ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF PLANAR
ELLIPTIC SYSTEMS WITH STRONG COMPETITION

JUNCHENG WEI AND TOBIAS WETH

ABSTRACT. We study a class of planar nonlinear elliptic systems with competition
which includes the Hartree-Fock type approximation for a system of Bose-Einstein
condensates in multiple hyperfine states as derived by Esry et al. [14]. We study
the limit behaviour of solutions in the case where the repulsive interaction tends to
infinity and phase separation is expected. In particular, we prove the continuity of
the limit shape and derive limit equations satisfied within its nodal sets. By this
we complement recent work of Chang et al. [8] where additional assumptions had
to be made.

1. INTRODUCTION

In this paper we are concerned with the following class of parameter-dependent
systems of elliptic equations with & components:

—Au; = fi(ui)u Zamfm ug in €,
(1.1) ];éz
UlyennyUp >0 in €,
Uy =-+=up =0 on 0Q.

Here Q C R? is a smooth bounded domain, f;, fij : [0,00) = R are continuous
functions and o;; > 0 are parameters for 4,j = 1,...,k, j # i. We make the following
assumptions on the coupling functions:

(Al) fij(t) >0 fort>0andi#j.
(A2) There exists 7 > 0 such that hm f”( ) =0 for ¢ #7J.

We point out two special cases of system (1.1). The case f;;(t) =t for i # j corre-
sponds to a Lotka-Volterra type system modelling the interaction between biological
species in population ecology. In particular, this case has been considered by Dancer
and Du [11], Conti, Terracini and Verzini [9] and Caffarelli and Lin [6]. Another case
where the right hand side f;(u;)u; — Zle ij fij(uj)u; is replaced by A(z)II¥
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arises in combustion theory and has been considered recently by Caffarelli and Roque-
joffre in [7]. Our interest in this problem arose from the following elliptic system:

n
—Au; + Aju; = Zﬂwuful in €,
(1.2) =t
Uly.nn U >0 in €,
Uy =-+=up =20 on 0f).

Here g3;; < 0 for i # j and B;;, A € R, i =1,..., k. This is a special case of (1.1) with
fij(t) = t2, Qi = —ﬁij for 7 # j and fz(t) = ﬁiitz — Mt fori=1,...,k. System (1.2)
arises in the Hartree-Fock-theory of a mixture of Bose-Einstein condensates in mul-
tiple hyperfine states where the interaction between the different states is repulsive,
see [14]. We note that (1.2) has a variational structure if 8;; = §;; for all ¢, j; solutions
of (1.2) can be found as critical points of the energy functional ® : H!(Q,RF) — R
given by

k k
1 1 1
B(u) = Z/QBUVW'Q + Aiu? = 3Bl dz— 5 3 By / ujuj da.
=1

ig=1 7%

1<J
Existence and multiplicity of critical points of ® has been obtained under different
assumptions on the parameters A; and g, see e.g. [3-5,8,12,19,20,23,25,26]. The
variational principles yielding these critical points imply uniform energy bounds in-
dependent of the coupling coefficients §;;, ¢ # j. It is natural to try to understand
the asymptotic profile of these solutions in the “strong repulsion limit” (3;; — —oo0,
which corresponds to a;; — oo in (1.1). It is easy to see that uniform ®-bounds for a
sequence of solutions of (1.2) - corresponding to bounded diagonal parameters «;, G;;
and unbounded ;; — yield uniform H!(Q)-bounds, and these in turn yield uniform
L°°(Q)-bounds by standard elliptic regularity. It is expected that components with
bounded L*°-norm tend to separate in different regions of the underlying domain €2,
a phenomenon physicists describe as “phase separation” in the context of (1.2), see
e.g. [8,16,17,24]. However, from a rigorous mathematical point of view, the nature
of this limit and the spatial separation is not well understood so far. The following
is our main result concerning (1.1).

