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Abstract

The profile problem for the Ohta-Kawasaki diblock copolymer theory is a geometric variational prob-
lem. The energy functional is defined on sets in R3 of prescribed volume and the energy of an admissible
set is its perimeter plus a long range interaction term related to the Newtonian potential of the set.
This problem admits a solution, called a torus profile, that is a set enclosed by an approximate torus
of the major radius 1 and the minor radius q. The torus profile is both axially symmetric about the z
axis and reflexively symmetric about the xy-plane. There is a way to set up the profile problem in a
function space as a partial differential-integro equation. The linearized operator L of the problem at the
torus profile is decomposed into a family of linear ordinary differential-integro operators Lm where the
index m = 0, 1, 2, ... is called a mode. The spectrum of L is the union of the spectra of the Lm’s. It
is proved that for each m, when q is sufficiently small, Lm is positive definite. (0 is an eigenvalue for
both L0 and L1, due to the translation and rotation invariance.) As q tends to 0, more and more Lm’s
become positive definite. However no matter how small q is, there is always a mode m for which Lm has
a negative eigenvalue. This mode grows to infinity like ( 8

q
)3/4 as q → 0.

1 Introduction

The Ohta-Kawasaki theory [10] for diblock copolymers is an architypical example of binary inhibitory sys-
tems. In the strong segregation limit, where the two constituents are fully separated by sharp interfaces, the
free energy of the system can be written as

JD(Ω) =
1

2
PD(Ω) +

γ

2

∫
D

∣∣(−∆)−1/2(χΩ − ω)
∣∣2 dx. (1.1)

Here D is a bounded domain in R3, and there are two parameters γ > 0 and ω ∈ (0, 1). The input of this
functional is Ω, a Lebesgue measurable subset of D, whose measure |Ω| is fixed at

|Ω| = ω|D|. (1.2)

The first term PD(Ω) is the perimeter of Ω in D. If D is bounded by smooth surfaces, then PD(Ω) is
the total area of those surfaces that are inside D. These surfaces form the set ∂Ω ∩D, which is called the
interface of Ω because it separates Ω from D\Ω in D.
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The second term in the functional (1.1) is the most interesting. The nonlocal operator (−∆)−1/2 is defined
to be the positive square root of (−∆)−1. For the latter operator, given f ∈ L2(D) and

∫
D
f(x) dx = 0,

define w = (−∆)−1f by solving the Poisson’s equation

−∆w = f in D, ∂νw = 0 on ∂D,

∫
D

w(x) dx = 0. (1.3)

In (1.3) ∂νw stands for the outward normal derivaitve of w on ∂D.
A stationary set of JD is a solution of the equation

H(∂Ω) + γ(−∆)−1(χΩ − ω) = λ (1.4)

which holds on the interface ∂Ω∩D. Here H(∂Ω) is the mean curvature of ∂Ω. The constant λ on the right
side of (1.4) is a Lagrange multiplier corresponding to the volume constraint (1.2). If Ω shares boundary
with D, then

∂Ω ∩D ⊥ ∂D; (1.5)

namely the interface of Ω meets the domain boundary perpendicularly.
It is easy to show that the functional JD admits a global minimizer. One can study its properties for

various parameter ranges of γ and ω [1, 9, 22, 3]. One may also construct stable stationary sets of (1.1)
either by finding local minimizers of JD [14, 8], or by solving (1.4) as in [5, 6, 16, 15, 17, 18, 13].

Many morphological phases observed in nature are assemblies of small components with almost the same
size and shape. These components arrange themselves in a very regular pattern. The most well known are
the hexagonal pattern and the body centered cubic pattern. A cross section of an hexagonal pattern is a two
dimensional assembly of small discs, and a body centered cubic pattern is a three dimensional assembly of
small balls. These two patterns were found as stable stationary assemblies of (1.1) by the authors in [15, 17].

The starting point of these constructions is an observation that (1.4) has a counterpart on the entire
space R3 (R2, resp):

H(∂Ω) + γN (Ω) = λ on ∂Ω. (1.6)

A solution Ω to (1.6) must have a prescribed volume:

|Ω| = m (1.7)

where m > 0 is one of the two parameters, the other being γ; λ on the right side of (1.6) is a Lagrange
multiplier corresponding to (1.7). In (1.6), N (Ω) is the Newtonian potential of Ω:

N (Ω)(x) =

∫
Ω

1

4π|x− y|
dy. (1.8)

The equation (1.6) has its own variational structure. A solution of (1.6) is a stationary set of the functional

J (Ω) =
1

2
P(Ω) +

γ

2

∫
Ω

N (Ω)(x) dx. (1.9)

Here P(Ω) is the perimeter of Ω in R3, i.e. the area of ∂Ω.
We term (1.6) the profile equation of the Ohta-Kawasaki model; a solution of (1.6) is called a profile. A

ball of volume m is a profile, because its boundary has constant mean curvature and its Newtonian potential
is a radially symmetric function, hence also constant on its boundary. This ball is used as an approximation
for a component in a stationary assembly constructed in [17]. In that assembly each component is close to
a scaled version of the ball, and the locations of the components are determined by the geometry of D via
the Green’s function of Poisson’s equation (1.3). Similarly in two dimensions, a disc of area m is a profile
and it serves as a component for the hexagonal stationary assembly [15].

The method of building stationary assemblies from profiles is a general one, which has been lately
successfully applied to other inhibitory systems [21, 2]. In addition to balls and discs, a few other profiles
have been found [5, 12, 18, 19, 20].
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Figure 1: The left plot shows a torus profile found in [19]; the right plot shows an unstable deformation
found in Part 3 of Theorem 1.1. Here p = 1, q = 0.1, and m = 27.

In this paper we study a profile that shapes like a solid torus in R3. This profile was found in [19] and is a
set enclosed by a surface which is a slightly perturbed torus. Our interest in a torus shaped profile partially
comes from a discovery by Pochan [11] of a block copolymer morphology phase of toroidal supramolecule
assemblies. This phase was found by combining dilute solution characteristics critical for both bundling of
like-charged biopolymers and block copolymer micelle formation. The key to toroid versus classic cylinder
micelle formation is the interaction of the negatively charged hydrophilic block of an amphiphilic triblock
copolymer with a positively charged divalent organic counterion. This produces a self-attraction of cylindrical
micelles that leads to toroid formation, a mechanism akin to the toroidal bundling of semiflexible charged
biopolymers such as DNA.

A perfect torus is a surface characterized by a major radius p and a minor radius q with 0 < q < p. The
profile found in [19] is bounded by an approximate torus. Nevertheless this approximate torus still has well
defined major radius and minor radius, and it encloses the same volume as the perfect torus with the same
radii does; see the comments after Proposition 3.1. The profile problem (1.6) has m and γ as parameters so
the radii p and q of the torus profile are dependent on m and γ. In [19] we took m = 1. This assumption is
harmless because one can always transform m to 1 by a change of space variable x and a change of γ. The
two radii of the torus profile were then denoted by pγ and qγ , both dependent on γ. This profile exists when
γ is sufficiently large. As γ →∞, pγ →∞ and qγ → 0.

However it is more convenient in this paper to take the radii p and q as parameters and treat m and γ
as derived quantities. Moreover, without the loss of generality we let

p = 1. (1.10)

This can be achieved from the torus profile of radii pγ and qγ found in [19] by a change of space variable.
Now q becomes the only parameter of the profile problem. A torus profile of radii 1 and q exists when q is
sufficiently small; see the left plot of Figure 1. The volume of this profile is 2π2pq2 = 2π2q2. Consequently
under (1.10)

m = 2π2q2. (1.11)

The quantity γ is now unknown and is to be determined together with the profile as one solves (1.6).
In [19] a perturbed torus is described by a two variable function v in a function space so the energy J (Ω)

becomes a functional J (v) defined on the function space. The equation (1.6) for Ω becomes an equation

S(v) = 0 (1.12)
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where S is a nonlinear partial differential-integro operator on a space of two variable functions. If the torus
profile is denoted by v, then we let the Fréchet derivative of S at v be

L = S ′(v). (1.13)

Here L is a linear partial differential-integro operator. The spectrum of L, which consists of real eigen-
values of finite multiplicity, is the focus of study in this paper. Because the profile v is an axially symmetric
set about the z axis, the operator L inherits this symmetry and separation of variables decomposes L into a
family of simpler operators Lm where the index m is called a mode and it ranges over non-negative integers.
Each Lm is a linear ordinary differential-integro operator on a space of one variable functions. Its spectrum
again consists of real eigenvalues of finite multiplicity only. The union of the spectra of these Lm’s is the
spectrum of L. The following theorem is the main result of this paper.

Theorem 1.1 Let L be the linearized operator at the torus profile, decomposed into a sequence of linear
ordinary differential-integro operators Lm, m = 0, 1, 2, ...

1. (a) There exists q̃ > 0 such that when q ∈ (0, q̃), one of L0’s eigenvalues is zero with multiplicity one,
and all other eigenvalues are positive.

(b) There exists q̃ > 0 such that when q ∈ (0, q̃), one of L1’s eigenvalues is zero with multiplicity two,
and all other eigenvalues are positive.

(c) For every Mi > 0, there exists q̃i > 0 depending on Mi such that when q ∈ (0, q̃i) and m ∈
{2, 3, ...,Mi}, all of Lm’s eigenvalues are positive.

2. There exist Mii > 0 and q̃ii > 0 such that when q ∈ (0, q̃ii) and m ≥ Mii

q , all of Lm’s eigenvalues are
positive.

3. There exists q̃i,ii > 0 such that for every q ∈ (0, q̃i,ii) there is m ∈ (Mi,
Mii

q ) for which Lm has a

negative eigenvalue. Moreover, as q tends to 0, m grows to infinity like ( 8
q )3/4.

Consequently, L has a negative eigenvalue when q is sufficiently small.

The presence of 0 as an eigenvalue for L0 and L1 in Part 1 of the theorem is a consequence of the
translation and rotation invariance of the profile problem. For each m ≥ 2, Part 1 asserts that the operator
Lm becomes positive definite if q is sufficiently small.

The most interesting discovery in this paper is that the transition of Lm to a positive definite operator
as q tends to 0 does not occur uniformly with respect to m. Part 3 of the theorem shows that no matter how
small q is, there is always a mode m for which Lm has a negative eigenvalue.

In fact there are three distinct ranges for the mode m. Let Mi and Mii be the two numbers in Theorem
1.1, we say that

• m is small if 0 ≤ m ≤Mi,

• m is medium if Mi < m < Mii

q , and

• m is large if Mii

q ≤ m.

The theorem shows that when q is small, Lm (m ≥ 2) is positive definite if m is small or large, but there is
a medium m for which Lm is indefinite.

In the proof of Part 3 of the theorem an indefinite Lm is found when m is chosen of the order ( 8
q )3/4 in

the medium range. We use the function ϕ = 1 as a test function for the quadratic form 〈Lmϕ,ϕ〉, and show
that 〈Lm(1), 1〉 < 0. The test function ϕ = 1 represents a particular type of perturbation, illustrated in the
right plot of Figure 1, by which the rigidity of the torus profile is vulnerable.

The three parts of Theorem 1.1 are proved in Sections 5, 6, and 7 for small, large, and medium m’s
respectively. In Section 2 we explain our representation of perturbed tori as functions of two variables
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and re-formulate the profile problem (1.6) as a partial differential-integro equation, (1.12). The linearized
operator L is derived and decomposed into a family of linear ordinary differential-integro operators Lm,
m = 0, 1, 2, .... Before the Lm’s can be studied, one needs a better understanding of the torus profile, and
in Section 3 some fine properties of this profile are obtained and several important estimates related to the
Newtonian potential operator are presented. One derives a three term expansion for each operator Lm in
Section 4: Lm = Lm0 + Lm1 + Lm2 + ..., which yields a perturbation analysis of Lm and ultimately leads to
the proof of Part 1 of Theorem 1.1 in Section 5.

