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SUPER-CRITICAL EXPONENT
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ABSTRACT. We consider the nonlinear eigenvalue problem
—Au=v?+ du in B,
©u>0inB, u=0 ondB

where B denotes the unit ball in RY, N > 3, A > 0 and p > (N +2)/(N — 2).
According to classical bifurcation theory, the point (u1,0) is a bifurcation point
from which emanates an unbounded branch ¢ of solutions (A, u) of (0.1), where
is the principal eigenvalue of —A in B with Dirichlet boundary data. It is known
that there is a unique value A\ = A, € (0, 1) such that (0.1) has a radial singular
solution u.(|z|). Let p. > % be the Joseph-Lundgren exponent. We show that
the structure of the branch ¢ changes for p > p. and (N +2)/(N —2) < p < p..
For (N +2)/(N —2) < p < p., € turns infinitely many times around A, which
implies that the all the singular solutions have infinite Morse index. For p > p., we
show that all solutions (regular or singular) have finite Morse index. For N > 12
and p > p. large, we show that all solutions (regular or singular) have exactly
Morse index one. As a consequence, we prove that any regular solution intersects
with the singular solution exactly once and regular solution exists (and is unique)
only when A € (A, p1).

(0.1)

1. INTRODUCTION

Let B be the unit ball in RY (N > 3). In this paper, we consider the following
nonlinear eigenvalue problem

(1.1) —Au =uP 4+ \u in B,
' u>0inB, u=0 on 0B
where

P> pN = %, AeR
By [8], any solution of Problem (1.1) is radially symmetric. It is easy to see
that there exist no solutions for (1.1) if A > p; or A < 0, where i, is the principal
eigenvalue of —A in B with Dirichlet data. According to classical bifurcation theory

[15], the point (u1,0) is a bifurcation point from which emanates an unbounded
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branch % of solutions (A, u). In this paper we are interested in the structure of the
branch %.

For 1 < p < {2, there exists at most one solution of (1.1) when A < gy ([17]).
When p = %, Brezis and Nirenberg established that (1.1) is solvable for A < \ <

p1 where A = 0 when N > 4 and \ = i“l when N = 3. The situation drastically
changes as soon as p > % Del Pino-Dolbeault-Musso [5] constructed bubble-tower
solutions of (1.1) for a slightly supercritical exponent in dimension N > 4. Budd
and Norbury [2] used formal asymptotics and numerical computations to derive
some qualitative properties of the solution branch when N = 3, p > 5: they found
that before reaching A = 0, the solution curve turns right and oscillates infinitely
many times in the form of an exponentially damped sinusoidal along a line A = A,.
Merle and Peletier [11] proved that there is a unique value A = A, > 0 such that a

singular solution u, exists for (1.1). Moreover,

(1.2) uy(r) = A(p, N)r=2/®=D41 — B(p, N)r? + o(r*)} as r — 0,
where
2 2 1/(p—1) 3 -1

Merle-Peletier-Serrin [12] studied the asymptotic behavior of the positive solutions
(Ap,up) € € as p — oo. Recently, using geometric theory of dynamical system,
Dolbeault and Flores [6] rigorously proved the numerical computations in [2] in the
case of p < p.—the Joseph-Lungren exponent (see (1.5)).

An analogous problem

(1.4)

—Au = A1+ u)? in B,
u>0inB, u=0 ondB

has been completely understood. It is known [10] that there exists a unique A\, > 0
such that the solution to (1.4) exists only when A < A,. Let

(1.5)

N—-2)2_4N+8y/N—-1 .
( (1372)(1\7710) if N> 11,

{oo if2< N <10
Pec =

be the so-called Joseph-Lundgren exponent introduced in [10]. When p < p., there
exists another number A\* < A, such that for A € (A*, \,] the solution u, exists and
is smooth up to A = \,, singular solution exists at A = A*, and solutions branch
turns infinitely many times at A = A*. For p > p., there are no secondary branch

and the singular solution exists precisely at A = A, and it is stable.
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The exponent p. has long been known to play an important role in semilinear heat
equations with power-like nonlinearities. See Gui-Ni-Wang [9], Polacik-Yanagida
[13], Fila-Winkler-Yanagida [7] and Wang [16] and the references therein.

The study of (1.1) turns out to be more difficult and delicate than (1.4). The
main difficulty is that any solution (regular or singular) to (1.1) is unstable. An
important question is then to estimate the Morse index of the solutions (regular
or singular). In this paper we shall see that p. also plays an important role in
the structure of the branch ¥, i.e., ¥ turns infinitely many times around A = A,
provided (N + 2)/(N —2) < p < p., but this does not occur when p > p.. The
first conclusion was obtained recently in [6] by using tools of the geometric theory
of dynamical systems. Nothing is known for the case p > p.. The results obtained
in this paper for the case p > p. are new. In some cases, we obtain optimal results.
We will use different methods to deal with this problem. We show that the Morse
index of w, is oo provided (N +2)/(N — 2) < p < p,, but it is finite when p > p,.
To show the first conclusion, we use some arguments similar to those in [4]. We also
present some sufficient conditions to guarantee that the Morse index of u, is 1 when
p > p.. Note that this holds only for N > 11 and this is optimal.

The main results of this paper are summarized in the following three theorems:

Theorem 1.1. Assume N > 3, (N +2)/(N —2) < p < p.. There is a unique
number A\, > 0 such that, given any integer k > 1, there exist at least k bounded
radial solutions of (1.1) for any X\ sufficiently close to A\.. In particular, there are
infinitely many classical solutions of (1.1) for A = A,.

Theorem 1.2. For N > 11 and p > p., the Morse index of any solution (singular
or reqular) uy of (1.1) is finite. The graph of any regular solution intersects with
that of the singular solution at most finitely many times.

Theorem 1.3. For N > 12 and p > p(N), where p>(N) > p. can be computed
explicitly, the Morse index of any solution (singular or reqular) uy of (1.1) is exactly
1. The regular solution intersects with the singular solution only once and the reqular
solution exists and is unique when X\ € (A, p1).

Theorem 1.1 has been proved by Dolbeault and Flores [6], using geometric dy-
namical system method. Here we shall give a PDE proof. Theorems 1.2 and 1.3
are new. Theorem 1.3 gives a complete description of the solution branch. The
existence of another supercritical exponent p? > p, is interesting.

