0}.

Assume that q is an element in the above kernel and let v = SΩ1
q, then one can

derive v = 0 following the same argument as used in the proof of Theorem 3.1 (see
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the derivations there starting from (3.11)). Now, q = 0 is a consequence of the
isomorphism of SΩ1

(cf. Lemma 3.2). 2

We end up this subsection with another uniqueness result about piecewise har-
monic functions, which is a direct consequence of Theorem 3.1.

Theorem 3.2. Let v ∈ H1(R3) be a bounded function in R3, with ṽ1, ṽ2 and ṽ3
being its restrictions respectively to Ω1, Ω2 and R3\Ω̄. Assume that ṽ1 ∈ H2(Ω1),
ṽ1, ṽ2 and ṽ3 solve the following interface problem:

∆v = 0 in Ω1 ∪ Ω2 ∪ (R3\Ω̄), (3.12)

ṽ1(x) = ṽ2(x), β2(x)∂nṽ2 = β1(x)∂nṽ1 on Γ, (3.13)

ṽ2(x) = ṽ3(x), ∂ν ṽ3 = ∂ν ṽ2 on ∂Ω, (3.14)

lim
|x|→+∞

|v(x)| = O
( 1

|x|

)

. (3.15)

Then v is identically zero in R3.

Proof. By the usual arguments for removable singularity on harmonic functions
(cf. [24, pp. 101-102]) and noting the interface conditions (3.14), we know that v
is actually harmonic in the domain R3\Ω̄1. This fact, along with (3.12), (3.13) and
(3.15) shows v ≡ 0 in R3 by virtue of Theorem 3.1. 2

3.3. Integral representation. Using the uniqueness results in Subsection 3.2, we
are now able to give an integral representation of the solution to the elliptic interface
problem:

Given a function h(x) ∈ H1/2(Γ), find v ∈ H1
0 (Ω) such that

∆v = 0 in Ω1 ∪ Ω2 , (3.16)

[v] = 0, [β(x)∂nv] = h on Γ . (3.17)

Theorem 3.3. The solution v of the problem (3.16)-(3.17) can be characterized as

v(x) = (SΩ1
φ)(x) − (SΩψ)(x), x ∈ Ω, (3.18)

where ψ = ∂
ν
v on ∂Ω, and φ ∈ H1/2(Γ) solves the integral equation:

(

β1 + β2

2(β1 − β2)
I −K∗

Ω1

)

φ = −∂n(SΩψ) +
1

β1 − β2
h on Γ . (3.19)

Proof. It is easy to see that the right-hand side of (3.19) lies in H1/2(Γ). By
Lemma 3.5, there exists a unique solution φ ∈ H1/2(Γ) to the integral equation
(3.19).

Applying Theorem 3.2, we know that the following interface problem has at most
one bounded solution in H1(R3) with v1 ∈ H2(Ω1) :

∆v = 0 in Ω1 ∪ Ω2 ∪ (R3 \ Ω̄), (3.20)

v1(x) = v2(x), β2(x)∂nv2 = β1(x)∂nv1 + h on Γ, (3.21)

v2 = v3, ∂νv2 = ∂νv3 + ψ on ∂Ω. (3.22)

But by the evaluation formulas (3.1)-(3.2) and equation (3.19), one can check di-
rectly that

R1(x) = SΩ1
φ(x) − SΩψ(x)

is a solution to the system (3.20)-(3.22). Noting ψ = ∂
ν
v, and v1 ∈ H2(Ω1) and

v2 ∈ H2(Ω2) by the regularity theory for elliptic interface problems (cf. [15]), we
know ψ ∈ H1/2(∂Ω). This with the fact that φ ∈ H1/2(Γ) shows R1(x) is a bounded
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function in R3 by Lemma 3.3, and its restriction to Ω1 lies in H2(Ω1) by Lemma 3.2
and the trace theorem. On the other hand, one can easily verify that

R2(x) =

{

v(x) in Ω,
0 otherwise,

is also a solution to the system (3.20)-(3.22). As v1 ∈ H2(Ω1) and v2 ∈ H2(Ω2),
R2(x) is a bounded function in R3. Thus R2(x) is another bounded solution to
(3.20)-(3.22) with its restriction to Ω1 lying in H2(Ω1). By the uniqueness of solu-
tions to (3.20)-(3.22), we have R1 = R2 in R3, and this confirms the relation (3.18).
2

Following the same arguments as used in Theorem 3.3, and making use of Lem-
mas 3.1-3.4 and evaluation formulas (3.1)-(3.4), we can also establish an integral
representation of the solution to the next elliptic interface problem:

Given a function h(x) ∈ H1/2(Ω), find v ∈ H1(Ω) such that ∂νv = 0 on ∂Ω and

∆v = 0 in Ω1 ∪ Ω2 , (3.23)

[v] = 0, [β(x)∂nv] = h on Γ . (3.24)

Theorem 3.4. The solution v of the problem (3.23)-(3.24) can be characterized as

v(x) = (SΩ1
φ)(x) + (DΩψ)(x), x ∈ Ω,

where ψ = v on ∂Ω, and φ ∈ H1/2(Γ) solves the integral equation
(

β1 + β2

2(β1 − β2)
I −K∗

Ω1

)

φ = ∂n(DΩψ) +
1

β1 − β2
h on Γ .

Remark 3.1. The integral representations in Theorems 3.3-3.4 were initiated by
[16], where the representation in the piecewise constant coefficient case was dis-
cussed, and served as an essential tool in a different context, i.e., numerical identi-
fication of piecewise constant conductivity coefficients.

4. Uniform a priori estimates for elliptic interface problems. With prepa-
rations in Subsections 3.1-3.3, we are now ready to establish the main results of
this paper, i.e., uniform a priori estimates for the solutions to the elliptic interface
problem (2.1)-(2.3) with both Dirichlet and Neumann boundary conditions (2.4)
and (2.5). We shall derive the a priori H1-estimates in the next subsection and the
H2-estimates in Subsection 4.2.

4.1. H1-estimates. We first present an auxiliary lemma which will be important
to our subsequent analysis.

Lemma 4.1. Let v be a function in H1(Ω) such that
∫

∂Ω
vdσ = 0 and it satisfies

−∇ · (βi(x)∇ vi) = 0 in Ωi (4.1)

for i = 1, 2, then it holds that

‖∇v1‖0,Ω1
. ‖∇v2‖0,Ω2

. (4.2)

Proof. When the coefficient β(x) is piecewise constant and v ∈ H1
0 (Ω), the estimate

(4.2) follows immediately from the basic harmonic extension property (cf. [27]). For
the general case, since the function v has zero integral average over ∂Ω, we have by
the trace theorem and the Poincaré inequality (cf. [1]) that

‖v2‖1/2,Γ . ‖v2‖1,Ω2
. ‖∇v2‖0,Ω2

+

∣

∣

∣

∣

∫

∂Ω

v2dσ

∣

∣

∣

∣

= ‖∇v2‖0,Ω2
. (4.3)
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On the other hand, using the inverse trace inequality (cf. [1]), we can find a
function v̂1 ∈ H1(Ω1) such that it equals v1 on Γ and admits the estimate

‖v̂1‖1,Ω1
. ‖v1‖1/2,Γ. (4.4)

Noting (4.1) for v1, we see v1 − v̂1 ∈ H1
0 (Ω1) and solves

−∇ · (β1∇ (v1 − v̂1)) = ∇ · (β1∇ v̂1) in Ω1,

or equivalently,
∫

Ω1

β1∇ (v1 − v̂1) · ∇ e1dx =

∫

Ω1

β1∇v̂1 · ∇e1 dx ∀ e1 ∈ H1
0 (Ω1) . (4.5)

Taking e1 = v1 − v̂1 in (4.5), then using (2.2) and (4.4), we obtain

β̄1|v1 − v̂1|1,Ω1
. β̄1‖∇ v̂1‖0,Ω1

. β̄1‖v1‖1/2,Γ ,

hence

|v1|1,Ω1
≤ |v̂1|1,Ω1

+ |v1 − v̂1|1,Ω1
. ‖v1‖1/2,Γ .

