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Abstract. In this paper, we extend the results obtained by Ruf–Srikanth

[8]. We prove the existence of positive solution under Dirichlet and Neumann

boundary conditions, which concentrate near the inner boundary and outer
boundary respectively of an annulus as ε → 0. In fact, our result is independent

of the dimension of RN .

1. Introduction

There has been a considerable interest in understanding the behavoir of positive
solutions of the elliptic problem

(1.1)


ε2∆u− u+ f(u) = 0 in Ω

u > 0 in Ω,

u = 0 or
∂u

∂ν
= 0 on ∂Ω

where ε > 0 is a parameter, f is a superlinear nonlinearity and Ω is a smooth
bounded domain in RN . Let F (u) =

∫ u
0
f(t)dt. We consider the problems when

f(0) = 0 and f ′(0) = 0. This type of equations arises in various mathematical mod-
els derived from population theory, chemical reactor theory see Gidas-Ni-Nirenberg
[6]. In the Dirichlet case, Ni – Wei showed in [13] that the least energy solutions
of equation (1.1) concentrate, for ε→ 0, to single peak solutions, whose maximum
points Pε converge to a point P with maximal distance from the boundary ∂Ω. In
the Neumann case, Ni–Takagi [11] showed that for sufficiently small ε > 0, the least
energy solution is a single boundary spike and has only one local maximum Pε ∈ ∂Ω.
Moreover, in [12], they prove that H(Pε)→ maxP∈∂ΩH(P ) as ε→ 0 where H(P )
is the mean curvature of ∂Ω at P. A simplified proof was given by del Pino–Felmer
in [3], for a wider class of nonlinearities using a method of symmetrisation.

Higher dimensional concentrating solutions was studied by Ambrosetti–Malchiodi
– Ni in [1], [2]; they consider solutions which concentrate on spheres, i.e. on (N−1)-
dimensional manifolds. They studied

(1.2)

{
ε2∆u− V (r)u+ f(u) = 0 in A

u > 0 in A, u = 0 on ∂A

the problem, in an annulus A = {x ∈ RN : 0 < a < |x| < b}, V (r) is a smooth
radial potential bounded below by a positive constant. They introduced a modified
potential M(r) = rN−1V θ(r), with θ = p+1

p−1 −
1
2 , satisfying M ′(b) < 0 (respectively

M ′(a) > 0), then there exists a family of radial solutions which concentrates on
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|x| = rε with rε → b (respectively rε → a) as ε → 0. In fact, they conjectured
that in N ≥ 3 there could exist also solutions concentrating to some manifolds
of dimension k with 1 ≤ k ≤ N − 2. Moreover, in R2, concentration of positive
solutions on curves in the general case was proved by del Pino–Kowalczyk–Wei [4].
In [9], the asymptotic behavior of radial solutions for a singularly perturbed elliptic
problem (1.2) was studied using the Morse index information on such solutions to
provide a complete description of the blow-up behavior. As a consequence, they
exhibit sufficient conditions which guarantees that radial ground state solutions
blow-up and concentrate at the inner or outer boundary of the annulus.

In this paper, we consider the following two singular perturbed problems,

(1.3)


ε2∆u− u+ up = 0 in A

u > 0 in A

u = 0 on ∂A,

(1.4)


ε2∆u− u+ up = 0 in A

u > 0 in A

∂u

∂ν
= 0 on ∂A,

where A is an annulus in RN = RM × RK with A = {x ∈ RN : 0 < a < |x| < b}
and ε > 0 is a small number and ν denotes the unit normal to ∂A and N ≥
2. In this paper, we are interested in finding solution u(x) = u(r, s) where r =√
x2

1 + x2
2 + · · ·x2

M and s =
√
x2
M+1 + x2

M+2 + · · ·x2
K .

Let us consider the conjecture due to Ruf and Srikanth:
Does there exist a solution for the problems (1.3) and (1.4), which concentrates

on RM+K−1 dimensional subsets as ε→ 0?

Theorem 1.1. For ε > 0 sufficiently small, there exists a solution of (1.3) which
concentrates near the inner boundary of A.

Theorem 1.2. For ε > 0 sufficiently small, there exists a solution of (1.4) which
concentrates near the outer boundary of A.

2. set up for the approximation

Note that under symmetry assumptions, A can be reduced to a subset of R2

where D = {(r, s) : r > 0, s > 0, a2 < r2 + s2 < b2}. Let Pε = (P1,ε, P2,ε) be a point
of maximum of uε in A, then uε(Pε) ≥ 1. From (1.3) we obtain

(2.1) ε2urr + ε2uss + ε2 (M − 1)

r
ur + ε2 (K − 1)

s
us − u+ up = 0

Let D1,D2 are the inner and outer boundary of D respectively and D3,D4 are
the horizontal and vertical boundary of D respectively.

If P = (P1, P2) be a point in D such that dist(P,D1) = d, then we can express,

(2.2) P1 = (a+ d) cos θ;P2 = (a+ d) sin θ

where θ is the angle between the x− axis and the line joining P. Furthermore, if
dist(P,D2) = d, then we can express,

(2.3) P1 = (b− d) cos θ;P2 = (b− d) sin θ.

