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Abstract. For all n ≥ 1, we are interested in bounded solutions of the Allen-

Cahn equation ∆u + u − u3 = 0 which are defined in all Rn+1 and whose

zero set is asymptotic to a given minimal cone. In particular, in dimension
n+1 ≥ 8, we prove the existence of stable solutions of the Allen-Cahn equation

whose zero sets are not hyperplanes.

1. Introduction and statement of main results

This paper is focussed on the construction of entire solutions of the Allen-Cahn
equation

(1.1) ∆u+ u− u3 = 0,

in Rn+1, with n ≥ 1. This equation is the Euler-Lagrange equation of the energy
functional

(1.2) E(u) :=
1
2

∫
Ω

|∇u|2 dx +
1
4

∫
Ω

(1− u2)2 dx,

which arises in the gradient theory of phase transitions. We refer to [4] for further
motivation and references on the subject.

It is well known that there are strong links and analogies between the study of
(1.1) and the theory of embedded minimal hypersurfaces (see [23] for a detailed
discussion on these analogies). These analogies led de Giorgi [21] to formulate
in 1978 the following celebrated conjecture concerning the classification of entire
solutions of (1.1) which are monotone in one direction.

The de Giorgi’s conjecture : Assume that u is a bounded solution of (1.1)
which is defined in Rn+1 and which is monotone in one direction (without loss of
generality, we can assume that ∂xn+1u > 0). At least when the dimension is less
than or equal to 8, the level sets of u should be hyperplanes.

In dimension 1, equation (1.1) reduces to an autonomous second order nonlinear
differential equation

(1.3) u′′ + u− u3 = 0,

whose first integral is given by

4u′ 2 − (1− u2)2 = c,
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for some c ∈ R. It is well known and in fact easy to check that the function

(1.4) u1(t) := tanh
(

t√
2

)
,

is the unique solution of (1.3) which vanishes at t = 0 and tends to 1 (rep.−1)
at +∞ (resp. −∞). According to the de Giorgi’s Conjecture, in dimension less
than or equal to 8, bounded, entire solutions of (1.1) which are monotone in one
direction should be of the form

(1.5) u(x) = u1(x · a+ b),

for some b ∈ R and some vector a ∈ Rn+1 with |a| = 1.
The de Giorgi’s Conjecture is the natural counterpart of the famous Bernstein

problem for minimal hypersurfaces in Euclidean space, which states that a minimal
graph in Rn+1 must be a hyperplane if the dimension of the ambient space is smaller
than or equal to 8. In a celebrated paper, Bombieri, de Giorgi and Giusti [8] proved
that, when the dimension of the ambient space if larger than or equal to 9, one can
indeed find minimal graphs which are not hyperplanes, showing that the statement
of Bernstein’s problem is sharp.

Some important advances have been achieved in recent years concerning the
resolution of the de Giorgi’s Conjecture. In particular, the conjecture has been
fully established in dimension 2 by Ghoussoub and Gui [26] and in dimension 3 by
Ambrosio and Cabré [5]. In dimensions 4 and 5, partial results have been obtained
by Ghoussoub and Gui [27]. Finally, let us mention that Savin [36] has established
its validity when 4 ≤ n+ 1 ≤ 8 under the additional assumption that

(1.6) lim
xn+1→±∞

u(x′, xn+1) = ±1,

for all x′ ∈ Rn. We refer to [1] where this condition is discussed at length.
In [18], del Pino, Kowalczyk and Wei have constructed entire solutions of (1.1)

in dimension 9 which are monotone in one direction and whose level sets are not
hyperplanes starting from the entire minimal graph found by Bombieri, de Giorgi
and Giusti [8]. This result shows that the statement of the de Giorgi’s Conjecture,
the bound on the dimension is sharp.

The extra condition (1.6), used by Savin, is related to the so-called :
Gibbons’ conjecture : Assume that u is a bounded solution of (1.1) satisfying

(1.7) lim
xn+1→±∞

u(x′, xn+1) = ±1,

uniformly in x′ ∈ Rn. Then, the level sets of u should be hyperplanes.
Gibbons’ Conjecture has been proved in all dimensions with different methods by

Caffarelli and Córdoba [12], Farina [22], Barlow, Bass and Gui [6], and Berestycki,
Hamel, and Monneau [7]. In [12] and in [6], it is also proven that the conjecture is
true for any solution that has one level set which is globally a Lipschitz graph over
Rn.

In the present paper, we are interested in the understanding of stable solutions
of (1.1) and hence we start with the :

Definition 1.1. We will say that u, solution of (1.1), is stable if

(1.8)
∫

Rn+1
(|∇ψ|2 − ψ2 + 3u2 ψ2) dx ≥ 0,

for any smooth function ψ with compact support in Rn+1.
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In dimensions 2 and 3, the stability property turns out to be a key ingredient in
the proof of the de Giorgi’s Conjecture which is given in [5], [26] and, as observed
by Dancer [15], the stability assumption is indeed a sufficient condition to classify
solutions of (1.1) in dimensions 2 and prove that, at least in dimension 2, the
solutions of (1.1) satisfying (1.8) are given by (1.5).

The monotonicity assumption in the de Giorgi’s Conjecture implies the stability
of the solution. Indeed, if u is a solution of (1.1) such that ∂xn+1u > 0, then u is
stable in the above sense. To prove this result, we consider the linearized operator

L := −(∆ + 1− 3u2),

about the solution u. If φ > 0 is a smooth function which is a solution of

Lφ = 0,

then, one can multiply this equation by φ−1 ψ2 and integrate the result by part to
get, after some simple rearrangement,∫

Rn+1
(|∇ψ|2 − ψ2 + 3u2 ψ2) dx =

∫
Rn+1

∣∣∇ψ − φ−1 ψ∇φ
∣∣2 dx ≥ 0.

Hence the solution u is stable in the sense of Definition 1.1. In the case where u is
monotone in the xn+1 direction, this argument can be applied with φ = ∂xn+1u to
prove that monotone solutions of (1.1) are stable.

As a consequence, in dimension 9, the monotone solutions constructed by del
Pino, Kowalczyk and Wei [18] provide some non trivial stable solutions of the
Allen-Cahn equation.

In the present paper, we show the :

Theorem 1.1. Assume that n + 1 = 2m ≥ 8. Then, there exist bounded, stable
solutions of (1.1) whose level sets are not hyperplanes.

In fact, we can be more precise and we prove that the zero set of the stable
solutions we construct are asymptotic to a minimal cone in R2m defined by

Cm,m := {(x, y) ∈ Rm × Rm : |x| = |y|},

which is usually referred to as Simons’ cone. The proof of Theorem 1.1 strongly
uses the fact that Simons’ cone is a minimal hypersurface which is minimizing and
hence is stable but also uses the fact that this cone is strictly area minimizing (we
refer to Definition 4.1 and Definition 5.1 for the precise definitions of these notions).

Let us mention that, in dimension n + 1 = 2m, with m ≥ 1, Cabré and Terra
[10] have found solutions of the Allen-Cahn equation whose zero set is exactly given
by the cone Cm,m. When m ≥ 1, these solutions generalize the so called saddle
solutions which have been found by Dang, Fife and Peletier [16] in dimension 2.
The proof of this result makes use of a variational argument in the spirit of [16].
Moreover, the same authors have proven that, when m = 2 or 3, the solutions they
find is unstable [11]. Cabré has recently proven that saddle solutions are stable in
dimension 2m ≥ 14 [9].

Our result is in fact a corollary of a more general result :

Theorem 1.2. Assume that C is a minimizing cone in Rn+1 and that the indicial
root ν+

0 < 0 (see Definition 3.2). Then, there exist bounded solutions of (1.1) whose
zero sets are asymptotic to C at infinity.
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As we will see, the solutions of (1.1) we construct are not unique and in fact they
arise in families whose dimension can be computed.

Remark 1.1. It should be clear that our construction, and hence the statement of
Theorem 1.2 does not reduce to the case of minimizing cone but extends to the case
of minimal cones which are not necessarily minimizing but satisfy some natural
nondegeneracy condition. Indeed, what is really needed in the proof of Theorem 1.2
is the existence of a smooth minimal hypersurface Γ which is asymptotic to the given
minimal cone C. In the case where the minimal hypersurface is nondegenerate, in
a sense to be made precise (see the last Remark in section 11.5), one should be able
to modify the proof to construct solutions of (1.1) whose zero set is asymptotic to
C.

In view of the de Giorgi’s conjecture, the results of Dancer and the above result,
the following statement seems natural :

Classification of stable solution of the Allen-Cahn equation : Assume
that u is a bounded, stable solution of (1.1) in dimension less than or equal to 7.
Then, the level sets of u should be hyperplanes.

This question parallels the corresponding well known conjecture concerning the
classification of stable, embedded minimal hypersurface in Euclidean space :

Classification of stable, embedded minimal hypersurfaces : The only
stable, embedded minimal hypersurfaces in Euclidean space Rn+1 are hyperplanes
as long as the dimension of the ambient space is less than or equal to 7.

This latter problem is still open except when the ambient dimension is equal to
3 where the result of Ficher-Colbrie and Schoen [24] guaranties that affine planes
are the only stable embedded minimal surface in R3.