A simple estimate on the number p?(N) can be given as follows. Let J,(r) be the

Bessel function satisfying
1 2
(1.6) T+ =T+ (1 =27, =0, re(0,00).
T r
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Let j1, and js, be the first two zeroes of J,(r). Then Theorem 1.3 holds under the

following condition

(1.7) Jia=2 < o

where

1 4 2
1. = J(N—2—- = 2 _g§gN-2-—")> > p,.
(1.8) v 2\/( p—l) 8(N —2 p_l)_(]whenp_pc

Notice that p; = j2 v_,. We also note that as p — 400, condition (1.7) becomes
1 JI,T
(1.9) jl’N;2 < j2 (N=2)(N=10)
’ 2

which can be shown to hold when N > 12. This is also the reason behind the
condition N > 12 in Theorem 1.3.

Finally, let us also observe the following fact

2—p(N—2—1[%)>M for X2 < p < p,

p—1 4 N-2
N—2)2
%(N—?—I%)g% for p > p..

This also implies

2
(N—Q—i) —8<N—2—i><0 for%<p<pC

p—1 p—1
2
4
(1.10) (N—Q—E) —8<N—2—%)>0 for p > pe
2
4 2 _ —

The organization of the paper is as follows: in Section 2, we prove Theorem 1.1.
In Section 3, we show that the Morse index of any solution is finite and then we
prove Theorem 1.2. In Section 4, we prove that under some conditions the Morse
index of any solution is one and thus prove Theorem 1.3. We leave the proof of one
key theorem to Section 5. In Section 6, we present some estimates on the exponent

2
De-
2. THE CASE FOR (N +2)/(N —2) < p < p.: PROOF OF THEOREM 1.1

In this section we present a PDE proof of Theorem 1.1. Throughout this section,
we assume that % < p < p.. We only need to consider the equation
{ —u" — Y= = wP 4 Au in (0,1)

u>0 in (0,1), u(l)=0
Let w = A"/ y. Then w satisfies

29 —uf = 22! = Nu? ] i (0,1)
' w >0 in (0,1), w(l) =0.
4
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We also know that there is a unique A = A, such that (2.2) has a singular solution

w, ([11]). Introducing the rescaling:
t= A2 W) = w(r)
we see that W satisfies
W = N = WP+ W oin (0, A7)
(2.3) . 1/2 1/2y _
W >0 in (0,\/7), W) =0.
Moreover, we can choose subsequences {( A, upn)} = (An,un,)} C € with A, — A,

maxpg u, — 00 as n — oo. Then by the changes

t= )\711/27‘, Wi (t) = AV, (r)

n

we see that W, satisfies the problem

— Wy = NS = WP+ W, in (0,A7)
(2.4) . 1/2 /2y
W, >0 in (0,\%), Wa(\/?) =0.

It is known from Theorem 1.2 of [11] that W, — W in C2 (0, AY/*) as n — .

loc

We have the following proposition.

Proposition 2.1. For any sequence {(A,,W,)} = {(An, Wi,,)} with A, — A,
maxpg W,, — 00 and any M >> 1, there is N* = N*(M) > 1 such that for n > N*,

the graph of W, intersects with that of W at least M times in (0, min{/\}zﬂ, /\1/2}).

Proposition 2.1 implies that the Morse index of W is oo and hence the Morse index
of u, is co. Indeed, we see that W —W,, has at least M zeroes in (0, min{)\}lﬂ, )\i/2})
and thus there are at least [%] — 1 intervals I; (i = 1,2,...,[%] — 1) on which
W — W, > 0. We also see that h?, := W — W, satisfies

{ — ARt < pWP=hi 4 hi in T,

(2:5) ht >0 in I;, hi =0 on 9I;

Multiplying h! on both the sides of the equation in (2.5) and integrating it on the

annular domain Q; := {y : |y| € I;}, we then obtain
L IRP — w1y <o.
Since each hi € H(B,), where B, := {y: |y| < A//*},
/ hhidy =0, i# j,
the arbitrariness of M implies t};at the Morse index of W is oo.

Proof of Proposition 2.1



The existence of {(\,, W)} is known from the existence of the sequence {(\,, u,)}-
On the contrary, this is a sequence {(\,, W,,) } satisfying the conditions in this propo-
sition, so we have that there is ¢y € (0, min{)wl/?, )\i/2}) independent of n such that
W > W, in (0,%;) (note that W (0) = oo). Since W, (t) = A Dy it follows
from Theorem 1.2 of [11] that

W, — W in C° (0, AY?) as n — oo.

loc

Let z,(p) = W, (t)/W (t), p = Int. Then z, satisfies
2tW (2
(2.6) 20(p) + [N -2+ %() 2 (p) + WP P — 2,1 =0, p < Int.
Since w,(r) = A:l/(p_l)u*(T) and W(t) = w,(r) with ¢t = A%, we see from (1.2)
that

(2.7) W (t) = A(p, N)t=2/®=1V(1 — B(p, N)A7't2 4 o(t?)) as t — 0.
Thus,
2 4
(2.8) gfv(tt(;) < p— for ¢ sufficiently small,
(2.9) 20Wilt) 4 i 0
' W (t) p—1
and

2 2
2117p—1 < : .
(2.10) WP (t) — <N —-2- —1) for ¢ sufficiently small;

2 2
(2.11) 2w ) - —— (N P —1) as t — 0.

Since z,(p) < 1 for p € (—o0,Inty) and W(t) — oo as t — 0, we conclude that there
exists —oo < 1" < Inty such that

(2.12) 2, (p) + 91(p)2n(p) > 0 for p € (—00,T)
where g1(p) = N —2+ 23,11(;(;). Thus,

T

(2.13) exp(/:><> gl(s)ds)z;(p) > exp(/_oo gl(s)ds) zi (1) ift > 71> —o0.

We know that g,(p) > N — 2 — zﬁ as p — —oo and z,(p) = 0 as p — —oo. Then
it follows from (2.13) that

(2.14) zn(p) >0 for —oo < p< T.

Thus, z,,(p) # 0 since W,, £ W.