See Figure 1 and Figure 2.
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Figure 1. Dirichlet case
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Figure 2. Neumann Case

The functional associated to the problem is

(2.4) Iε(u) =

∫
D
rM−1sK−1

(
ε2

2
|∇u|2 +

1

2
u2 − 1

p+ 1
up+1

)
drds.

Moreover, (1.3) reduces to
ε2urr+ ε2uss + ε2 (M − 1)

r
ur + ε2 (K − 1)

s
us − u+ up = 0 in D

u = 0 on D1 ∪ D2

∂u

∂ν
= 0 on D3 ∪ D4.

Re-scaling about the point P, we obtain in Aε

(2.5) urr + uss + ε
(M − 1)

P1 + εr
ur + ε

(K − 1)

P2 + εs
us − u+ up = 0.

The entire solution associated to (2.1) where U satisfies

(2.6)


∆(r,s)U − U + Up = 0 in R2

U(r, s) > 0 in R2

U(r, s)→ 0 as |(r, s)| → ∞.

Let z = (r, s). Moreover, U(z) = U(|z|) and the asymptotic behavior of U at infinity
is given by

(2.7)


U(z) = A|z|− 1

2 e−|z|
(

1 +O

(
1

|z|

))
U ′(z) = −A|z|− 1

2 e−|z|
(

1 +O

(
1

|z|

))
for some constant A > 0.

Let K(z) denote the fundamental solution of −∆(r,s) + 1 centered at 0. Then
for |z| ≥ 1, we have

(2.8)


U(z) =

(
B +O

(
1

|z|

))
K(z)

U ′(z) =

(
−B +O

(
1

|z|

))
K(z)
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for some positive constant B.
Let Uε,P (z) = U(| z−Pε |). Now we construct the projection map for the Dirichlet

case as

(2.9)


ε2∆(r,s)PUε,P − PUε,P + Upε,P = 0 in D

PUε,P (r, s) > 0 in D
PUε,P (r, s) = 0 on ∂D,

and the projection in the Neumann case as

(2.10)


ε2∆(r,s)QUε,P −QUεP + Upε,P = 0 in D

QUε,P (r, s) > 0 in D
QUε,P
∂ν

(r, s) = 0 on ∂D.

If vε = Uε,P − PUε,P and wε = Uε,P −QUε,P . Then we have

(2.11)

{
ε2∆(r,s)vε − vε = 0 in D

vε = Uε,P on ∂D,

(2.12)


ε2∆(r,s)wε − wε = 0 in D

∂wε
∂ν

=
∂Uε,P
∂ν

on ∂D.

Consider the function s(θ) = cosM−1 θ sinK−1 θ in [0, π2 ]. Then neither θ0 = 0
nor θ0 = π

2 are points of maxima of s. But s > 0 and hence θ0 lies in (0, π2 ).

For any θ ∈
[
θ0 − δ, θ0 + δ

]
we define the configuration space for the Dirichlet

and Neumann case as

(2.13) Λε,D =

{
P ∈ D : dist(P,D1) ≥ k

2
ε ln

1

ε

}
and

(2.14) Λε,N =

{
P ∈ D : dist(P,D2) ≥ k

2
ε ln

1

ε

}
respectively for some k > 0 small.

We develop the following lemma similar to Lin, Ni and Wei [10].

Lemma 2.1. Assume that k
2 ε| ln ε| ≤ d(P,D1) ≤ δ, then we obtain

(2.15) vε(z) = (B + o(1))K

(
|z − P ?|

ε

)
+O(ε2+σ)

where P ? = P + 2d(P,D1)νP and P ∈ D1 is a unique point, such that d(P, P ) =
2d(P,D1) and σ is a small positive number; δ is the sufficiently small. Moreover,
νP is the outer unit normal at P .

Proof. Define

(2.16)


ε2∆(r,s)Ψε −Ψε = 0 in D

Ψε > 0 in D
Ψε = 1 on ∂D,

Then for sufficiently small ε, Ψε is uniformly bounded.
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But for z ∈ ∂D, we obtain

Uε,P (z) = U

(
|z − P |
ε

)
= (A+ o(1))ε

1
2 |z − P |− 1

2 e−
|z−P |
ε .

First, we have

Uε,P (z) = (B + o(1))K

(
|z − P |
ε

)
.

Hence by the comparison principle we obtain, for some σ > 0, small

vε ≤ Cε2+σΨε whenever d(P,D1) ≥ 2ε| ln ε|.

Therefore, it remains to check whether (2.15) holds in

(2.17)
k

2
ε| ln ε| ≤ d(P,D1) ≤ 2ε| ln ε|.

Define the function

(2.18) φ1(z) = (B − ε 1
4 )K

(
|z − P ?|

ε

)
+ ε2+σΨε.

Then φ1 satisfies

(2.19) ε2∆(r,s)φ1 − φ1 = 0.

For any z in D1 with |z − P | ≤ ε 3
4 we have

(2.20)
|z − P |
ε

= (1 +O(ε
1
2 )| ln ε|) |z − P

?|
ε

and hence

vε ≤ φ1.

For any z ∈ D1 with |z − P | ≥ ε 3
4 we have

vε(z) ≤ Ce−ε
− 1

4 ≤ ε2+σ ≤ φ1.

Summarizing, we obtain,

vε ≤ φ1 for all z ∈ D1.