The combination of this, (4.3) and the fact that v1 = v2 on Γ implies (4.2) imme-
diately. 2

Remark 4.1. It is important to remark that inequality (4.2) does not hold when
v1 and v2 are swapped. This can be verified from the following simple example: let
v be a function in H1

0 (Ω) such that v1(x) ≡ 1 in Ω1 and v2 is the solution of the
following problem:

−∇ · (β2(x)∇ v2) = 0 in Ω2; v2(x) = 1 on Γ.

We are now ready to establish the desired a priori estimates in H1-norm. For
this, we introduce a constant k̄(β) = β̄2/β̄1. Clearly, k̄(β) measures the discrepancy
between the coefficients β1(x) and β2(x). When no confusion is caused, we shall
write k̄ for k̄(β), and for any w ∈ H−1(Ω) or w ∈ (H1(Ω))′, we may write the norm
of w simply as ‖w‖−1,Ω.

Theorem 4.1. Assume that u is a solution to the interface problem (2.1)-(2.3)
with Dirichlet boundary condition (2.4) or Neumann boundary condition (2.5), g ∈
H−1/2(Γ), and f ∈ H−1(Ω) when (2.4) holds and f ∈ (H1(Ω))′ when (2.5) holds.
Then

β̄2‖∇u2‖0,Ω2
. ‖g‖−1/2,Γ + ‖f‖−1,Ω, (4.6)

β̄1‖∇u1‖0,Ω1
. ‖f‖−1,Ω1

+ k̄−1
(

‖g‖−1/2,Γ + ‖f‖−1,Ω

)

. (4.7)

Proof. We first prove for Neumann boundary condition (2.5). Observing that the
solution u is unique up to an additive constant, it suffices to derive the estimates
(4.6) and (4.7) for the solution u with vanishing average on ∂Ω:

∫

∂Ω

u dσ = 0. (4.8)

By the Poincaré inequality, we have for all v2 ∈ H1(Ω2) satisfying (4.8) that

‖v2‖1,Ω2
. ‖∇ v2‖0,Ω2

. (4.9)

Next, we assume f ∈ L2(Ω) and introduce two auxiliary functions ũi ∈ H1
0 (Ωi)

satisfying

−∇ · (βi(x)∇ ũi) = fi, i = 1, 2. (4.10)
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It is clear that ui ∈ H2(Ωi) (cf. [11, 13]) and there hold
∫

Ωi

βi(x)∇ũi · ∇vidx =

∫

Ωi

fi vidx, ∀vi ∈ H1
0 (Ωi), i = 1, 2.

Taking vi = ũi above and noting the assumption (2.2), we have

β̄i‖ũi‖1,Ωi . ‖fi‖−1,Ωi . (4.11)

Let ūi = ui − ũi, i = 1, 2. It is easy to show from (4.10) that

−∇ · (βi(x)∇ūi(x)) = 0 in Ωi, i = 1, 2, (4.12)

[ū] = 0, [β∂nū] = g + g1 on Γ, (4.13)

β2∂ν ū(x) = −β2∂ν ũ2 on ∂Ω, (4.14)

where g1 = β1∂nũ1 − β2∂nũ2. The variational form of (4.12)-(4.14) is

2
∑

i=1

∫

Ωi

βi∇ ūi · ∇ vidx = − < g + g1, v >Γ − < β2∂ν ũ2, v >∂Ω ∀ v ∈ H1(Ω) .

(4.15)
Taking v = ū in the above equation and noting the fact that

∫

∂Ω
ū2dσ = 0, we have

by (4.9) and the definition of norms of linear functionals that

β̄2‖∇ū2‖0,Ω2
. ‖g‖−1/2,Γ + ‖g1‖−1/2,Γ + ‖β2∂ν ũ2‖−1/2,Γ. (4.16)

To estimate the last two terms in (4.16), for any η ∈ H1/2(Γ) we introduce vη to
be a function in H1

0 (Ω) satisfying

∆vη = 0 in Ω1 ∪ Ω2 ; vη = η on Γ.

Owing to the Green’s formula (2.17) in [12, p. 28] and (4.10) we have

〈g1, η〉Γ =〈β1∂nũ1, vη〉Γ − 〈β2∂nũ2, vη〉Γ

=

∫

Ω1

{∇ · (β1∇ ũ1)vη + β1∇ ũ1 · ∇vη}dx

+

∫

Ω2

{∇ · (β2∇ũ2)vη + β2∇ ũ2 · ∇vη}dx

= −

∫

Ω

fvηdx+

2
∑

i=1

∫

Ωi

βi∇ ũi · ∇vηdx.

Using (4.11) and the basic estimate ‖vη‖1,Ω . ‖η‖1/2,Γ (cf. [27]), we are further led
to

|〈g1, η〉Γ| . ‖f‖−1,Ω‖vη‖1,Ω + ‖∇vη‖0,Ω

2
∑

i=1

‖βi∇ũi‖0,Ωi

. {‖f‖−1,Ω +
2

∑

i=1

β̄i‖∇ũi‖0,Ωi}‖η‖1/2,Γ

. {‖f‖−1,Ω +
2

∑

i=1

‖f‖−1,Ωi}‖η‖1/2,Γ . ‖f‖−1,Ω‖η‖1/2,Γ,

which implies

‖g1‖−1/2,Γ . ‖f‖−1,Ω. (4.17)
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Similarly, we can deduce

‖β2∂ν ũ2‖−1/2,Γ . ‖f‖−1,Ω. (4.18)

Combining the last two inequalities with (4.11) and (4.16), we find

β̄2‖∇u2‖0,Ω2
. ‖g‖−1/2,Γ + ‖f‖−1,Ω,

which proves (4.6).
By Lemma 4.1 and (4.16)-(4.18) we derive

β̄1‖∇ū1‖0,Ω1
. k̄−1β̄2‖∇ū2‖0,Ω2

. k̄−1 (‖g‖−1/2,Γ + ‖f‖−1,Ω),

which, together with (4.11), proves (4.7).
Now, the desired estimates for the general f ∈ (H1(Ω))′ can be obtained by the

established results (4.6) and (4.7) for f ∈ L2(Ω) and the usual density argument
(cf. [1]).

The situation with Dirichlet boundary condition (2.4) can be handled in a same
way as for the Neumann case. We first assume f ∈ L2(Ω) and introduce two
auxiliary functions ũi ∈ H1

0 (Ωi) (i = 1, 2) satisfying (4.10) and then define ūi =
ui − ũi (i = 1, 2). Then following the same derivations as for getting (4.15), we can
show that ū ∈ H1

0 (Ω) satisfies the variational equation

2
∑

i=1

∫

Ωi

βi∇ ūi · ∇ vidx = − < g + g1, v >Γ ∀v ∈ H1
0 (Ω).