Because the torus profile is unstable when q is small, any toroidal assembly built from this profile will be
unstable. We are inclined to conclude that the Ohta-Kawasaki functional (1.1) is not capable of producing
the toroidal morphology phase discovered by Pochan [11].

Although it has only one intrinsic parameter, the profile problem is not simple. Take the ball profile as
an example. The authors found in [18] that if m = 4π

3 , then the unit ball is a stable profile if γ < 15 and
is an unstable profile if γ > 15. Knüpfer and Muratov [7] showed that if one holds γ = 1, then the ball of
volume m is the global minimizer of J if m is sufficiently small; if m is sufficiently large, J does not have a
global minimizer. Theorem 1.1 reveals another peculiar phenomenon in this problem.

2 The modes of L
We recall the framework used in [19] under which the existence of a torus profile is proved. Denote the
cylindrical coordinate system of R3 by

R3
c =

{
(r, z, σ) : r ∈ [0,∞), z ∈ R, σ ∈ S1

}
. (2.1)

Here S1 denotes the unit circle, same as the interval [0, 2π] with identified end points. The perfect torus
of the radii 1 and q in a standard position is the surface {(1 + q cos θ, q sin θ, σ) : (θ, σ) ∈ S1 × S1} in R3

c .
To introduce a perturbed torus, replace q by a function u from S1 × S1 to (0,∞). If u is continuous, then
{(1 + u(θ, σ) cos θ, u(θ, σ) sin θ, σ) : (θ, σ) ∈ S1 × S1} in R3

c defines a continuous surface in R3. If u(θ, σ)
is close to q for all (σ, θ) ∈ S1 × S1, then the surface is a perturbed torus. One denotes the region in R3

enclosed by this surface by Ω and the corresponding set in R3
c by

Ωc =
⋃

(θ,σ)∈S1×S1

{
(1 + h cos θ, h sin θ, σ) : h ∈ [0, u(θ, σ)]

}
. (2.2)

In terms of u, J (Ω) is

J (Ω) =
1

2

∫ 2π

0

∫ 2π

0

√
(1 + u cos θ)2(u2

θ + u2) + u2u2
σ dθdσ +

γ

2

∫
Ωc

N (Ω)(r, z, σ) rdrdzdσ. (2.3)

The set Ω has the same volume as the un-perturbed solid torus, and hence the constraint

|Ω| = 2π2q2 (2.4)

holds, which can be expressed as∫ 2π

0

∫ 2π

0

(u2(θ, σ)

2
+
u3(θ, σ) cos θ

3

)
dθdσ = 2π2q2, (2.5)

since

|Ω| =
∫ 2π

0

∫ 2π

0

∫ u(θ,σ)

0

(1 + h cos θ)h dhdθdσ =

∫ 2π

0

∫ 2π

0

(u2(θ, σ)

2
+
u3(θ, σ) cos θ

3

)
dθdσ.

Unfortunately (2.5) is a nonlinear constraint on u and is not easy to work with. One way out of this difficulty
is to introduce another variable

v(θ, σ) =
u2(θ, σ)

2
+
u3(θ, σ) cos θ

3
, (2.6)
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and use v to describe Ω. Then the nonlinear constraint (2.5) becomes an affine constraint∫ 2π

0

∫ 2π

0

v(θ, σ) dθ = 2π2q2. (2.7)

Consequently J of (2.3) becomes a functional of v: J = J (v).
For a set Ω described by an H2(S1 × S1) function v, let φ be an H2(S1 × S1) function of zero average,

i.e. ∫ 2π

0

∫ 2π

0

φ(θ, σ) dθdσ = 0. (2.8)

Then v+ εφ represents a volume preserving deformation of the set Ω if |ε| is sufficiently small. Calculations
show that the first variation of J at Ω in this setting is

J ′(v)(φ) =
dJ (v + εφ)

dε

∣∣∣
ε=0

=

∫ 2π

0

∫ 2π

0

(
H(v) + γN (v)

)
φdθdσ (2.9)

where H(v) is the mean curvature of ∂Ω. Here the mean curvature H and the Newtonian potential N are
treated as operators on the function v instead of the set Ω. Let

S(v) = H(v) + γN (v)−H(v) + γN (v) (2.10)

where H(v) + γN (v) denotes the average of H(v) + γN (v):

H(v) + γN (v) =
1

4π2

∫ 2π

0

∫ 2π

0

(
H(v) + γN (v)

)
dθdσ. (2.11)

Note that
S(v) = 0 (2.12)

and

J ′(v)(φ) =

∫ 2π

0

∫ 2π

0

S(v)φdθdσ. (2.13)

Therefore S is identified as the first variation of J . The equation (1.12), S(v) = 0, is just another way to
write (1.6) for stationary sets.

The second variation of J is the Fréchet derivative of S, denoted S ′. At each v, S ′(v) is a linear operator
such that

J ′′(v)(φ, ψ) =
∂2J (v + ε1φ+ ε2ψ)

∂ε1∂ε2

∣∣∣
ε1=ε2=0

=

∫ 2π

0

∫ 2π

0

S ′(v)(φ)ψ dθdσ. (2.14)

Henceforth we denote the torus profile of radii 1 and q by Ω, represented by u or v. The existence of
this profile for small q was established in [19, Theorem 1.1]. Since Ω is axially symmetric, u and v are
independent of σ and we use Ω′ to denote the projection of the corresponding Ωc to the rz-plane; namely

Ω′ = {(1 + h cos θ, h sin θ) : h ∈ [0, u(θ)]} (2.15)

where u corresponds to v via the same transformation (2.6):

v(θ) =
u2(θ)

2
+
u3(θ) cos θ

3
. (2.16)

Let L = S′(v) : X → Z be the second variation of J at the torus profile where the domain and the target
are respectively

X = {φ ∈ H2(S1 × S1) :

∫ 2π

0

∫ 2π

0

φ(θ, σ) dθdσ = 0} (2.17)

Z = {g ∈ L2(S1 × S1) :

∫ 2π

0

∫ 2π

0

g(θ, σ) dθdσ = 0}. (2.18)
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By the Fredholm theory, L is a self-adjoint operator whose spectrum consists of eigenvalues of finite multi-
plicity. Denote the two terms of J in (2.3) by Ĵ and J̌ respectively so that

J (v) = Ĵ (v) + γJ̌ (v). (2.19)

Then write L as
L = L̂+ γĽ (2.20)

where L̂ and Ľ are the second variations of Ĵ and J̌ at v respectively.
As a second variation of the perimeter functional, L̂ is a second order linear partial differential operator

followed by a projection from L2(S1 × S1) to Z. The exact expression of L̂ is fairly complex; it is better to
study the quadratic form 〈L̂φ, φ〉. A deformation to v by

v → vε = v + εφ (2.21)

induces a deformation to u and we denote the latter by

u→ uε = u+ εηε. (2.22)

Note that φ is independent of ε but ηε depends on ε. Expand√
(1 + uε cos θ)2(u2

ε,θ + u2
ε) + u2

εu
2
ε,σ = A+ εBε + ε2Cε +O(ε3), (2.23)

where

A = (1 + u cos θ)(u2
θ + u2)1/2 (2.24)

Bε =
(1 + u cos θ)uθηε,θ + (u+ 2u2 cos θ + u2

θ cos θ)ηε
(u2
θ + u2)1/2

(2.25)

Cε =
(1 + u cos θ)u2η2

ε,θ

2(u2
θ + u2)3/2

+
u2η2

ε,σ

2(u2
θ + u2)1/2(1 + u cos θ)

(2.26)

+
(−uuθ + u3

θ cos θ)ηε,θηε
(u2
θ + u2)3/2

+
(2u3 cos θ + pu2

θ + 3uu2
θ cos θ)η2

ε

2(u2
θ + u2)3/2

. (2.27)

Recall that vε and uε are related by (2.6), which implies that

ηε =
φ

u+ u2 cos θ
− (1 + 2u cos θ)φ2

2(u+ u2 cos θ)3
ε+O(ε2). (2.28)

Therefore

Bε =
(1 + u cos θ)uθ
(u2
θ + u2)1/2

( φ

u+ u2 cos θ

)
θ

+
(u+ 2u2 cos θ + u2

θ cos θ)φ

(u2
θ + u2)1/2(u+ u2 cos θ)

(2.29)

+ε
[ (1 + u cos θ)uθ

(u2
θ + u2)1/2

(−(1 + 2u cos θ)φ2

2(u+ u2 cos θ)3

)
θ
− (u+ 2u2 cos θ + u2

θ cos θ)(1 + 2u cos θ)φ2

2(u2
θ + u2)1/2(u+ u2 cos θ)3

]
+O(ε2)

Cε =
(1 + u cos θ)u2

2(u2
θ + u2)3/2

( φ

u+ u2 cos θ

)2

θ
+

φ2
σ

2(u2
θ + u2)1/2(1 + u cos θ)3

(2.30)

+
−uuθ + u3

θ cos θ

(u2
θ + u2)3/2(u+ u2 cos θ)

( φ

u+ u2 cos θ

)
θ
φ+

(2u3 cos θ + u2
θ + 3uu2

θ cos θ)φ2

2(u2
θ + u2)3/2(u+ u2 cos θ)2

+O(ε).

The first variation of Ĵ is given by the leading order of Bε, i.e.

dĴ (v + εφ)

dε

∣∣∣
ε=0

=
1

2

∫ 2π

0

∫ 2π

0

[ (1 + u cos θ)uθ
(u2
θ + u2)1/2

( φ

u+ u2 cos θ

)
θ

+
(u+ 2u2 cos θ + u2

θ cos θ)φ

(u2
θ + u2)1/2(u+ u2 cos θ)

]
dθdσ. (2.31)
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The second variation of Ĵ , i.e. the quadratic form 〈L̂φ, φ〉, follows from the ε order term of Bε and the
leading order of Cε:

〈L̂φ, φ〉 =
d2Ĵ (v + εφ)

dε2

∣∣∣
ε=0

=

∫ 2π

0

∫ 2π

0

[ (1 + u cos θ)uθ
(u2
θ + u2)1/2

(−(1 + 2u cos θ)φ2

2(u+ u2 cos θ)3

)
θ

(2.32)

− (u+ 2u2 cos θ + u2
θ cos θ)(1 + 2u cos θ)φ2

2(u2
θ + u2)1/2(u+ u2 cos θ)3

(2.33)

+
(1 + u cos θ)u2

2(u2
θ + u2)3/2

( φ

u+ u2 cos θ

)2

θ
(2.34)

+
φ2
σ

2(u2
θ + u2)1/2(1 + u cos θ)3

(2.35)

+
−uuθ + u3

θ cos θ

(u2
θ + u2)3/2(u+ u2 cos θ)

( φ

u+ u2 cos θ

)
θ
φ (2.36)

+
(2u3 cos θ + u2

θ + 3uu2
θ cos θ)φ2

2(u2
θ + u2)3/2(u+ u2 cos θ)2

]
dθdσ. (2.37)

To find Ľ, note that the operator N is given by

N (v)(θ, σ) =

∫
Ωc

G(1 + ueiθ, σ, ρ, ζ, τ) dρdζdτ (2.38)

where
G(r, z, σ, ρ, ζ, τ) =

ρ

4π
√
r2 + ρ2 − 2rρ cos(σ − τ) + (z − ζ)2

(2.39)

is the Green’s function of −∆ on R3 in the cylindrical coordinates. Then

N ′(v)φ =
∂N (v + εφ)

∂ε

∣∣∣
ε=0

=
∂

∂ε

∣∣∣
ε=0

∫ 2π

0

∫ 2π

0

∫ uε(ω,τ)

0

G(1 + uε(θ, σ)eiθ, σ, 1 + heiω, τ)hdhdωdτ

=

∫ 2π

0

∫ 2π

0

G(1 + ueiθ, σ, 1 + ueiω, τ)
φ(ω, τ)