Theorem 1.1. Let (A1), (A2) be satisfied and let oy > 0, n €N, i # j be such that
a%—>oo as n — 0o and

mﬁ_x a;; < Cmin g for some C > 0 and all n.
i#] i#]

Moreover, for every n let up, = (Uip,--.,upn) € C2(Q,RE) be a solution of (1.1)
corresponding to o;j = of; such that the sequence (tn)n is bounded in L*®(Q,RF).
Then:

(a) The sequence (up)n s uniformly equicontinuous. Hence there exists u =
(u1,...,u) € C(Q,R¥) such that, for a subsequence,

(1.3) Ul — Uy uniformly on Q fori=1,...,k.
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(b) If u = (u1,...,u;) € C(Q,RF) satisfies (1.3) and
N;:={ze€Q: u >0} fori=1,...k,

then the sets N; are open and disjoint. Moreover, if f; is Holder continuous, then
ui|n; € C?(N;) is a classical solution of the equation

(1.4) —Aui = fz(’U,Z)’U,Z n Ni-

Remark 1.1. (i) We will prove properties (a) and (b) for a more general sequence of
vector-valued functions u, € L*(Q,R*) satisfying a nonlinear system of differential
inequalities, see Theorem 3.1 below. Moreover, our proof carries over to the case of
z-dependent functions f; = fi(z,u) which are continuous on © x [0,00). In some
cases, one is also led to study functions f; = f* depending on n, see e.g. [8]. Then
one has to assume that f] o u;, is bounded in L*°(Q2) independently on n, so that a
subsequence of these functions has a weak*-limit in L*(€2) which then appears in the
right hand side of (1.4) in place of f;j(u;). We omit these straightforward extensions
to keep the presentation short.

(ii) Any uniform L*°(£2)-bound for solutions of (1.1) yields a uniform H{ (2)-bound,

since
/|Vuz|2§/fz(uz)ul2 dz
Q Q

for every i. On the other hand, if we assume in addition that f;(t) < C;(1 + t*)
for some A\ > 0, then, by Sobolev embeddings and classical subsolution estimates, a
uniform H{ (Q)-bound also yields a uniform L*°()-bound.

(iii) In the special case of system (1.2), Theorem 1.1 improves [8, Theorem 1.1] of
Chang et al.. In [8], the authors consider a sequence of solutions of (1.2) satisfying
the assumptions of Theorem 1.1, but they could only prove weak convergence in
H}(Q,R*), and the limit equations (1.4) were only derived under the assumption
that the sets N; are open.

(iv) In the case f;;(t) = t, Conti-Terracini-Verzini [9] proved uniform Hoélder bounds
for solutions of (1.1). Their method works in arbitrary dimension but relies crucially
on the specific form of the coupling. In fact, via a blow up argument rescaling Holder
quotients, they are led to study vector-valued functions (uy,...,u) defined on RY
with the following property:

(1.5) u; is subharmonic and u; — Z %uj is superharmonic for i = 1,...,n

ji O

(as was pointed out to us [10], this property is assumed in [9, Proposition 7.2]). Then
they conclude via interesting new monotonicity theorems. However, due to the fact
that the coupling terms in (1.2) are non-symmetric (even when the g;; are symmetric),
it is unclear whether (1.5) extends to limiting functions arising from (1.2). Moreover,
any rescaling of Holder or uniform gradient norms seems unsuitable for the general
system (1.1) when no homogeneity is assumed.

The proof of Theorem 1.1 is based on a rescaling of the form

Up > U = Up(Tp, + Aprn(:))
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with suitably chosen z, € Q, A, € O(2) and r,, — 0 as n — oo. Extending v,
trivially to all of R?, we may pass to a subsequence such that the weak*-limit v of v,
in L>°(R?) exists and is a subharmonic function. Liouville’s theorem (see Section 2)
implies that v is almost everywhere constant. By a careful analysis of the values
taken by v, on circles, we then come to a contradiction. In particular, here we use
properties of the spherical cap-symmetrization of v,. The assumption that N = 2,
i.e. the domain is planar, enters at three points. First, when we use Liouville’s
theorem. Second, when we look for suitable exponents in Morrey’s lemma to get
local oscillation estimates, see the proof of Lemma 3.2 below. And last, we use
the fact that we have a well defined trace of H'-function on line segments, which
also requires N = 2. Whether Theorem 1.1 carries over to the case N > 3 is an
interesting question which is open even in the special case of (1.2).

Acknowledgments. The research of the first author is partially supported by an
Earmarked Grant from RGC of Hong Kong. He thanks Professor FH Lin for sending
the preprint [6] and useful discussions.

2. PRELIMINARIES

Here we recall some facts on subharmonic functions and the (spherical) cap-
symmetrization. A function u € L, (R?) is called (weakly) subharmonic if, for every

R > 0, one of the following equivalent properties are satisfied.