Letting v = ū and using (4.9) we know

β̄2‖∇ū2‖0,Ω2
. ‖g‖−1/2,Γ + ‖g1‖−1/2,Γ, (4.19)

which, in combination with (4.11) and (4.17), leads to (4.6). (4.7) follows from
Lemma 4.1, (4.11), (4.17) and (4.19). The results for the general case f ∈ H−1(Ω)
can be obtained by the density argument. 2

4.2. H2-estimates. This subsection is devoted to the uniform a prioriH2-estimates
for the solution u to the interface problem (2.1)-(2.3), with either Dirichlet boundary
condition (2.4) or Neumann boundary condition (2.5). To begin with, we introduce
two parameters

d1(β) =
|β1|1,∞,Ω1

β̄1
, d2(β) =

|β2|1,∞,Ω2

β̄2

to measure the relative oscillation of the coefficient β(x) in each individual subre-
gion, Ω1 and Ω2. For the ease of exposition, we shall assume that

d1(β) ≤ c̃1, d2(β) ≤ c̃2, (4.20)

where c̃1 and c̃2 are two positive constants independent of β1(x) and β2(x). By the
mean value theorem, the assumption (4.20) implies

|βi(x) − βi(y)|

β̄i |x− y|
≤ c̃i ∀x, y ∈ Ωi with x 6= y

for i = 1, 2. So the relative oscillation of β(x) in each subregion Ω1 and Ω2 is
bounded independent of β(x). Assumption (4.20) only helps avoid some unnecessary
technical complications in the subsequent estimates. In fact, by slightly more careful
derivations, one can achieve explicit dependence on d1(β) and d2(β) in the a priori
estimates which follow.

The next estimates will be frequently used and can be checked directly according
to the definition of fractional Sobolev norms:
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Lemma 4.2. For any F ∈ W 1,∞(Γ), G1 ∈ H1/2(Γ) and G2 ∈ H−1/2(Γ), one has
FG1 ∈ H1/2(Γ) and FG2 ∈ H−1/2(Γ), and there hold the estimates:

‖FG1‖1/2,Γ . ‖F‖1,∞,Γ‖G1‖1/2,Γ, ‖FG2‖−1/2,Γ . ‖F‖1,∞,Γ‖G2‖−1/2,Γ.

Now we start with the H2-estimates for the interface system (2.1)-(2.3) with
Neumann boundary condition (2.5). For the purpose, we introduce two auxiliary
functions w1 and w2 such that w1 ∈ H1

0 (Ω1) and satisfies

− ∆w1 =
1

β1
{f1 + ∇β1 · ∇u1} in Ω1, (4.21)

while w2 ∈ H1(Ω2) satisfies w2 = 0 on Γ, ∂νw2 = 0 on ∂Ω and

− ∆w2 =
1

β2
{f2 + ∇β2 · ∇u2} in Ω2, (4.22)

where ui and fi are restrictions of solution u and function f to Ωi (i = 1, 2) respec-
tively. By the standard a priori estimates for elliptic problems, we have

‖wi‖2,Ωi . ‖
1

βi
{f + ∇βi · ∇ui}‖0,Ωi .

1

β̄i
(‖f‖0,Ωi + |βi|1,∞,Ωi‖∇ui‖0,Ωi). (4.23)

Let w̄i = ui − wi in Ωi and g̃ = β1∂nw1 − β2∂nw2 on Γ, it is easy to see that
∂νw̄2 = 0 on ∂Ω and

∆w̄i = 0 in Ωi, i = 1, 2, (4.24)

[w̄] = 0, [β∂nw̄] = g + g̃ on Γ . (4.25)

For uniqueness of the solution to (4.24)-(4.25), we consider the solution satisfying
∫

Γ

w̄2dσ = 0. (4.26)

We shall need the next estimate for g̃, which follows from Lemma 4.2 and the trace
theorem:

‖g̃‖1/2,Γ .

2
∑

i=1

(β̄i + |βi|1,∞,Ωi)‖wi‖2,Ωi . (4.27)

Theorem 4.2. Assume that f ∈ L2(Ω), g ∈ H1/2(Γ), and u is the solution to
the interface problem (2.1)-(2.3) with Neumann boundary condition (2.5), then the
following a priori estimates hold:

β̄1‖u1‖2,Ω1
.

(

1 + k̄−1(β)
)

(‖f‖0,Ω + ‖g‖1/2,Γ), (4.28)

β̄2‖u2‖2,Ω2
.

(

1 + k̄−1(β)
)

(‖f‖0,Ω + ‖g‖1/2,Γ) . (4.29)

Proof. By Theorem 3.4, we can represent w̄1 and w̄2 in (4.24)-(4.25) as

w̄(x) = (SΩ1
φ)(x) + (DΩψ)(x), ∀x ∈ Ω, (4.30)

where ψ = w̄ on ∂Ω, and φ ∈ H1/2(Γ) solves the integral equation
(

β1 + β2

2(β1 − β2)
I −K∗

Ω1

)

φ = ∂n(DΩψ) +
g + g̃

β1 − β2
on Γ . (4.31)

Noting that w̄ is harmonic in both Ω1 and Ω2, we drive from (4.30) that

‖w̄1‖2,Ω1
+ ‖w̄2‖2,Ω2

. ‖w̄‖3/2,Γ . ‖SΩ1
φ‖3/2,Γ + ‖DΩψ‖3/2,Γ. (4.32)

But for SΩ1
φ we get by Lemma 3.2 that

‖SΩ1
φ‖3/2,Γ . ‖φ‖1/2,Γ. (4.33)
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To estimate DΩψ, we note for any C2-smooth surface Γ′ ⊂⊂ Ω and x ∈ Γ′, the
kernel function ∂nyE(x− y) of the operator DΩ is C∞-smooth. So it is easy to see
from the definition of DΩ that

‖DΩψ‖3/2,Γ′ . ‖DΩψ‖2,Γ′ . ‖ψ‖α,∂Ω, ∀α ∈ R. (4.34)

Noting the fact that ψ = w̄ on ∂Ω, we have by (4.32)-(4.34) that

‖w̄1‖2,Ω1
+ ‖w̄2‖2,Ω2

. ‖φ‖1/2,Γ + ‖w̄‖1/2,∂Ω . (4.35)

It remains to bound ‖φ‖1/2,Γ . We rewrite (4.31) as

φ =
2(β1 − β2)

β1 + β2

{

K∗
Ω1
φ+ ∂n(DΩψ)

}

+
2

β1 + β2
(g + g̃). (4.36)

By direct computations and (4.20) we derive

‖
2(β1 − β2)

β1 + β2
‖1,∞,Γ . 1 +

|β1|1,∞,Ω1
+ |β2|1,∞,Ω2

β̄1 + β̄2
. 1 (4.37)

and

‖
2

β1 + β2
‖1,∞,Γ .

1

β̄1 + β̄2
+

|β1|1,∞,Ω1
+ |β2|1,∞,Ω2

(β̄1 + β̄2)2
.