Let wn(p) =1 — z,(p). Then by (2.6), we have

(2.15) WI(p) + 91 (p)y + G5 (P)wn = 0, wo >0 on (=00, T)
where »

n — f2ypyp-1 Zn_zn]

g5 (p) = W 0T

Since 2z, — 1 in C?

D .(—=00,T) as n — 0o, we obtain that

2P — zn
1—2,
This, the fact that

——(p—1) in C

oe(—00,T) as n — oo.

2 2
e (4 —(N—Q——) t—0
t*W ()—)p_1 P ast —

and

4 \2 2
(N—Q——) —8(N—2——)<0for(N+2)/(N—2)<p<pc
p—1 p—1

imply that there exists T* € (—oo,T) such that for any interval [T, T1] C (—o0, T*)

and n sufficiently large
(2.16) [g1]°> — 4% < 0 in [Ty, Ty].

Thus there exist b; and c¢; such that b2 — 4¢; < 0, g1(p) < by and ¢%(p) > ¢ if
p € [Ty, T1]. Observe that any solution of

(2.17) Z"(p) + 1 Z'(p) + c1Z(p) =0

is oscillatory; in particular, there exist T < as < by < T such that Z(ay) = Z(a3) =
0, Z > 0 in (a9, bs) (and hence Z'(ag) > 0 > Z'(by)). Multiplying (2.15) by Z and
(2.17) by wy,, we have

(2.18) Wi Z + g1(p)wi,Z + 95 (p)wnZ = 0 on [ag, bo]
(2.19) Z"wp + b1 7wy + 1 Zwy, =0 on [ag, by].

Subtracting (2.19) from (2.18) yields
(Zwl — Z'wp) + (g1(p)whZ — b1 Z'wy) + (95 — c1)wnZ = 0 on [ag, by).
Thus, by the fact that g1(p) < b1, ¢5(p) > ¢ and w), < 0, we have
(Zw! — Z'wy) + bi(w, Z — Z'w,) <0 on (ag, by)

and hence
%2 7" (by)wy (by) > €79 Z' (ag)wp(az)-

This is impossible (note that Z'(as) > 0 > Z’'(by)), and completes the proof. O
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To prove Theorem 1.1, we only need to obtain similar results for the problem
(2.2). According to classical theory [15], the point (41,0) is a bifurcation point from
which emanates an unbounded branch .o/ of solutions (A, w) of (2.2).

We prove the following theorem.

Theorem 2.2. Let N > 3 and % < p < pe. Then the radial solution branch <f
of (2.2) possesses infinitely many turning points around \ = \,.

It is clear that Theorem 2.2 implies that the conclusions of Theorem 1.1 hold.
To prove Theorem 2.2, we first prove the following lemma, which implies that the

radial solution branch & of (2.2) has no secondary bifurcation point.

Lemma 2.3. For any £ € (0,00), there is at most one A= k) € (0,11) with
(A, wy) € & and w;(0) = k.

Proof. Suppose that there are A\;, Ao € (0,p1) with Ay # Xy and (A, wy,),
(A2,wy,) € & such that wy,(0) = wy,(0) = k. If we set w; = w,, for j = 1,2,

then
N -1

(2.20) —wj — Tw; = \jlwh +w;], w;i(0) =k, w;(0) =0, w;(1)=0.

Let t = )\;/zr and z;(t) = w;(r). Then z; satisfies

N-—-1
\L/2

(2.21) —2 — 2y =25 + 25, 2(0) =k, 2;(0) =0, 2z()\;/")=0.

Since z; and 2, satisfy the same initial values 2;(0) = &, 2;(0) = 0, the standard

ODE theory implies A\; = Ag, which is a contradiction. This completes the proof. [
Lemma 2.3 implies that the radial solution branch & of (2.2) does not possess

secondary bifurcation point.

Proof of Theorem 2.2

The proof of Theorem 2.2 can be obtained from Proposition 2.1 and arguments
similar to those in [4].

Arguments similar to those in the proof of Proposition 2.1 imply that for any
M >> 1, we can find N* = N*(M) such that for n > N*, the Morse index of W,
is at least [%] — 1. (Note that instead of choosing hi = W — W, we can choose
hi = W, —W.) We can argue as in Subsection 2.1 of [3], in the space C([0,1]) x R,
to find an analytic solution curve of (2.2): A = \(s), w = w(s) for s > 0, such that

[@]loc — 00 as s — 00
(w(s), A(s)) € & for s >0

(0), A(0)) = (0, 1) and

);
A(s)A'(w(s)) is invertible except at isolated points
8
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where A'(w(s)) := G (pwP '(s)+1)I] and G(h) = "N (rN—1h!(r)) with A'(0) = 0
h(1) = 0. We see from Lemma 2.3 that the curve has no self-intersection. Let
us denote this curve by T and p, 5.,(w(s)) be the ith eigenvalue, counting the
multiplicity, of

(2.22) —G = \(8)[paP~ (s) + 1)1

on (0, 1) with the Dirichlet boundary condition. By our comments above, p, 5 (@(s))
are continuous and piecewise analytic, and have only isolated zeroes. We will
show that s, 5., (@(s)) < 0 for s large. This means that for any ¢ > 0, equa-
tion (2.22) has at least ( negative eigenvalues for s large. Hence we conclude
that there is a sequence {s;} with s; — oo as i — oo such that the number of
negative eigenvalues of (2.22) (counting multiplicity) changes at s;. (Recall that
1 50y (@(0)) = pi(=G) — p1 — 400 as ¢ — oo). Each (w(si), A(s;)) must be a
bifurcation point. We also know that each (w(s;), A(s;)) is either a turning point or
a point of secondary bifurcation. Our Lemma 2.3 implies that it is not a secondary
bifurcation point. Thus, it must be a turning point.

To prove our claim on 1 5(s) for large s, we need to consider positive solutions
(wj, A;) of (2.2) such that \; — A, as i — 0o and ||wi||ec — 00 as i — oo. Thus,
there is a s; with s; — oo such that 5\(s,~) = \; and w(s;) = w;. By the changes:

z(p) = wi(r), p=N""r,

we see that z; satisfies

(2.23) —2 — N-1

2 =2"+2z in (0,A7%), z(A?) =o0.