(S1) For almost every = € R?,

u(z) < 1

< — u(y) dy for every R > 0.
‘BRl Bg(z)

(S2) For every nonnegative ¢ € C§°(R?),

/ ulAp > 0.
RZ

For the equivalence of these properties, see e.g. [18, Theorem 9.3]. As stated in [18,
Theorem 9.3], every function u € L}, (R?) satisfying (S1) or (S2) has an upper
semicontinuous representative @ : R2 — R U {oco} such that @(z) = u(z) for a.e.
z € R? and (S1) holds for every z € R? with @(z) < oo. In the standard literature
on potential theory (see e.g. [13]), these properties are part of the definition of a

subharmonic function. We recall the following classical result, see e.g. [13].

Theorem 2.1. (weak version of Liouville’s Theorem,)
If u € L*®(R?) is subharmonic, then there ezists ¢ € R such that u = c almost
everywhere on RZ2.

Next we recall facts about the cap-symmetrization. Let e C R? denote a fixed unit
vector, and let S(r) := {z € R? : |z| = 7} for r > 0. For a Borel set A C S(r) we
define the cap-symmetrization A* of A as the closed geodesic ball in S(r) centered at
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re and having the same surface measure as A. For a function u € C(R?) N H}, .(R?),

the cap-symmetrization u* : R2 — R of u is the function defined by the relations
{z € S(r) : u"(z) >d} ={z € S(r) : u(z) >d}* forr>0,deR

It is well known that u* € C(R?) N H}

loc

(R?), and that

(2.1) lu* o (BR(0)) = llullr(Bgoyy ~ for R>0, p>1, and
(2.2) lu* | m1(r)) < lullai(Bre) — for R>0.

We note that u* is axially symmetric with respect to the axis Re, and it is decreasing

in the polar angle 8 = arccos (ﬁ - e ) from this axis. This in particular implies that,

for every r > 0,

2.3 *(re) = 1 ure) = mi _
(2.3) u*(re) zIélSa,(}:)u(.’L') an u*(—re) zrens}(ri)u(w)

It is easy to see that the map u +— u* is continuous with respect to local LP-norms.
More precisely, if u,v € C(R?) N H. (R?), then

loc

(2.4) [u™ —v*||Le(Br(0)) < llu — vl|Lr(BR(0)) for B >0, p > 1.

The map u ~ u* is not continuous with respect to local H'-norms, see e.g. [2].
However, it is weak-to-weak continuous in the following sense.

Lemma 2.1. If u,u, € C(R?) N H. (R?), n € N are functions such that u, — u
weakly in H'(Bg(0)) for some R > 0, then also u}, — u* weakly in H'(Bg(0)).

Proof. By assumption and compactness of the embedding H'(Br(0)) — L'(Bg(0)),
we infer that

Uy — U strongly in L'(Bg(0)),

so that
(2.5) uy — u’ strongly in L'(Bg(0))

by (2.4). Suppose by contradiction that there exists ¢ € H'(Bg(0)) such that, after
passing to a subsequence,

D * ok
(2.6) llnII_l)loréf<un u*, ) >0,
where (-,-) denotes the scalar product in H(Bg(0)). By (2.2), the sequence (u}), is
bounded, so we may pass again to a subsequence such that u} — w in H'(Bg(0)).

By compactness, u}, — w strongly in L'(Bg(0)) and therefore w = u* by (2.5). This
however contradicts (2.6). O
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3. PROOF OF THE MAIN THEOREM

As announced in the introduction, we prove a more general version of Theo-
rem 1.1. Consider the following nonlinear system of differential inequalities for
u= (Ul,...,Ug):

—a gi(u')u; < — Au; — fiui)u; < =B gi(u')u; in Q,
(3.1) Uty oyt >0 in Q,
u1:---:uk:O on 0f).
Here Q@ C R? is a smooth bounded domain, fi,...,f; : Ry — R are continuous
(where, as usual, Ry = [0,00)) and @ > [ > 0 are parameters. Moreover, u’ =
(Ugyeney Uity Ujg1y- -, U) € R’f[l, and for the functions g; € C(R’j__l,R) we make

the following assumptions:
(Bl) gz'(t1, - atk—l) > 0if max{tl, - atk—l} > 0.
(B2) There exists 7 > 0 such that, for alls =1,...,k,
gi(tb e atk—l)
(max{tla s 7tk—1})T

Note that every solution u = (u1,...,ux) of (1.1) satisfies (3.1) with

-0 as max{ti,...,txk—1} — 0.

a=maxq;;, B=minae; >0
1] i#]

and g; given by
gi(u') = fij(uy).
J#t
Now Theorem 1.1 is a direct consequence of the following result.