1

β̄1 + β̄2
. (4.38)

Now it follows from Lemma 4.2, (4.36)-(4.38) that

‖φ‖1/2,Γ . ‖K∗
Ω1
φ+ ∂n(DΩψ)‖1/2,Γ + (β̄1 + β̄2)

−1‖g + g̃‖1/2,Γ. (4.39)

On the other hand, since DΩψ is harmonic and H2-smooth in any bounded domain
Ω̃2, with its interior boundary being Γ and an exterior boundary being a C∞-
smooth surface Γ1 such that Ω̃2 strictly lies in Ω2. Then by the regularity estimates
for harmonic functions, and the same argument as used for deriving (4.34) we obtain

‖∂n(DΩψ)‖1/2,Γ . ‖DΩψ‖2,Ω̃2
. ‖DΩψ‖3/2,Γ + ‖DΩψ‖3/2,Γ1

. ‖ψ‖1/2,∂Ω. (4.40)

We have by Lemma 3.2 and the Sobolev intermediate inequality (cf. [1, 3]) that

‖K∗
Ω1
φ‖1/2,Γ . ‖φ‖0,Γ . ‖φ‖1/2,Γ + ‖φ‖−1/2,Γ . (4.41)

But noting that ψ = w̄ on ∂Ω, by Lemma 3.2 and the relation (4.30) we derive

‖φ‖−1/2,Γ . ‖SΩ1
φ‖1/2,Γ . ‖w̄‖1/2,Γ + ‖DΩψ‖1/2,Γ

. ‖w̄‖1/2,Γ + ‖ψ‖1/2,∂Ω . ‖w̄‖1/2,Γ + ‖w̄‖1/2,∂Ω . ‖w̄2‖1,Ω2
,

which with (4.39)-(4.41) gives

‖φ‖1/2,Γ . ‖w̄2‖1,Ω2
+ (β̄1 + β̄2)

−1‖g + g̃‖1/2,Γ. (4.42)

Combining this and (4.35) leads to

‖w̄1‖2,Ω1
+ ‖w̄2‖2,Ω2

. ‖w̄2‖1,Ω2
+ (β̄1 + β̄2)

−1(‖g‖1/2,Γ + ‖g̃‖1/2,Γ). (4.43)

To estimate ‖w̄2‖1,Ω2
, we know by the definition of w2 that w̄2 = u2−w2 ∈ H1(Ω2)

satisfies

−∆w̄2 = 0 in Ω2; w̄2 = u2 on Γ; ∂νw̄2 = 0 on ∂Ω.

Multiplying −∆w̄2 = 0 by w̄2 and u2 respectively and integrating over Ω2 yield

‖∇w̄2‖
2
0,Ω2

= −〈∂νw̄2, w̄2〉Γ = −〈∂νw̄2, u2〉Γ =

∫

Ω2

∇w̄2 · ∇u2dx,

thus we have ‖∇w̄2‖0,Ω2
. ‖∇u2‖0,Ω2

. This with (4.43) leads to

‖w̄1‖2,Ω1
+ ‖w̄2‖2,Ω2

. ‖∇u2‖0,Ω2
+ (β̄1 + β̄2)

−1(‖g‖1/2,Γ + ‖g̃‖1/2,Γ). (4.44)
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We are now ready to prove (4.28)-(4.29). Using (4.23) and Theorem 4.1, we know

β̄1‖w1‖2,Ω1
. ‖f1‖0,Ω1

+ d1(β)
{

‖f‖−1,Ω1
+ k̄−1(‖g‖−1/2,Γ + ‖f‖−1,Ω)

}

,
β̄2‖w2‖2,Ω2

. ‖f2‖0,Ω2
+ d2(β)

{

‖g‖−1/2,Γ + ‖f‖−1,Ω

}

.
(4.45)

Combining these estimates with (4.27) yields

‖g̃‖1/2,Γ .

2
∑

i=1

(1 + di(β))β̄i‖wi‖2,Ωi . ‖f‖0,Ω + (1 + k̄)−1(‖f‖−1,Ω + ‖g‖−1/2,Γ).

(4.46)
Now, with direct computations, it follows from Theorem 4.1, (4.44) and (4.46) that

β̄1‖w̄1‖2,Ω1
. (1+k̄−1)(‖g‖1/2,Γ+‖f‖0,Ω), β̄2‖w̄2‖2,Ω2

. (1+k̄−1)(‖g‖1/2,Γ+‖f‖0,Ω),

which, along with (4.45) and the relation ui = w̄i +wi lead directly to (4.28)-(4.29).
2

Following the proof of Theorem 4.2 but with f = 0, w1 = w2 = 0 and g̃ = 0, we
come immediately to the following simple results:

Theorem 4.3. Assume that f = 0, g ∈ H1/2(Γ) and the coefficient β(x) in (2.1)
is equal to constant β̄1 in Ω1 and constant β̄2 in Ω2, then the solution u to the
interface problem (2.1)-(2.3) with Neumann boundary condition (2.5) admits the a
priori estimates:

β̄1 ‖u1‖2,Ω1
. k̄−1(β)‖g‖1/2,Γ, β̄2 ‖u2‖2,Ω2

. ‖g‖1/2,Γ.

For the Dirichlet boundary condition (2.4), we have the following similar results.

Theorem 4.4. Assume that that f ∈ L2(Ω), g ∈ H1/2(Γ), and u is the solution to
the interface problem (2.1)-(2.3) with Dirichlet boundary condition (2.4), then the
following a priori estimates hold:

β̄1‖u1‖2,Ω1
.

(

1 + k̄−1(β)
)

(‖f‖0,Ω + ‖g‖1/2,Γ), (4.47)

β̄2‖u2‖2,Ω2
.

(

1 + k̄−1(β)
)

(‖f‖0,Ω + ‖g‖1/2,Γ) . (4.48)

Proof. The proof is basically the same as the one for Neumann boundary condition
in Theorem 4.2, with some natural modifications. First, let wi ∈ H1

0 (Ωi) (i = 1, 2)
be the two functions uniquely determined by (4.21) and (4.22), respectively. And
define w̄i = ui−wi in Ωi and g̃ = β1∂nw1−β2∂nw2 on Γ. Thus by means of a priori
estimates for elliptic problems and Theorem 4.1, the estimates (4.45) and (4.46)
still hold in the present case. Moreover, it is easy to see that (4.24) and (4.25) are
also valid. Therefore, by Theorem 3.3 we can write w̄ as

w̄(x) = (SΩ1
φ)(x) − (SΩψ)(x), ∀x ∈ Ω, (4.49)

where ψ = ∂ν w̄ on ∂Ω, and φ ∈ H1/2(Γ) solves the integral equation
(

β1 + β2

2(β1 − β2)
I −K∗

Ω1

)

φ = ∂n(SΩψ) +
g + g̃

β1 − β2
on Γ . (4.50)

Noting that w̄2 = 0 on ∂Ω, it follows from (4.49) that

(SΩ1
φ)(x) = (SΩψ)(x) ∀x ∈ ∂Ω.
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Using this identity, (4.49), Lemmas 3.1-3.2 and the derivations as for getting (4.34),
we find

‖w̄1‖2,Ω1
+ ‖w̄2‖2,Ω2

. ‖w̄‖3/2,Γ . ‖SΩ1
φ‖3/2,Γ + ‖SΩψ‖3/2,Γ

. ‖φ‖1/2,Γ + ‖ψ‖0,∂Ω

. ‖φ‖1/2,Γ + ‖SΩψ‖1,∂Ω

. ‖φ‖1/2,Γ + ‖SΩ1
φ‖1,∂Ω . ‖φ‖1/2,Γ. (4.51)

To further our estimates, we use the fact that w̄2 ∈ H1(Ω2) satisfies

−∆w̄2 = 0 in Ω2; w̄2 = u2 on Γ and ∂Ω,

so we know by the standard a priori estimate for elliptic problems, the Sobolev trace
theorem and the Poincaré inequality that

‖w̄2‖1,Ω2
. ‖u2‖1/2,Γ + ‖u2‖1/2,∂Ω . ‖∇u2‖0,Ω2

.