It is known from Proposition 2.1 that for any M >> 1, the Morse index of z; in
H)(By), where B; = {y : |y| < )\3/2}, is bigger than M provided i is sufficiently
large. Hence, returning to the original scaling we obtain that there is at least an
(M — 1)-dimensional subspace E; of H}(B) such that

/B (VA2 = A(s) =" (5) + V7] < 0

for h is in the unit sphere of F; and s large. By the variational characterization of
eigenvalues, this implies that s, 5., (@(s)) <0 for 1 <4 < M —1if s is large. Since

M is arbitrary, this proves our claim and completes the proof of Theorem 2.2. [
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3. THE CASE FOR p > p.: PROOF OF THEOREM 1.2

In this section we will study the structure of radial solution branch % for p > p..
We first show that for any (A, uy) € €, the Morse index of u) is bounded. Then we
prove Theorem 1.2.

We state our first result.

Theorem 3.1. There exists an integer C > 1 independent of \ such that
(3.1) 1 <m(uy) <C.

To prove Theorem 3.1, we need the following key estimate
Lemma 3.2. Let uy be a regular or singular solution of (1.1). Then it holds
(3.2) u(r) < A(p, N)r™#1 forr € [0,1],
where A(p, N) is given in (1.3).

Proof: We first prove that (3.2) holds for a regular solution u,. To prove (3.2), we

introduce the Emden-Fowler transformation for u,:

ux(t) = TI%U)\(T), t = Inr.

Then v, satisfies the following problem (without loss of generality, we omit the
subscript A on v,)
(33)  v'+av +vP—pBv+Ae*v=0, t€(-00,0), v(0)=0, v(—00)=0
where
4
=N-2— —— = A(p, N)P~1.
a 1 (p, N)
Now we show that
(3.4) o(t) < B0V (= A(p, N)) for ¢ € (—o,0)

which implies (3.2).
Suppose the contrary: since v(—oo) = 0, we see that there is a —oco < £ < 0 such
that v(f) = A(p, N) but v(t) < A(p, N) for t € (—o0,1).
Let v(t) = A(p, N) + ¢. Then o(t) < 0 for t € (—o0, ] and
(3.5) v?(t) > A(p, N)? + pA(p, N)P "¢ for t € (—o0,1).
Hence
0 = ¢"+ay + (A, N) + ¢ = B(AP, N) + ¢) + Ae* (A(p, N) + ¢)

> "+ ap' +(p—1)pe.
10



Letting o(t) = e™'3(t), where

:__+ \/az _1ﬂ7

we have that ¢ satisfies

{ ¢"+(a+2m)@ <0, t€ (—o0,1)
¢(t) =0, ¢(—o00) =0
where we have used the fact that (see (1.10))

(3.6)

o’ —4(p—1)8>0 for p > p.

and

_——+ JM (p—1)8<0.

This contradicts the maximum principle since ¢ < 0in (—oo,?). This contradiction
implies that (3.2) holds.
To show that the estimate (3.2) holds for u,, we observe that under the changes:

v, (t) = P Yy, (r), t=Inr
v, satisfies
(3.7) v!4av.—Bu,+vP+ v, =0 t € (—00,0), v.(—00) = A(p, N), v.(0)=0.
But (1.2) implies that
(3.8) v,(t) = A(p,N) — A(p, N)B(p, N)e** + o(e*) for ¢ near —oo.

Therefore, if we set v, = A(p, N)+p, we then have that p(t) = —A(p, N)B(p, N)e*+

o(e?) < 0 for t near —oco and
e op(t) = 0 as t — —oo.

The fact that
v.(t) < A(p,N) for t € (—o0,0)

can be obtained by arguments similar to those in the proof of (3.4).

This proves Lemma 3.2.

Next we prove that the Morse index of u, is finite.
Proof of Theorem 3.1. By (3.2), (1.10) and Hardy’s inequality, we have that

)
(3.9) [1vor - pig 16> / [k i B



for any ¢ € Hj(B). On the other hand, m(uy) > 1, since uy € H;(B), and

/HVU)\|2 — (pu’)’\_1 + Aui] = (1 —p)/ uf’\ﬂ < 0.
B B

To show that the Morse index of u, is finite, we use a contradiction argument. By

contradiction, there would be a sequence {(\,, u,)} = {(An, ua, )} C € such that
m(u,) — 00 as n — oc.

We can choose a subsequence (still denoted by {(An,un)}) such that A, — X as
n — 00. Thus, for n sufficiently large, the number of negative eigenvalues (counting

their multiplicity) of the problem
(3.10) —Ap = [pul™' + \,]Jg +0¢p in B, ¢ =0 on OB
is large. Therefore, the first eigenvalue o} of the problem (3.10) satisfies
"+ X <0.
This is a contradiction since
0< [ 1961 = pu (@) = (o7 + ) [ (61 <0

where ¢, € H}(B) is the first eigenfunction of (3.10) corresponding to of.

This proves Theorem 3.1.

O
Proof of Theorems 1.2

The first conclusion follows from Theorem 3.1. We only need to show that the
graph of any regular solution u, of (1.1) intersects with that of u, at most finitely
many times.

On the contrary, there would be (A, uy) such that the graph of u, intersects with
that of u, infinitely many times. There are two cases here: A > A, and A < A,. For
A > )\, we can show that m(u,) = co. This contradicts Theorem 3.1. Indeed, since
the graph of u, intersects with that of u, infinitely many times, there are infinitely
many intervals J; C (0,1) (: =1,2,...) such that u, > uy in J;. Let

hi:{ Uy — Uy, ?n J;
0, in (0,1)\J;.
Thus we have that
/ ([Vhil? — (pur=! + A)h2dz < 0
B;

provided A > \,, where B; = {z, |z| € J;}. Note that

—Ah; < puf_lhi + A\h; in J;.
12



This implies that m(u,) = oo.

For A < )., we can show that m(uy) = oco. This contradicts Theorem 3.1 again.
Indeed, similarly, there are infinitely many intervals J, C (0,1) (k = 1,2,...) such
that uy > u, in J;. Let

heo— oo in Jg
70, in (0,1)\Jg.

We see that
/ ([Vhl? = (pu2 " + \)h2)dz < 0
By,
provided A < \,, where By = {z, |z| € Jx}. Note that
—Ahy, < pubthy + Ahy in .