Similarly, we obtain the lower bound for z ∈ D1,

(2.21) vε(z) ≥ (B + ε
1
4 )K

(
|z − P ?|

ε

)
− ε2+σΨε.

�

Corollary 2.1. Assume that k
2 ε| ln ε| ≤ d(P,D2) ≤ δ where δ is sufficiently small.

Then

(2.22) wε(z) = −(B + o(1))K

(
|z − P ?|

ε

)
+O(ε2+σ);

where P ? = P + 2d(P,D2)νP where P ∈ D2 is a unique point, such that d(P, P ) =
2d(P,D2) and σ is a small positive number. Moreover, νP is the outer unit normal

at P .
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3. Refinement of the projection

Define

H1
0 (D) =

{
u ∈ H1 : u(x) = u(r, s), u = 0 in D1 and D2;

∂u

∂ν
= 0 in D3 and D4

}
.

Define a norm on H1
0 (D) as

(3.1) ‖v‖2ε =

∫
D
rM−1rK−1[ε2|∇v|2dx+ v2]drds

In this section, we will refine the projection, to incorporate the Neumann boundary
condition on D3 and D4. We define a new projection as Vε,P = ηPUε,P where
0 ≤ η ≤ 1 is smooth cut off function

(3.2) η(x) =

{
1 in D ∩Bd(P ),

0 in D \B2d(P ).

Here d = dist(P, ∂D) is dependent on ε. We will choose d at the end of the proof.
We define

(3.3) uε = Vε,Pε + ϕε,P .

Using this Ansatz, (1.3) reduces to
ε2∆(r,s)ϕε − ϕε + ε2 (M − 1)

r
ϕε,s + ε2 (K − 1)

s
ϕε,r +f ′(Vε,Pε)ϕε = h in D,

ϕε = 0 on D1 ∪ D2

∂ϕε
∂ν

= 0 on D3 ∪ D4;

where h = −Sε[Vε,Pε ] +Nε[ϕε] and

Sε[Vε,P ] = ε2∆(r,s)Vε,P + ε2 (M − 1)

r
Vε,P,r + ε2 (K − 1)

s
Vε,P,s

− Vε,P + f(Vε,P )(3.4)

and

Nε[ϕε] = {f(Vε,Pε + ϕε)− f(Vε,Pε)− f ′(Vε,Pε)ϕε}.

Let

Eε,P =

{
ω ∈ H1

0 (D),

〈
ω,
∂Vε,P
∂r

〉
ε

=

〈
ω,
∂Vε,P
∂s

〉
ε

= 0

}
.

Lemma 3.1. Then for any z ∈ D \Bd(P )

(3.5) Vε,P (z) = η

(
U

(
|z − P |
ε

)
− vε,P (z)

)
.

Moreover, we have

(3.6) Vε,P (z) = O(εk).
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Proof. For any z ∈ D \Bd(P ) we have

Vε,P (z) ≤
∣∣∣∣U( |z − P |ε

)
− vε,P (z)

∣∣∣∣
= O(e−

|x−P |
ε + e−

|x−P?|
ε + ε3+σ)

= O(e−
d(P,P?)

ε + ε2+σ)

= O(e−
2d(P,∂D1)

ε + ε2+σ) = O(εk).(3.7)

�

Moreover, Vε,P is zero outside B2d(P ).

Lemma 3.2. The energy expansion is given by

Iε(Vε,P ) =

∫
D
rM−1sK−1

(
ε2

2
|∇Vε,P |2 +

1

2
V 2
ε,P −

1

p+ 1
V p+1
ε,P

)
drds

= γε2PM−1
1 PK−1

2 + γ1ε
2PM−1

1 PK−1
2 U

(
|P − P ?|

ε

)
+ o(ε2+k)

where γ = p−1
2(p+1)

∫
R2 U

p+1drds and γ1 =
∫
R2 U

pe−rdrds.

Proof. We obtain

Iε(Vε,P ) =

∫
D
rM−1sK−1

(
ε2

2
|∇Vε,P |2 +

1

2
V 2
ε,P −

1

p+ 1
V p+1
ε,P

)
drds

=

∫
D
η2rM−1sK−1

(
ε2

2
|∇PUε,P |2 +

1

2
PU2

ε,P −
1

p+ 1
PUp+1

ε,P

)
drds

+
1

p+ 1

∫
D
rM−1sK−1

(
η2 − ηp+1

)
PUp+1

ε,P drds

+ ε2

∫
D
rM−1sK−1η∇ηPUε∇PUεdrds+ ε2

∫
D
rM−1sK−1|∇η|2(PUε,P )2drds

= J1 + J2 + J3 + J4.(3.8)
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Hence we have