2. Plan of the paper

In the next section, we gather the necessary material to describe and analyze
minimal cones. We then describe minimal hypersurfaces which are asymptotic to
minimal cones. The specific case of strictly area minimizing cones is discussed in
section 5. Next, in section 6, we introduce Fermi coordinates about a hypersurface
and derive the expression of the Euclidean Laplacian in these coordinates. Section 7
is devoted to the definition of the approximate solution and some formal expansion
of the solution we are looking for. In the next three sections, we derive the linear
analysis which is relevant to our problem. We complete the proof of Theorem 1.2 in
section 10 where some fixed point argument is applied to solve a nonlinear problem.
The last section of the paper, section 11, is concerned with the proof of Theorem 1.1.

3. The geometry of minimal cones

Assume that Λ ⊂ Sn is a smooth, compact, oriented, minimal hypersurface
which is embedded in Sn. The induced metric on Λ will be denoted by ḡ and the
second fundamental form will be denoted by h̄. Recall that it is defined by

h̄(t1, t2) := −g◦(∇◦t1N̄ , t2),

for all t1, t2 ∈ TpΛ. Here N̄ is the normal vector field to Λ in Sn, g◦ is the standard
metric on Sn an ∇◦ denotes the covariant derivative in Sn. It is also convenient to
define the tensor h̄⊗ h̄ by the formula

h̄⊗ h̄(t1, t2) := g◦(∇◦t1N̄ ,∇
◦
t2N̄),
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for all t1, t2 ∈ TpΛ.
Since we have assumed that the hypersurface Λ is minimal in Sn, its mean

curvature vanishes and hence
Trḡ h̄ = 0.

The Jacobi operator about Λ appears as the linearized mean curvature operator
about Λ when nearby hypersurfaces are parameterized as normal graphs over Λ. It
is given by

(3.1)
J̄Λ := ∆ḡ + Trḡ(h̄⊗ h̄) + Ricg◦(N̄ , N̄)

= ∆ḡ + Trḡ(h̄⊗ h̄) + n− 1,

where Ricg◦ is the Ricci tensor of Sn and Trḡ(h̄ ⊗ h̄) is the square of the norm of
the second fundamental form (which, in the literature, is often denoted by |AΛ|2).

Let us now give some important examples of minimal hypersurfaces in Sn which
are obtained as products of lower dimensional spheres.

Example 3.1. We consider

Λn1,n2 := Sn1(ρ1)× Sn2(ρ2) ⊂ Sn,
where n1 + n2 = n− 1 and the radii ρ1 and ρ2 are chosen to be

ρ1 =
√

n1

n− 1
and ρ2 :=

√
n2

n− 1
.

In this case, it is a simple exercise to check that the induced metric on Λn1,n2 is
given by

ḡ = ρ2
1 g1 + ρ2

2 g2,

and that the second fundamental form (for some choice of the normal vector field)
reads

h̄ = ρ1 ρ2 (g1 − g2) ,
where gi is the induced metric on Sni . In particular, the hypersurface Λn1,n2 is
minimal in Sn since

Trḡ h̄ = n1
ρ2

ρ1
− n2

ρ1

ρ2
= 0.

Also, in this case, the Jacobi operator about Λn1,n2 is given by

J̄n1,n2 = ∆ḡ + 2n− 2,

since

Trḡ (h̄⊗ h̄) =
(
r2

r1

)2

n1 +
(
r1

r2

)2

n2 = n2 + n1 = n− 1.

This list of examples does not exhaust the list of all minimal hypersurfaces in
Sn and further examples of minimal hypersurfaces in Sn can be found for example
in [30], [35] or in [29].

Given an oriented embedded minimal hypersurface Λ in Sn, we define

CΛ := {et z : z ∈ Λ, t ∈ R} ⊂ Rn+1,

to be the cone over Λ. In this case, Λ is usually referred to as the link of the cone.
The induced metric on CΛ is given by

(3.2) g := e2t (dt2 + ḡ).
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The normal vector field on CΛ can be chosen in such a way that it coincides with the
unit normal vector field of Λ at each point of CΛ ∩ Sn. Observe that, when n ≥ 2,
Sn\Λ has two connected components (this follows at once from the maximum prin-
ciple which implies that Sn does not contain two embedded minimal hypersurfaces
which are disjoint) and hence Rn+1 \CΛ also has two connected components which
will be denoted by Rn+1

± . We can assume that Rn+1
+ is the one toward which the

normal vector field on CΛ is pointing.
With these choices, the second fundamental form about CΛ reads

(3.3) h = et h̄.

Since we have assumed that Λ is a minimal submanifold in Sn, we conclude that
CΛ is also a minimal submanifold of Rn+1. We also conclude that JC , the Jacobi
operator about C := CΛ, is given by

(3.4) JC := e−2t
(
∂2
t + (n− 2) ∂t + ∆ḡ + Trḡ (h̄⊗ h̄)

)
.

We will denote by
µ0 < µ1 ≤ µ2 ≤ . . .

the eigenvalues of the operator

−(∆ḡ + Trḡ (h̄⊗ h̄)),

and we will denote by ϕj the eigenfunction which is associated to the eigenvalue
µj and which is normalized to have L2(Λ) norm equal to 1. Observe that the ϕj
are also the eigenfunctions of the Jacobi operator −JΛ associated to the eigenvalue
µj + 1. Also observe that µ0 ≤ 0 since the potential Trḡ (h̄⊗ h̄)) ≥ 0.

We recall the following :

Definition 3.1. The minimal cone CΛ is said to be stable if

µ0 ≥
(
n− 2

2

)2

,

and it is said to be strictly stable if

µ0 >

(
n− 2

2

)2

.

Finally, we define the characteristic roots of the operator JC by the formula

(3.5) γ±j :=
2− n

2
±

√(
n− 2

2

)2

+ µj .

The characteristic roots appear in the asymptotic behavior of the solutions of

JCw = 0.

Indeed, looking for solutions of this equation of the form

w = eγt ϕj ,

one finds that γ satisfies the characteristic equation

γ2 + (n− 2) γ − µj = 0,
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and hence γ = γ±j . Observe that, in the special case where γ±j = 2−n
2 , then the

two independent solutions of the above equation are of the form

w+
j = e

2−n
2 tϕj , and w−j = t e

2−n
2 tϕj .

We have the important definition which is borrowed from [13] :

Definition 3.2. The indicial roots of the operator JC are defined by

(3.6) ν±j := <

2− n
2
±

√(
n− 2

2

)2

+ µj

 .

The indicial roots of JC play a key role in the deformation theory of minimal
cones and minimal hypersurfaces which are asymptotic to minimal cones [13], [14]
and, as we will see, they also play a very important role in our construction. Observe
that we always have

ν+
0 ≤ 0

since µO ≤ 0.
We illustrate all these definitions in the case described in Example 3.1.

Example 3.2. Keeping the notations introduced in Example 3.1, we consider
Cn1,n2 to be the cone over Λn1,n2 . According to the above analysis, this cone is
a minimal hypersurface in Rn+1. Moreover, the Jacobi operator about Cn1,n2 is
given by

Jn1,n2 := e−2t
(
∂2
t + (n− 2) ∂t + ∆ḡ + n− 1

)
.

Surprisingly, this operator only depends on n1 and n2 through the metric ḡ which
is used to compute the Laplace-Beltrami operator. The indicial roots of Jn1,n2 can
be computed explicitly in terms of the spectrum of the Laplace-Beltrami operator on
the spheres Sn1 and Sn2 . Of interest, will be the values of ν±0 which are given by

(3.7) ν±0 := <
(

2− n
2
± 1

2

√
n2 − 8n+ 8

)
.

In particular, the cone Cn1,n2 is strictly stable when n+ 1 ≥ 8.
When n+ 1 ≤ 7, we have

ν+
0 = ν−0 =

2− n
2

,

while, when n+ 1 ≥ 8, we have

3− n < ν−0 ≤ 4− n and − 2 ≤ ν+
0 < −1.

Finally, in the special case where n+ 1 = 8, we have

ν−0 = −3 and ν+
0 = −2.

4. Minimal hypersurfaces which are asymptotic to a minimal cone.

In this section, we are interested in the existence and properties of minimal
hypersurfaces which are smooth, embedded in Rn+1 and which are asymptotic to a
given minimal cone C = CΛ where Λ is an embedded minimal hypersurface in Sn.
The material of this section is essentially borrowed from [25] and [14].

As far as the existence of such a minimal hypersurface is concerned, we have
a very general result but, before, stating the result, we recall the definition of
minimizing cones [25] :
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Definition 4.1. [25] A minimal cone C = CΛ is said to be minimizing if

Voln(C ∩B1) ≤ Voln(S),

for any hypersurface S ⊂ Rn+1 such that ∂S = Λ, where B1 denotes the unit ball
in Rn+1.

In particular, a minimizing cone is necessarily stable in the sense of Definition 3.1.
As already mentioned, when n ≥ 2, Rn+1 \ C has two connected components

which we denote by Rn+1
± . When C is a minimizing cone, the existence of smooth

minimal hypersurfaces lying on one side of C, i.e. which are embedded in one of the
connected components of Rn+1 \ C follows from Theorem 2.1 in [25]. In fact, the
authors prove that there are two families of such hypersurfaces which are embedded
in the two different connected components of Rn+1 \ C.