Theorem 3.1. Let (B1),(B2) be satisfied and let oy, > B, > 0, n € N be such that
Qp, Bp, — 00 as n — oo and

an, < CBy, for some C >0 and all n.

Moreover, for everyn let u, = (u1p,...,uxn) € C*(Q, R¥) be a solution of (3.1) cor-

responding to o = oy, B = By such that the sequence (uy)n is bounded in L (Q, RF).
Then (a) and (b) of Theorem 1.1 hold.

The remainder of this section is devoted to the proof of this theorem. So consider
a sequence U, = (U1, - .-, Ukn) € C?(Q, RF) satisfying the assumptions. We put

Up = sup |[tinllre(n), Fo=sup [[fi(tin)llz=(@) and Go= sup |lgi(u""™)||ze(q)-
] k i=1,...,k ] k

i=1,..., i=1,..., i=1,...,

Multiplying the equations in (3.1) for u, with u;, and integrating over €2, we infer
that

(3.2) / Vil do < / filuinid, de < |QUFUZ  for all i,n.
Q Q
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It is convenient to extend u,, by zero on R?2\Q. Then u, € L>®(RZ, RF)NW L= (R?, RF),
and in distributional sense it satisfies the differential inequalities
(33) —Aui,n S f,(uz,n)uz,n — ﬁngi (u%)uw in R2 for i = 1, feey k.

We first provide some crucial estimates. Here we use some ideas from Chang-Lin-
Lin-Lin [8] and Conti-Terracini-Verzini [9].

Lemma 3.1. There is Cy > 0 such that |[Vu;p| peowey < Cov/Bn fori=1,...,k.

This is a generalization of [8, Lemma 2.2]. In [8] the estimate was proved for
solutions of (1.2) but only for points in Q with a fixed lower bound on the distance
to 0.

Lemma 3.2. If (x,), C 2 is a sequence such that € := ianui,n(wn) > 0 for some 1,
ne
then ujn(zn) = OB ") for j # 1 and every n > 0.

This lemma can be seen as an improvement of [8, Prop. 2.1 and 2.2] since we
consider the general system (3.1) and do not assume a lower bound on dist(z,, 9Q).

Proof of Lemma 3.1. If the statement was false, we may pass to a subsequence such
that, for some i € {1,...,k}, there exists points z,, € Q, n € N such that

(3.4) an = |Vu,pn(z,)] > n? On.-

We consider by, := 72, the rescaled domains
T

Q= {z R : xn-i-b € Q}
and the rescaled functions
wy: R2 5 R wn (T) = Ui pn(Tn + bi)
n
fori=1,...,k, n € N. Then 0 € Qy, ||wp| reow2) < Up and
(3.5) |Vwy, (0)| = n.
Moreover, w,, is a solution of the rescaled problem
Qp fz(wn) Bn .
-—— G < -A <—-—=0G Q
(36) b% 0Wn > Wy, + b% = b% 0Wn 1 dip,
wp >0 in Qp, wp, =0 onR2\Q,.
Since 3, < a, < CB, and b, > n+/f, for all n, (3.6) implies that
(3.7) —Awp, =0(1) inQ, fori=1,...,k.

where o(1) — 0 in the L®-norm. For a subsequence, we may now distinguish the
following two cases.

Case 1: B,(0) C Q, for some r > 0 and all n € N. In this case, standard elliptic
regularity using equation (3.7) in B,(0) implies that |Vw,(0)| is uniformly bounded.
This contradicts (3.5).
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Case 2: r, := dist(0,09,) — 0. Let r > 0 be fixed. Since 9 is smooth, there
are C2-diffeomorphisms 1, : B.(0) — 1, (B,(0)) for n large which straighten the
boundary portions 92, N B,(0). More precisely, the maps 1), can be chosen such that
Pn(0) = (0,74), ¥n(092, N B-(0)) C R x {0} and that 1, converges to the inclusion
B;(0) — R? as n — oo with respect to the C?(B,(0))-norm. It it then easy to see
that there exists s > 0 such that

Bf =={z €R 129> 0, |z| < s} C9,(B-(0) N Q)
and
Hy:={ze€ R? 29 =0, |z1| < s} C ¥ (Br(0) NOQy,)

for n large enough. Now the function z, : B} — R defined by z,(z) = wy (v}, ')
satisfies