Using this and (4.51), and following the same arguments as for deriving (4.42) from
(4.36), we obtain

‖φ‖1/2,Γ . ‖w̄2‖1,Ω2
+ (β̄1 + β̄2)

−1‖g + g̃‖1/2,Γ

. ‖∇u2‖0,Ω2
+ (β̄1 + β̄2)

−1‖g + g̃‖1/2,Γ, (4.52)

Now, the estimates (4.47)-(4.48) follow from (4.45)-(4.46), (4.51)-(4.52), and Theo-
rem 4.1. 2

4.3. Improved a priori estimates. In this section, we shall study whether we
can improve the uniform a priori estimates established in Subsections 4.1-4.2 for
the elliptic interface problem (2.1)-(2.3) with either Dirichlet boundary condition
(2.4) or Nerumann condition (2.5). A natural question is whether the factor k̄−1(β)
appearing in those estimates of Theorems 4.1-4.4 is necessary. By considering a
special example of the interface problem (2.1)-(2.3) in spherical coordinates (cf. [15,
p. 581]), we find that the factor k̄−1(β) appears necessary as long as the norms
used contain the L2-norm part, and unnecessary when the H1 and H2 semi-norms
are considered. The removal of this factor is of essential importance as it can be
very large if β1(x) is much larger than β2(x) in magnitude. This may happen often
in applications and is in fact more interesting from the physical point of view.

Indeed, as we shall demonstrate, the factor k̄−1 appearing in the a priori estimates
of Theorems 4.1-4.4 can be removed. The improvements will be achieved based on
the established a priori estimates in Theorems 4.1-4.4 and by means of a novel
technique, which mimics the standard asymptotic analysis (cf. [21]) but is in fact
not an actual asymptotic expansion.

Dirichlet boundary condition. We start with the analysis on Dirichlet bound-
ary condition case. For simplicity, we shall write k̄ for k̄(β), and d̄i for d̄i(β) below.
Clearly for our purpose, we need only to consider the case where k̄(β) < 1.

Dividing both sides of equations (2.1) and (2.3) by β̄1, we can rewrite (2.1)-(2.3)
as follows: Find u ∈ H1

0 (Ω) such that

−∇ · (β̃1∇u1) = f̃1 in Ω1; −k̄∇ · (β̃2∇u2) = f̃2 in Ω2; (4.53)

u2 = u1, k̄β̃2∂nu2 − β̃1∂nu1 = g̃ on Γ, (4.54)

where g̃ = g/β̄1, f̃ = f/β̄1, β̃i = βi/β̄i, i = 1, 2.
Next, we expand the solution u formally in powers of k̄ in the form

u ∼ k̄−1u−1 + u0 +O(k̄).
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Substituting it into the equations (4.53)-(4.54), then comparing the terms of same
power of k̄, we obtain

−∇ · (β̃1∇u
−1
1 ) = 0 in Ω1 ; ∂nu

−1
1 = 0 on Γ, (4.55)

−∇ · (β̃2∇u
−1
2 ) = f̃2 in Ω2 ; u−1

2 = u−1
1 on Γ ; u−1

2 = 0 on ∂Ω, (4.56)

−∇ · (β̃1∇u
0
1) = f̃1 in Ω1 ; β̃1∂nu

0
1 = β̃2∂nu

−1
2 − g̃ on Γ ;

∫

Γ

u0
1dσ = 0,

(4.57)

−∇ · (β̃2∇u
0
2) = 0 in Ω2 ; u0

2 = u0
1 on Γ ; u0

2 = 0 on ∂Ω , (4.58)

where the condition
∫

Γ u
0
1dσ = 0 in (4.57) is imposed to ensure the uniqueness of

u0
1 which is governed by a Neumann boundary value problem.
By a straightforward computation, we see from (4.53)-(4.58) that the error func-

tion

ur = u− (k̄−1u−1 + u0) in Ω (4.59)

satisfies ur(x) = 0 on ∂Ω and

−∇ · (β̃1∇u
r
1) = 0 in Ω1 ; −k̄∇ · (β̃2∇u

r
2) = 0 in Ω2 ; (4.60)

ur
2 = ur

1, k̄ β̃2∂nu
r
2 − β̃1∂nu

r
1 = −k̄β̃2∂nu

0
2 on Γ . (4.61)

Now we try to further simplify the functions u−1 and u0. It is easy to see
from (4.55) that u−1

1 = α, a constant, which with the interface condition in (4.56)
indicates u−1

2 = α on Γ. Using this, we can express u−1
2 in the form u−1

2 = w−1
2 +

αv−1
2 , where w−1

2 and v−1
2 solve respectively the systems

−∇ · (β̃2∇w
−1
2 ) = f̃2 in Ω2 ; w−1

2 = 0 on Γ ; w−1
2 = 0 on ∂Ω, (4.62)

−∇ · (β̃2∇v
−1
2 ) = 0 in Ω2 ; v−1

2 = 1 on Γ ; v−1
2 = 0 on ∂Ω. (4.63)

Next, we try to determine the above constant α = u−1
1 . Noting that problem

(4.57) is of Neumann type, we must have the consistency condition:
∫

Γ

β̃1∂nu
0
1dσ = −

∫

Ω1

f̃1dx,

which with the interface condition in (4.57) implies
∫

Γ

β̃2∂nu
−1
2 dσ =

∫

Γ

g̃dσ −

∫

Ω1

f̃1dx.

Using this relation and the expression u−1
2 = w−1

2 + αv−1
2 , we have

∫

Γ

β̃2∂nw
−1
2 dσ + α

∫

Γ

β̃2∂nv
−1
2 dσ =

∫

Γ

g̃dσ −

∫

Ω1

f̃1dx,

which gives the formula to evaluate the constant α:

α =

{
∫

Γ

g̃dσ −

∫

Ω1

f̃1dx−

∫

Γ

β̃2∂nw
−1
2 dσ

}/
∫

Γ

β̃2∂nv
−1
2 dσ. (4.64)

Below we shall mention a few lemmas to present some a priori estimates for the
auxiliary functions u−1, u0 and ur.

Lemma 4.3. For the function w−1
2 defined by (4.62), we have

‖w−1
2 ‖1,Ω2

. ‖f̃2‖−1,Ω2
, ‖w−1

2 ‖2,Ω2
. ‖f̃2‖0,Ω2

. (4.65)
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Proof. The first estimate in (4.65) follows readily from the weak formulation of
(4.62). For the second estimate, by a direct computation, we know from (4.62) that

−∆w−1
2 = β̃−1

2 {f̃2 + ∇β̃2 · ∇w
−1
2 }.

Now by the standard estimates for elliptic problems (cf. [13, 22]) and noting the
assumption (2.2) for β, we can derive

‖w−1
2 ‖2,Ω2

. ‖β̃−1
2 {f̃2 + ∇β̃2 · ∇w

−1
2 }‖0,Ω2

. ‖f̃2‖0,Ω2
.

2

Lemma 4.4. For the function v−1
2 defined by (4.63), we have

1 .