Theorem 4.1. [25] Assume that C is minimizing cone. Then, there exists two
distinct oriented, embedded minimal hypersurfaces

Γ± ⊂ Rn+1
± ,

enjoying the following properties :
(i) The minimal hypersurface Γ± sits on one side of C, namely Γ+ (resp. Γ−)

is embedded in Rn+1
+ (resp. Rn+1

− ) ;
(ii) The distance from Γ± to the origin is equal to 1 ;
(iii) The hypersurface Γ± is asymptotic to C, i.e. Γ± is a normal graph over C

for some function v± which tends to 0 at infinity as a (negative) power of
the distance to the origin ;

(iv) For all e ∈ Sn \Λ, the half affine line R+e meets Γ+ ∪Γ− at, at most, one
point.

Observe that property (iv) implies that, the sets λΓ± for λ > 0 forms a foliation
of Rn+1

± \C. Property (iii) implies that asymptotics of Γ± are well understood and
in fact it is related to the indicial roots of JC . This property together with the fact
that Γ± lie on one side of C implies the following result which is also due to Hardt
and Simon [25] :

Theorem 4.2. [25] Assume that the cone C is stable and that Γ is a minimal
hypersurface which is defined away from a compact of Rn+1 and which, at infinity,
is asymptotic to C and lies on one side of C. Further assume that Γ is a normal
graph over the cone C for a function v, then either

v(t, z) = (b t+ a) eγ
+
0 t ϕ0(z) +O(e(γ+

0 −δ) t),

or
v(t, z) = a eγ

−
0 t ϕ0(z) +O(e(γ−0 −δ) t),

for z ∈ Λ and t > 0 large enough. Here δ > 0, b = 0 and a 6= 0 unless γ±0 = 2−n
2

in which case b 6= 0.

In other words, for minimal hypersurfaces which are asymptotic to a stable cone
and are embedded on one side of the cone, there are only two possible asymptotic
behavior.

In this statement, we recall that ϕ0 is the eigenfunction of −JΛ, the Jacobi
operator about Λ, which is associated to the first eigenvalue of −JΛ.
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More examples of embedded minimal hypersurfaces which are asymptotic to a
given minimal cone C and which lie on one side of the cone C can be found for
example in [14].

In the case where

Λ = Λn1,n2 := Sn1(r1)× Sn2(r2),

is the minimal hypersurface of Sn which is described in Example 3.1, the minimal
cone Cn1,n2 is invariant under the action of a large group of symmetries, namely

O(n1 + 1)×O(n2 + 1),

and a parameterization of the minimal hypersurfaces Γ± can be obtained by solving
some second order ordinary differential equation. This is the point of view which is
taken in [3] where one looks for minimal hypersurfaces which can be parameterized
as

R× Sn1 × Sn2 3 (s, z1, z2) −→ (x(s) z1, y(s) z2) ∈ Rn+1.

The fact that the mean curvature of this hypersurface is zero reduces to the ordinary
differential equation

y′′ x′ − x′′ y′

(x′)2 + (y′)2
+ n1

y′

x
− n2

x′

y
= 0,

and, without loss of generality, we can assume that the generating curve

R 3 s −→ (x(s), y(s)) ∈ R2,

is parameterized by arc length, namely

(x′)2 + (y′)2 = 1

where ′ denotes the derivative with respect to s. As in [3], we define the functions
u and v by the identities

tanu =
y

x
and tan v =

y′

x′
.

Then, one can check that the system of equations satisfies by x and y can also be
written as

(4.1)

{
u′ = cosu sinu sin(u− v)

v′ = n1 sinu sin v − n2 cosu cos v

It is proven in [3] that there exists a heteroclinic solution to this system that
connects two stationary points of (4.1). This solution gives rise to an embedded
minimal hypersurfaces which are asymptotic to Cn1,n2 . Moreover, in dimension n ≥
7, they prove that these hypersurfaces are one of the two connected components of
Rn+1\Cn1,n2 and that family of hypersurfaces λΓ forms a foliation of the connected
components of Rn+1 \ Cn1,n2 , while, when n ≤ 6, these hypersurfaces intersect
Cn1,n2 infinitely many times.
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5. The case of strictly area minimizing cones

In [25] the notion of strictly area minimizing cone is introduced.

Definition 5.1. A minimal cone C = CΛ is said to be strictly area minimizing if
there exists a constant C > 0 such that, for all ε > 0 small enough

Voln(C ∩B1) ≤ Voln(S)− C εn,

for any hypersurface S ⊂ Rn+1 \ Bε such that ∂S = Λ, where B1 denotes the unit
ball and Bε the ball of radius ε in Rn+1.

In the case where the cone C = CΛ is strictly area minimizing, we have the
following result [25] which states that the minimal hypersurfaces Γ± defined in
Theorem 4.1 approach C at the slowest possible rate predicted by Theorem 4.2 :

Proposition 5.1. Assume that the cone C = C(Σ) is strictly area minimizing,
then the minimal surface defined in Theorem 4.1 is, at infinity, a normal graph
over the cone C for a function v which can be expanded as either

v(t, z) = a eγ
+
0 t ϕ0(z) +O(e(γ+

0 −δ) t),

for some a 6= 0, if γ±0 6= 2−n
2 or

v(t, z) = (b t+ a) eγ
+
0 t ϕ0(z) +O(e(γ+

0 −δ) t),

for some b 6= 0, if γ±0 = 2−n
2 . Here, z ∈ Λ, t > 0 is large enough and δ > 0.

Checking whether a minimal cone is strictly area minimizing can be a hard
problem. For example, R2 ⊂ R3, which can be considered as a cone over the
unit circle S1 ⊂ S2, is area minimizing but is not strictly area minimizing while,
for n ≥ 3, Rn ⊂ Rn+1, which can be considered as a cone over the unit sphere
Sn−1 ⊂ Sn, is strictly area minimizing [25]. Hopefully, there are a lot of minimal
cone which are known to be strictly area minimizing [30]. For example, it is proven
in [30] that Cn1,n2 are strictly area minimizing provided n1 + n2 = n− 1 ≥ 6, and
this is also reflected in the analysis of (4.1) which is performed in [3].

6. Local coordinates near an embedded hypersurface and expression
of the Laplacian

6.1. Local coordinates near a hypersurface. In this section, we assume that
n ≥ 1 and that Γ is an oriented smooth hypersurface embedded in Rn+1 which is
asymptotic to a minimal cone. We first define the Fermi coordinates about Γ and
then, we provide some asymptotic expansion of the Euclidean Laplacian in Fermi
coordinates about Γ.

We denote by ge the Euclidean metric in Rn+1. We denote by N the unit normal
vector field on Γ which defines the orientation of Γ and we define

(6.1) Z(y, z) := y + z N(y),

where y ∈ Γ and z ∈ R. The implicit function theorem implies that Z is a local
diffeomorphism from a neighborhood of a point (y, 0) ∈ Γ×R onto a neighborhood
of y ∈ Rn+1.

Given z ∈ R, we define Γz by

Γz := {Z(y, z) ∈ Rn+1 : y ∈ Γ}.
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For z small enough (depending on the point y ∈ Γ where one is working), Γz
restricted to a neighborhood of y is a smooth hypersurface which is referred to as
the hypersurface parallel to Γ at height z.

If X denotes a parameterization of a neighborhood of y in Γ, we set

Xz := X + z X∗N,

which, for z small enough, is a parameterization of a neighborhood of Z(y, z) in Γz
(it will be convenient to agree that f∗g = f ◦ g).

The next two results express the geometry of Γz in terms of geometric objects
defined on Γ. In particular, in terms of g̊ the induced metric on Γ, h̊ the second
fundamental form on Γ, which is defined by

h̊(t1, t2) := −g̊(∇t1N, t2 ),

for all t1, t2 ∈ TΓ, and in terms of the square of the second fundamental form which
is the tensor defined by

h̊⊗ h̊(t1, t2) := g̊(∇t1N,∇t2N),

for all t1, t2 ∈ TΓ. In local coordinates, we have

(̊h⊗ h̊)ij =
∑
a,b

h̊ia g̊
ab h̊bj .

With these notations at hand, we have the :

Lemma 6.1. The induced metric gz on Γz is given by

gz = g̊ − 2 z h̊+ z2 h̊⊗ h̊.

Proof. We just need to compute the coefficients of the induced metric on Γz in the
parameterization given by Xz. We find

∂yiXz · ∂yjXz = ∂yiX · ∂yjX + z
(
∂yiX · ∂yj Ñ + ∂yiÑ · ∂yjX

)
+ z2 ∂yiÑ · ∂yj Ñ ,

where Ñ := X∗N . We can use the definition of g̊ and h̊, we conclude that

∂yiXz · ∂yjXz = g̊ij − 2 z h̊ij + z2 (̊h⊗ h̊)ij .

This completes the proof of the result. �

Similarly, the mean curvature Hz of Γz can be expressed in term of z, g̊ and h̊.
We have the :

Lemma 6.2. The following expansion holds

Hz =
∞∑
j=0

Tr̊g (̊h⊗ . . .⊗ h̊︸ ︷︷ ︸
j times

) zj .