1 + u(ω, τ) cosω
dωdτ

+
φ(θ, σ)

u+ u2 cos θ

∫
Ωc

∇G(1 + ueiθ, σ, ρ, ζ, τ) · eiθ dρdζdτ. (2.40)

By (2.40),
Ľφ = N ′(v)φ−N ′(v)φ. (2.41)

For a simpler notation, we have introduces a convention to write eiθ for (cos θ, sin θ) in the rz-plane and
eiω for (cosω, sinω) in the ρζ-plane. Also, (∂G∂r ,

∂G
∂z ), the gradient of G with respect to its first two variables

r and z, is denoted ∇G.
The axial symmetry of v allows us to decompose L into invariant subspaces. Let

Z = ⊕∞m=0Zm (2.42)

where

Z0 =
{
ϕ(θ) : ϕ ∈ L2(S1),

∫ 2π

0

ϕ(θ) dθ = 0
}

(2.43)

Zm =
{
ϕ1(θ) cosmσ + ϕ2(θ) sinmσ : ϕ1, ϕ2 ∈ L2(S1)

}
(2.44)
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Also write
Xm = X ∩ Zm. (2.45)

For each m = 0, 1, 2, ..., L maps Xm to Zm, so each Zm is an invariant subspace of L. There exist operators
Lm acting on ϕ(θ) so that

L(ϕ(θ)) = L0ϕ, i.e. L0 is L restricted to axially symmetric inputs (2.46)

L(ϕ(θ) cosmσ) = (Lmϕ) cosmσ, L(ϕ(θ) sinmσ) = (Lmϕ) sinmσ, m = 1, 2, 3, ... (2.47)

The operator L0 maps from H2
] (S1) to L2

] (S
1) where

H2
] (S1) =

{
ϕ ∈ H2(S1) :

∫ 2π

0

ϕ(θ) dθ = 0
}
, L2

] (S
1) =

{
ϕ ∈ L2(S1) :

∫ 2π

0

ϕ(θ) dθ = 0
}
. (2.48)

The other Lm’s, m = 1, 2, 3, ..., map from H2(S1) to L2(S1). We refer to m as a mode of L. The spectrum
of L is the union of the spectra of the Lm’s.

Associated with L̂ (resp. Ľ) there also exist L̂m (resp. Ľm) for which analogies of (2.46) and (2.47) hold.
Then each Lm can be written as

Lm = L̂m + γĽm. (2.49)

The first operator L̂m is given by a quadratic form

〈L̂mϕ,ϕ〉 =

∫ 2π

0

[ (1 + u cos θ)uθ
(u2
θ + u2)1/2

(−(1 + 2u cos θ)ϕ2

2(u+ u2 cos θ)3

)
θ

(2.50)

− (u+ 2u2 cos θ + u2
θ cos θ)(1 + 2u cos θ)ϕ2

2(u2
θ + u2)1/2(u+ u2 cos θ)3

(2.51)

+
(1 + u cos θ)u2

2(u2
θ + u2)3/2

( ϕ

u+ u2 cos θ

)2

θ
(2.52)

+
m2ϕ2

2(u2
θ + u2)1/2(1 + u cos θ)3

(2.53)

+
−uuθ + u3

θ cos θ

(u2
θ + u2)3/2(u+ u2 cos θ)

( ϕ

u+ u2 cos θ

)
θ
ϕ (2.54)

+
(2u3 cos θ + u2

θ + 3uu2
θ cos θ)ϕ2

2(u2
θ + u2)3/2(u+ u2 cos θ)2

]
dθ. (2.55)

Here we have used the same 〈·, ·〉 to denote the inner product in L2(S1). For the second operator Ľm, define

Gm(r, z, ρ, ζ) =
1

4π

∫ 2π

0

ρeimτ dτ√
r2 + ρ2 − 2rρ cos τ + (z − ζ)2

, m = 0, 1, 2, ... (2.56)

One derives from (2.40)

Ľ0ϕ =

∫ 2π

0

G0(1 + ueiθ, 1 + ueiω)ϕ(ω)

1 + u cosω
dω +

ϕ(θ)

u+ u2 cos θ

∫
Ω′
∇G0(1 + ueiθ, ρ, ζ) · eiθ dρdζ (2.57)

−Av
(∫ 2π

0

G0(1 + ueiθ, 1 + ueiω)ϕ(ω)

1 + u cosω
dω +

ϕ(θ)

u+ u2 cos θ

∫
Ω′
∇G0(1 + ueiθ, ρ, ζ) · eiθ dρdζ

)
where Av(...) denotes the average of a function of θ over (0, 2π), and

Ľmϕ =

∫ 2π

0

Gm(1 + ueiθ, 1 + ueiω)ϕ(ω)

1 + u cosω
dω +

ϕ(θ)

u+ u2 cos θ

∫
Ω′
∇G0(1 + ueiθ, ρ, ζ) · eiθ dρdζ, m = 1, 2, 3, ...

(2.58)
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3 Fine properties of Ω

We collect some properties of the torus profile.

Proposition 3.1 A torus profile Ω, also identified by u or v, of radii 1 and q exists when q is sufficiently
small. It has the following properties.

1. The profile Ω is an axially symmetric set.

2. The function v satisfies the following conditions.∫ 2π

0

(
v(θ)−

(q2

2
+
q3

3
cos θ

))
dθ = 0 (3.1)∫ 2π

0

(
v(θ)−

(q2

2
+
q3

3
cos θ

))
cos θ dθ = 0 (3.2)∫ 2π

0

(
v(θ)−

(q2

2
+
q3

3
cos θ

))
sin θ dθ = 0. (3.3)

3. Both u and v are even functions

u(−θ) = u(θ), v(−θ) = v(θ), ∀θ ∈ S1.

The first two parts of the proposition are shown in the proof of [19, Theorem 1.1]. The function q2

2 + q3

3 cos θ
represents the perfect torus of radii 1 and q. Equations (3.2) and (3.3) in Part 2 give a precise meaning that
the perturbed circle 1 + u(θ)eiθ, θ ∈ S1, where u corresponds to v, in the rz-plane is centered at (1, 0). This
implies that Ω, although a perturbed torus, still has a well defined major radius equal to 1. Equation (3.1)
is the same as the volume constraint (2.7). It also serves as the interpretation that the minor radius of the
profile equals q.

Part 3 asserts that the torus profile has the mirror symmetry with respect to the xy-plane. This property
is not claimed in [19] but can be established easily. One considers the profile equation (1.12) in the class
of even functions and the same proof of [19, Theorem 1.1] still works if the function spaces used in [19] are
replaced by their restrictions to even functions.

To learn more about the torus profile, one needs a better understanding of the function Gm in (2.56).
Rewrite Gm as

Gm(r, z, ρ, ζ) =
1

2π

√
ρ

r

∫ π/2

0

cos 2mτ dτ√
β + sin2 τ

, where β =
(r − ρ)2 + (z − ζ)2

4rρ
. (3.4)

Lemma 3.2 below shows the asymptotic behavior of the integral in (3.4) with respect to β. Two important
quantities, dm0 and dm1 , both dependent on m, appear in this lemma. Lemma 3.3 deals with the growth rate
of the two quantities as m tends to ∞. Lemma 3.4 follows from Lemmas 3.2 and 3.3 and provides sharp
estimates for Gm. The last Lemma 3.5 shows the positivity of two quantities that are closely related to dm0
and d1

m. We place the proofs of these lemmas in the appendix.

Lemma 3.2 Let α ∈ (0, 1). Then for small β we have the expansion∫ π/2

0

cos 2mτ dτ√
β + sin2 τ

=
(1

2
+
(m2

2
− 1

8

)
β
)

log
16

β
+ dm0 + dm1 β +R(β)

where

dm0 = −2

∫ π/2

0

sin2mτ

sin τ
dτ, dm1 =

1

4
− m2

2
−
∫ π/2

0

m2 sin2 τ − sin2mτ

sin3 τ
dτ,

and R(β) is a small quantitity satisfying

10



1. |R(β)| ≤ Cβ2 log
1

β
, if m = 0 or m = 1, and

2. |R(β)| ≤ Cm2+2αβ1+α, if m ≥ 2.

The constant C in 1. does not depend on α or β; the constant C in 2. depends on α but not on m or β.

Lemma 3.3 For large m,

1.

∫ π/2

0

sin2mτ

sin τ
dτ =

1

2
logm+O(1), and

2.

∫ π/2

0

m2 sin2 τ − sin2mτ

sin3 τ
dτ = m2 logm+O(m2).

Consequently dm0 = − logm+O(1) and dm1 = −m2 logm+O(m2).

Lemma 3.4 Let r = 1 +O(q), z = O(q), ρ = 1 +O(q), and ζ = O(q).

1. If m = 0, then

G0(r, z, ρ, ζ) =
1

2π
log

8
√
rρ

|(r, z)− (ρ, ζ)|
− r − ρ

4πρ
log

8
√
rρ

|(r, z)− (ρ, ζ)|

+
5(r − ρ)2 − (z − ζ)2

32πρ2
log

8
√
rρ

|(r, z)− (ρ, ζ)|
+

(r − ρ)2 + (z − ζ)2

32πρ2

+O
(
q3 log

8

q

)
.

2. If m = 1, then

G1(r, z, ρ, ζ) =
1

2π
log

8
√
rρ

|(r, z)− (ρ, ζ)|
− r − ρ

4πρ
log

8
√
rρ

|(r, z)− (ρ, ζ)|

+
9(r − ρ)2 + 3(z − ζ)2

32πρ2
log

8
√
rρ

|(r, z)− (ρ, ζ)|
− 1

π

√
ρ

r
− (r − ρ)2 + (z − ζ)2

32πρ2

+O
(
q3 log

8

q

)
.

3. If m ≥ 2, then

Gm(r, z, ρ, ζ) =
1

2π
log

8
√
rρ

|(r, z)− (ρ, ζ)|
− r − ρ

4πρ
log

8
√
rρ

|(r, z)− (ρ, ζ)|

+
(4m2 + 5)(r − ρ)2 + (4m2 − 1)(z − ζ)2

32πρ2
log

8
√
rρ

|(r, z)− (ρ, ζ)|

+
dm0
2π

√
ρ

r
+
(dm1

2π

) (r − ρ)2 + (z − ζ)2

4ρ2

+O(m2q3 log
8

q
) +O((m2 logm)q3) +O

(
m2+2αq2+2α

)

Lemma 3.5 1. When m ≥ 2,

∫ π/2

0

m2 sin2 τ − sin2mτ

sin3 τ
dτ > 0.

2. When m ≥ 2, 1−
∫ π/2

0

sin2mτ

sin τ
dτ +

∫ π/2

0

m2 sin2 τ − sin2mτ

sin3 τ
dτ > 0.
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The function u that characterizes the profile Ω can be expanded into a series

u = u0 + u1 + u2... (3.5)

This is an expansion with respect to the parameter q, so each term uk is of the order q less than the previous
term uk−1. However in general uk is not just a function independent of q multiplied by a power of q; uk
may also depend on 1

log 8
q

and each uk can again be expanded into a series where each term is of 1
log 8

q

order

less than the previous term. This means a two parameter expansion with respect to the primary parameter
q and the secondary parameter 1

log 8
q

.