This implies that m(uy) = occ.
The proof above also implies that the graphs of any two different regular solutions

can only intersect finitely many times. This completes the proof. 0

4. MORSE INDEX ONE SOLUTIONS AND PROOF OF THEOREM 1.3

In this section, we show that under some conditions, the Morse index of any
solution is exactly one and thus we prove Theorem 1.3.
To this end, it is vital to study the following linearized operator at the singular

solution
(4.1) —Ah = (pu?~" + X, )h in B.
First, we note that under the Emden-Fowler transformation:
Y(t) =P Vp(r), t=Inr,
(t) satisfies the equation
(4.2) V" + o) — B+ prP T+ Aep = 0 t € (—00,0).
Since v,(t) = A(p, N) as t - —oo and the characteristic equation of
V't a +(p-1)BY =0
is
E+at+(p-1)8=0,
(4.2) has two fundamental solutions ¢ (t) and s (t) with

(4.3) Y1(t) ~ €8t ahy(t) ~ €' ast — —oo
13



where

(40 6=+ 2 A DB, &= 5\ 4p - DP
Note that

(4.5) £ <0, & <0, [&>&]>2

provided that p > p..

Our main result on (4.1) is the following.

Theorem 4.1. There exists P := p*(N) > 0 such that if p > max{p,, P,2}, then
¥1(0) < 0. As a consequence, Problem (4.1) has a weak radial solution h € H'(B)
with h(1) # 0.

We discuss several applications of Theorem 4.1. The proof of it is postponed to
the next section.

As a first corollary of Theorem 4.1, we have

Corollary 4.2. Problem (4.1) does not have any weak radial solution in H}(B).

Proof. Suppose on the contrary, that there is a weak radial function k € Hy(B)
satisfying

—Ak = (puP ' + \)k.
By the regularity of —A, k € C'((0,1]). Multiplying /& on both the sides of (4.1) and
integrating it on B, we obtain that h(1)%'(1) = 0. The maximum principle implies
that £'(1) < 0. Then A(1) = 0, a contradiction. O

Next we obtain the following theorem.

Theorem 4.3. Assume that the conditions in Theorem 4.1 hold. Then the Morse
mdex of u, 1s 1.

Proof. To see this, we show that for any sequence {(\,,u,)} C ¥ satisfying
An — Ay, Maxpg U, — 00,
(4.6) m(u,) = 1.
Considering the eigenvalue problem
(4.7) ~Ak = (pu2 ' + M)k +kk in B, k=0 on 0B,

suppose m(u,) > 2, then the second eigenfunction k, € H}(B) N C?%(0,1) corre-
sponding to the second eigenvalue k, < 0 of (4.7) satisfies that k, changes sign in
(0,1) and we can assume that k,(0) = maxp ky, ||kn||z2(s) = 1. We also have that

A+ kn>0 and |k, <C
14



since [[|VEky|* — pub~'k2] > 0 and m(u,) < C (see Theorem 3.1). The fact u, —
u, in C°(B\{0}) as n — oo and the regularity of —A imply that x, — & < 0,
k, — k in C?(B\{0}) as n — oo (we can choose subsequences if necessary) and
k € H}(B) N C?(B\{0}), which changes sign in (0, 1), satisfies

(4.8) —Ak = (puP'+ \)k+&k in B, k=0 on dB.

(Note that [, |VEk,|* < pB+ \,.) We easily derive that £ < 0, as otherwise, & = 0,
which contradicts to Corollary 4.2.

The Emden-Fowler transformation as above implies that k(t) = r%® Dk(r) sat-

isfies the problem
(4.9) K"+ ok + pu? 'k — Bk 4+ (A +R)e?k =0 t € (—00,0), k(0)=0.

Moreover, & changes sign in (—oo,0). By modifying the proof of Theorem 4.1 (note
that Zy(t) > 0 for ¢ < t, in (5.8)), we obtain that the fundamental solution k,
satisfying lAc*(t) ~ e at t = —oo has the property k, (0) < 0. Thus, Corollary 4.2

implies that k can not exist. This completes the proof. 0

Corollary 4.4. Under the conditions of Theorem 4.3, (1.1) has no reqular solution
for A < A,

Proof. We first consider the case A < A,. Arguing by contradiction, we see that
there are two possibilities: (i) u, > u, in [0, 1), (ii) the graph of u, intersects with
that of u, more than two times in (0, 1).

Indeed, if the graph of u) intersects with that of u, just once in (0,1), we can
easily see that A > \,. Making the changes:

t= A2 w,(t) = A\ YO Dy, (r)
and

t= A2 wy(t) = XV Dy (r)
we see that w,(t) and w,(t) satisfy the problems

—Aw, = w? +w,, w,(\/?) =0

—Awy = uwh +wy, wa(A\?) =0
respectively. Since there is rg € (0, 1) such that u.(r¢) = ux(ro), then uy(r) > u.(r)
for 7 € (rg,1). This implies wy(t) > w,(t) for t € (A\/2ry, \}/2). It is clear that
A2 > A2rg > A2y, Since w,(AY?) = 0 and wy(AY/2) = 0, we conclude that
A2 < \1/2. This contradicts the fact A < ..

Now we show that (i) and (ii) are also impossible.
15



For Case (i), we have that
—Au, =uP + M\u, in B, u,=0 on 0B

and
—Auy =u} + Auy in B, u)y=0 ondB.

Multiplying u) on both the sides of the equation of u, and integrating it on B, we

obtain

/(uf:l —uf Nu,uy = (A — )\*)/ usuy < 0
B

B
a contradiction.

For Case (ii), we can obtain that m(u.) > 2. Indeed, there are ry < r; < ry <1
such that u, > wuy in (0,79), u« < uy in (r,71), Us > uy in (r1,79). Making the
changes:

t= A w,(t) = ATV, (r)
and

t=X"2r,  wy(t) = ATV Dy, (r)

we see that w, and w) satisfy the problem

t

—w” — Yy = wP +w, in (0, /\1/2)
w, >0 in (0,A/%), w,(A\/*) =0

and
{ —wh — Xw) = wf +w, in (0, A/2)
wy >0 in (0, A'?), wy(A\/?) =0

respectively. Now we claim that the graph of w, intersects with that of w, at least
two times in (0, A}/2). Since u, < uy in (ro, 1) and A=V/®=D > A7V there is an
interval J C (0, A\/2) such that wy > w, in J. On the other hand, since w,(0) = oo,
we see that there is an interval (0,%) such that w, > wy in (0,%). Moreover, since
wa(AY2) = 0, wy(AY*) = 0 and A, > ), there is another interval (£, \1/2) such that
w, > wy in (£, A/2). This implies that our claim is true. Let wy = 0 in [A}/2, AL/?)].
Arguments similar to those in the proof of Proposition 2.1 imply that m(w,) > 2.
This implies that m(u,) > 2 and contradicts the fact m(u,) = 1.