It will be convenient to define

h̊(j) := h̊⊗ . . .⊗ h̊︸ ︷︷ ︸
j times

,
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so that h̊⊗ h̊ = h̊(2). Before we proceed with the proof, let us observe that we have
the alternative formula

Tr̊g h̊(j) =
n∑
i=1

κji ,

where the κj denote the principal curvature of Γ.

Proof. Recall that the mean curvature appears in the first variation of the volume
form of parallel hypersurfaces. Hence, we have the formula

Hz = − 1√
det gz

d

dz

√
det gz.

Now, we can always assume that, at the point where the computation is performed,
gij = δij . In this case we can identify h̊ with a symmetric matrix A and k̊ with A2.
In particular, we can write

Hz = − 1
det (I − z A)

d

dz
det(I − z A),

and the result follows from the formula

d

dz
det(I − zA) = Tr

 ∞∑
j=0

zj Aj+1


where A ∈Mn(R) and z ∈ R is small. �

The following result is just Gauss’s Lemma, it gives the expression of the Eu-
clidean metric on the domain of Rn+1 which is parameterized by Z.

Lemma 6.3. We have
Z∗ ge = gz + dz2,

where gz is considered as a family of metrics on TΓ, smoothly depending on the
parameter z which belongs to a neighborhood of 0 ∈ R.

Recall that the Laplace-Beltrami operator is given by

∆g =
1√
|g|

∂xi

(
gij
√
|g| ∂xj

)
in local coordinates. Therefore, in the neighborhood of Γ parameterized by Z,
the Euclidean Laplacian in Rn+1 can be expressed in Fermi coordinates by the
(well-known) formula

(6.2) ∆Rn+1 = ∂2
z −Hz ∂z + ∆gz ,

which follows at once from Lemma 6.3 and the above formula for the Laplace-
Beltrami operator.

7. Construction of an approximate solution

In this section, we use the Fermi coordinates which have been introduced in
the previous section and rephrase the equation we would like to solve in some
neighborhood of Γ. We also build an approximate solution to (1.1) whose nodal set
is equal to Γ.

We define
uε := u1(·/ε)
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and
u̇ε(z) := u′1(z/ε) üε(z) := u′′1(z/ε),

where u1 is the solution of (1.3). One should be careful that, with these notations
since we have

∂zuε(z) =
1
ε
u̇ε(z) and ∂zu̇ε(z) =

1
ε
üε(z).

Here we agree that Γ is a smooth minimal hypersurface which is embedded in
Rn+1 and we use the notations introduced in the previous section for the Fermi
coordinates about Γ.

Given any (sufficiently small and sufficiently smooth) function ζ defined on Γ,
we define Γζ to be the normal graph over Γ for the function ζ. Namely

Γζ := {y + ζ(y)N(y) ∈ Rn+1 : y ∈ Γ}.
This notation should not be confused with Γz which is the hypersurface parallel
to Γ at height z. We keep the notations of the previous section and, in a tubular
neighborhood of Γ we define the function u by

Z∗u(y, z) = ū (y, z − ζ(y)) .

It will be convenient to denote by t the variable

t := z − ζ(y).

Using the expression of the Laplacian in Fermi coordinates which has been derived
in (6.2), we find with little work that the equation we would like to solve can be
rewritten as

(7.1)
ε2
[
(1 + ‖dζ‖2gz )∂

2
t ū+ ∆gz ū− (Hζ + ∆gzζ) ∂tū

−2 (dζ, d∂tv)gz
]
|z=t+ζ

+ ū− ū3 = 0,

for t > 0 close to 0 and y ∈ Γ. Some comments are due about the notations. In
this equation, and the equations below, all computations of the quantities between
the square brackets [ ] are performed using the metric gz defined in Lemma 6.1
and considering that z is a parameter. Once this is done, we set z = t+ ζ(y).

We define
ū(y, t) := uε(t) + v(y, t),

in which case, the equation (7.1) becomes

N(v, ζ) = 0 ,

where we have defined
(7.2)

N(v, ζ) :=
[ (
ε2(∂2

t + ∆gz ) + 1− 3u2
ε

)
v − ε (∆gzζ +Hz)(u̇ε + ε ∂tv)

+‖dζ‖2gz (u̇ε + ε2 ∂2
t v)− 2 ε2 (dζ, d ∂tv)gz

]
|z=t+ζ

+ v3 + 3uε v2.

When v ≡ 0 and ζ ≡ 0, we simply have

(7.3) N(0, 0) = −εHt u̇ε,

Also recall that

(7.4) Ht = Tr̊g h̊(2) t+ Tr̊g h̊(3) t2 +O(t3).
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Observe that we have implicitely used the fact that Γ is a minimal hypersurface
and hence Tr̊g h̊ = 0.

We now further assume that Γ is asymptotic to a minimal cone and we define,
for all y ∈ Γ,

(7.5) dΓ(y) :=
√

1 + dist̊g(y0, y)2,

where y0 is a given point in Γ and dist̊g denotes the intrinsic distance on Γ. Away
from a compact, dΓ is equivalent to the intrinsic distance from y0 to y on Γ.

Since we assume that Γ is asymptotic to a cone, the principal curvatures of Γ
are bounded by a constant times 1/dΓ and this implies that we have the pointwise
estimate

(7.6) |∇kTr̊g h̊(j) |̊g ≤ Cj,k (dΓ)−j−k,

for all k ≥ 0, where Cj,k > 0. Using this information, we have the :

Lemma 7.1. For all k, k′ ≥ 0, there exists a constant Ck,k′ > 0 such that

(7.7) |∇k
′
∂kt N(0, 0)|̊g ≤ Ck,k′ ε2−k (dΓ)−2−k′ ,

in the neighborhood of Γ which is parameterized by Z.

Given a function f which is defined in Γ×R, we define Π to be the L2-orthogonal
projection on u̇ε, namely

Π(f) :=
1
ε c

∫
R
f(y, t) u̇ε(t) dt,

where the normalization constant

c :=
1
ε

∫
R
u̇2
ε(t) dt =

∫
R

(u′1)2(t) dt.

Of importance for us, will be the L2-projection of N(0, 0) over u̇ε. The crucial
observation is that

(7.8)

∫
R
Ht u̇

2
ε dt =

∞∑
j=1

(∫
R
tj u̇2

ε dt

)
Tr̊g h̊(j+1)

=
∞∑
k=1

ε2k+1

(∫
R
t2k (u′1)2 dt

)
Tr̊g h̊(2k+1),

because of parity. Using this property, we conclude that :

Lemma 7.2. For all k ≥ 0, there exists a constant Ck > 0 such that

(7.9) |∇k Π (χN(0, 0))|̊g ≤ Ck ε3 (dΓ)−3−k ,

in Γ. Here χ is a cutoff function which is identically equal to 1 when |t| ≤ c dΓ(y)
for some c > 0 fixed small enough.

Remark 7.1. Notice that, if we use the fact that Γ is asymptotic to a minimal cone,
then the principal curvatures of Γ are bounded by a constant times 1/dΓ and this
implies that there exists c > 0 such that the domain where Z is a diffeomorphism
contains the set of points for which |t| ≤ c dΓ.
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The function ūε, which is defined by

(7.10) Z∗ūε(y, t) := uε(t),

in a neighborhood of Γ, will be used to define an approximate solution to our
problem.

8. Analysis of the model linear operator

In this section, we analyze the operator

(8.1) Lε := ε2
(
∂2
t + ∆g̊

)
+ 1− 3u2

ε,

acting on functions defined on the product space Γ×R, which is naturally endowed
with the product metric

g̊ + dt2.

First, we will recall some standard injectivity result which is the key result in this
analysis. Then, we will use this results to obtain an a priori estimate for solutions
of Lε w = f , when the functions w and f are defined in appropriate weighted spaces
and satisfy some orthogonality condition. The proof of the a priori estimate is by
contradiction. Finally, application of standard results in functional analysis will
provide the existence of a right inverse for the operator Lε acting on some infinite
codimension function space.

8.1. The injectivity result. We collect some basic information about the spec-
trum of the operator

(8.2) L0 := −
(
∂2
t + 1− 3u2

1

)
,

which arises as the linearized operator of (1.3) about u1 and which is acting on
functions defined in R. All the informations we need are included in the :

Lemma 8.1. The spectrum of the operator L0 is the union of the eigenvalue µ0 = 0,
which is associated to the eigenfunction

w0(t) :=
1

cosh2( t√
2
)
,

the eigenvalue µ1 = 3
2 , which is associated to the eigenfunction

w1(t) :=
sinh( t√

2
)

cosh2( t√
2
)
,

and the continuous spectrum which is given by [2,∞).