The leading order term u0 in (3.5) is
u0 = q. (3.6)

This term corresponds to the perfect torus whose two radii are 1 and q. This particular u0 does not depend
on 1

log 8
q

. Later we will see in (3.31) that

u1 = 0 and u2 = q3
( 12 log 8

q − 5

288 log 8
q − 456

)
cos 2θ (3.7)

In u2 there are both q3 and a fraction that depends on 1
log 8

q

. The fraction can itself be expended as a power

series of 1
log 8

q

so that

u2 = q3
( 1

24
+

7

144

( 1

log 8
q

)
+

133

1728

( 1

log 8
q

)2

+
2527

20736

( 1

log 8
q

)3

+ ...
)

cos 2θ (3.8)

Recall that the torus profile Ω is identified by either u or v. They are related via the transformation
(2.16). The function v is also expanded with respect to q so that

v = v0 + v1 + v2... (3.9)

The two leading orders of v are

v0 =
q2

2
and v1 =

q3

3
cos θ. (3.10)

Note that

v0 + v1 =
q2

2
+
q3

3
cos θ (3.11)

describes the perfect torus and it is related to u0 by (2.16).
To determine v2 in the expansion of v, we need an estimate on S(v0 +v1). The mean curvature of v0 +v1

is

H(v0 + v1)(θ) =
1

2

(1

q
+

cos θ

1 + q cos θ

)
=

1

2q
+

cos θ

2
− q

4
− cos 2θ

4
q +O(q2). (3.12)

To find the Newtonian potential of v0 + v1,

N (v0 + v1)(θ) =

∫ 2π

0

∫ q

0

G0(1 + qeiθ, 1 + heiω)hdhdω = q2

∫ 2π

0

∫ 1

0

G0(1 + qeiθ, 1 + qheiω)hdhdω, (3.13)

use Lemma 3.4 to break G0 into three terms and evaluate three corresponding integrals. First with

r = 1 + q cos θ, z = q sin θ, ρ = 1 + qh cosω, ζ = qh sinω,
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∫ 2π

0

∫ 1

0

1

2π
log

8
√
rρ

|(r, z)− (ρ, ζ)|
hdhdω

=
1

2
log

8

q
+

1

2π

∫ 2π

0

∫ 1

0

(
log
√

(1 + q cos θ)(1 + qh cosω) + log
1

|1− hei(θ−ω)|

)
hdhdω

=
1

2
log

8

q
+

1

2π

∫ 2π

0

∫ 1

0

(q(cos θ + h cosω)

2
+
q2h cos θ cosω

2
− q2(cos θ + h cosω)2

4

)
hdhdω +O(q3)

=
1

2
log

8

q
+

1

2π

∫ 2π

0

∫ 1

0

(q cos θ

2
− q2 cos2 θ + q2h2 cos2 ω

4

)
hdhdω +O(q3)

=
1

2
log

8

q
+

cos θ

4
q − cos2 θ

8
q2 − q2

32
+O(q3)

=
1

2
log

8

q
+

cos θ

4
q − cos 2θ

16
q2 − 3

32
q2 +O(q3). (3.14)

Here we have used the important formula

log
1

|1− hei(θ−ω)|
=

∞∑
n=1

hn cosn(θ − ω)

n
, h ∈ [0, 1] (3.15)

which will be called upon several more times. The next term is∫ 2π

0

∫ 1

0

−r − ρ
4πρ

log
8
√
rρ

|(r, z)− (ρ, ζ)|
hdhdω

=

∫ 2π

0

∫ 1

0

q(− cos θ + h cosω)

4π(1 + qh cosω)

(
log

8

q
+ log

1

|1− hei(θ−ω)|
+ log

√
(1 + q cos θ)(1 + qh cosω)

)
hdhdω

=
q

4π

∫ 2π

0

∫ 1

0

(− cos θ + h cosω)(1− qh cosω)
(

log
8

q
+

∞∑
n=1

hn cosn(θ − ω)

n
+
q(cos θ + h cosω)

2

)
hdhdω

+O(q3 log
8

q
)

=
q

4π

∫ 2π

0

∫ 1

0

(− cos θ + h cosω)
(

log
8

q
+

∞∑
n=1

hn cosn(θ − ω)

n

)
hdhdω

− q
2

4π

∫ 2π

0

∫ 1

0

(− cos θ + h cosω)h cosω
(

log
8

q
+

∞∑
n=1

hn cosn(θ − ω)

n

)
hdhdω

+
q2

4π

∫ 2π

0

∫ 1

0

(− cos θ + h cosω)
(cos θ + h cosω

2

)
hdhdω +O(q3 log

8

q
)

=
q

4π

(
− π cos θ log

8

q
+
π cos θ

4

)
− q2

4π

(
− π cos2 θ

4
+
π

4
log

8

q
+
π cos 2θ

24

)
+
q2

4π

(
− π cos2 θ

2
+
π

8

)
+O(q3 log

8

q
)

= −cos θ

4
q log

8

q
+

cos θ

16
q − 1

16
q2 log

8

q
− cos 2θ

24
q2 +O(q3 log

8

q
). (3.16)

The third term is∫ 2π

0

∫ 1

0

5(r − ρ)2 − (z − ζ)2

32πρ2
log

8
√
rρ

|(r, z)− (ρ, ζ)|
hdhdω

=
q2

32π

∫ 2π

0

∫ 1

0

(
5(cos θ − h cosω)2 − (sin θ − h sinω)2

)(
log

8

q
+ log

1

|1− hei(θ−ω)|

)
hdhdω
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+O(q3 log
8

q
)

=
q2

32π

∫ 2π

0

∫ 1

0

(
6 cos2 θ − 1− 10h cos θ cosω + 2h sin θ sinω + 6h2 cos2 ω − h2

)
(

log
8

q
+

∞∑
n=1

hn cosn(θ − ω)

n

)
hdhdω +O(q3 log

8

q
)

=
q2

32π

∫ 2π

0

∫ 1

0

(
6 cos2 θ − 1 + 6h2 cos2 ω − h2

)
log

8

q
hdhdω

+
q2

32π

∫ 2π

0

∫ 1

0

(
− 10h cos θ cosω + 2h sin θ sinω + 6h2 cos2 ω

) ∞∑
n=1

hn cosn(θ − ω)

n
hdhdω

+O(q3 log
8

q
)

=
q2

32π
log

8

q

(
6π cos2 θ − π +

3π

2
− π

2

)
+

q2

32π

(
− 5π

2
cos2 θ +

π

2
sin2 θ +

π cos 2θ

4

)
+O(q3 log

8

q
)

=
3 cos 2θ

32
q2 log

8

q
+

3

32
q2 log

8

q
− 5 cos 2θ

128
q2 − 1

32
q2 +O(q3 log

8

q
). (3.17)

And finally the fourth term is∫ 2π

0

∫ 1

0

(r − ρ)2 + (z − ζ)2

32πρ2
hdhdω

=
q2

32π

∫ 2π

0

∫ 1

0

(
(cos θ − h cosω)2 + (sin θ − h sinω)2

)
hdhdω +O(q3)

=
q2

32π

∫ 2π

0

∫ 1

0

(1 + h2)hdhdω +O(q3)

=
3

64
q2 +O(q3). (3.18)

Summing up (3.14), (3.16), (3.17), and (3.18), one deduces

N (v0 + v1) =
q2

2
log

8

q
+

cos θ

4
q3 − cos 2θ

16
q4 − 3

32
q4 − cos θ

4
q3 log

8

q
+

cos θ

16
q3 − 1

16
q4 log

8

q
− cos 2θ

24
q4

+
3 cos 2θ

32
q4 log

8

q
+

3

32
q4 log

8

q
− 5 cos 2θ

128
q4 − 1

32
q4 +

3

64
q4 +O(q5 log

8

q
)

=
q2

2
log

8

q
− cos θ

4
q3 log

8

q
+

5 cos θ

16
q3 +

3 cos 2θ

32
q4 log

8

q
+

1

32
q4 log

8

q
− 55 cos 2θ

384
q4 − 5

64
q4

+O(q5 log
8

q
).

Hence

S(v0 + v1) =
cos θ

2
− cos 2θ

4
q +O(q2)

+γ
(
− cos θ

4
q3 log

8

q
+

5 cos θ

16
q3 +

3 cos 2θ

32
q4 log

8

q
− 55 cos 2θ

384
q4 +O(q5 log

8

q
)
)
.

Note that the constant terms like 1
2q in H(v0 + v1) and q2

2 log 8
q in N (v0 + v1) vanish because the average of

S(v0 + v1) is 0 as in (2.12).
We expand γ into

γ =
Γ

q3
+

Γ′

q2
+

Γ′′

q
+ .... (3.19)
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Then

S(v0 + v1) =
cos θ

2
+ Γ

(
− cos θ

4
log

8

q
+

5 cos θ

16

)
− cos 2θ

4
q

+Γ
(3 cos 2θ

32
q log

8

q
− 55 cos 2θ

384
q
)

+ Γ′q
(
− cos θ

4
log

8

q
+

5 cos θ

16

)
+ ... (3.20)

The leading order in (3.20) vanishes so

cos θ

2
+ Γ

(
− cos θ

4
log

8

q
+

5 cos θ

16

)
= 0. (3.21)

Therefore

Γ =
8

4 log 8
q − 5

. (3.22)

With this choice of Γ, (3.20) becomes

S(v0 + v1) = −cos 2θ

4
q + Γ

(3 cos 2θ

32
q log

8

q
− 55 cos 2θ

384
q
)

+ Γ′q
(
− cos θ

4
log

8

q
+

5 cos θ

16

)
+ ... (3.23)

The term v2 in the expansion of v solves

L0
0v2 −

cos 2θ

4
q + Γ

(3 cos 2θ

32
q log

8

q
− 55 cos 2θ

384
q
)

+ Γ′q
(
− cos θ

4
log

8

q
+

5 cos θ

16

)
= 0. (3.24)

Here L0
0 is the leading order approximation of S ′(v0) in the axially symmetric class given by

L0
0φ =

1

2q3

(
− φθθ − φ

)
+

Γ

q3

∫ 2π

0

1

2π
log

8

q|eiθ − eiω|
φ(ω) dω − Γφ(θ)

2q3
. (3.25)

Note that cos θ and sin θ form the kernel of L0
0, i.e.

L0
0(cos θ) = L0

0(sin θ) = 0. (3.26)

The derivation of (3.26) makes use of (3.15). We will have more to say about L0
0 in Sections 4 and 5.

Multiplying (3.24) by cos θ and integrate, we deduce

Γ′ = 0. (3.27)

Moreover, by Part 2 of Proposition 3.1, v2 must be perpendicular to 1, cos θ, and sin θ, i.e.∫ 2π

0

v2(θ) dθ =

∫ 2π

0

v2(θ) cos θ dθ =

∫ 2π

0

v2(θ) sin θ dθ = 0. (3.28)

Then v2 = q4A cos 2θ by (3.24), (3.27), and (3.28) where A satisfies[4− 1

2q3
+

Γ

q3

(1

4
− 1

2

)]
Aq4 − q

4
+

Γ

q3

( 3

32
q4 log

8

q
− 55

384
q4
)

= 0

With Γ given by (3.22),

A =

1
4 − Γ

(
3
32 log 8

q −
55
384

)
3
2 − Γ 1

4

=
12 log 8

q − 5

288 log 8
q − 456

. (3.29)

In summary we have the expansion

v = v0 + v1 + v2 + ...

=
q2

2
+
q3 cos θ

3
+ q4A cos 2θ + ... (3.30)
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for v, where A is given in (3.29). Consequently we have an expansion for u

u = u0 + u1 + u2 + ...