Lyz, =o(1) in Bf, zn =0 on Hg,
where L, is a second order differential operator whose coefficients are uniformly
bounded as n — oo (for details, see e.g. [15, Proof of Lemma 6.5]). Since also
|znllLoo(Br(0)) is uniformly bounded, elliptic estimates near flat boundary portions

yield that |Vz,(0,r,)| remains bounded and therefore |Vw,,(0)| remains bounded as
n — oo. Again this contradicts (3.5). The proof is finished O

Proof of Lemma 3.2. Without loss, we may assume that ¢ = 1. By assumption (B1),

3.8 := inf inf i(t1y.- -y tk_1) > 0.
( ) g 7j=2,...,n %Smax{tl,---,tk—l}SUO g]( ! k 1)

Let n > 0 be given and fix

8n 1 1
3.9 1 d in{-, ————-1.
(3.9) 771>ma,x{\/g_*, } an O<p<m1n{2,26XP(U3)}
For every n, we consider the function
1
hy: (0,00) = R, hn(r) = uin ds,

B % OB (zn)
and we put
Sn =B, P log B, tni=B,".
By definition of h,, and Uy,

(3.10) 0 < hy(r)<UE  foreveryn €N, r>0.

For n large we have s, < t,, and we claim the following:

1

3.11 th ist t h that A, S i
(3.11) ere exists &n € (sn,tn) such that 1 (6) < —
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We prove (3.11) by contradiction. If Al (r) > —@ for every r € (sp,t,), then
)

) dr = log(

log sy,

03 2 huia) ~ halon) > [ (-

log(m log Br) — % log By,
-p log /Bn

This contradicts the choice of p, see (3.9). Hence (3.11) holds for large n, and we

conclude that

(3.12) / U1 in g T (€n) <
8B§n (In)

Tlog T logt,

1
= log( ) — log% as n — oc.

log &,

Here and in the following, C1,Cs,... denote positive constants. Combining (3.12)
with (3.3), we obtain the estimate

ov

0
/ \Vul,n|2 dx S / |Vu1,n|2 d.’II S / ul,n 'Ufl,n ds + U()F()?TEZ
Bq, (an) Be, (xn) 0B, (0) ov

Cl 2 02 03
+ UpFymés < — < .
logé, T Vo0 S T S Tog B

Wefix2<p<3andputy=1-— %. Then Morrey’s Lemma (see e.g. [15, Theorem
7.17]) and Lemma 3.1 imply

1/p 1/p
08¢,  (onytirn < C1s] ( / Vg nl? dac) < G52 (VB ( / Vg 2 dx)
Bsn (mn) BSn (In)

L1 oo \/P 1
< Cos1BE ? (10g : ) < G (log )5
mn

:C7(logﬁn)1_% -0 as n — oo.

Hence u1, > 5 in By, (z,) for n large. By (3.3) and the definition of g, we conclude
that, for j = 2,...,k and large n,

, G .
_Auj,n < [FO - ﬁngj (u%)]u],n < [FO - ﬁng*]uj,n < _nTg*'Ufj,n in B, (In)a
while u;, < Up on 0B;, (z,). Hence the subsolution estimate given in [9, Lemma 4.4]
yields that

Sn Bngx _ M VGx*

Ujn(zn) < Cglge *V 2 =Cge 42 86 < Coe0BAn — Cof3,"

Now we have all the tools to complete the proof of Theorem 3.1.
We first consider part (b). Let ¢ € {1,...,k} be fixed. Since u; is continuous, the
set N; is open. Let K C N; be a compact set and fix n > %, where 7 is given by
assumption (B2). Then Lemma 3.2 implies that

(3.13) ujn = 0(8,") uniformly on K for j # i.
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and therefore g;(u?) = O(8,"") uniformly on K by assumption (B2). Hence

(3.14) Br gi(ul)uipn < Bugi(ul)Lo = O(BL™) — 0 uniformly on K.

Since a, < Cg,, we also have

(3.15) an Gi(ul) i — 0 uniformly on K.

Since (3.13) holds for arbitrary compact subsets K C N;, we infer that u; = 0
on N; for j # i, i.e., N;N N; = @. Moreover, passing to the limit in (3.1) and
using (3.14), (3.15), we conclude that u;|y, € C%(N;) is a distributional solution of
—Au; = fi(u;)u; in N;. If f; is Holder continuous, standard elliptic regularity yields
that u;|y, € C?(IV;) solves the latter equation in classical sense.