Proof. The fact that the continuous spectrum is equal to [2,∞) is standard. The
fact that the bottom eigenvalue is 0 follows directly from the fact that the equation
for u1 is autonomous and hence the function u′1 = ∂tu1, which decays exponentially
fast at infinity, is in the L2-kernel of L0. Since this function is positive, it has to
be the eigenfunction associated to the lowest eigenvalue of L0. Direct computation
shows that µ1 is an eigenvalue of L0 and, finally, it is proven in [32] that µ0 = 0
and µ1 = 3/2 are the only eigenvalues of L0. �
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Observe that this result implies that the quadratic form associated to L0 is
definite positive when acting on functions which are L2-orthogonal to u′1. More
precisely, we have the inequality

(8.3)
∫

R

(
|∂tw|2 − w2 + 3u2

1 w
2
)
dt ≥ 3

2

∫
R
w2 dt,

for all function w ∈ H1(R) satisfying the orthogonality condition

(8.4)
∫

R
w(t)u′1(t) dt = 0.

As already mentioned, the discussion to follow is based on the understanding of
the bounded kernel of the operator

(8.5) L∗ := ∂2
t + ∆Rn + 1− 2u2

1,

which is acting on functions defined on the product space R × Rn. This is the
contain of the following :

Lemma 8.2. Assume that w ∈ L∞(R × Rn) satisfies L∗ w = 0. Then w only
depends on t and is collinear to u′1.

Proof. The original proof of this Lemma, which is based on Fourier transform in
Rn, can be found in [34]. For the sake of completeness, we give here the proof
which is more in the spirit of the proof in [18]. First, we observe that, by elliptic
regularity theory, the function w is smooth and we can decompose

w(y, t) = c(y)u′1(t) + w̄(t, y),

where w̄(y, ·) satisfies (8.4) for all y ∈ Rn. Inserting this decomposition into the
equation satisfied by w, we find

u′1 ∆Rn c+
(
∂2
t + 1− 2u2

1

)
w̄ + ∆Rn w̄ = 0.

Multiplying this equation by u′1 and integrating the result over t ∈ R, we conclude
easily that

∆Rnc = 0,

since L0 u
′
1 = 0 and since ∆Rn w̄ is L2-orthogonal to the function u′1. By assumption

w is a bounded function and hence so is the function c. In particular, this implies
that c is the constant function.

Next, we prove that w̄ ≡ 0. Since we have proven that c is the constant function,
we can now write

(8.6)
(
∂2
t + 1− 2u2

1

)
w̄ + ∆Rn w̄ = 0

We claim that, for any σ ∈ (0,
√

2), the function w̄ is bounded by a constant
times (cosh s)−σ. Indeed, in the equation (8.6), the potential, which is given by
1− 3u2

1, tends to −2 as |t| tends to ∞. Using this property, one can check that, for
all η > 0 and δ ∈ (0, 1), the function

W (y, t) := e−σ|t| + η cosh(δt)
n∑
i=1

cosh(δyi),



STABLE SOLUTIONS OF THE ALLEN-CAHN EQUATION IN DIMENSION 8 AND MINIMAL CONES17

satisfies L∗W < 0 in the region where |t| ≥ t∗, provided t∗ > 0 is fixed large enough
(depending on σ). Since w̄ is bounded, we conclude that

|w̄| ≤ ‖w̄‖L∞ eσt∗
(
e−σ|t| + η cosh(δt)

n∑
i=1

cosh(δyi)

)
,

when |t| ≥ t∗. Letting η tend to 0, this implies that

|w̄| ≤ ‖w̄‖L∞ e−σ(|t|−t∗),

for |t| ≥ t∗ and this completes the proof of the claim.
Multiplying the equation satisfied by w̄ by w̄ intself and integrating the result

over R (and not over Rn), we find that∫
R

(
|∂tw̄|2 − w̄2 + 3u2

1 w̄
2
)
dt+

∫
R
w̄∆Rnw̄ dt = 0.

Using the identity
2 w̄∆Rnw̄ = ∆Rnw̄

2 − 2 |∇w|2,
together with Lemma 8.1, we conclude that the function

V (y) :=
∫

R
w̄2(y, t) dt,

satisfies
∆RnV −

3
4
V =

∫
R
|∇w̄|2 dt ≥ 0.

Let E1 be the first eigenvalue of −∆Rn in the ball of radius 1, with 0 Dirichlet
boundary condition. The associated eigenvalue will be denoted by λ1. In particular

(8.7) −∆RnE1 = λ1E1.

Then ER(x) := E1(x/R) is the first eigenfunction of −∆Rn in the ball of radius
R, with 0 Dirichlet boundary condition, and the associated eigenvalue is given by
λ1/R

2.
We multiply (8.6) by ER and integrate by parts the result over BR, the ball of

radius R in Rn. We get(
λ1

R2
− 3

4

) ∫
BR

V ER dx+
∫
∂BR

∂rER V da ≥ 0.

Choosing R large enough and using the fact that V ≥ 0, we conclude that V ≡ 0
in BR. Therefore V ≡ 0 on Rn. �

8.2. The a priori estimate. We are now in a position to analyze the operator Lε
which has been defined in (8.1), when it is acting on Hölder weighted spaces which
we now define. We need to introduce some notations. Recall that dΓ denotes the
function

dΓ(y) :=
√

1 + dist̊g(y, y0)2,

where y0 ∈ Γ is a given point in Γ. In other words, away from a compact, dΓ is
equivalent to the intrinsic distance function to y0.

Next, we define on Γ× R, the scaled metric

gε := ε2 (̊g + dt2).

Given a point x = (y, t) ∈ Γ × R, we define ‖w‖Ck,αgε (Bε(x,ε))
to be the Ck,α norm

of the function w in Bε(x, ε), the geodesic ball of radius ε centered at the point x,
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when the underlying manifold Γ × R is endowed with the scaled metric gε. With
these notations in mind, we can state the :

Definition 8.1. For all k ∈ N, α ∈ (0, 1) and ν ∈ R, the space Ck,αε,ν (Γ× R) is the
space of functions w ∈ Ck,αloc (Γ× R) for which the following norm

‖w‖Ck,αε,ν (Γ×R) := sup
x=(y,t)∈Γ×R

dΓ(y)−ν ‖w‖Ck,αgε (Bε(x,ε))
,

is finite.

In other words, if w ∈ Ck,αε,ν (Γ× R), then

dΓ(y)−ν |w(y, t)| ≤ ‖w‖Ck,αε,ν (Γ×R),

with similar estimates for the partial derivatives of w when R× Γ is endowed with
the scaled metric gε. In particular,

|∇a ∂btw(y, t)|̊g ≤ C ‖w‖Ck,αε,ν (Γ×R) ε
−a−b dΓ(y)ν ,

provided a+ b ≥ k. In other words, taking partial derivatives, we loose powers of ε
while the asymptotic behavior of the functions and its partial derivatives remains
the same as dΓ(y) tend to ∞.

We shall work in the closed subspace of functions satisfying the orthogonality
condition

(8.8)
∫

R
w(y, t)u′1(t) dt = 0 for all y ∈ Γ.

We have the following :

Proposition 8.1. Assume that ν ∈ R is fixed. Then, there exist constants C > 0
and ε0 > 0 such that, for all ε ∈ (0, ε0) and for all w ∈ C2,α

ε,ν (Γ×R) satisfying (8.8),
we have

(8.9) ‖w‖C2,α
ε,ν (Γ×R) ≤ C ‖Lε w‖C0,α

ε,ν (Γ×R).

Proof. Observe that, by elliptic regularity theory, it is enough to prove that

‖(dΓ)−ν w‖L∞(Γ×R) ≤ C ‖(dΓ)−ν Lε w‖L∞(Γ×R).

The proof of this inequality is by contradiction. We assume that, for a sequence εi
tending to 0 there exists a function wi such that

‖(dΓ)−ν wi‖L∞(Γ×R) = 1,

and
lim
i→∞

‖dΓ(y)−ν Lεi wi‖L∞(Γ×R) = 0

For each i ∈ N, we choose a point xi := (yi, ti) ∈ Γ× R where

dΓ(yi)−ν |wi(yi, ti)| ≥ 1/2.

Arguing as in the proof of Lemma 8.2, one can prove that the sequence ti tends to
0 and more precisely that |ti| ≤ C εi. Indeed, the constant function can be used as
a super-solution to show that necessarily |ti| ≤ t∗ εi.

Now, we use
y ∈ TyiΓ 7−→ ExpΓ

yi
(y) ∈ Γ,
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the exponential map on Γ, at the point yi, to define

w̃i(y, t) := dΓ(yi)−ν wi(ExpΓ
yi

(εi y), εi t),

which is defined on TyiΓ× R.
Using elliptic estimates together with Ascoli’s Theorem, we can extract subse-

quences and pass to the limit in the equation satisfied by w̃i. We find that (up to
a subsequence) w̃i converges, uniformly on compacts to w̃ which is a non trivial
solution of (

∂2
t + 1− 3u2

1 + ∆Rn
)
w̃ = 0,

in Rn × R. In addition w̃ satisfies (8.4) and w̃ ∈ L∞(Rn × R). Since this clearly
contradicts the result of Lemma 8.2, the proof of the result is therefore complete. �

For all R > 0, we denote by BR the geodesic ball of radius R in Γ, centered at
y0. Using arguments which are similar to the arguments used in the previous proof,
one can prove the following result :

Proposition 8.2. Assume that ν ∈ R is fixed. Then, there exist constants C > 0
and ε0 > 0 such that, for all ε ∈ (0, ε0), for all R > 1 and all w ∈ L∞(BR × R)
which vanishes on ∂BR × R and which satisfies (8.8), we have

(8.10) ‖(dΓ)−ν w‖L∞(BR×R) ≤ C ‖(dΓ)−ν Lε w‖L∞(BR×R).