= q + q3A cos 2θ + ... (3.31)

derived from (2.16). In (3.31)
u1 = 0. (3.32)

4 Expansion of Lm

The next objective is to study L, the linearized operator at v, through the expansions of the Lm’s. Recall
that L is decomposed into the Lm’s, m = 0, 1, 2... For each m, one can expand Lm in terms of q:

Lm = Lm0 + Lm1 + Lm2 + ... (4.1)

To this end we need expansions of L̂m and Ľm

L̂m = L̂m0 + L̂m1 + L̂m2 + ..., Ľm = Ľm0 + Ľm1 + Ľm2 + ... (4.2)

First consider the m ≥ 1 case. The expansion (3.31) gives a very precise approximation of u. We insert
(3.31) into the Lm’s derived in Section 2 and find their expansions in terms of q. Regarding L̂m, the leading
order L̂m0 is derived from the leading orders of (2.51) and (2.52):

〈L̂m0 ϕ,ϕ〉 =

∫ 2π

0

( ϕ2
θ

2q3
− ϕ2

2q3

)
dφ; (4.3)

namely

L̂m0 ϕ = −ϕθθ
2q3
− ϕ

2q3
. (4.4)

For L̂m1 the terms (2.50), (2.53), and (2.54) are negligible. The terms (2.51), (2.52), and (2.55) give rise to

〈L̂m1 ϕ,ϕ〉 =

∫ 2π

0

[− cos θϕ2

2q2
+

2 sin θϕθϕ− cos θϕ2
θ

2q2
+

cos θϕ2

q2

]
dθ =

∫ 2π

0

(
− cos θ

2q2

)
ϕ2
θ, (4.5)

so

L̂m1 ϕ =
(cos θ

2q2
ϕθ

)
θ
. (4.6)

To find L̂m2 , the terms (2.50)-(2.55) respectively yield

〈L̂m2 ϕ,ϕ〉 =

∫ 2π

0

[A sin 2θ

q
(ϕ2)θ (4.7)

+
2 cos2 θ + 3A cos 2θ

2q
ϕ2 (4.8)

+
cos2 θ − 3A cos 2θ

2q
ϕ2
θ +

2A sin 2θ − sin 2θ

q
ϕθϕ+

sin2 θ

2q
ϕ2 (4.9)

+
m2

2q
ϕ2 (4.10)

+
2A sin 2θ

q
ϕθϕ (4.11)

−2 cos2 θ

q
ϕ2
]
dθ (4.12)

=
1

q

∫ 2π

0

[(1

4
+
(1

4
− 3A

2

)
cos 2θ

)
ϕ2
θ +

(m2

2
− 1

4
+
(1

4
− 9A

2

)
cos 2θ

)
ϕ2
]
dθ. (4.13)
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This gives the operator

L̂m2 ϕ =
1

q

[
−
(1

4
+
(1

4
− 3A

2

)
cos 2θ

)
ϕθ

]
θ

+
1

q

[m2

2
− 1

4
+
(1

4
− 9A

2

)
cos 2θ

]
ϕ. (4.14)

Note in (4.14) the presence of A from the expansion (3.31) of u.
Regarding Ľm, we invoke Lemma 3.4. The leading order is

Ľm0 ϕ =

∫ 2π

0

( 1

2π
log

8

q|eiθ − eiω|
+
dm0
2π

)
ϕ(ω) dω − ϕ(θ)

2
. (4.15)

The next order is

Ľm1 ϕ =
q

2π

∫ 2π

0

[
(− cosω) log

8

q|eiθ − eiω|
+

cos θ + cosω

2

]
ϕ(ω) dω

− q

4π

∫ 2π

0

[
(cos θ − cosω) log

8

q|eiθ − eiω|

]
ϕ(ω) dω

−qd
m
0

4π

∫ 2π

0

(cos θ + cosω)ϕ(ω) dω

+q
(3 cos θ

4

)
ϕ

+q
(
− cos θ

4
log

8

q
+

3 cos θ

16

)
ϕ

which is simplified to

Ľm1 ϕ =
q

2π

∫ 2π

0

[− cos θ − cosω

2
log

8

q|eiθ − eiω|
+
(1

2
− dm0

2

)
(cos θ + cosω)

]
ϕ(ω) dω

+q
(
− cos θ

4
log

8

q
+

15 cos θ

16

)
ϕ. (4.16)

And

Ľm2 ϕ =
q2

2π

∫ 2π

0

(
cos2 ω log

8

q|eiθ − eiω|
− cos2 θ + 2 cos θ cosω + 3 cos2 ω

4
− A(cos 2θ + cos 2ω)

2

)
ϕ(ω) dω

− q
2

4π

∫ 2π

0

(
− 2(cos θ cosω − cos2 ω) log

8

q|eiθ − eiω|
+

cos2 θ − cos2 ω

2

)
ϕ(ω) dω

+
q2

32π

∫ 2π

0

((
(4m2 + 5)(cos θ − cosω)2 + (4m2 − 1)(sin θ − sinω)2

)
log

8

q|eiθ − eiω|

)
ϕ(ω) dω

+
dm0 q

2

2π

∫ 2π

0

(1

4
cos θ cosω +

3

8
(cos2 θ + cos2 ω)

)
ϕ(ω) dω

+
dm1 q

2

4π

∫ 2π

0

(
1− cos(θ − ω)

)
ϕ(ω) dω

+q2
(
− cos2 θ +

A cos 2θ

2

)
ϕ(θ)

+q2
(1

8
log

8

q
+

cos 2θ

8
log

8

q
− 5

32
− 19 cos 2θ

96

)
ϕ(θ)

+
q2

32

(
4 log

8

q
+ 6 cos 2θ log

8

q
− 3− 7 cos 2θ

2

)
ϕ(θ)

+
q2

16
ϕ(θ)
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which is simplified to

Ľm2 ϕ =
q2

2π

∫ 2π

0

[(2m2 + 1

4
− m2 cos(θ − ω)

2
+

3(cos 2θ + cos 2ω)

16
+

3 cos θ cosω + sin θ sinω

8

)
log

8

q|eiθ − eiω|
+
−4 + 3dm0 + 4dm1

8
− dm1 cos(θ − ω)

2
+
(−4− 8A+ 3dm0

16

)
(cos 2θ + cos 2ω)

+
(−2 + dm0

4

)
cos θ cosω

]
ϕ(ω) dω

+q2
[(1

4
+

5 cos 2θ

16

)
log

8

q
− 11

16
+
(
− 155

192
+
A

2

)
cos 2θ

]
ϕ(θ). (4.17)

In the m = 0 case, one finds similar operators L̂0
0, L̂0

1, L̂0
2,..., Ľ0

0, Ľ0
1, Ľ0

2, ..., except that one must include
an additional functional in each operator so that the average of the outcome vanishes. We have seen this
already in (2.57) where −Av(...) is the functional.

By the expansion (3.22) for γ where Γ′ = 0, one obtains

Lm0 = L̂m0 +
Γ

q3
Ľm0 (4.18)

Lm1 = L̂m1 +
Γ

q3
Ľm1 (4.19)

Lm2 = L̂m2 +
Γ

q3
Ľm2 +

Γ′′

q
Ľm0 . (4.20)

This expansion is used to approximate Lm, but it does not approximate uniformly with respect to all m. In
the next section, we restrict to the small m’s where the approximation is uniform. The large and medium
m’s will be treated differently in later sections.

5 Small modes

Consider Lm0 , the leading order approximation of Lm,

Lm0 ϕ =
1

2q3

(
− ϕθθ − ϕ

)
+

Γ

q3

∫ 2π

0

( 1

2π
log

8

q|eiθ − eiω|
+
dm0
2π

)
ϕ(ω) dω − Γϕ(θ)

2q3
. (5.1)

In the case m = 0, we have seen L0
0 before in (3.25) as the leading order approximation for S ′(v0 + v1)

in the axially symmetric class. The same L0
0 is now the leading order approximation for S ′(v) in the axially

symmetric class.
If m = 0, the eigenvalues and the corresponding eigenfunctions of L0

0 are

µ0
k =

1

q3

(k2 − 1

2
+ Γ

( 1

2k
− 1

2

))
, ϕ0

k = cos kθ or sin kθ, k = 1, 2, 3, ... (5.2)

If m ≥ 1, the eigenvalues and the corresponding eigenfunctions of Lm0 are

µmk =


1
q3

(
− 1

2 + Γ
(

log 8
q + dm0 − 1

2

))
, ϕm0 = 1, if k = 0

1
q3

(
k2−1

2 + Γ
(

1
2k −

1
2

))
, ϕmk = cos kθ or sin kθ, if k = 1, 2, 3, ...

(5.3)

As the eigenvalues of the Lm0 ’s, these µmk ’s serve as the leading order approximations of the eigenvalues
of the Lm’s. Clearly

µm1 = 0, m = 0, 1, 2, ... (5.4)
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Positive µmk ’s lead to positive eigenvalues of the Lm’s. Note that if Γ < 6, then

µmk > 0, for all k ≥ 2 and m = 0, 1, 2, ... (5.5)

Since Γ is small if q is small by (3.22), (5.5) holds for sufficiently small q.
The remaining eigenvalues µm0 , m ≥ 1, are rather interesting. Since only small modes are considered in

this section, i.e. m ∈ {1, 2, ...,Mi}, the µm0 ’s are positive, if q is sufficiently small. The situation will be a lot
more complicated if m is a medium mode or a large mode. For now in the small mode case, we only need to
investigate eigenvalues of Lm whose leading order approximations are µm1 , m = 0, 1, 2, ...,Mi.

One remark is in order. There are five degrees of freedom associated with the profile Ω: translations of Ω
in x, y, or z directions respectively, and rotations of Ω about x axis or y axis. So L must have a kernel whose
dimension is at least 5. It turns out that (µ0

1 = 0, ϕ0
1 = sin θ) is the eigenpair that is related to the translation

in z direction; (µ1
1 = 0, ϕ1

1 = cos θ) pair is related to the translation in x direction and the translation in y
direction; (µ1

1 = 0, ϕ1
1 = sin θ) is related to the rotation about the x axis and the rotation about the y axis.

Now we restate Part 1 of Theorem 1.1 and prove it in the succeeding subsections.

Theorem 5.1 1. There exists q̃ > 0 such that when q ∈ (0, q̃), one of L0’s eigenvalues is zero with
multiplicity one, and all other eigenvalues are positive.

2. There exists q̃ > 0 such that when q ∈ (0, q̃), one of L1’s eigenvalues is zero with multiplicity two, and
all other eigenvalues are positive.

3. For every Mi > 0, there exists q̃i > 0 depending on Mi such that when q ∈ (0, q̃i) and m ∈ {2, 3, ...,Mi},
all of Lm’s eigenvalues are positive.

5.1 m ≥ 1 and f0 = cos θ

The eigenvalue µm1 = 0 of Lm0 has multiplicity 2 which makes perturbation analysis for Lm more complicated.
Fortunately this problem can be circumvented. Since v is even (Ω is symmetric about the xy-plane), Lm
maps even functions to even functions and odd functions to odd functions. Define

L2
even(S1) =

{
ϕ ∈ L2(S1) : ϕ(−θ) = ϕ(θ)

}
and L2

odd(S
1) =

{
ϕ ∈ L2(S1) : ϕ(−θ) = −ϕ(θ)

}
, (5.6)

so that
L2(S1) = L2

even(S1)⊕ L2
odd(S

1). (5.7)

Then for m ≥ 1, Lm (as well as Lm0 , Lm1 , Lm2 , etc) maps H2(S1) ∩ L2
even(S1) into L2

even(S1) and H2(S1) ∩
L2
odd(S

1) into L2
odd(S

1). When Lm0 is restricted to each of the two subspaces, 0 becomes a simple eigenvalue.
In this subsection we consider Lm on the even subspace, (µm1 = 0, ϕm1 = cos θ), with m ≥ 1. Denote by

(λ, f) the eigen pair of Lm whose leading order approximation is (µm1 , cos θ). Expand f as

f = f0 + f1 + f2 + ... (5.8)

in terms of q and the corresponding λ as

λ =
λ0

q3
+
λ1

q2
+
λ2

q
+ ... (5.9)

Furthermore one requires that
‖f‖L2 = ‖f0‖L2 . (5.10)

which implies that
〈f0, f1〉 = 0. (5.11)

From

(Lm0 + Lm1 + Lm2 + ...)(f0 + f1 + f2 + ...) =
(λ0

q3
+
λ1

q2
+
λ2

q
+ ...