∣

∣

∣

∣

∫

Γ

β̃2∂nv
−1
2 dσ

∣

∣

∣

∣

, ‖v−1
2 ‖1,Ω2

. 1, ‖v−1
2 ‖2,Ω2

. 1. (4.66)

Proof. The proof of the last two estimates in (4.66) are rather standard (cf. [11]).
To see the first estimate in (4.66), using (4.63) and applying the Green’s formula

to β̃2∇v
−1
2 we obtain

0 = −(∇ · (β̃2∇v
−1
2 ), v−1

2 )Ω2
=

∫

Ω2

β̃2|∇v
−1
2 |2dx +

∫

Γ

β̃2∂nv
−1
2 dσ,

which implies
∣

∣

∣

∣

∫

Γ

β̃2∂nv
−1
2 dσ

∣

∣

∣

∣

=

∫

Ω2

β̃2|∇v
−1
2 |2dx. (4.67)

Then the desired estimate follows directly from (4.67), the fact that

J(v−1
2 ) = min

z∈Z
J(z) =

1

2

∫

Ω2

β̃2|∇z|
2dx

and β̃2 = β2/β̄2 ≥ c0 by (2.2), where Z is a set of functions given by

Z =
{

z ∈ H1(Ω2); z = 1 on Γ, z = 0 on ∂Ω
}

.

2

Lemma 4.5. For the constant α in (4.64) and function u−1
2 defined by (4.56), we

have

|α| . ‖g̃‖−1/2,Γ + ‖f̃‖0,Ω, (4.68)

‖u−1
2 ‖1,Ω2

. ‖g̃‖−1/2,Γ + ‖f̃‖0,Ω, (4.69)

‖u−1
2 ‖2,Ω2

. ‖g̃‖−1/2,Γ + ‖f̃‖0,Ω. (4.70)

Proof. For the estimate (4.68) of α, we easily see from (4.64), Lemmas 4.3-4.4 and
the Sobolev trace theorem (cf. [1, 13]) that

|α| . ‖g̃‖−1/2,Γ + ‖f̃1‖0,Ω1
+ ‖w−1

2 ‖2,Ω2
. ‖g̃‖−1/2,Γ + ‖f̃‖0,Ω.

The estimates (4.69) and (4.70) follow directly from the expression u−1
2 = w−1

2 +
αv−1

2 , Lemmas 4.3-4.4 and the estimate of α. 2

Lemma 4.6. For the function u0
1 defined by (4.57), we have

‖u0
1‖1,Ω1

. ‖g̃‖−1/2,Γ + ‖f̃‖0,Ω, (4.71)

‖u0
1‖2,Ω1

. ‖g̃‖1/2,Γ + ‖f̃‖0,Ω. (4.72)
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Proof. By (4.57), we know u0
1 ∈ H1(Ω1) solves the variational problem:

∫

Ω1

β̃1∇u
0
1 · ∇ω1dx =

∫

Ω1

f̃1ω1dx+ < β̃2∂nu
−1
2 − g̃, ω1 >Γ ∀ω1 ∈ H1(Ω1).

Taking ω1 = u0
1 above and using the Poincaré inequality with condition (4.20) and

the trace theorem imply

‖u0
1‖1,Ω1

. ‖f̃1‖0,Ω1
+ ‖β̃2∂nu

−1
2 − g̃‖−1/2,Γ

. ‖f̃1‖0,Ω1
+ ‖g̃‖−1/2,Γ + ‖β̃2∂nu

−1
2 ‖−1/2,Γ. (4.73)

Next we estimate ‖β̃2∂nu
−1
2 ‖−1/2,Γ by the duality argument. For all ω̄ ∈ H1/2(Γ),

let ω2 be the harmonic extension of ω̄ into Ω2 such that ω2 = ω̄ on Γ, and ω2 = 0
on ∂Ω. Clearly, we know ‖ω2‖1,Ω2

. ‖ω̄‖1/2,Γ. Thus, it follows from (4.56) and the
Green’s formula that

∫

Ω2

f̃2ω2dx =

∫

Ω2

β̃2∇u
−1
2 · ∇ω2dx+

∫

Γ

β̃2 ω2 ∂nu
−1
2 dσ,

so we can further derive
∣

∣

∣

∣

∫

Γ

β̃2∂nu
−1
2 ω2dσ

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

Ω2

β̃2∇u
−1
2 · ∇ω2dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ω2

f̃2ω2dx

∣

∣

∣

∣

. (‖f̃2‖0,Ω2
+ ‖u−1

2 ‖1,Ω2
)‖ω̄‖1/2,Γ.

This indicates with Lemma 4.5 that

‖β̃2∂nu
−1
2 ‖−1/2,Γ . ‖f̃2‖0,Ω2

+ ‖u−1
2 ‖1,Ω2

. ‖g̃‖−1/2,Γ + ‖f̃‖0,Ω. (4.74)

Now (4.71) follows from this estimate and (4.73).
To estimate the term ‖u0

1‖2,Ω1
, we first rewrite equations (4.57) as

−∆u0
1 = β̃−1

1 {f̃1 + ∇β̃1 · ∇u
0
1} in Ω1 ; ∂nu

0
1 = β̃−1

1 {β̃2∂nu
−1
2 − g̃} on Γ.

Then we deduce by virtue of Lemmas 4.2 and 4.5, the estimate of ‖u0
1‖1,Ω2

that

‖∆u0
1‖0,Ω1

= ‖β̃−1
1 {f̃1 + ∇β̃1 · ∇u

0
1}‖0,Ω1

. ‖f̃1‖0,Ω1
+ d1‖g̃‖−1/2,Γ + (1 + d2)

2d1‖f̃‖0,Ω,

‖∂nu
0
1‖1/2,Γ = ‖β̃−1

1 {β̃2∂nu
−1
2 − g̃}‖1/2,Γ . ‖β̃−1

1 ‖1,∞,Ω1
‖β̃2∂nu

−1
2 − g̃‖1/2,Γ

. ‖g̃‖1/2,Γ + ‖u−1
2 ‖2,Ω2

. ‖g̃‖1/2,Γ + ‖f̃‖0,Ω.

Finally, the Poincaré inequality and standard a priori estimates for elliptic problems
lead to

‖u0
1‖2,Ω1

. ‖∆u0
1‖0,Ω1

+ ‖∂nu
0
1‖1/2,Γ . ‖g̃‖1/2,Γ + ‖f̃‖0,Ω.

This completes the proof of (4.72) 2

The estimates in the following lemma about u0
2 follow from the standard a priori

estimates of elliptic problems and Lemma 4.6:

Lemma 4.7. For the function u0
2 defined by (4.58), we have

‖u0
2‖1,Ω2

. ‖g̃‖−1/2,Γ + ‖f̃‖0,Ω , ‖u0
2‖2,Ω2

. ‖g̃‖1/2,Γ + ‖f̃‖0,Ω.

Lemma 4.8. For the error function ur defined in (4.59), we have

‖∇ur
1‖0,Ω1

. ‖g̃‖−1/2,Γ + ‖f̃‖0,Ω,

‖ur
1‖2,Ω1

+ k̄ ‖ur
2‖2,Ω2

. ‖g̃‖1/2,Γ + ‖f̃‖0,Ω.
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Proof. By the same argument as for bounding (β̃2∂nu
−1
2 ) in (4.74) and using Lemma

4.7, we obtain

‖β̃2∂nu
0
2‖−1/2,Γ . ‖g̃‖−1/2,Γ + ‖f̃‖0,Ω. (4.75)

Now applying Theorem 4.1 and Theorem 4.4 to the elliptic interface problem (4.60)-
(4.61) and noting k̄ < 1, and (2.2), we derive

‖∇ur
1‖0,Ω1

. k̄−1‖k̄β̃2∂nu
0
2‖−1/2,Γ = ‖β̃2∂nu

0
2‖−1/2,Γ,

‖ur
1‖2,Ω1

. (1 + k̄−1)‖k̄β̃2∂nu
0
2‖1/2,Γ . ‖β̃2∂nu

0
2‖1/2,Γ,

k̄ ‖ur
2‖2,Ω2

. (1 + k̄−1)‖k̄β̃2∂nu
0
2‖1/2,Γ . ‖β̃2∂nu

0
2‖1/2,Γ.