J1 =

∫
D
rM−1sK−1

(
ε2

2
|∇PUε,P |2 +

1

2
PU2

ε,P −
1

p+ 1
PUp+1

ε,P

)
drds

−
∫
D

(1− η2)rM−1sK−1

(
ε2

2
|∇PUε,P |2 +

1

2
PU2

ε,P −
1

p+ 1
PUp+1

ε,P

)
drds

=

∫
D
rM−1sK−1

(
1

2
Upε,PPUε,P −

1

p+ 1
PUp+1

ε,P

)
drds

+ ε2

∫
∂B2d(P )

rM−1sK−1

(
∂PUε,P
∂r

+
∂PUε,P
∂s

)
PUε,P drds

− ε2

∫
∂Bd(P )

rM−1sK−1

(
∂PUε,P
∂r

+
∂PUε,P
∂s

)
PUε,P drds

= ε2

(
1

2
− 1

p+ 1

)∫
Dε

(P1 + εr)M−1(P2 + εs)K−1Up+1(z)drds

+
1

2

∫
D
Upε,P vεr

M−1sK−1drds

=

(
1

2
− 1

p+ 1

)
ε2PM−1

1 PK−1
2

∫
R2

Up+1drds

+
1

2

∫
D
Upε,P vεr

M−1sK−1drds

+ ε2

∫
∂B2d(P )

rM−1sK−1

(
∂PUε,P
∂r

+
∂PUε,P
∂s

)
PUε,P drds

− ε2

∫
∂Bd(P )

rM−1sK−1

(
∂PUε,P
∂r

+
∂PUε,P
∂s

)
PUε,P drds

+

∫
D\Bd

rM−1sK−1

(
ε2

2
|∇PUε,P |2 +

1

2
PU2

ε,P −
1

p+ 1
PUp+1

ε,P

)
drds+ o(ε2).(3.9)

Now we estimate

ε2

(
1

2
− 1

p+ 1

)∫
Dε

(P1 + εr)M−1(P2 + εs)K−1Up+1(z)drds

=
p− 1

2(p+ 1)
ε2PM−1

1 PK−1
2

∫
R2

Up+1drds+O(ε4)PM−1
1 PK−1

2(3.10)

From Lemma 3.1, we compute the interaction term∫
D
Upε,P vεr

M−1sK−1drds = ε2

∫
Dε
UpU

(∣∣∣∣z − P − P ?

ε

∣∣∣∣)(P1 + εr)M−1(P2 + εs)K−1drds

+ O(ε4)

= ε2PM−1
1 PK−1

2 U

(∣∣∣∣P − P ?ε

∣∣∣∣)(γ + o(1)) +O(ε4)

= ε2PM−1
1 PK−1

2 U

(
2d(P, ∂D1)

ε

)
(γ + o(1)) +O(ε4).(3.11)

Also we have

J2 =

∫
D
rM−1sK−1

(
η2 − ηp+1

)
PUp+1

ε,P drds = O(ε2)ε
(p+1)k

2 ,
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Furthermore, we have

ε2

∫
∂Bd(P )

rM−1sK−1

(
∂PUε,P
∂r

+
∂PUε,P
∂s

)
PUε,P drds = O(ε2+ 1

3 +k);

J3 = ε2

∫
D
rM−1sK−1η∇ηPUε∇PUεdrds = o(εk+2),

and

J4 = ε2

∫
D
rM−1sK−1|∇η|2(PUε,P )2drds = o(εk+2).

Hence we obtain the result. �

4. The reduction

In this section, we will reduce the proof of Theorem 1.1 to finding a solution of
the form Vε,P + ϕε,P for (1.3) to a finite dimensional problem. We will prove that
for each P ∈ Λε,D, there is a unique ϕε,P ∈ Eε such that〈

I ′ε

(
Vε,P + ϕε,P

)
, η

〉
ε

= 0; ∀η ∈ Eε,P .

Let

Jε(ϕ) = Iε

(
Vε,P + ϕε,P

)
.

From now on we consider ϕε,P = ϕ. We expand Jε(ϕ) near ϕε,P = 0 as

Jε(ϕ) = Jε(0) + lε,P (ϕ) +
1

2
Qε,P (ϕ,ϕ) +Rε(ϕ)

where

lε,P (ϕ) =

∫
D
rM−1sK−1

[
ε2∇Vε,P∇ϕ+ Vε,Pϕ− V pε,Pϕ

]
drds

=

∫
D
rM−1sK−1Sε[Vε,P ]ϕdrds,(4.1)

Qε,P (ϕ,ψ) =

∫
D
rM−1sK−1

[
ε2∇ϕ∇ψ + ϕψ − pV p−1

ε,P ϕψ

]
drds,(4.2)

and

Rε(ϕ) =
1

p+ 1

∫
D
rM−1sK−1

[(
Vε,P + ϕ

)p+1

−
(
Vε,P

)p+1

− (p+ 1)

(
Vε,P

)p
φ− p(p+ 1)

2

(
Vε,P

)p−1

ϕ2

]
drds.(4.3)

We will prove in Lemma 4.1 that lε,P (ϕ) is a bounded linear functional in Eε,P .
Hence by the Riesz representation theorem, there exists lε,P ∈ Eε,P such that

〈lε,P , ϕ〉ε = lε,P (ϕ) ∀ϕ ∈ Eε,P .

In Lemma 4.2 we will prove that Qε,P (ϕ, η) is a bounded linear operator from
Eε,P to Eε,P such that

〈Qε,Pϕ, η〉ε = Qε,P (ϕ, η) ∀ϕ, η ∈ Eε,P .
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Thus finding a critical point of Jε(ϕ) is equivalent to solving the problem in Eε,P :

(4.4) lε,P +Qε,Pϕ+R′ε(ϕ) = 0.