It remains to consider the case A\ = A,. Suppose that there is a regular solution
u* for (1.1) with A = A,. We derive from arguments as the above that its graph
intersects with the graph of u, exactly once. Now we show that m(u,) > 2. Ar-

guments similar to those in the proof of Theorem 4.3 imply that there exist { < 0
16



with A\, + ¢ > 0 and m € H}(B) with m(r) > 0 for r € (0,1) such that

[ 19mP = Gzt A = ¢ / m’

Thus, ( is the first eigenvalue and m is the first eigenfunction of the problem
~Ah = (pu*"' +X\,)h+kh inB h=0 ondB.

On the other hand, we see that there is 7y € (0,1) such that u.(r) > u*(r) for
r € (0,79) and u.(ro) = u*(ro). Let

] uk(r) —u*(r) forr e (0,ro)
ma(r) = { 0 otherwise

We obtain that
/ [[Vm,|* — (pu?~" + X\,)m?] < 0.
B*
Thus, m(u,) > 2. This contradicts m(u,) = 1. This completes the proof. O

Corollary 4.5. Under the conditions of Theorem 4.3, the graph of a reqular solution
uy intersects with that of u, only once in (0,1).

Proof. Under the changes:

t=A2r w,(t) = A7V Dy, (r)
and

t= A2, wy(t) = ATV Dy, (r),
w,(t) and wy(t) satisfy the problems

—Aw, = w? +w,, w,(\/?)=0

—A’LU)\ = ’U)};\ + Wy, w,\()\1/2) =0

respectively. Since wy(0) < w,(0) and A > A, we easily see that the graph of w),
intersects with that of w,. This implies that the graph of u, must intersect with
that of u,. If the graph of u) intersects with that of u, more than two times, we

can easily obtain that m(u,) > 2. This is a contradiction. O

Proof of Theorem 1.3.
Theorem 1.3 follows from Theorem 4.3, Corollaries 4.4 and 4.5.

17



5. PROOF OF THEOREM 4.1

This section is devoted to the proof of Theorem 4.1. Recall that v; is a solution

of (4.2). Our aim is to show that 1, changes sign only once in (—o0,0) and

(5.1) 1 (0) < 0.

We first show that t; must change sign in (—o00,0). In fact, suppose on the
contrary. Since 1; > 0 as t — —oo, we may assume 1; > 0 in (—o0,0). Note that

v, satisfies
Lv, = (p—1)v}
where
Lip = 4" + o' — By + po? ™ + Ae®ep.
Thus

0 0
= (v —v)) 2
= v,(0)¢:(0).

This is impossible since v, (0) < 0.

Let 1/;(?5) = e2'),(t). We see that @Z(t) ~ e5V@P=40-1B Thus

(5-2) P(—00) =0 for p > p,.

(Note that a? — 4(p — 1)8 > 0 provided p > p..) Moreover, 1 satisfies the problem
2

(5.3) = (B4 )P+ p N+ A = 0, (—00) = 0.

Let J,(r) denote the Bessel function satisfying (1.6). We denote the first two

zeroes of J,(r) by ji, and js,. Under the Emden-Fowler transformations:
v, (t) = J,(r), t=Ilor
we see that
(5.4) YI(t) — v, + e*p, =0, t € (—o0,0)
and the first and second zeroes of v, () are Inj; , and Injs,.
Let p =t—Inj; (i = 1,2) and ¢,(p) = 9, (t). From [14] we deduce that for v > 0,
the first and the second eigenvalues of the problem

(5.5) ¢y — V0, +ne?p, =0, ¢, (0)=0
18



have the following asymptotic expansions

(5.6) My = (1) = V> = 2a* + O(W*?)

(5.7) ow = (jip)? = V2 = 2a9*® + O(V*/*)
where a; > as. The corresponding eigenfunctions are
Qpl(p) = ¢V(P+ lnjl,u)a 1Y € (—OO, 0)

()02(,0) = ¢V(p + lnj2,u): pe (_OO: 0)
Let wy(t) = A(p, N)(1 — fe*) with some 0 < § < B(p, N), where B(p, N) is given
in (1.2) (we will choose 6 below). Let v,(t) = wo(t) + y(t). Then,

P = (wo(t) + y(t))P > A(p, N)P(1 — phe™) + pwh ™~y (t).

Moreover, y satisfies the equation
(5.8)
y" oy’ —By+pwh y+ ey e A(p, N) (1—-0e*)—0[4+2a+(p—1) 8] A(p, N)e* < 0.

We now choose t, such that
(5.9) A(1=0e®™) =0\ +4+2a+ (p—1)8) =0.
Observe that for ¢t < t,,

A1 —0e*) =0\, +4+2a+ B(p—1)) > 0.
Hence y satisfies the equation
(5.10) Y+ oy — By +pwtly + M\ePy <0, t<t,.
On the other hand, for any p, we have

pwb™' < pB[1 — min{(p — 1,1}0e%].

Let §(t) = e2'y(t). Then §(t) satisfies
2

(5.11) 7'() = (5 = Blp— )i+ (. +pub ' —pB) < 0.
Note that
9(t) <0, ¢'(t) <0 for ¢t near —oo
and
(5.12) MeZ + puwb™ — pB < (A, — pBmin{p — 1,1}0)e?.