In the remainder of this section we complete the proof of Theorem 1.1(a). We suppose
by contradiction that the sequence (u1,n, ..., U n)n is not uniformly equicontinuous.

Then there exists § > 0, 7 € {1,...,k} and a subsequence — denoted as before — such
that

inf{|:1: —y|l 2,y € Q|uin(r) —uin(y)| > 2(5} =0 as nm — oc.

Since all functions u;, are nonnegative, there exists, for every n, points z,,y, €
such that

(3.16) Tn = |Tn —yn| = 0 as n — 00
and
(3.17) dy, = Ui p(yn) > 0, Uin(Tn) > dp+ 6 for all n € N.

By adjusting the choice of z,,,y, € Q and i € {1,...,k} and passing to a subsequence
we may further assume that
218 5 for j =1,...,k and every z,y € Q with

: : —u; <
( ) ‘U’J:'ﬂ(x) U’J,n(y)| = {uj,n(x)auj,n(y) > § and |.’E _ yl <7
Without loss of generality, we may assume that i = 1. We denote e; = (1,0) € R?
and choose A, € O(2), n € N such that Ane; = 7, (yn — zn). We consider the
rescaled domains

Qp={z R : z,+r, Az €}

and the rescaled functions

Vip R? - R, Vin(Z) = Uip(Ty + rnAnz)
fori=1,...,k, n € N (recall that we have extended the functions u;,, trivially to all
of R?). Then
(3.19) vipn(er) = dp > 9, and v1,0(0) > vipn(er) +6 for all n.
Moreover, v, = (Vi,5,---, V) is a solution of the rescaled problem
—CMpg; (v5)vipn < — Avjip — L Vi < —Mpg;i (v5)vim in Qp,
(3.20) Vi .ensVkn >0 in Q,

. 2
’ULn:---Z'Uk’nZO in R \Qn,
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where
M, = 7",2“6’”, 'u; = (Vin, s Vil Vikln s - > Ukyp)
and
lig = T,QLfi('ui,n) -0 in L% (R?) as n — oo.

In particular, by Kato’s inequality, v, € H'(R*)NL®(R?) is a distributional solution
of the differential inequality

(321) _A'Ul,n S ll,nvl,n — Mngl(luylz,)vl,n S ll,nvl,n in ]R2.

By a standard argument analyzing the asymptotic behaviour of dist(z,,?), we find
that €, — Qy in the sense that 2, N K — Q, N K in Hausdorff distance for
every compact set K C R?, where either Qy = R? or Qo = #, a halfspace. In
both cases, (3.18) implies that dist(0,0€,) > 1 and therefore dist(0,00) > 1.
For a subsequence, we may assume that vy, — v € L®(R?) in the weak*-topology.
Passing to the distribution limit in (3.21), we see that v satisfies (S2) and therefore
is a subharmonic function on R?. By Theorem 2.1, there is ¢ € R such that v = ¢
almost everywhere in R%. Passing again to a subsequence, we may distinguish two
cases.

Case 1: M,, remains bounded.
Then the right hand side of (3.20) remains uniformly bounded in L*°(€2,,), so elliptic
regularity implies that

(3.22) v1,, — ¢ uniformly on compact subsets of Q.

If Q% = R?, we obtain a contradiction, since in this case (3.22) yields 0 =
limy, [v1 5, (0) — w1 n(e1)] > 6.

If Qoo = H, then v = 0 on R? \ H and therefore ¢ = 0. Consequently, lim, v1 ,(0) =0
by (3.22) since 0 is in the interior of H. This contradicts (3.19).

In the remainder of this section, we will consider

Case 2: M,, = cc as n — 00.

From Lemma 3.2 we directly deduce the following.

Lemma 3.3. If vi,(zn)n > € for a sequence (z,) C R? and some € > 0, then
Vjn(zn) = O0(B,") for j=2,...,k and every n > 0.

Next we pass to subsequence such that one of the following two cases occurs.

Case 2.1: min vy, <d, for 2 < R < 3.
0Br(0)
Case 2.2: There exist a sequence of radii R,, € [2, 3] such that v; , > d,, on 0Bg, (0).