Proof. The proof of this result is similar to the proof of the previous result. There
is though one extra case to consider in the argument by contradiction : the case
where the limit problem is defined in a half space. But this case can be ruled out
by extending the function w̃ in the whole space by odd reflection.

Indeed, keeping the notations of the previous proof, we now also need to consider
the case where the distance from the point yi to the boundary of ∂BRi × R is of
order εi (observe that elliptic estimates imply that this distance cannot be much
smaller than εi since the functions are assumed to vanish on ∂BRi ×R, and hence,
their gradient is controlled in a neighborhood of ∂BRi × R). In this case, up to a
rigid motion, the limit problem is again(

∂2
t + 1− 3u2

1 + ∆Rn
)
w̃ = 0,

but, this time, the function w̃ is defined on Rn+ × R, where Rn+ := {(x1, . . . , xn) ∈
Rn : xn > 0} and w̃ vanishes on ∂Rn+×R. Extending the function w̃ to all Rn×R
by odd reflection, we reduce the problem to a case which is already studied in the
previous proof. Details are left to the reader. �

8.3. The surjectivity result. The final result of this section is the surjectivity of
the operator Lε acting on the space of functions satisfying (8.8).

Proposition 8.3. Assume that ν < 0 is fixed. Then, there exists ε0 > 0 such that,
for all ε ∈ (0, ε0) and for all f ∈ C0,α

ε,ν (Γ×R) satisfying (8.8), there exists a unique
function w ∈ C2,α

ε,ν (Γ× R) which also satisfies (8.8) and which is a solution of

Lε w = f,

in Γ× R.
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Proof. To begin with, we assume that f has compact support and, for all R > 1
large enough, we use the variational structure of the problem and consider the
functional

F (w) :=
∫
BR×R

(
ε2(|∂tw|2 + |∇w|2g̊)− w2 + 3u2

1 w
2
)

dvol̊g dt,

acting on the space of functions w ∈ H1
0 (BR×R) which satisfy (8.8) for a.e. y ∈ Γ.

Thanks to Lemma 8.1, we know that

F (w) ≥ 3
2

∫
BR×R

w2 dvol̊g dt.

Now, given f ∈ L2(BR × R), we can apply Lax-Milgram’s Theorem to obtain a
weak solution of Lε w = f in H1

0 (BR × R).
Assuming that f ∈ L∞(Γ× R) has compact support, we make use of the result

of Proposition 8.2 to get an a priori estimate for the solution which is defined in
BR×R and standard arguments allows one to pass to the limit as R tends to∞ to
obtain the desired solution defined on Γ×R. Once the proof is complete when the
function f has compact support, the proof for general f follows at once using an
exhaustion by a sequence of functions fi which have compact support and converge
uniformly to f on compacts. �

9. Study of a strongly coercive operator

This short section is devoted to the mapping properties of the operator

(9.1) Lε := ε2 ∆− 2.

Certainly this operator satisfies the maximum principle and solvability of the equa-
tion Lε w = f and obtention of the estimates boils down to the construction of
appropriate super-solutions.

Given a point x ∈ Rn+1, we define ‖w‖Ck,α
ε2ge

(Bε(x,ε))
, to be the Ck,α norm of the

function w in Bε(x, ε), the geodesic ball of radius 1 centered at the point x, when
Rn+1 is endowed with the scaled metric ε2 ge. With these notations in mind, we
can state the :

Definition 9.1. For all k ∈ N, α ∈ (0, 1) and ν ∈ R, the space Ck,αε,ν (Rn+1) is the
space of functions w ∈ Ck,αloc (Rn+1) for which the following norm

‖w‖Ck,αε,ν (Rn+1) := sup
x∈Rn+1

(1 + |x|2)−ν/2 ‖w‖Ck,α
ε2ge

(Bε(x,ε))
,

is finite.

Some comments are due concerning the notations. The function space Ck,αε,ν (Rn+1)
should not be confused with the function space Ck,αε,ν (Γ×R) even though, in spirit,
the definition of their norms are very similar.

We have the :

Proposition 9.1. Assume that ν ∈ R is fixed. There exists a constant C > 0 such
that

(9.2) ‖w‖C2,α
ε,ν (Rn+1) ≤ C ‖Lε w‖C0,α

ε,ν (Rn+1),

provided ε ∈ (0, 1).
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Proof. Away from a compact, the function x 7−→ |x|ν can be used as a barrier to
prove that

‖(1 + |x|2)−ν/2 w‖L∞(Rn+1) ≤ C ‖(1 + |x|2)−ν/2 Lε w‖L∞(Rn+1),

for some constant C > 0 which is independent of ε. The estimate is then a conse-
quence of standard elliptic estimates applied on geodesic balls of radius ε. �

10. The study of the Jacobi operator

In this section, we introduce appropriate functions spaces in which the equation

JΓ ζ = ξ,

can be solved for some function ξ defined on Γ.
We recall that, by definition

dΓ(y) :=
√

1 + dist̊g(y, y0)2,

where y0 is a given point in Γ.

Definition 10.1. For all k ∈ N, α ∈ (0, 1) and ν ∈ R, the space Ck,αν (Γ) is the
space of functions w ∈ Ck,αloc (Γ) for which the following norm

‖ζ‖Ck,αν (R×Γ) := sup
y∈Γ

(
dΓ(y)−ν ‖ζ‖Ck,αg̊ (B(y,1))

)
,

is finite. Here, B(y, 1) denotes the geodesic ball of radius 1 in Γ, centered at y.

Obviously
JΓ : C2,α

ν (Γ) −→ C0,α
ν−2(Γ).

The mapping properties of the operator JΓ, defined between these weighted
spaces, are intimately related to the indicial roots which have been defined in (3.6).

Proposition 10.1. Assume that ν 6= γ±j , for all j ∈ N and define

ν′ = n− 2 + ν.

Then, the operator
JΓ : C2,α

ν (Γ) −→ C0,α
ν−2(Γ),

is injective, if and only if the operator

JΓ : C2,α
ν′ (Γ) −→ C0,α

ν′−2(Γ),

is surjective.

This proposition is by now standard. We refer to [13], [14], [25] and also to [33]
for a proof.

In the cases of interest, namely, when the minimal hypersurface Γ is asymptotic
to a minimizing cone, we have the :

Lemma 10.1. Assume that Γ is a minimal surface which is asymptotic and lies on
one side of a minimizing cone C. Then JΓ is injective in C2,α

ν (Γ) for all ν < ν−0 .
If in addition, the cone is strictly area minimizing then the operator is injective for
all ν < ν+

0 .



22 FRANK PACARD AND JUNCHENG WEI

Proof. Just use the result of Theorem 4.1 together with the fact that that

ζ0(y) := y ·N(y),

is a Jacobi field (and hence solves JΓ ζ0 = 0) which is associated to the fact that
the minimal surface equation is invariant under dilations. Observe that, thanks to
(iv) in Theorem 4.1), the function ζ0 does not change sign. According to the result
of Theorem 4.2, this Jacobi field does not belong to C2,α

ν (Γ) for ν < ν−0 , when the
cone C is minimizing and this Jacobi field does not belong to C2,α

ν (Γ) for ν < ν+
0

when the cone C is strictly area minimizing.
Since this Jacobi field does not change sign, it can be used as a barrier to prove

injectivity in the corresponding spaces. �

11. The nonlinear scheme

We describe in this section the nonlinear scheme we are going to use to perturb
an infinite dimensional family of approximate solutions into a genuine solution of
(1.1). First, we define some cutoff functions which are used both in the definition of
the approximate solutions and in the nonlinear scheme. Next, we define an infinite
dimensional family of diffeomorphisms which are used to construct the approximate
solutions. Finally, we explain the nonlinear scheme we use. The last section is
concerned with the solvability of the nonlinear problem and builds upon all the
analysis we have done so far.

From now on, we assume that C is a minimizing cone and that the indicial
root ν+

0 < 0. We define Γ to be the minimal hypersurface which is described in
Theorem 4.2. In particular, Γ lies on one side of C and Lemma 10.1 applies.

11.1. Some useful cutoff functions. We will need various cutoff functions in our
construction. Therefore, for j = 1, . . . , 5, we define the cut-off function χj by

Z∗χj(y, t) :=

 1 when |t| ≤ εδ∗
(
dΓ(y)− 2j−1

100

)
0 when |t| ≥ εδ∗

(
dΓ(y)− 2j−2

100

)
,

where δ∗ ∈ (0, 1) is fixed. When ε is chosen small enough, Z is a diffeomorphism
from the set {(y, t) ∈ Γ× R : |t| ≤ εδ∗ dΓ} onto its image. We define Ωj to be the
support of χj . By construction, Ωj is included in the set of points where χj−1 is
identically equal to 1 and the distance from ∂Ωj to ∂Ωj−1 is larger than or equal
to εδ∗/100.

Without loss of generality, we can assume that, for all k ≥ 1

‖∇kχj‖L∞(Rn+1) ≤ C ε−kδ∗ ,
for some constant Ck > 0 only depending on k.