Since the first zero of v, (t) is Injy ,, if we set

t =Injy, + s, 'l/AJu(S) = (1)
19



we see that 1, (s) satisfies

(5.13) Ul — v, + 52,e% 0, =0, s <0, 1,(0)=0.
Therefore, to keep ¢(t) < 0 for ¢ € (—o0,t,), we only need to have
(5.14) (A — pmin{p — 1,1}30)e** < jiy,

with 1?2 = %2 — (p—1)p. Indeed, setting

(5.15) y(s) =g(t), t=t.+s,

we see from (5.11) that

(5.16) §" = (5= Bp-1)§+0()5 <0, 5<0
where
O(s) = (A« — pBmin{p — 1,1}0)e” .
It follows from (5.13) and (5.16) that if
(A — pBmin{p — 1,1}0)e** < ji,
then
g(s) <0 for s < 0.
This implies
g(t) <0 for t € (—oo0,t,).

Thus, we obtain another estimate for ,,

2
I

1 o, : '

(5.17) © = A, — pmin{p — 1,1}36

Combining (5.9) and (5.17), we need

/1 4420+ (p—1)B Jiw
1 2 < —_— ’ :
(5.18) ¢ = (9 N " A — pmin{p— 1, 1}ﬂ0>
Now we choose
1 4+2a+(p-18 Jiw
0 A A, —pmin{p—1,1}36
Then, for p > 2,
As ~
5.19 0=—~0
(5.19) >
where
QB+t —\/(Q+pB+4E) — 4pBQ
(5.20) 0=

2Q
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and

3 16\,
Q=4+2+(p-1)8=4( p_1> 5.
Since (Q +pB+ j2,)% — 4pBQ > (Q — pB + j2,)?, we have that

pB _ pBB(p,N)

b<3 16X,
Therefore,
B(p,N
(5.21) 0 < %
Thus,
et = Lj _Qé
A0

By the above arguments, we deduce that the solution () of (5.3) has no zero in
(-0, t,). Indeed, since vP~' < wf ™" in (—o0,t,), under the change: t = t, + s, we
have
< pwh Mt + 5) + AePr e
< pB+ [\ —min{p — 1, 1}pB0le*~e*
< PB4

poP (¢, + 5) + A e?

The Sturm’s comparison principle implies that ¢ has no zero in (—oo, ,), as other-

wise, ¥, (with 12 = %2 — (p — 1)B) has a zero in (—o0,0), which is impossible.
On the other hand, we have that
0
(5.22) v, (L) < wolty) = %ﬂl/(pl).
p

Since u! (r) < 0 for r € (0,1), e*%tv*(t) is decreasing in (—o0,0). Thus

e (t) < € P u(t) for £ € [,0).

The fact

ot [ A0 ~]1/(p1)
pB— Q0

and (5.22) imply that for ¢ € [t,,0),

Q_@)P—l )\*é

(5.23) porl(t)e ™ < (p 2) o

0.

Since

Q+pB+34i,) —4pBQ = (Q —pB + j;,)* + 45,
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and _2
4p/6.71,u
(Q —pB+37,)2
(note that 1 < pB < (N — 2)%/4 for p > p.), we obtain that

is bounded for any p

N 1 . . 4pBit,
pPB=Q0 = | —(Q-pB+ji,)+1Q—pB+i7,[\/1+ >
5 (Q B J1, ) |Q B J1, ‘ (Q—pﬁ‘i‘]i,,)Q
_ pBit,
Q_pﬂ+]12,u

with 0 < 7 < 1 independent of p provided
Q—pB+3i,>0.

(Note that (1+x)"/? = 1+1(1+&)7/2z > 1+ 1 (14)"/?z.) The case Q—pf+ji, <
0 can be treated similarly. Indeed, if Q@ — pS3 + j7, = 0, then

pB = Qb + \/pBit,.

Thus,

AN =F<1
pB po
fQ—-ps+ jlz’,, < 0, we obtain that
. pBit,
pB—Q0>T1 — .

We also can choose 7 similarly. Therefore, without loss of generality, we only consider
the case Q — pB + jiy > 0. Thus
9 -pB+(1—-7)52,
Q_<Q pB+( '2)]1, —F 1
pB Q—pB+Ji,
where 7 is independent of p. Therefore, it follows from (5.23) that
(5.24)

ppBQ=pA+(1=i,) , _ m(N=22Q-1+(1-")) , ,
QTii, - Q733 '
Now, we conclude that when

p? 7 (e <

Ap—A)QTE,

In 0 L7
InT
(5.26) p? (e ™ <y — A, fort € [t,,0)

where p; is the first eigenvalue of the problem

—Av=pv in B, v=0 on 0B.
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Let
A —2)QTi3,

P=P(N)=1+ lnul(N*2)2(Q*1+(1*T)jf,u)
T N In7 '
Then,
(5.27) poP e + N\, < py fort € [t,,0)

provided p > max{p,, P, 2}.
On the other hand, we note that the first eigenfunction ¢ (¢) corresponding to p;

satisfies the problem
N —2)? _

(5.28) qi — %ql + pe*q = 0 in (—o0,0), gi(—o0) =¢q1(0) = 0.
Moreover, ¢; does not change sign in (—o0, 0). It follows from (5.3) that )(t) satisfies
the problem

T (N - 2)2 7 p—1_,—2¢ 2t I — —
(5.29) " (t) 1 Y+ (pP e + \)eYp =0, Y(—o0) =0.
Thus, (5.27) and Sturm’s comparison principle imply that 121 can not have two zeroes
in [t,,0]. Otherwise, ¢, will have a zero in (t,,0), a contradiction. Thus, ¢) has only
one zero in (—o0,0) and (0) < 0. This implies ¥;(0) < 0. This completes the
proof. O
Remark 5.1. Following the same arguments as above, we can also show that for

any A € (A, 1), there exists Py sufficiently large such that for p > Py, m(uy) = 1.
Note that Py depends on (u; — A), then Py, — o0 as A — .

6. MORE ESTIMATES ON p?(N)

In this section we provide more conditions to guarantee that m(u,) = 1. As seen
in last section, we just need to show 1 (0) < 0.

Proposition 6.1. There ezxists P := P;(N) > 0 such that for p > max{p., P,2}
and

60 (it =it ag) (Rage + Qs ) + 93 sy s >0
2

where jy¢ denotes the k-th positive zero of the Bessel function J¢(x), v =% — (p —
1)3, Q = 4(N -1- ]%), then 11 (0) < 0. Thus, m(u,) = 1. Moreover, m(uy) =1
for Ay < A< py.