We will prove in Lemma 4.3 that the operator Qε,P is invertible in Eε,P . In Lemma
4.5, we will prove that if ϕ belongs to a suitable set, R′ε(ϕ) is a small perturbation
term in (4.4). Thus we can use the contraction mapping theorem to prove that
(4.4) has a unique solution for each fixed P ∈ Λε,D.

Lemma 4.1. The functional lε,P : H1
0 (D)→ R defined in (4.1) is a bounded linear

functional. Moreover, we have

‖lε,P ‖ε = O(ε2).

Proof. We have lε,P

lε,P (ϕ) =

∫
D
rM−1sK−1Sε[Vε,P ]ϕdrds

=

∫
D
rM−1sK−1

[
ε2∆(r,s)Vε,P + ε2 (M − 1)

r
Vε,P,r + ε2 (K − 1)

s
Vε,P,s − Vε,P + f(Vε,P )

]
ϕ

=

∫
D
rM−1sK−1

[
ε2∆(r,s)ηPUε,P + ε2 (M − 1)

r
(ηPUε,P )r + ε2 (K − 1)

s
(ηPUε,P )s

− ηPUε,P + f(ηPUε,P )

]
ϕ

=

∫
D
ηrM−1sK−1

[
ε2∆(r,s)PUε,P + ε2 (M − 1)

r
PUε,P,r + ε2 (K − 1)

s
PUε,P,s

− PUε,P + f(PUε,P )

]
ϕ+ ε2

∫
D
rM−1sK−1[PUε,P∆(r,s)η +∇PUε,P∇η]ϕ

+

∫
D
rM−1sK−1(η − ηp)PUpε,Pϕ

= ε2

∫
D
rM−1sK−1

[
(M − 1)

r
PUε,P,r +

(K − 1)

s
PUε,P,s

]
ϕ

+ ε2

∫
D
rM−1sK−1

[
ηr

(M − 1)

r
PUε,P,r + ηs

(K − 1)

s
PUε,P

]
ϕ

+

∫
D
ηrM−1sK−1

[
f(PUε,P )− f(Uε,P )

]
ϕ

= ε2

∫
D
ηrM−1sK−1

[
(M − 1)

r
PUε,P,r +

(K − 1)

s
PUε,P,s

]
ϕdrds

+

∫
D
ηrM−1sK−1

[
f(PUε,P )− f(Uε,P )

]
ϕ

+

∫
D
rM−1sK−1(η − ηp)PUpε,Pϕdrds

+ ε2

∫
D
rM−1sK−1[PUε,P∆(r,s)η +∇PUε,P∇η]ϕdrds.
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In order to estimate all the terms we decompose the domain into D = (D\B2d(P ))∪
(B2d(P ) \Bd(P )) ∪Bd(P ). We obtain∫

D
ηrM−1sK−1

[
f(PUε,P )− f(Uε,P )

]
ϕdx =

∫
D
rM−1sK−1

[
f(PUε,P )− f(Uε,P )

]
ϕdx

+

∫
D

(1− η)rM−1sK−1

[
f(PUε,P )− f(Uε,P )

]
ϕdx

= I1 + I2.

From I1, we obtain

I1 ≤
∫
Bd(P )

(
Uε,P

)p−1

vεϕdx+

∫
B2d(P )\Bd(P )

(
Uε,P

)p−1

vεϕdx

+

∫
D\B2d(P )

(
Uε,P

)p−1

vεϕdx

≤ Cε2

(∫
Bd(P )

|ϕ|2rM−1sk−1drds

) 1
2

+ Cε2+k‖φ‖ε + o(1)ε2+k‖φ‖ε

= O(ε2)‖ϕ‖ε.

Furthermore,

I2 ≤
∫
B2d(P )\Bd(P )

(
PUε,P

)p−1

vεϕ = O(ε2)‖ϕ‖ε.

Also it is easy to check using the decay estimates in (2.15), all the other terms are
of order ε2‖ϕ‖ε. Hence we obtain

|lε,P (ϕ)| = O(ε2)‖ϕ‖ε.

and as a result

‖lε,P ‖ε = O(ε2).

�

Lemma 4.2. The bilinear form Qε,P (ϕ, η) defined in (4.2) is a bounded linear.
Furthermore,

|Qε,P (ϕ, η)| ≤ C‖ϕ‖ε‖η‖ε
where C is independent of ε.

Proof. Using the Hölder’s inequality, there exists C > 0, such that∫
D
rM−1sK−1V p−1

ε,P ϕη drds ≤ C
∫
D
rM−1sK−1|ϕ||η| ≤ C‖ϕ‖ε‖η‖ε

and ∣∣∣∣ ∫
D
rM−1sK−1[ε2∇ϕ∇η + ϕη]drds

∣∣∣∣ ≤ C‖ϕ‖ε‖η‖ε.
�

Lemma 4.3. There exists ρ > 0 independent of ε, such that

‖Qε,Pϕ‖ε ≥ ρ‖ϕ‖ε ∀ϕ ∈ Eε,P , P ∈ Λε,P .
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Proof. Suppose there exists a sequence εn → 0, ϕn ∈ Eεn,P , P ∈ Λε,P such that
‖ϕn‖εn = εn and

‖Qεnϕn‖εn = o(εn).