11.2. A one parameter family of approximate solutions. Building on the
analysis we have done in section 7, the approximate solution ũε is defined by

ũε := χ1 ūε ± (1− χ1),

where ± corresponds to whether the point belongs to Rn+1
± . Here the function ūε

is the one defined in (7.10), namely

Z∗ūε(y, t) := uε(t).

Observe that ūε is exponentially close to ±1 at infinity and hence, it is reasonable
to graft it to the constant functions ±1 away from some neighborhood of Γ.
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11.3. An infinite dimensional family of diffeomorphisms. Given a function
ζ ∈ C2,α(Γ), we define a diffeomorphism Dζ of Rn+1 as follows

Z∗Dζ(y, t) = Z(y, t− χ2(y, t) ζ(y)),

in Ω2 and
Dζ = Id,

in Rn+1 \ Ω2. It is easy to check that this is a diffeomorphism of Rn+1 provided
the norm of ζ is small.

Also, observe that, in Ω2, the inverse of Dζ can be written as

Z∗D−1
ζ (y, t) = Z(y, t+ χ2(y, t) ζ(y) + η(y, t, ζ(y)) ζ(y)2),

where (y, t, z) 7−→ η(y, t, z) is a smooth function defined for z small (this follows at
once from the inverse function theorem applied to the function

t 7−→ t− χ2(y, t) z,

details are left to the reader).

11.4. Rewriting the equation. Given a function ζ ∈ C2,α(Γ), small enough, we
use the diffeomorphism Dζ , we write u = ū ◦Dζ so that the equation

ε2 ∆u+ u− u3 = 0,

can be rewritten as

(11.1) ε2 (∆ū ◦Dζ) ◦D−1
ζ + ū− ū3 = 0.

Observe that, when χ2 ≡ 1, the diffeomorphism Dζ is just given by Z∗Dζ(y, t) =
Z(y, t− ζ(y)) and, as a consequence, in the coordinates (y, t) this equation is pre-
cisely the one given in (7.1). Also observe that this equation is nonlinear in ζ and
its partial derivatives, this is clear from (7.1). But, and this is a key point, since we
have composed the whole equation with D−1

ζ , the function ζ does not appear any-
more composed with the function ū. This property is due to the special structure
of the diffeomorphism Dζ and hence to the special structure of D−1

ζ .
Now, we look for a solution of (11.1) as a perturbation of ũε, and hence, we

define
ū := ũε + v,

so that the equation we need to solve can now be written as

(11.2) ε2 (∆v ◦Dζ) ◦D−1
ζ + v − 3 ũ2

ε v + Eε(ζ) +Qε(v) = 0,

where
Eε(ζ) := ε2(∆ũε ◦Dζ) ◦D−1

ζ + ũε − ũ3
ε,

is the error corresponding to the fact that ūε is an approximate solution and

Qε(v) := v3 + 3 ũε v2,

collects the nonlinear terms in v. Again, when χ2 ≡ 1, ũε = ūε and, in the
coordinates (y, t), the equation (11.2) is nothing but N(v, ζ) = 0 where the nonlinear
operator N has been defined in (7.2).

Finally, in order to solve (11.2), we use a very nice trick which was already used
in [18]. This trick amounts to decompose the function v into two functions, one
of which χ4 v

] is supported in a tubular neighborhood on Γ and the other one
v[ being globally defined in Rn+1, instead of solving (11.2), one solves a coupled
system of equation. One of the equation involves the operator Lε acting on v] and



24 FRANK PACARD AND JUNCHENG WEI

the operator JΓ acting on ζ while the other equation involves the operator (ε2 ∆−2)
actin of v[. At first glance this might look rather counterintuitive but, as we will
see, this strategy allows one to use directly the linear results we have proven in the
previous sections.

Therefore, we decompose
v := χ4 v

] + v[,

where the function v[ solves

Lε v[ = −(1− χ4)
[
ε2
(

∆(v[ ◦Dζ) ◦D−1
ζ −∆v[

)
+ 3 (ũ2

ε − 1) v[ − Eε(ζ)−Qε(χ4 v
] + v[)

]
− ε2

(
(∆((χ4 v

]) ◦Dζ)− χ4∆(v] ◦Dζ)
)
◦D−1

ζ ,

where Lε has been defined in (9.1).
For short, the right hand side will be denoted byNε(v[, v], ζ) so that this equation

reads

(11.3) Lε v[ = Nε(v[, v], ζ).

Observe that the right hand side of this equation vanishes in Ω4.

Remark 11.1. We know from Proposition 9.1 that if

(ε2 ∆− 2)w = f,

then

(11.4) ‖w‖C2,α
ε,ν (Rn+1) ≤ C ‖f‖C0,α

ε,ν (Rn+1).

In the case where f ≡ 0 in Ω4, we can be more precise and we can show that the
estimate for w can be improved in Ω5. Indeed, we claim that we have

‖χ5 w‖C2,α
ε,ν (Rn+1) ≤ C ε

2 ‖f‖C0,α
ε,ν (Rn+1),

provided ε is small enough (as we will see the ε2 can be replaced by any power of ε).
Starting from (11.4), his estimate follows easily from the construction of suitable
barrier functions for the ε2 ∆− 2. Indeed, given a point x0 ∈ Rn+1, we can use

x := (x1, . . . , xn+1) 7−→
n+1∑
i=1

cosh
(√

2
(xi − x0

i )
ε

)
,

as a barrier in Ω4, to estimate w at any point x0 ∈ Ω5 in terms of the estimate of w
on the boundary of ball of radius εδ∗/100 centered at x0. Performing this analysis
at any point of Ω5, we conclude that

‖(1 + |x|2)−ν/2 w‖L∞(Ω5) ≤ C e−c
∗ εδ∗−1

‖(1 + |x|2)−ν/2 w‖L∞(Ω4),

where c∗ :=
√

2/100. As usual, once the estimate for the L∞ norm has been derived,
the estimates for the derivatives follow at once from Schauder’s estimates.

We can summarize this discussion by saying that, if f ≡ 0 in Ω4, then (11.4)
can be improved into

(11.5) ‖w‖C̃2,α
ε,ν (Rn+1) ≤ C ‖f‖C0,α

ε,ν (Rn+1),

where, by definition

‖v‖C̃2,α
ε,ν (Rn+1) := ε−2 ‖χ5 v‖C2,α

ε,ν (Rn+1) + ‖v‖C2,α
ε,ν (Rn+1).
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Taking the difference between the equation satisfied by v and the equation sat-
isfied by v[, we find that it is enough that v] solves,

ε2 ∆(v] ◦Dζ) ◦D−1
ζ + v] − 3 ũ2

ε v
] = −Eε(ζ)−Qε(χ4 v

] + v[) + 3 (ũ2
ε − 1) v[

− ε2
(

∆(v[ ◦Dζ) ◦D−1
ζ −∆v[

)
,

in the support of χ4. Since we only need this equation to be satisfied on the support
of χ4, we can as well solve the equation
(11.6)

Lεv
] − ε JΓ ζ u̇ε = χ3

[
Lε v

] − ε2
(

∆(v] ◦Dζ) ◦D−1
ζ − v

] + 3 ū2
ε v

]
)

− ε2
(

∆(v[ ◦Dζ) ◦D−1
ζ −∆v[

)
− Eε(ζ)− ε JΓ ζ u̇ε −Qε(χ4 v

] + v[) + 3 (ū2
ε − 1) v[

]
,

where the operator Lε is the one defined in (8.1). Here we have implicitly used the
fact that ũε = χ3 ūε on the support of χ3. For short, the right hand side will be
denoted by Mε(v[, v], ζ) so that this equation reads

(11.7) ε2 Lεv
] − ε JΓ ζ u̇ε = Mε(v[, v], ζ).

This last equation is now projected over the space of functions satisfying (8.8)
and the space of functions of the form u̇ε times a function defined on Γ. Recall that
we have defined Π to be the orthogonal projection on u̇ε, namely

Π(f) :=
1
ε c

∫
R
f(y, t) u̇ε(t) dt,

where the constant c > 0 is explicitly given by

c :=
1
ε

∫
R
u̇2
ε(t) dt =

∫
R

(u′1)2(t) dt,

and by Π⊥ the orthogonal projection on the orthogonal of u̇ε, namely

Π⊥(f)(y, t) := f −Π(f) u̇ε(t).

If we further assume that v] satisfies (8.8), then (11.6) is equivalent to the system

(11.8) Lεv
] = Π⊥

[
Mε(v[, v], ζ)

]
,

and

(11.9) −ε JΓ ζ = Π
[
Mε(v[, v], ζ)

]
.

11.5. The existence of a solution. We summarize the above discussion. We are
looking for a solution of

(11.10) ε2 ∆u+ u− u3 = 0,

of the form
u =

(
ũε + χ4 v

] + v[
)
◦Dζ ,
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where the function v] is defined on Γ × R, the function v[ is defined in Rn+1 and
the function ζ is defined on Γ. In this case, (11.10) is equivalent to the solvability
of the coupled system

(11.11)


Lε v[ = Nε(v[, v], ζ)

Lεv
] = Π⊥

[
Mε(v[, v], ζ)

]
−ε JΓ ζ = Π

[
Mε(v[, v], ζ)

]
.