)
(f0 + f1 + f2 + ...), (5.12)
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the leading order gives

Lm0 f0 =
λ0

q3
f0 (5.13)

whose solution is chosen to be
λ0 = 0 and f0 = cos θ (5.14)

in this subsection.
The second order of (5.12) is

Lm0 f1 + Lm1 f0 =
λ0

q3
f1 +

λ1

q2
f0 (5.15)

which by (5.14) is reduced to

Lm0 f1 + Lm1 f0 =
λ1

q2
f0. (5.16)

Compute

Lm1 f0 = L̂m1 (cos θ) +
Γ

q3
Ľm1 (cos θ)

= −cos 2θ

2q2
+

Γ

q2

(
− 3

8
log

8

q
− cos 2θ

8
log

8

q
+

19

32
− dm0

4
+

9 cos 2θ

32

)
(5.17)

by (4.6) and (4.16). Then
〈Lm1 f0, f0〉 = 0, (5.18)

and taking the inner product of (5.16) with f0, we deduce

λ1 = 0. (5.19)

This further reduces (5.16) to
Lm0 f1 + Lm1 f0 = 0. (5.20)

Then by (5.11) and (5.17), f1 must be of the form

f1(θ) = q(B +D cos 2θ). (5.21)

Since

Lm0 (B +D cos 2θ) =
B

q3

[
− 1

2
+ Γ

(
log

8

q
+ dm0 −

1

2

)]
+
D

q3

[3 cos 2θ

2
− Γ

cos 2θ

4

]
, (5.22)

(5.17), (5.20) and (5.22) imply

B =
−Γ(− 3

8 log 8
q + 19

32 −
dm0
4 )

− 1
2 + Γ(log 8

q + dm0 − 1
2 )

(5.23)

D =

1
2 − Γ(− 1

8 log 8
q + 9

32 )
3
2 − Γ 1

4

(5.24)

The third order of (5.12) is

Lm0 f2 + Lm1 f1 + Lm2 f0 =
λ0

q3
f2 +

λ1

q2
f1 +

λ2

q
f0 (5.25)

which is reduced to

Lm0 f2 + Lm1 f1 + Lm2 f0 =
λ2

q
f0 (5.26)
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by (5.14) and (5.19). Taking the inner product of (5.26) with f0 yields

〈Lm1 f1, f0〉+ 〈Lm2 f0, f0〉 =
λ2

q
‖f0‖2L2 (5.27)

It remains to calculate

〈Lm1 f1, f0〉 = 〈Lm1 f0, f1〉

=
2πB

q
Γ
(
− 3

8
log

8

q
+

19

32
− dm0

4

)
+
πD

q

(
− 1

2
+ Γ

(
− 1

8
log

8

q
+

9

32

))
= −

(2π

q

)(Γ(− 3
8 log 8

q + 19
32 −

dm0
4 )
)2

− 1
2 + Γ(log 8

q + dm0 − 1
2 )
−
(π
q

)(− 1
2 + Γ(− 1

8 log 8
q + 9

32 )
)2

3
2 − Γ 1

4

(5.28)

〈Lm2 f0, f0〉 = 〈L̂m2 f0, f0〉+
Γ

q3
〈Ľm2 f0, f0〉

=
π

q

(m2

2
− 3A

2

)
+
πΓ

q

((
− m2

4
+

19

32

)
log

8

q
+

3m2

16
+
dm0 − 2dm1

8
− 419

384
+
A

4

)
(5.29)

by (4.14) and (4.17). For 〈Lm2 f0, f0〉, we have used (4.20) and Ľm0 f0 = 0. Following (5.28) and (5.29), one
derives

〈Lm1 f1, f0〉+ 〈Lm2 f0, f0〉

=
(π
q

) log 8
q

(
24dm0 − 48dm1 − 24m2 + 60

)
− 64dm0 d

m
1 − (54 + 32m2)dm0 + 12dm1 + 6m2 − 143(

8 log 8
q − 10

)(
12 log 8

q + 16dm0 − 3
)

=
(π
q

) 1

8 log 8
q − 10

(
− 2m2 + 2dm0 − 4dm1 + 5− 32(dm0 + 2)2

12 log 8
q + 16dm0 − 3

)
(5.30)

where we have used (3.22) and (3.29) for Γ and A. One further expands this with respect to 1
log 8

q

to obtain

〈Lm1 f1, f0〉+ 〈Lm2 f0, f0〉

=
(1

2
− 1

2

∫ π/2

0

sin2mτ

sin τ
dτ +

1

2

∫ π/2

0

m2 sin2 τ − sin2mτ

sin3 τ
dτ
) π

q log 8
q

+O
( 1

q(log 8
q )2

)
(5.31)

The first term in the last line is positive when m ≥ 2 by Part 2 of Lemma 3.5. Hence for each m ≥ 2

λ2 > 0 (5.32)

when q is small. Consequently for each m ≥ 2
λ > 0 (5.33)

if q is small.
So far in this subsection we have shown that for each m ≥ 2 there exists q̃m such that the eigenvalue

of Lm, whose leading order eigen pair approximation is (µm1 , cos θ), is positive if q ∈ (0, q̃m). Note that q̃m
depends on m. Unfortunately it is not possible to make q̃m independent of m. We can at most assert that
there exists q̃i such that if m ∈ {2, 3, ...,Mi} and q ∈ (0, q̃i), then the eigenvalue of Lm associated with
(µm1 , cos θ) is positive.

When m = 1, (5.30) shows that λ2 = 0. Actually in this case λ = 0. This is due to the translation
invariance in the x and y directions. One can translate Ω in the x or y direction by a displacement ε and
obtain a shifted profile Ωε represented by vε. Since vε is still a profile, S(vε) = 0. Differentiating the
equation with respect to ε and setting ε = 0 yield a solution of Lφ = 0. This φ has the form φ = ϕ(θ) cosσ
or ϕ(θ) sinσ. Then L1ϕ = 0. The leading order approximation of ϕ is cos θ so ϕ is just f in the case of
m = 1. The corresponding eigenvalue of L1 is identically 0, so

λ = 0 when m = 1. (5.34)
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5.2 m ≥ 1 and f0 = sin θ

In this subsection we consider Lm, m ≥ 1, from the odd subspace H2(S1)∩L2
odd(S

1) to L2
odd(S

1) and denote
by (λ, f) the eigen pair of Lm whose leading order approximation is (µm1 , sin θ). Then in the expansion
f = f0 + f1 + f2 + ...,

f0 = sin θ, (5.35)

and in the expansion λ = λ0

q3 + λ1

q2 + λ2

q + ...,

λ0 = 0. (5.36)

Next compute

Lm1 f0 = L̂m1 (sin θ) +
Γ

q3
Ľm1 (sin θ)

= − sin 2θ

2q2
+

Γ

q2

(
− 1

8
log

8

q
+

9

32

)
sin 2θ

=
1

q2

[
− 1

2
+ Γ

(
− 1

8
log

8

q
+

9

32

)]
sin 2θ (5.37)

by (4.6) and (4.16). Hence
〈Lm1 f0, f0〉 = 0. (5.38)

This implies
λ1 = 0. (5.39)

The next order f1 of the eigenfunction satisfies

Lm0 f1 + Lm1 f0 = 0, (5.40)

so f1 has the form
f1(θ) = qE sin 2θ. (5.41)

Since

Lm0 (E sin 2θ) =
E

q3

(3

2
− Γ

4

)
sin 2θ, (5.42)

it follows that

E =

1
2 − Γ(− 1

8 log 8
q + 9

32 )
3
2 − Γ 1

4

. (5.43)

It remains to calculate
〈Lm1 f1, f0〉+ 〈Lm2 f0, f0〉 (5.44)

to find λ2. Calculations show

〈Lm1 f1, f0〉 = 〈Lm1 f0, f1〉

=
πE

q

(
− 1

2
+ Γ

(
− 1

8
log

8

q
+

9

32

))
=

(π
q

)−(− 1
2 + Γ(− 1

8 log 8
q + 9

32 )
)2

3
2 − Γ 1

4

(5.45)

〈Lm2 f0, f0〉 = 〈L̂m2 f0, f0〉+
Γ

q3
〈Ľm2 f0, f0〉

=
π

q

(m2

2
+

3A

2

)
+
πΓ

q

((
− m2

4
+

5

32

)
log

8

q
+

3m2

16
− dm1

4
− 85

384
− A

4

)
(5.46)
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by (4.14) and (4.17), and hence

〈Lm1 f1, f0〉+ 〈Lm2 f0, f0〉 =
(π
q

)−4dm1 − 2m2 + 1

8 log 8
q − 10

=
(1

2

∫ π/2

0

m2 sin2 τ − sin2mτ

sin3 τ
dτ
) π

q log 8
q

+O
( 1

q(log 8
q )2

)
(5.47)

by (3.22) and (3.29). The first term in the last line is positive when m ≥ 2 by Part 1 of Lemma 3.5. Hence
for each m ≥ 2,

λ2 > 0 (5.48)

if q is small, and consequently for each m ≥ 2,
λ > 0 (5.49)

if q is sufficiently small.
Because of the rotation invariance of Ω about x and y axes,

λ = 0 when m = 1. (5.50)

5.3 m = 0 and f0 = cos θ

As in the m ≥ 1 case, L0 maps even functions to even functions and odd functions to odd functions. In
this subsection we consider L0 on even functions and let (λ, f) be the eigen pair of L0 whose leading order
approximation is (µ0

1, cos θ). Expand f to

f = f0 + f1 + f2 + ... (5.51)

with
f0 = cos θ, (5.52)

and expand λ to

λ =
λ0

q3
+
λ1

q2
+
λ2

q
+ ... (5.53)

where
λ0 = 0. (5.54)

The calculations in this case remain largely similar to the ones in the m ≥ 1 and f0 = cos θ case, provided
one lets

m = 0, d0
0 = 0, d0

1 =
1

4
. (5.55)

Compute

L0
1f0 = −cos 2θ

2q2
+

Γ

q2

(
− cos 2θ

8
log

8

q
+

9 cos 2θ

32

)
. (5.56)

Note that L0
1f0 in (5.56) differs from (5.17). Here the expression does not have constant terms because the

average of L0
1f0 must vanish. Since 〈L0

1f0, f0〉 = 0,

λ1 = 0. (5.57)

One then finds
f1 = qD cos 2θ (5.58)

where

D =

1
2 − Γ(− 1

8 log 8
q + 9

32 )
3
2 − Γ 1

4

. (5.59)
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It follows that

〈L0
1f1, f0〉 = 〈L0

1f0, f1〉

=
(π
q

)−(− 1
2 + Γ(− 1

8 log 8
q + 9

32 )
)2

3
2 − Γ 1

4

(5.60)

〈L0
2f0, f0〉 = 〈L̂0

2f0, f0〉+
Γ

q3
〈Ľm2 f0, f0〉

=
π

q

(
− 3A

2

)
+
πΓ

q

(19

32
log

8

q
− 443

384
+
A

4

)
. (5.61)

Then

〈L0
1f1, f0〉+ 〈L0

2f0, f0〉 =
(π
q

)12 log 8
q − 27

16 log 8
q − 20

=
(π
q

)(3

4
− 3

4

1

log 8
q

)
+O

( 1

q(log 8
q )2

)
. (5.62)

The first term on the left side is positive if q is small. Hence

λ2 > 0 (5.63)

if q is small, and consequently
λ > 0 (5.64)

if q is small. Note that this λ2 is positive in the leading 1
q order while the earlier positive λ2’s are positive

in the 1
q log 8

q

order.