Let ϕ̃i,n = ϕn(εnz + P ) and Dn = {y : εnz + P ∈ D} such that
(4.5)∫
Dn

rM−1sK−1[|∇ϕ̃i,n|2 + ϕ̃i,n|2] = ε−2
n

∫
D
rM−1sK−1[ε2|∇ϕi,n|2 + ϕi,n|2] = 1.

Hence there exists ϕ ∈ H1(R2) such that ϕ̃n ⇀ ϕ ∈ H1(R2) and hence ϕ̃n → ϕ ∈
L2
loc(R2). We claim that

∆(r,s)ϕ− ϕ+ pUp−1ϕ = 0 in R2

that is for all η ∈ C∞0 (R2),

(4.6)

∫
R2

rM−1sK−1∇ϕ∇η +

∫
R2

rM−1sK−1ϕη = p

∫
R2

rM−1sK−1Up−1ϕη.

Now ∫
D
rM−1sK−1

[
ε2DϕεDη + ϕεη − pV p−1

ε,P ϕεη

]
= 〈Qεn,Pϕn, η〉ε

= o(εn)‖η‖εn
which implies ∫

Dε
rM−1sK−1

[
∇ϕ̃ε∇η̃ + ϕ̃εη̃ − pṼ p−1

ε,P ϕ̃εη̃

]
= o(1)‖η̃‖,

where

Ṽεn,Pn = Vεn,Pn(εny + P ),

‖η̃‖2 =

∫
Dn

rM−1sK−1

[
|∇η̃|2 + |η̃|2

]
,

Ẽεn,P =

{
η̃ :

∫
Dn

rM−1sK−1∇η̃∇W̃n,r + rM−1sK−1η̃W̃n,r

= 0 =

∫
Dn

rM−1sK−1∇η̃∇W̃n,s + rM−1sK−1η̃W̃n,s

}
,

and W̃n,r = εn
∂Ṽεn (εny+Pn)

∂r , W̃n,s = εn
∂Ṽεn (εny+P )

∂s . Let η ∈ C∞0 (R2). Then we can
choose a1, a2 ∈ R such that

η̃n = η − [a1W̃n,r + a2W̃n,s].

Note that W̃n,r satisfies the problem

(4.7)


−∆(r,s)W̃n,r + W̃n,r =pηUp−1(y)

∂U

∂r
+ Φn(y) in Dn

W̃n,r = 0 on D1,n ∪ D2,n

∂W̃n,r

∂ν
= 0 on D3,n ∪ D4,n

where Φn(y) = εn
∂η
∂rU

p + ∂
∂r

[
∇η∇P̃Uε,P + ∆ηP̃Uε,P

]
.
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Then we claim that W̃n,r is bounded in H1
0 (Dn). Using the Hölder’s inequality,

we have∫
Dn

rM−1sN−1[∇W̃n,r|2 + W̃ 2
n,r] = p

∫
Dn

rM−1sN−1ηUp−1 ∂U

∂r
W̃n,r

+

∫
Dn

rM−1sN−1ΦnWn,r

≤ C

(∫
Dn

rM−1sk−1W̃ 2
n,r

) 1
2

≤ C

(∫
Dn

rM−1sN−1[∇W̃n,r|2 + W̃ 2
n,r]

) 1
2

.(4.8)

Hence
∫
Dn r

M−1sN−1

[
|∇W̃n,r|2 +W̃ 2

n,r

]
is uniformly bounded and as a result there

exists Wr such that

W̃n,r ⇀Wr in H1(R2)

up to a subsequence. Hence

W̃n,r →Wr in L2
loc.

Note that Wr satisfies the problem,

(4.9)


−∆(r,s)Wr +Wr = pUp−1 ∂U

∂r
in R2∫

R2

rM−1sK−1[|∇Wr|2 + |Wr|2] = p

∫
R2

rM−1sK−1Up−1 ∂U

∂r
Wr .

We claim that W̃n,r →Wr in H1(R2). First note that∫
Dn

rM−1sK−1[|∇W̃n,r|2 + |W̃n,r|2] = p

∫
Dn

rM−1sK−1Up−1 ∂U

∂r
W̃n,r

+

∫
Dn

rM−1sK−1ΦnW̃n,r

→ p

∫
R2

rM−1sK−1Up−1 ∂U

∂r
Wr

=

∫
R2

rM−1sK−1[|∇Wr|2 + |Wr|2]drds.(4.10)

Here we have used that W̃n,r converges weakly in L2. Hence W̃n,r → Wr = ∂U
∂r in

H1 strongly. Similarly, we can show that W̃n,s →Ws = ∂U
∂s in H1 strongly. Now if

we plug the value ηn in (4.7) we obtain and letting n→∞, we have∫
R2

rM−1sK−1

[
∇ϕ∇η − pUp−1ϕη + ϕη

]
= a1

(∫
R2

rM−1sK−1

[
∇ϕ∇∂U

∂r
+ ϕ

∂U

∂r
− pUp−1ϕ

∂U

∂r

])
+ a2

(∫
R2

rM−1sK−1

[
∇ϕ∇∂U

∂s
+ ϕ

∂U

∂s
− pUp−1ϕ

∂U

∂s

])
.
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Using the non-degeneracy condition we obtain∫
RN

rM−1sK−1

[
∇ϕ∇η + ϕη − pUp−1ϕη

]
= 0.