Closer inspection of the construction of the approximate solution shows that :

Lemma 11.1. The following estimates hold

‖Nε(0, 0, 0)‖C0,α
ε,−2(Rn+1) + ‖Π⊥ (Mε(0, 0, 0))‖C0,α

ε,−2(Γ×R) ≤ C ε
2.

Moreover, given ν ≥ −1, we have

‖Π (Mε(0, 0, 0))‖C0,α
ν−2(Γ) ≤ C ε

3.

Proof. Since v] = 0, v[ = 0 and ζ = 0, the estimate follow from the understanding
of

Eε(0) = ε2 ∆ũε + ũε − ũ3
ε.

But, in the range where χ1 ≡ 1, we have already seen that

ε2 ∆uε + uε − u3
ε = −εHt u̇ε,

and the estimates then follow at once from (7.7) in Lemma 7.1 and (7.9) in Lemma 7.2.
�

We also need the

Lemma 11.2. Assume that ν ∈ [−1, 0). Then, there exists δ > 0 (independent of
α ∈ (0, 1)) such that the following estimates hold

‖Nε(v[2, v
]
2, ζ2)−Nε(v[1, v

]
1, ζ1)‖C0,α

ε,−2(Rn+1)

≤ C εδ
(
‖v[2 − v[1‖C2,α

ε,−2(Rn+1) + ‖v]2 − v
]
1‖C2,α

ε,−2(Γ×R) + ‖ζ2 − ζ1‖C2,α
ν (Γ)

)
‖Π⊥ (Mε(v[2, v

]
2, ζ2)−Mε(v[1, v

]
1, ζ1))‖C0,α

ε,−2(Γ×R)

≤ C εδ
(
‖v[2 − v[1‖C̃2,α

ε,−2(Rn+1) + ‖v]2 − v
]
1‖C2,α

ε,−2(Γ×R) + ‖ζ2 − ζ1‖C2,α
ν (Γ)

)
and

‖Π (Mε(v[2, v
]
2, ζ2)−Mε(v[1, v

]
1, ζ1))‖C0,α

ν−2(Γ)

≤ C ε1−α ‖v]2 − v
]
1‖C2,α

ε,−2(Γ×R) + C ε1+δ
(
‖v[2 − v[1‖C̃2,α

ε,−2(Rn+1) + ‖ζ2 − ζ1‖C2,α
ν (Γ)

)
.

Proof. The proof is rather technical but does not offer any real difficulty. Ob-
serve that, in the last two estimates, the use of the norm ‖v[‖C̃2,α

ε,−2(Rn+1) instead

of ‖v[‖C2,α
ε,−2(Rn+1) is crucial to estimate the term −3 (ū2

ε − 1) v[ in the definition of

Mε(v[, v], ζ). In the last estimate, the first term on the right hand side comes from
the estimate of the projection of ε2 (∆gt −∆g̊) v] which induces a loss of εα. �
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We choose, ν ∈ [−1, 0), ν > ν+
0 and further assume that ν is not an indicial root

of JΓ. We choose α ∈ (0, 1) small enough, namely such that 2α < δ, the constant
which appears in the last Lemma). We use the result of Proposition 8.3, Proposi-
tion 9.1 (as well as (11.5) in Remark 11.1) and Proposition 10.1 and Lemma 10.1,
to rephrase the solvability of (11.11) as a fixed point problem.

Theorem 1.2 is now a simple consequence of the application of a fixed point
theorem for contraction mapping which leads to the existence of a unique solution

uε = (ūε + χ4 v
] + v[) ◦Dζ ,

where
‖v[‖C̃2,α

ε,−2(Rn+1) + ‖v]‖C2,α
ε,−2(Γ×R) + ε2α ‖ζ‖C2,α

ν (Γ) ≤ C ε
2.

We leave the details for the reader.
As a byproduct, we have a rather good control on the zero set of the solution.

Indeed, following the different steps of the proof, one can see that, at infinity, the
zero set of uε is a normal over Γ for a function which is bounded by a constant
times ε2−α (dΓ)ν . Since we do not need this result, we shall leave its proof to the
interested reader.

Remark 11.2. As already mentioned in the introduction, our construction extends
to the case where the minimal hypersurface Γ is asymptotic to a minimal cone
which is not necessarily minimizing. In this broader context, in order to apply our
construction, one needs to be able to apply the result of Proposition 10.1 and get
surjectivity of JΓ in the space C2,α

ν (Γ) for some ν < 0. However, this surjectivity
boils down to ask injectivity of JΓ in the space C2,α

ν′ (Γ) for some ν′ > 2− n. Under
this latter assumption, our construction applies.

12. The proof of Theorem 1.1

We give now the proof of Theorem 1.1. The proof builds on the previous con-
struction which lead to Theorem 1.2 using a special minimal surface.

We assume that m ≥ 4 and we follow the analysis of section 3. In particular, we
consider the strictly area minimizing cone Cm,m which was defined in Example 3.1.
In this special case, using the notations of (3.2) and (3.3), we see that the induced
metric on the minimal cone Cm,m is given by

g = e2t

(
dt2 +

1
2

(g1 + g2)
)
,

where g1 and g2 are the standard metrics on Sm, while the second fundamental
form on m,m is given by

h =
1
2
et (g1 − g2).

In particular, this implies that

Trgh(2k+1) = 0,

for all k ∈ N. In other words, because of the symmetries of Cm,m, the principal
curvatures of Cm,m are either 0, with multiplicity 1), e−t with multiplicity m and
−e−t again with multiplicity m and hence, the trace of h(j) is zero if j is odd.

Now, we make use of the result of Theorem 4.2 which guaranties the existence of
a minimal hypersurface Γm which sits on one side of Cm,m and which is a normal
graph over Cm,m for a function which decays like eν

+
0 t. As a consequence, we see
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that the principal curvatures of Γm are as follows : there is one principal curvature
which can be estimated by O(e(ν+

0 −2)t) and m principal curvatures whcih can be
estimated by ±e−t + O(e(ν+

0 −2)t). In particular, this implies that the result of
Lemma 7.2 can be improved into :

Lemma 12.1. For all k ≥ 0, there exists a constant Ck > 0 such that

(12.1) |∇k Π (χ3 N(0, 0))|̊g ≤ Ck ε2 (dΓm)ν
+
0 −4−k,

in Γm.

Proof. This uses the fact that Γm is a normal graph over Cm,m for a function which
decays like (dΓm)ν

+
0 . �

One should compare this estimate with the estimate (7.9) which holds in a more
general setting and which was used in the proof of the third estimate in Lemma 11.1.
Observe that it was because of (7.9) that we needed to use ν ≥ −1 in the weighted
spaces where we were looking for a solution of (11.11).

Recall that in the case where the cone Cm,m is minimizing, we have

−2 ≤ ν+
0 ≤ −1,

and hence ν+
0 − 2 < −3. As a consequence, in the case where the minimal hyper-

furface we start with is given by Γm we can use some parameter ν such that

−2 < ν < ν+
0 ,

in the proof of Theorem 1.2. Recall that, in the case where the minimal cone is
strictly area minimizing, the operator JΓ is injective in C2,α

ν (Γ) for ν < ν+
0 and

hence it is surjective for all ν > ν−0 .
We apply the construction described above to the hypersurfaces (1 + λ) Γm for

any λ close enough to 0 and denote by uε,λ the solution which is known to exist
for all ε small enough. It should be clear the uε,λ depends smoothly on λ, at least
when ε is fixed close enough to 0. Differentiation with respect ot λ, at λ = 0, yields

(ε2 ∆ + 1− 3 u2
ε,λ)φε = 0,

where
φε := ∂λuε,λ |λ=0.

We claim that :

Proposition 12.1. For ε small enough, the function φε is positive.

Proof. We fix c∗ > 0 large enough and we define Tε(Γm) to be the tubular neigh-
borhood around Γ of width c∗ ε. We first prove that φε > 0 in Tε(Γm).

Recall that, in the proof of Lemma 10.1, we have defined

ζ0 := y ·N(y),

which is positive and is bounded from above and from below by a positive constant
times (dΓm)ν

+
0 .

Now, we use the fact that, at infinity, the rate of convergence of Γm to Cm is
controlled by a constant times (dΓ)ν

+
0 and hence (1 +λ) Γm is itself a normal graph

over Γm for some function which, for λ small enough, is bounded by a constant
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times λ ζ0. Using this property and following the different steps of the construction
of uε,λ, one can check that

∂λuε,λ |λ=0 = ε−1 u̇ε
(
ζ0 +O(ε2−2α (dΓm)ν)

)
+O(ε2 (dΓm)ν),

in Tε(Γm). Hence, φε > 0 in T (Γm) provided ε is chosen small enough. This is
where we use in a fundamental way the fact that, in the proof of Theorem 1.2, we
can now use some weight parameter ν < ν+

0 .
Then, provided we have fixed c∗ > 0 large enough, the maximum principle can

be used to prove that φε > 0 in Rn+1 and this complete the proof of the result. �

As explain in the introduction, this implies that the solution uε,0 is stable, for
all ε small enough and this completes the proof of Theorem 1.1.
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