Proof. Arguments similar to those in the proof of Theorem 4.1 imply that, by
choosing

42 —p1)QTi3,
w1 (N=2)2(Q-1+(1-7)73 )

In7

In

(6.2) Py(N):=1+

b
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where ps is the second eigenvalue of the problem
—Av=pv in B, v=0 on 0B,

we see that for p > max{p,, 2, Pi(N)},

(6.3) pPr(t)e ™ < py — py < pp — A, for t € [t,, 0).
Therefore,
(6.4) prP (e ™ + N\, < po for t € [t,,0)

provided p > max{p,., P;(N),2}.
On the other hand, we observe that the second eigenfunction ¢ (¢) corresponding
to po satisfies the problem

no_ (N - 2)2 2t : _ _ — —
(6.5) @ = + p2e®qe = 0 in (—00,0), go(—00) = ¢2(0) = 0.
Moreover, g, changes sign only once in (—00,0), and gz (In(j1,(v—2)/2/J2,n-2)/2) = 0.

Now we require

(6.6) te > In(J1,(v—2)/2/ Jo,(N—2)/2)-
Thus,
o2t > ten(W) _ (jl,(N—Z)/2>2.
Jo,(N—2)/2

(6.7) pB — QO > 91,0,
where _

9 — J1,(N-2)/2

Ja(N—2)/2

Then

2008 > (0% + Q)@ +pB+ j2, — \/(Q +pB+ j2,)2 — 95Q)

Therefore,

(6.8) Opf + Q. < 957 i + P*pBus + Qi -
That is,

(6.9) (ﬁ%jiu - ji%) (ji(Nfz)/z + ng,(zvfz)/g) +p5ji¥j22,zv_z > 0.

It follows from (5.3) that v (¢) satisfies the problem

(6.10) a2 1 4 (e 4 A)H D = 0, (-o00) = 0.
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Thus, (6.4), (6.6) and the Sturm comparison principle imply that ¢) can not have two
zeroes in [t,, 0]. Otherwise, ¢ will have two zeros in (—o0, 0), a contradiction. Thus,
¢ has only one zero in (—oc,0) and ¥(0) < 0. This implies 1;(0) < 0. Therefore,
we have m(u,) = 1. Similar arguments imply m(u,) =1 for A\, < A < .

We see from [14] that for £ = 1,2

1/3
Ak 173 _ Ok 1/3 3 52
(6.11) B+ it < Tk < + YL 2—0%@

where a; = 2.33811, ay, = 4.08795. Using Matlab, we find that when N = 12 and
p>12.154; N =13 and p > 4.858; N = 14 and p > 3.313; N = 15 and p > 2.644;
N =16 and p > 2.27; N =17 and p > 2.032; N = 18 and p > 1.868; N = 19
and p > 1.747; N = 20 and p > 1.655; N = 30 and p > 1.2870, (6.9) holds. When
N =11, (6.9) holds for very large p. Since v? = "‘T? —(p—1)8 =0 for p = p,, our
arguments can not be used to deal with this case. Thus, m(u.) = 1 for N > 12
provided that p is suitable large . This completes the proof. O

Another estimate for p? is given by the following.

Proposition 6.2. Assume
(6.12) < 3,

)

with v = %2 — (p — 1)B. Then ¥1(0) < 0. Therefore, m(u,) = 1. Moreover,
m(uy) =1 for all Ay < X < py.

Proof. Since
pP N e? < pB 4 e

it p < jg,u and ¢ has two zeros in (—o0, 0], we have that the second eigenfunction
Go(t) corresponding to the problem

@ (t) = V’@(t) + j5,€3(t) = 0, G2(—00) = g2(0) =0
has two zeros in (—o00,0). This is a contradiction. Therefore, 1,(0) < 0. This
implies m(u,) = 1. Since pu]’;1 < pB for A\, < XA < pup, we can easily see that
m(uy) = 1 for any regular solution u, provided that (6.12) holds.

Using Matlab, we find that when N =12 and p > 13.451; N = 13 and p > 5.1532;
N =14 and p > 3.4708; N = 15 and p > 2.7487; N = 30 and p > 1.1343, (6.12)
hold. This implies that for p large, m(u,) = 1. Since v? = %2 —(p—1)8 =0 for
P = pe, we see that (6.12) can not hold for p = p.. Thus, our argument can not be
used to deal with the case p = p.. Moreover, when N = 11, (6.12) only holds for
very large p. O

We also have the following condition to guarantee m(u,) = 1.
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Proposition 6.3. Let t, be as in Theorem 4.1. Then 11(0) < 0 provided that
(6.13) it,| < 2” .
VA= (4 =B -1)

pP™t 4\ e* < pB+ A, in (—o0,0).

Proof. Note that

Suppose that ¢ has two zeroes at #;, ty in (t«, 0], then we have
T

VA= (2= 8- 1)
On the contrary, we deduce that there is a solution £(¢) of the problem

a2

(6.14) t,] >

(6.15) (%~ B 1) - M =0

such that £ > 0in [£;,1,]. Let e(t) = %— Then e(t) satisfies the equation
n 2£l —
1) + 20 (0) + (o™ M) — (0 + AJelt) =

and e(t) has two zeroes t1, f5. Moreover, e < 0 in (f1,%3). Thus, e has a minimum

at some point in (f1,,), this is impossible. This also implies that if
T

VA (2~ - 1)
then 1) changes sign only once in (—oo,0) and 1(0) < 0. Thus, ¥;(0) < 0. The

condition (6.16) is equivalent to

(6.16) it,] <

(6.17) %m(l — A T

T = (2 =B - 1)
or
(6.18) 11 A+ T

’ N T

We only need to check the following conditions

(6.19) %m(l _,29)’“ < T

T \/ul—(%—ﬂ(p—l))
or
(6.20) Lpmb T




Remark 6.4. It is known from the numerical data that to guarantee m(u,) =1, p
will be suitably large if N = 11. This implies that the bound obtained in Theorem
4.1 is reasonable. For N > 12, we only need a suitably large p. Our arguments
can not be used to deal with the case p = p.. This case is very delicate. It will be
interesting to know the Morse index of u, for this case. We also see that the Morse
index of all the radial solutions of (1.1) in % are 1 provided that our conditions hold.
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