5.4 m = 0 and f0 = sin θ

Finally consider the eigenfunction f = f0 + f1 + ... of L0 with

f0 = sin θ. (5.65)

The calculations are identical to the m ≥ 1 and f0 = sin θ case, and one finds

λ1 = 0, (5.66)

and
f1 = qE sin 2θ (5.67)

with

E =

1
2 − Γ(− 1

8 log 8
q + 9

32 )
3
2 − Γ 1

4

(5.68)

as before. Lastly

〈L0
1f1, f0〉+ 〈L0

2f0, f0〉 =
(π
q

)−(− 1
2 + Γ(− 1

8 log 8
q + 9

32 )
)2

3
2 − Γ 1

4

+
π

q

(3A

2

)
+
πΓ

q

( 5

32
log

8

q
− 109

384
− A

4

)
= 0 (5.69)

where (5.69) is obtained after one inserts (3.22) for Γ and (3.29) for A. At this point we have deduced that

λ0 = λ1 = λ2 = 0. (5.70)

If one exploits the translation invariance in the z direction, then

λ = 0. (5.71)

In summary, Part 1 of Theorem 5.1 follows from (5.64) and (5.71); Part 2 follows from (5.34) and (5.50);
Part 3 follows from (5.33) and (5.49).
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6 Large modes

Below is a restatement of Part 2 of Theorem 1.1 and the rest of this section is devoted to its proof.

Theorem 6.1 There exist Mii > 0 and q̃ii > 0 such that when q ∈ (0, q̃ii) and m ≥ Mii

q , Lm is positive
definite.

Proof. Since ∣∣∣ ∫ π/2

0

cos 2mτ dτ√
β + sin2 τ

∣∣∣ ≤ ∫ π/2

0

dτ√
β + (2τ/π)2

=
π

2
log

1 +
√

1 + β√
β

,

one finds a simple upper bound for Gm of (3.4), uniform with respect to m,

|Gm(r, z, ρ, ζ)| ≤ 1

4

√
ρ

r
log

1 +
√

1 + β√
β

, where β =
(r − ρ)2 + (z − ζ)2

4rρ
. (6.1)

Regarding the operator L̂m, note that, since u does not depend on m, among the quadratic terms (2.50)-
(2.55) only (2.53) depends on m. This dependence comes simply through the multiple m2. Subsequent
findings of L̂m0 , L̂m1 , and L̂m2 show that

〈L̂mϕ,ϕ〉 ≥
(1− Cq

2q3

)∫ 2π

0

ϕ2
θ dθ −

(1 + Cq2

2q3

)∫ 2π

0

ϕ2 dθ +
(m2 − Cq

2q

)∫ 2π

0

ϕ2 dθ

≥ − 1

q3

∫ 2π

0

ϕ2 dθ +
(m2 − Cq

2q

)∫ 2π

0

ϕ2 dθ. (6.2)

Here the constant C is independent of m and independent of small q.
For the operator Ľm, denote the two parts by E and F respectively:

Ľmϕ = Eϕ+ Fϕ (6.3)

Eϕ =

∫ 2π

0

Gm(1 + u(θ)eiθ, 1 + u(ω)eiω)ϕ(ω)

1 + u(ω) cosω
dω (6.4)

Fϕ =
ϕ(θ)

u+ u2 cos θ

∫
Ω′
v

∇G0(1 + ueiθ, ρ, ζ) · eiθ dρdζ . (6.5)

The multiplication operator F does not depend on m and the findings of Ľm0 , Ľm1 , and Ľm2 show that

‖Fϕ‖ ≤
(1 + Cq

2

)
‖ϕ‖L2 (6.6)

for all m when q is small. The integral operator E depends on m in a more subtle way and we have to treat
it differently. The estimate (6.1) implies

|Gm(1 + u(θ)eiθ, 1 + u(ω)eiω)| ≤ C + C
∣∣∣ log |u(θ)eiθ − u(ω)eiω|

∣∣∣
≤ C + C log

8

q
+ C

∣∣∣ log
∣∣∣u(θ)

q
eiθ − u(ω)

q
eiω
∣∣∣ ∣∣∣. (6.7)

For the last term in (6.7), ∥∥∥ log
∣∣∣u(θ)

q
eiθ − u(·)

q
ei(·)

∣∣∣∥∥∥
L1
≤ C, ∀θ ∈ S1.

Then the norm of the integral operator on L2(S1) with
∣∣∣ log

∣∣∣u(θ)
q eiθ − u(ω)

q eiω
∣∣∣ ∣∣∣ as the kernel is bounded by

C, independent of q. This leads to a bound on E of the form

‖Eϕ‖L2 ≤ C
(

log
8

q

)
‖ϕ‖L2 (6.8)
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uniformly with respect to m. By (6.6) and (6.8),

‖Ľmϕ‖L2 ≤ C
(

log
8

q

)
‖ϕ‖L2 . (6.9)

Therefore by (3.22), (6.2), and (6.9) there exists q̃ii > 0 such that for q ∈ (0, q̃ii)

〈Lmϕ,ϕ〉 ≥ m2

2q

∫ 2π

0

ϕ2 dθ − C

q3

∫ 2π

0

ϕ2 dθ (6.10)

holds for all m. This estimate is useful if m is large compared to 1/q. Let

Mii > 0, m ≥ Mii

q
, and q ∈ (0, q̃ii). (6.11)

Then the operator Lm is positive definite since

〈Lmϕ,ϕ〉 ≥ M2
ii − 2C

2q3
‖ϕ‖2L2 ≥

M2
ii

4q3
‖ϕ‖2L2 (6.12)

if Mii is sufficiently large.

7 Medium modes

Consider Lm0 given in (5.1) with m ≥ 1. Note that with Γ = 8
4 log 8

q−5
given by (3.22),

Lm0 (1) = − 1

2q3
+

Γ

q3

(
log

8

q
+ dm0 −

1

2

)
=

1

q3

(12 log 8
q + 16dm0 − 3

8 log 8
q − 10

)
.

Hence ϕm0 = 1 is an eigenfunction of Lm0 and the corresponding eigenvalue is

µm0 =
1

q3

(12 log 8
q + 16dm0 − 3

8 log 8
q − 10

)
. (7.1)

Although Lm0 is an approximation of Lm only when m is fixed and q is small, we still consider Lm0 in the
scenario that m varies with q. Since

dm0 = − logm+O(1) for large m (7.2)

by Part 1 of Lemma 3.3. We can make µm0 negative if we choose m sufficiently large. The borderline between
negative µm0 and positive µm0 occurs at

12 log
8

q
+ 16dm0 − 3 = 0, (7.3)

which implies, for small q,

m ≈
(8

q

)3/4

. (7.4)

This order puts m in the medium range, and Lm0 cannot be used to approximate Lm under (7.4). Nevertheless
there is indeed a negative eigenvalue for Lm when m is in the range suggested by (7.4). This is the content
of Part 3 of Theorem 1.1 which is restated below as a reminder.

Theorem 7.1 Let Mi and Mii be positive numbers. There exists q̃i,ii > 0 depending on Mi and Mii such
that for every q ∈ (0, q̃i,ii), there is m ∈ (Mi,

Mii

q ) for which Lm has a negative eigenvalue. Moreover, as q

tends to 0, m grows to infinity like ( 8
q )3/4.
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Proof. We proceed to show that at 1, the quadratic form

〈Lm(1), 1〉 = 〈L̂m(1), 1〉+ γ〈Ľm(1), 1〉 (7.5)

is negative for a properly chosen m, from which Theorem 7.1 follows.
For 〈L̂m(1), 1〉, m ≥ 2, note that only the term (2.53) among (2.50) to (2.55) depends on m. Let

〈L̂m(1), 1〉 = m2Q1(q) +Q2(q) (7.6)

where

Q1(q) =

∫ 2π

0

1

2(u2
θ + u2)1/2(1 + u cos θ)3

dθ (7.7)

=
π

q
(1 +O(q)) (7.8)

Q2(q) =

∫ 2π

0

[ (1 + u cos θ)uθ
(u2
θ + u2)1/2

(−(1 + 2u cos θ)

2(u+ u2 cos θ)3

)
θ
− (u+ 2u2 cos θ + u2

θ cos θ)(1 + 2u cos θ)

2(u2
θ + u2)1/2(u+ u2 cos θ)3

+
(1 + u cos θ)u2

2(u2
θ + u2)3/2

( 1

u+ u2 cos θ

)2

θ
+

−uuθ + u3
θ cos θ

(u2
θ + u2)3/2(u+ u2 cos θ)

( 1

u+ u2 cos θ

)
θ

+
(2u3 cos θ + u2

θ + 3uu2
θ cos θ)

2(u2
θ + u2)3/2(u+ u2 cos θ)2

]
dθ (7.9)

= − π
q3

(1 +O(q2)). (7.10)

These calculations make use of the quadratic forms derived in Section 4. Neither Q1 nor Q2 depends on m.
To study 〈Ľm(1), 1〉, reorganize Gm into

Gm(r, z, ρ, ζ) = F1(r, z, ρ, ζ) +m2F2(r, z, ρ, ζ) + dm0 F3(r, z, ρ, ζ) + dm1 F4(r, z, ρ, ζ) + F̃m(r, z, ρ, ζ) (7.11)

accodring to its depencece on m shown in Lemma 3.4, where

F1(r, z, ρ, ζ) =
1

2π
log

8
√
rρ

|(r, z)− (ρ, ζ)|
− r − ρ

4πρ
log

8
√
rρ

|(r, z)− (ρ, ζ)|

+
5(r − ρ)2 − (z − ζ)2

32πρ2
log

8
√
rρ

|(r, z)− (ρ, ζ)|
(7.12)

F2(r, z, ρ, ζ) =
(r − ρ)2 + (z − ζ)2

8πρ2
log

8
√
rρ

|(r, z)− (ρ, ζ)|
(7.13)

F3(r, z, ρ, ζ) =
1

2π

√
ρ

r
(7.14)

F4(r, z, ρ, ζ) =
( 1

2π

) (r − ρ)2 + (z − ζ)2

4ρ2
(7.15)

F̃m(r, z, ρ, ζ) = O(m2q3 log
8

q
) +O((m2 logm)q3) +O

(
m2+2αq2+2α

)
. (7.16)

Note that F1 through F4 do not depend on m. F̃m depends on m but is small, and one lets

α ∈ (0, 1/2) (7.17)

to further simplify it to
F̃m(r, z, ρ, ζ) = O

(
m2+2αq2+2α

)
. (7.18)

Then write
〈Ľm(1), 1〉 = m2Q3(q) + dm0 Q4(q) + dm1 Q5(Q) +Q6(q) + Q̃(q,m) (7.19)
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where

Q3(q) =

∫ 2π

0

∫ 2π

0

F2(1 + u(θ)eiθ, 1 + u(ω)eiω)

1 + u(ω) cosω
dωdθ = πq2(1 +O(q)) (7.20)

Q4(q) =

∫ 2π

0

∫ 2π

0

F3(1 + u(θ)eiθ, 1 + u(ω)eiω)

1 + u(ω) cosω
dωdθ = 2π(1 +O(q2)) (7.21)

Q5(q) =

∫ 2π

0

∫ 2π

0

F4(1 + u(θ)eiθ, 1 + u(ω)eiω)

1 + u(ω) cosω
dωdθ = πq2(1 +O(q)) (7.22)

Q6(q) =

∫ 2π

0

∫ 2π

0

F1(1 + u(θ)eiθ, 1 + u(ω)eiω)

1 + u(ω) cosω
dωdθ

+

∫ 2π

0

1

u+ u2 cos θ

∫
Ω′
v

∇G0(1 + ueiθ, ρ, ζ) · eiθ dρdζ = π
(

2 log
8

q
− 1
)

(1 +O(q)) (7.23)

Q̃m(q) =

∫ 2π

0

∫ 2π

0

F̃m(1 + u(θ)eiθ, 1 + u(ω)eiω)

1 + u(ω) cosω
dωdθ = O

(
m2+2αq2+2α

)
. (7.24)

Again note that Q3 through Q6 are independent of m and Q̃m is small.
Now take m to be of the order ( 8

q )3/4; namely, consider

m ∈
(1

2

(8

q

)3/4
, 2
(8

q

)3/4)
(7.25)

for small q. One deduces that

m2Q1(q) = O(q−2.5) (7.26)

Q2(q) = − π
q3

(1 +O(q2)) (7.27)

γm2Q3(q) = O(
1

q2.5 log 8
q

) (7.28)

γdm0 Q4(q) =
2πdm0 Γ

q3
(1 +O(q)) (7.29)

γdm1 Q5(q) = O
(
q−2.5

)
(7.30)

γQ6(q) =
Γ

q3

(
2π log

8

q
− π

)
(1 +O(q)) (7.31)

γQ̃m(q) = O
( 1

q3− 1+α
2 log 8

q

)
. (7.32)

Here to reach (7.30) we have used the estimate dm1 = O(m2 logm) from Part 2 of Lemma 3.3. Hence

〈Lm(1), 1〉 =
π

q3

(
− 1 + 2dm0 Γ +

(
2 log

8

q
− 1
)
Γ + o(1)

)
=

π

q3

(12 log 8
q + 16dm0 − 3

4 log 8
q − 5

+ o(1)
)

(7.33)

Let m be of the order ( 8
q )3/4 and above the threshold (7.3). Then (7.33) is negative.