Then the desired estimates follow directly from (4.75), the trace theorem and
Lemma 4.7. 2

With the above preparations, we are now ready to present our improved a priori
estimates.

Theorem 4.5. For the solution to the interface problem (2.1)-(2.3) with Dirichlet
boundary condition (2.4), there hold

β̄1‖∇u1‖0,Ω1
+ β̄2‖∇u2‖0,Ω2

. ‖g‖−1/2,Γ + ‖f‖−1,Ω (4.76)

for f ∈ H−1(Ω) and g ∈ H−1/2(Γ), and

β̄1|u1|2,Ω1
+ β̄2|u2|2,Ω2

. ‖g‖1/2,Γ + ‖f‖0,Ω (4.77)

for f ∈ L2(Ω) and g ∈ H1/2(Γ).

Proof. Observing that u−1
1 in (4.55) is a constant, and noting ur in (4.59) and the

definitions of g̃ and f̃ , we derive from Lemmas 4.5-4.8 that

β̄1|u1|2,Ω1
. β̄1|u

r
1|2,Ω1

+ β̄1‖u
0
1‖2,Ω1

. ‖g‖1/2,Γ + ‖f‖0,Ω,

β̄2|u2|2,Ω2
= β̄1k̄ |u2|2,Ω2

. β̄1{k̄ |u
r
1|2,Ω1

+ ‖u−1
2 ‖2,Ω2

+ ‖u0
2‖2,Ω2

}

. ‖g‖1/2,Γ + ‖f‖0,Ω,

which prove (4.77). The same reasoning as above gives

β̄1‖∇u1‖0,Ω1
≤ β̄1‖∇u

r
1‖0,Ω1

+ β̄1‖u
0
1‖1,Ω1

. ‖g‖−1/2,Γ + ‖f‖0,Ω. (4.78)

This is not the optimal estimate as required in (4.76), where only the H−1-norm is
needed. To improve this estimate, we introduce two functions ωi ∈ H1

0 (Ωi) (i = 1, 2)
such that

−∇ · (βi∇ωi) = fi in Ωi. (4.79)

By the standard duality argument as used for bounding (β̃2∂nu
−1
2 ) in (4.74), we

deduce
‖βi∂nωi‖−1/2,Γ . ‖βi∇ωi‖0,Ωi + ‖fi‖−1,Ωi . ‖f‖−1,Ωi. (4.80)

Now letting v = u − ω, we know from (2.1)-(2.4), (4.79) that v = 0 on ∂Ω and
satisfies

−∇ · (β1∇v1) = 0 in Ω1 ; −∇ · (β2∇v2) = 0 in Ω2 ;

[v] = 0, [β∂nv] = g + β1∂nω1 − β2∂nω2 on Γ .

Applying the estimate (4.78) to the above interface problem and using (4.80), we
obtain

β̄1‖∇v1‖0,Ω1
. ‖g + β1∂nω1 − β2∂nω2‖−1/2,Γ . ‖g‖−1/2,Γ + ‖f‖−1,Ω,

which, with (4.80) and the relation u = v + ω, gives
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β̄1‖∇u1‖0,Ω1
. ‖g‖−1/2,Γ + ‖f‖−1,Ω.

The combination of this and (4.6) implies (4.76). 2

Remark 4.2. The estimates in Theorem 4.5 are sharp in terms of β̄1 and β̄2 and
for general f and g. These have even greatly improved our previous results obtained
in [15] for the case with piecewise constant coefficients.

Neumann boundary conditions. For the interface problem (2.1)-(2.3) with
Neumann boundary condition (2.5), we can also improve the uniform a priori esti-
mates established in Theorem 4.1 and Theorem 4.2. We shall state only the results
below but omit the lengthy derivations. In fact, the derivations follow almost ex-
actly the same arguments as used earlier for the Dirichlet boundary condition (2.4),
with only some minor modifications, e.g., the boundary conditions u−1

2 = 0 and
u0

2 = 0 on ∂Ω in (4.56) and (4.58) should be changed into the Neumann boundary
conditions ∂νu

−1
2 = 0 and ∂νu

0
2 = 0 respectively.

Theorem 4.6. For the solution u to the interface problem (2.1)-(2.3) with Neu-
mann boundary condition (2.5), there hold

β̄1‖∇u1‖0,Ω1
+ β̄2‖∇u2‖0,Ω2

. ‖g‖−1/2,Γ + ‖f‖−1,Ω (4.81)

for f ∈ (H1(Ω))′ and g ∈ H−1/2(Γ), and

β̄1|u1|2,Ω1
+ β̄2|u2|2,Ω2

. ‖g‖1/2,Γ + ‖f‖0,Ω (4.82)

for f ∈ L2(Ω) and g ∈ H1/2(Γ).

5. Uniform a priori estimates for static Maxwell interface problems. In
this section, we will present some uniform a priori estimates for the electric and
magnetic field E and H to the static Maxwell system. In this case, the electric and
magnetic fields E and H are uniquely determined by two independent systems, and
thus their estimates can be obtained separately. As showed in Subsection 2.2, we
assume that conditions (2.10) and (2.11) hold for the material parameters ε(x) and
µ(x).

5.1. Electric field E. It follows from the equations (2.6), (2.8), and the interface
and boundary conditions (2.12)-(2.14) that the electric field E satisfies the condition
n× E = 0 on ∂Ω and is governed by the following system:

∇ · (ε(x)E) = ρ , ∇× E = 0 in Ω ; (5.1)

[E × n] = 0, [εE · n] = ρΓ on Γ . (5.2)

Using ∇×E = 0, we know that there exists a scalar potential u ∈ H1
0 (Ω) such that

(cf. [12, p. 31])
E = −∇u. (5.3)

Substituting this into the first equation in (5.1) yields

−∇ · (ε(x)∇u) = ρ in Ω.

On the other hand, by direct computations we find using (5.2) and (5.3) that

[u] = 0, [ε(x)∂nu] = −ρΓ on Γ.

Now we can see that the potential function u ∈ H1
0 (Ω) satisfies the elliptic interface

problem (2.1)-(2.3) with f = ρ, β = ε and g = −ρΓ. Then an application of
Theorem 4.5 leads directly to the following uniform a priori estimates on E:
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Theorem 5.1. For the electric field E governed by the system (5.1)-(5.2), we have

ε̄1‖E1‖0,Ω1
+ ε̄2‖E2‖0,Ω2

. ‖ρΓ‖−1/2,Γ + ‖ρ‖−1,Ω (5.4)

for ρΓ ∈ H−1/2(Γ) and ρ ∈ H−1(Ω), and

ε̄1|E1|1,Ω1
+ ε̄2|E2|1,Ω2

. ‖ρΓ‖1/2,Γ + ‖ρ‖0,Ω (5.5)

for ρΓ ∈ H1/2(Γ) and ρ ∈ L2(Ω).