Hence we have (4.6).
Since ϕ ∈ H1(R2), it follows by non-degeneracy

ϕ = b1
∂U

∂r
+ b2

∂U

∂s
.

Since ϕ̃n ∈ Ẽεn,P , letting n→∞ in (4.7), we have∫
R2

rM−1sK−1∇ϕ∇∂U
∂r

= 0∫
R2

rM−1sK−1∇ϕ∇∂U
∂s

= 0,

which implies b1 = b2 = 0. Hence ϕ = 0 and for any R > 0 we have∫
BεnR(P )

rM−1sK−1ϕ2
ndrds = o(ε2

n).

Hence

o(ε2
n) ≥ 〈Qεn,P (ϕn), ϕn〉εn ≥ ‖ϕn‖2εn − p

∫
D

(Vεn,P)p−1ϕ2
n

≥ ε2
n − o(1)ε2

n

which implies a contradiction. �

Lemma 4.4. Let Rε(ϕ) be the functional defined by (4.3). Let ϕ ∈ H1
0 (D), then

|Rε(ϕ)| ≤ o(1)‖ϕ‖2ε + o(1)ε
(p−1)k

2 ‖ϕ‖2ε = ετ‖ϕ‖2ε(4.11)

and

‖R′ε(ϕ)‖ε ≤ o(1)‖ϕ‖ε + o(1)ε
(p−1)k

2 ‖ϕ‖ε = ετ‖ϕ‖ε.(4.12)

for some τ > 0 small.

Proof. We have

|Rε(ϕ)| ≤ o

(∫
D
rM−1sK−1V p−1

ε,P ϕ2

)
≤ o(1)

∫
Bd(P )

rM−1sK−1V p−1
ε,P ϕ2 + o

(∫
D\Bd(P )

V p−1
ε,P ϕ2

)
Moreover, by the exponential decay of Vε,P we obtain,

o

(∫
D\Bd(P )

rM−1sK−1V p−1
ε,P ϕ2

)
≤ Co(1)ε

p−1
2 k

∫
D
rM−1sK−1ϕ2 ≤ o(1)ε

p−1
2 k‖ϕ‖2ε.

The second estimate follows in a similar way. �

Lemma 4.5. There exists ε0 > 0 such that for ε ∈ (0, ε0], there exists a C1 map
ϕε,P : Eε,P → H, such that ϕε,P ∈ Λε,D satisfying〈

I ′ε

(
Vε,P + ϕε,P

)
, η

〉
ε

= 0, ∀η ∈ Λε,D.
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Moreover, we have

‖ϕε,P ‖ε = O(ε2).

Proof. We have lε,P + Qε,Pϕ + R′ε(ϕ) = 0. As Q−1
ε,P exists, the above equation is

equivalent to solving

Q−1
ε,P lε,P + ϕ+Q−1

ε,PR
′
ε(ϕ) = 0.

Define

G(ϕ) = −Q−1
ε,P lε,P −Q

−1
ε,PR

′
ε(ϕ) ∀ϕ ∈ Λε,D.

Hence the problem is reduced to finding a fixed point of the map G.
For any ϕ1 ∈ Λε and ϕ2 ∈ Eε with ‖ϕ1‖ε ≤ ε2−τ , ‖ϕ2‖ε ≤ ε2−τ

‖G(ϕ1)− G(ϕ2)‖ε ≤ C‖R′ε(ϕ1)−R′ε(ϕ2)‖ε.

From Lemma 4.4, we have

〈R′ε(ϕ1)−R′ε(ϕ2), η〉ε ≤ o(1)‖ϕ1 − ϕ2‖ε‖η‖ε.

Hence we have

‖R′ε(ϕ1)−R′ε(ϕ2)‖ε ≤ o(1)‖ϕ1 − ϕ2‖ε.

Hence G is a contraction as

‖G(ϕ1)− G(ϕ2)‖ε ≤ Co(1)‖ϕ1 − ϕ2‖ε.

Also for ϕ ∈ Eε with ‖ϕ‖ε ≤ ε2−τ , and τ > 0 sufficiently small

‖G(ϕ)‖ε ≤ C‖lε,P ‖ε + C‖R′ε(ϕ)‖ε
≤ Cε2 + Cε2−τ+τ

≤ Cε2.(4.13)

Hence

G : Λε,D ∩Bε2−τ (0)→ Λε,D ∩Bε2−τ (0)

is a contraction map. Hence by the contraction mapping principle, there exists a
unique ϕ ∈ Λε,D ∩Bεk(0) such that ϕε,P = G(ϕε,P ) and

‖ϕε,P ‖ε = ‖G(ϕε,P )‖ε ≤ Cε2.