First we consider Case 2.1. As noted in (3.21),

(3.23) —Avy g <lypv1, in RZ and Iy ,v1, — 0 in L°(R?).
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Using (3.19) and a standard inequality for subsolutions of Poisson’s equation (see
e.g. [15, page 71]), we obtain
1
(3.24) dp 40 <v1(0) < 5= Vi, dz + o(1).
" " 1B1(0)] /B, 0) "

Recall that v1,, — ¢ € L°(R?) in the weak*-topology, where c is a constant. More-
over, from (3.2) and our rescaling we infer that vy, is bounded in H'(Bj5(0)), hence

v1, — ¢ weakly in H'(B3(0)) and v1n — ¢ in L},.(B3(0)).
Passing to a subsequence, we may assume that also d := li_>m d,, exists. Then (3.24)
n—oo

yields

1
(3.25) c= lim
n—oo [B1(0)| Jp, (0

Vi pdr >0 +d.

Now let wy, := v}, € C(R®) N L*(R?*) N H},(R?*) denote the cap-symmetrization of
v1,, with respect to the unit vector e;, see Section 2. By Lemma 2.1,

(3.26) wp, = ¢ weakly in H'(B3(0)).

Consider the line segment I' := {—se; : 2 < s <3} C R3. By definition of Case 2.1
and (2.3),

(3.27) wy, < dy on T for every n,

so that

(3.28) lim sup/ wpds <d<c—9§
r

by (3.25). Let T : H'(B3(0)) — L(T") denote the usual trace map on T satisfying
Tu = u|p for every u € H'(B3(0)) N C(B3(0)), see e.g. [1]. It is well known that 7' is
a compact operator, so it follows from (3.26) that Tw, — T'c = c strongly in L{(T").
This contradicts (3.28).

Finally, we consider Case 2.2. We put B,, := Bg,(0), and S, := 0B, for n € N, so
that ming, v1, > d, > 0 for all n. We fix n > %, where 7 is given by assumption
(B2), then Lemma 3.3 implies
(3.29) max maxuv;, = O(6,") as n — oo.

ji=2,..,k Sn
Moreover, —Awv;, — 1 ,vj, <0 in B, C €y, so by the standard subsolution estimate
(see [15, Theorem 3.7)),

MAX Vjn < MAX Vjip, + Cio max Limvjn-

Here the constant C1g > 0 does not depend on R, since 2 < R, < 3. Recalling that
ljn — 0 in L®(R?), we conclude that

I%&X Vjn < Cr15upvj, for large n.
n

n
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Hence (3.29) implies that

(3.30) ji%axk WAX Vjp = oB," as n — 0o

and therefore max gy (vl) = O(B,"™") by assumption (B2). Consequently,

M,, max g, (vp)vim < Bn (I%axm (Ué))Lo =0(B,™) =0,
and thus by (3.20) we have
(3.31) —Aviy =k, in B, CQy, where ||ky||pe(B,) — 0.

In the following, let G,, denote the Green function for the Dirichlet Laplacian on B,
given by

zlyl  Rny
1 Injz —y —ln‘—— y#0
G(z,y) = oy | ‘ Ry, ly| I
In|z| —InR,, y=0.
Moreover, let K, denote the corresponding Poisson kernel, i.e,
0 R?2 — |z|?

K = __ @G = = fi B .
n(Z,y) o, (z,9) R,z — g2 or x € By, y € Sp

Recalling (3.19) and (3.31) we find

dp, = Ul,n(el) = Gn(elay)kn (y) dy + Kn(elay)vl,n (y) dy
By, Sn

—o(1) + [ Kaler,p)vin(y) dsy,
Sn
so that
(3.32) /Kn(el,y)[vl,n(y) —dp]dsy = /Kn(el,y)vl,n(y) dsy —d, -0 asn— oo.
Sn Sn

Since 2 < R,, < 3 for all n, we have

R -1 R -1 3 1 3
2nR,le;1 —y|2 ~ 2rR,(R,+1)2 — 16 27R,, 16

Since also vy, > d,, on S, by assumption, we have by (3.19), (3.31) and (3.32)

Kn(e1,y) K,(0,y) for y € S,.

§ <v1,(0) —dy = /B Gn(0,9)kn(y) dy +/S K (0,y)[v1,n(y) — dn] dsy

<o)+ [ Kulern)ona(s) - di]ds, = of0),

a contradiction for n large.

We conclude that neither Case 2.1 nor Case 2.2 can occur, so the proof is finished.
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