5.2. Magnetic field H. From the equations (2.7), (2.9), and the interface and
boundary conditions (2.12)-(2.14), we see that the magnetic field H satisfies the
condition ν·(µH) = 0 on ∂Ω and is governed by the following system:

∇× H = J , ∇ · (µH) = 0 in Ω ; (5.6)

[H × n] = 0, [µH · n] = 0 on Γ . (5.7)

In general, the magnetic field H can be described by introducing a vector field
which satisfying some gauge conditions (cf. [9, 10]). But we shall use a different
way to represent H (cf. [19]). Noting the first equation in (5.6), we should have the
following consistency condition:

∇ · J =0.

Since the domain Ω is a simply-connected convex polyhedron or a domain with a
smooth boundary, we know by Theorem 3.12 and Theorem 2.17 in [2] that there
exists a vector potential W in (H1(Ω))3 satisfying that W · ν = 0 on ∂Ω and

J = ∇× W in Ω , ∇ · W = 0 in Ω, (5.8)

with the stability estimate

‖W‖1,Ω . ‖J‖0,Ω. (5.9)

Combining (5.8) with (5.6) yields

∇× (H− W) = 0 ,

hence there exists (cf. Theorem 2.9, [12, p. 31]) a scalar potential ω ∈ H1(Ω) such
that

H = W+∇ω in Ω. (5.10)

Substituting this into the second equation of (5.6) and noting ∇·W = 0, we obtain

−∇ · (µ1∇ω1) = ∇µ1 ·W1 in Ω1, (5.11)

−∇ · (µ2∇ω2) = ∇µ2 ·W2 in Ω2. (5.12)

On the other hand, using (5.10), the interface and boundary conditions on H and W,
we can see that the potential function ω satisfies the boundary condition ∂νω = 0
on ∂Ω and the interface conditions

[ω] = 0, [µ∂nω] = (µ1 − µ2)W · n on Γ.

Therefore, we find that the scalar potential ω satisfies the elliptic interface problem
(2.1)-(2.3) with β(x) = µ(x), f(x) = ∇µ1 · W1 in Ω1, f(x) = ∇µ2 · W2 in Ω2, and

g(x) = (µ1 − µ2)W · n .

Then applying Theorem 4.6 and (5.9)-(5.10), we come immediately to the following
conclusion.
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Theorem 5.2. Assume that J ∈ (L2(Ω))3, and H is the solution to the system
(5.6)-(5.7). Then the following a priori estimates hold

‖H1‖0,Ω1
≤

{

1 +
|µ1|1,∞,Ω1

+ |µ2|1,∞,Ω2
+ ‖µ1 − µ2‖0,∞,Γ

µ̄1

}

‖J‖0,Ω ,

‖H2‖0,Ω2
≤

{

1 +
|µ1|1,∞,Ω1

+ |µ2|1,∞,Ω2
+ ‖µ1 − µ2‖0,∞,Γ

µ̄2

}

‖J‖0,Ω ,

|H1|1,Ω1
≤

{

1 +
|µ1|1,∞,Ω1

+ |µ2|1,∞,Ω2
+ ‖µ1 − µ2‖1,∞,Γ

µ̄1

}

‖J‖0,Ω ,

|H2|1,Ω2
≤

{

1 +
|µ1|1,∞,Ω1

+ |µ2|1,∞,Ω2
+ ‖µ1 − µ2‖1,∞,Γ

µ̄2

}

‖J‖0,Ω .

When the magnetic permeability µ(x) is piecewise constant, we have

Theorem 5.3. Assume that J ∈ (L2(Ω))3, and that the permeability parameter
µ(x) is piecewise constant, equal to µ̄i in Ωi (i = 1, 2), then the magnetic field H

to the system (5.6)-(5.7) admits the following a priori estimates

‖H1‖1,Ω1
. ‖J‖0,Ω , ‖H2‖1,Ω2

. ‖J‖0,Ω for µ̄2 > µ̄1,

‖H1‖1,Ω1
. ‖J‖0,Ω, ‖H2‖1,Ω2

.
µ̄1

µ̄2
‖J‖0,Ω for µ̄1 > µ̄2 .

Proof. For µ̄2 > µ̄1, we apply Theorem 4.1 (with f = 0) to the system (5.11)-(5.12)
to obtain that

µ̄2 (|ω1|1,Ω1
+ |ω2|1,Ω2

) . ‖(µ1 − µ2)W · n‖−1/2,Γ . |µ1 − µ2| ‖J‖0,Ω ,

which gives

|ω1|1,Ω1
+ |ω2|1,Ω2

.
µ̄2 − µ̄1

µ̄2
‖J‖0,Ω . ‖J‖0,Ω .

On the other hand, one can apply Theorem 4.3 to the system (5.11)-(5.12) and use
(5.9) to derive that

µ̄2 (|ω1|2,Ω1
+ |ω2|2,Ω2

) . ‖(µ1 − µ2)W · n‖1/2,Γ . (µ̄2 − µ̄1)‖J‖0,Ω ,

thus we have

|ω1|2,Ω1
+ |ω2|2,Ω2

.
µ̄2 − µ̄1

µ̄2
‖J‖0,Ω . ‖J‖0,Ω .

With these estimates, the results for the case that µ̄2 > µ̄1 comes readily from
(5.10).

To treat the case with µ̄1 > µ̄2, we apply Theorem 4.6 to the system (5.11)-(5.12)
to obtain that

µ̄1 |ω1|1,Ω1
+ µ̄2 |ω2|1,Ω2

. ‖(µ1 − µ2)W · n‖−1/2,Γ . (µ̄1 − µ̄2)‖J‖0,Ω ,

µ̄1 |ω1|2,Ω1
+ µ̄2 |ω2|2,Ω2

. ‖(µ1 − µ2)W · n‖1/2,Γ . (µ̄1 − µ̄2)‖J‖0,Ω ,

now the desired estimate follows immediately from these and (5.10). 2
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Springer, Berlin, Lecture Notes in Mathematics 323, 1973.
[22] J. Lions and E. Magenes, “Nonhomeneous Boundary Value Problems and Applications, I, II,”

Springer, Berlin, 1972-1973.
[23] M. Plum and C. Wieners, Optimal a priori estimates for interface problems, Numer. Math.,

95(2003), 735-759.
[24] M. Protter and H. Weiberger, “Maximum Principles in Differential Equations,” Prentice-Hall,

Englewood Cliffs, NJ, 1967.
[25] M. Taylor, “Tools for PDE: pseudodifferential operators, paradifferential operators, and layer

potentials,” AMS, Providence, RI, 2000.
[26] G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace’s equation

in Lipschitz domains, J. Funct. Anal., 59 (1984), 572-611.
[27] J. Xu and J. Zou, Some nonoverlapping domain decomposition methods, SIAM Review, 40

(1998), 857-914.
[28] J. Zhao, “Analysis of Finite Element Approximation and Iterative Methods for Time-

dependent Maxwell Problems”, Ph. D. Thesis, Department of Mathematics, Texas A & M
University, 2002.

Received January 2006; revised September 2006.

E-mail address: jghuang@sjtu.edu.cn; zou@math.cuhk.edu.hk


	1. Introduction
	2. Interface problems
	2.1. Elliptic interface problems
	2.2. Static Maxwell interface system

	3. Preliminaries
	3.1. Some fundamental results about single and double layer potentials
	3.2. Uniqueness about piecewise harmonic functions
	3.3. Integral representation

	4. Uniform a priori estimates for elliptic interface problems
	4.1. H1-estimates
	4.2. H2-estimates
	4.3. Improved a priori estimates

	5. Uniform a priori estimates for static Maxwell interface problems
	5.1. Electric field E
	5.2. Magnetic field H

	Acknowledgments.
	REFERENCES