�

We write uε = Vε,P + ϕε,P . Then we have

Iε(uε) = Iε(Vε,P )

+

∫
D

rM−1sK−1(ε2∇Vε,P∇ϕε − Vε,Pϕε + f(Vε,P )ϕε)drds

+
1

2

(∫
D

rM−1sK−1

[
ε2|∇ϕε|2 − ϕ2

ε + f ′(Vε,P )ϕ2
ε,P

]
drds

)
−

∫
D

rM−1sK−1

[
F (Vε,P + ϕε)− F (Vε,P )− εf(Vε,P )ϕε,P −

1

2
f ′(Vε,P )ϕ2

ε,P

]
drds
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which can be expressed as

Iε(uε) = Iε(Vε,P )

+

∫
D
Eε(Vε,P )ϕε,P r

M−1sK−1drds

+
1

2

(∫
D

[ε2|∇ϕε|2dx− f ′(Vε,P )ϕ2
ε]r

M−1sK−1drds

)
−

∫
D
rM−1sK−1

[
F (Vε,P + ϕε)− F (Vε,P )− f(Vε,P )ϕε −

1

2
f ′(Vε,P )ϕ2

ε

]
drds

= Iε

(
Vε,P

)
+O(‖lε,P ‖ε‖ϕε,P ‖ε + ‖ϕε‖2ε +Rε(ϕε,P ))

= Iε

(
Vε,P

)
+O(ε4).(4.14)

5. The reduced problem: min-max procedure

Proof of Theorem 1.1. Let Gε(P ) = Gε(d, θ) = Iε(uε). Consider the problem

min
d∈Λε,P

max
θ0−δ≤θ≤θ0+δ

Gε(d, θ).

To prove that Gε(P ) = Iε

(
Vε,P + ϕε,P

)
is a solution of (1.1), we need to prove

that P is a critical point of Gε, in other words we are required to show that P is a
interior point of Λε,D.
For any P ∈ Λε,P , from Lemma 4.3 we obtain

Gε(P ) = Iε

(
Vε,P

)
+O(‖lε,P ‖ε‖ϕε,P ‖ε + ‖ϕε‖2ε +Rε(ϕε,P ))

= Iε

(
Vε,P

)
+ o(1)εk+2

= ε2γPM−1
1 PK−1

2 + ε2γ1P
M−1
1 PK−1

2 U

(
2d(P,D1)

ε

)
+ o(εk+2).(5.1)

We have the expansion

Gε(d, θ) = γε2[aM+K−2 + aM+K−1d+ γ−1γ1a
M+K−2U

(
2d(P,D1)

ε

)
+ O(d2)] cosM−1 θ sinK−1 θ + o(ε2+k).

It is clear that the maximum is attained at some interior point of θ′ ∈ (θ0−δ, θ0+δ).
Now we prove that for that θ′ the minimum is attained at a critical point of Λε,P .

Let P ∈ Λε,P , be a point of minimum of Gε(d, θ′), then we obtain

Gε(d, θ′) = γε2[aM+K−2 + aM+K−1d+O(d2)] cosM−1 θ′ sinK−1 θ′ +O(ε2+k).

Choose P̃ such that the d′ = d(P̃ , ∂D1) ≥ k
2 ε| ln ε|. Then P̃ ∈ Λε,P .

But by definition, we have

(5.2) Gε(d, θ′) ≤ Gε(d′, θ′).
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From this we obtain

γ[aM+K−2 + aM+K−1d+O(d2)] cosM−1 θ′ sinK−1 θ′ +O(εk)

≤ γ

[
aM+K−2 + aM+K−1d′ + γ1γ

−1e
d′
ε +O(d2)

]
cosM−1 θ′ sinK−1 θ′

+ o(εk)

Hence this implies that d ∼ ε| ln ε|. Hence d→ 0. This finishes the proof. �

6. The reduced problem: max-max procedure

Proof of Theorem 1.2. Here we obtain the critical point using a max-max proce-
dure. The projection in the Neumann case is just Qε,P . Hence the reduced problem

(6.1) Rε(P ) = ε2γPM−1
1 PK−1

2 − ε2γ1P
M−1
1 PK−1

2 U

(
2d(P,D2)

ε

)
+ o(εk+2).

Consider

(6.2) max
d∈Λε,N

max
θ0−δ≤θ≤θ0+δ

Rε(d, θ).

We have the expansion

Rε(d, θ) = γε2[aM+K−2 + aM+K−1d− γ−1γ1a
M+K−2U

(
2d(P,D2)

ε

)
+ O(d2)] cosM−1 θ sinK−1 θ + o(ε2+k).

It is clear that the maximum in θ is attained at some interior point of θ′ ∈ (θ0 −
δ, θ0 + δ). Now we prove that for that θ′ the minimum is attained at a critical point
of Λε,N .

Let P ∈ Λε,N , be a point of maximum of Rε(d, θ′), then we obtain

Rε(d, θ′) = γε2[aM+K−2 + aM+K−1d+O(d2)] cosM−1 θ′ sinK−1 θ′ + o(ε2+k).

Choose P̃ such that the d′ = d(P̃ , ∂D1) ≥ k
2 ε| ln ε|. Then P̃ ∈ Λε,P .

But by definition, we have

(6.3) Rε(d′, θ′) ≤ Rε(d, θ′).
This implies

γ[aM+K−2 + aM+K−1d+O(d2)] cosM−1 θ′ sinK−1 θ′ + o(εk)

≥ γ

[
aM+K−2 + aM+K−1d′ − γ1γ

−1e
d′
ε +O(d2)

]
cosM−1 θ′ sinK−1 θ′

+ o(εk)

Hence d ∼ ε| ln ε|. Hence d→ 0. Theorem 1.2 is proved. �
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