Appendix
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A. Proof of Lemma 3.2

Let ∫ π/2

0

cos 2mτ dτ√
β + sin2 τ

=

∫ π/2

0

1− 2m2 sin2 τ√
β + sin2 τ

dτ + 2

∫ π/2

0

m2 sin2 τ − sin2mτ√
β + sin2 τ

dτ. (A.1)

First we estimate∫ π/2

0

1− 2m2 sin2 τ√
β + sin2 τ

dτ =

∫ π/2

0

1− 2m2 cos2 τ√
β + cos2 τ

dτ

=

∫ π/2

0

1− 2m2 + 2m2 sin2 τ√
β + 1− sin2 τ

dτ

=
1√

1 + β

((
1− 2m2 +

2m2

k2

)
K(k)− 2m2

k2
E(k)

)
(A.2)

where

K(k) =

∫ π/2

0

1√
1− k2 sin2 τ

dτ = log
4

k′
+

1

4

(
log

4

k′
− 1
)
k′2 +O

(
k′4 log

1

k′
)

(A.3)

E(k) =

∫ π/2

0

√
1− k2 sin2 τ dτ = 1 +

1

2

(
log

4

k′
− 1

2

)
k′2 +O

(
k′4 log

1

k′
)

(A.4)

k2 =
1

1 + β
, k′2 =

β

1 + β
. (A.5)

Here K(k) and E(k) are the complete elliptic integrals of the first and the second kind respectively, whose
asymptotic expansions (A.3) and (A.4) can be found in [4, 8.113 and 8.114]. Then (A.2) becomes∫ π/2

0

1− 2m2 sin2 τ√
β + sin2 τ

dτ

=
(

1− β

2
+O(β2)

)[(
1− 2m2 +

2m2

k2

)(
log

4

k′
+

1

4

(
log

4

k′
− 1
)
k′2
)

−2m2

k2

(
1 +

1

2

(
log

4

k′
− 1

2

)
k′2
)

+O
(
(m2 + 1)k′4 log

1

k′
)]

=
(1

2
+
(m2

2
− 1

8

)
β
)

log
16

β
− 2m2 +

(1

4
− m2

2

)
β +O

(
(m2 + 1)β2 log

1

β

)
. (A.6)

Next we estimate ∫ π/2

0

m2 sin2 τ − sin2mτ√
β + sin2 τ

dτ.

Obviously this term vanishes if m = 0 or m = 1, and Part 1 of the lemma follows from (A.6). When m ≥ 2,
this integral depends on m in a more subtle way. Let α ∈ (0, 1). Expand 1√

β+sin2 τ
with respect to β ∈ [0, 1],

using a two term Taylor’s expansion with the remainder controlled by a Holder semi-norm∣∣∣ 1√
β + sin2 τ

− 1

sin τ
+

β

2 sin3 τ

∣∣∣ ≤ [∣∣∣− 1

2(·+ sin2 τ)3/2

∣∣∣]
α

β1+α

1 + α
(A.7)

where the semi-norm is

[∣∣∣− 1

2(·+ sin2 τ)3/2

∣∣∣]
α

= sup
0≤b1<b2≤1

∣∣∣ 1
2(b2+sin2 τ)3/2

− 1
2(b1+sin2 τ)3/2

∣∣∣
|b2 − b1|α

. (A.8)
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Then we estimate this semi-norm. If b2 − b1 ≤ sin2 τ , one uses the mean value theorem to deduce∣∣∣ 1
2(b2+sin2 τ)3/2

− 1
2(b1+sin2 τ)3/2

∣∣∣
|b2 − b1|α

= |b2 − b1|1−α
∣∣∣3
4

(ηb1 + (1− η)b2 + sin2 τ)−5/2
∣∣∣, where η ∈ (0, 1),

≤ sin2−2α τ
∣∣∣3
4

(sin2 τ)−5/2
∣∣∣

=
3

4 sin3+2α τ
;

if b2 − b1 > sin2 τ , one has∣∣∣ 1
2(b2+sin2 τ)3/2

− 1
2(b1+sin2 τ)3/2

∣∣∣
|b2 − b1|α

≤ |b2 − b1|−α
∣∣∣ 1

2(b1 + sin2 τ)3/2

∣∣∣
≤ sin−2α τ

∣∣∣ 1

2(sin2 τ)3/2

∣∣∣
=

1

2 sin3+2α τ
.

Hence one finds a bound on the Holder semi-norm[∣∣∣− 1

2(·+ sin2 τ)3/2

∣∣∣]
α
≤ 3

4 sin3+2α τ
(A.9)

and it turns (A.7) to ∣∣∣ 1√
β + sin2 τ

− 1

sin τ
+

β

2 sin3 τ

∣∣∣ ≤ 3β1+α

4(1 + α) sin3+2α τ
. (A.10)

It follows that∣∣∣ ∫ π/2

0

m2 sin2 τ − sin2mτ√
β + sin2 τ

dτ −
∫ π/2

0

m2 sin2 τ − sin2mτ

sin τ
dτ + β

∫ π/2

0

m2 sin2 τ − sin2mτ

2 sin3 τ
dτ
∣∣∣

≤ 3β1+α

4(1 + α)

∫ π/2

0

|m2 sin2 τ − sin2mτ |
sin3+2α τ

dτ. (A.11)

To estimate (A.11), write∫ π/2

0

|m2 sin2 τ − sin2mτ |
sin3+2α τ

dτ =

∫ π/2

0

|m2 sin2( tm )− sin2 t|
m sin3+2α( tm )

dt+

∫ mπ/2

π/2

|m2 sin2( tm )− sin2 t|
m sin3+2α( tm )

dt. (A.12)

For the first term on the right side of (A.12), use |m2 sin2( tm )− sin2 t| ≤ Ct4 where C > 0 is independent of
m to derive ∫ π/2

0

|m2 sin2( tm )− sin2 t|
m sin3+2α( tm )

dt ≤ C
∫ π/2

0

t4

m( 2t
πm )3+2α

dt ≤ Cm2+2α. (A.13)

Note that the last integral is convergent since α < 1. For the second term on the right side of (A.12)∫ mπ/2

π/2

|m2 sin2( tm )− sin2 t|
m sin3+2α( tm )

dt ≤
∫ mπ/2

π/2

m2( tm )2 + t2

m( 2t
πm )3+2α

dt ≤
∫ ∞
π/2

2t2

m−2−2α(2t)3+2α
dt ≤ Cm2+2α (A.14)

This time the last integral is convergent since α > 0. Therefore (A.11) becomes∫ π/2

0

m2 sin2 τ − sin2mτ√
β + sin2 τ

dτ = m2 −
∫ π/2

0

sin2mτ

sin τ
dτ − β

2

∫ π/2

0

m2 sin2 τ − sin2mτ

sin3 τ
dτ +O(m2+2αβ1+α).

(A.15)
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Part 2 of the lemma follows from (A.1), (A.6) and (A.15).

B. Proof of Lemma 3.3

Let τ = t
m so that∫ π/2

0

sin2mτ

sin τ
dτ =

1

m

∫ mπ/2

0

sin2 t

sin( tm )
dt

=
1

m

∫ π/2

0

sin2 t

sin t
m

dt+
1

m

∫ mπ/2

π/2

sin2 t

sin( tm )
dt. (B.1)

Since sinx = x+O(x3) when x ∈ (0, π/2),

sin2 t

sin( tm )
=

sin2 t
t
m

[
1 +O

(( t
m

)2)]
=

sin2 t
t
m

+
(

sin2 t
)
O
( t
m

)
,

which shows that the first term in the last line of (B.1) is

1

m

∫ π/2

0

sin2 t

sin t
m

dt =

∫ π/2

0

sin2 t

t
dt+O

( 1

m2

)
= O(1). (B.2)

For the second term in the last line of (B.1),

1

m

∫ mπ/2

π/2

sin2 t

sin( tm )
dt =

1

m

∫ mπ/2

π/2

sin2 t
t
m

[
1 +O

(( t
m

)2)]
dt

=
1

m

∫ mπ/2

π/2

sin2 t
t
m

dt+
( 1

m

∫ mπ/2

π/2

t

m
dt
)
O(1)

=

∫ mπ/2

π/2

sin2 t

t
dt+O(1). (B.3)

With (B.2) and (B.3) one turns (B.1) to∫ π/2

0

sin2mτ

sin τ
dτ =

∫ mπ/2

π/2

sin2 t

t
dt+O(1) =

m∑
j=2

∫ jπ/2

(j−1)π/2

sin2 t

t
dt+O(1). (B.4)

Note that

1

2j
=

∫ jπ/2

(j−1)π/2

sin2 t

jπ/2
dt ≤

∫ jπ/2

(j−1)π/2

sin2 t

t
dt ≤

∫ jπ/2

(j−1)π/2

sin2 t

(j − 1)π/2
dt =

1

2(j − 1)
.

Since
∑m
j=2

1
j = logm+O(1) and

∑m
j=2

1
j−1 = logm+O(1) by the Euler’s constant formula,

m∑
j=2

∫ jπ/2

(j−1)π/2

sin2 t

t
dt =

1

2
logm+O(1).

Part 1 of the lemma then follows from (B.4).
Next consider∫ π/2

0

m2 sin2 τ − sin2mτ

sin3 τ
dτ =

1

m

∫ π/2

0

m2 sin2( tm )− sin2 t

sin3( tm )
dt+

1

m

∫ mπ/2

π/2

m2 sin2( tm )− sin2 t

sin3( tm )
dt. (B.5)
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For t ∈ (0, π/2), one deduces that

m2 sin2( tm )− sin2 t

sin3( tm )
=

m2
(
t
m +O

(
( tm )3

))2

− (t+O(t3))2(
t
m +O

(
( tm )3

))3

=
m2

t
m

(
1 + O

(
(
t

m
)2
))
− (t+O(t3))2

( tm )3

(
1 +O

(
(
t

m
)2
))

= O(tm3) +O(tm),

which leads to
1

m

∫ π/2

0

m2 sin2( tm )− sin2 t

sin3( tm )
dt = O(m2). (B.6)

For t ∈ (π/2,mπ/2), one argues differently that

m2 sin2( tm )− sin2 t

sin3( tm )
=

m2
(
t
m +O

(
( tm )3

))2

− sin2 t(
t
m +O

(
( tm )3

))3

=
m2

t
m

(
1 + O

(
(
t

m
)2
))
− sin2 t

( tm )3

(
1 +O

(
(
t

m
)2
))

=
m3

t
+O(tm) +

(m3

t3

)
O(1).

Hence

1

m

∫ mπ/2

π/2

m2 sin2( tm )− sin2 t

sin3( tm )
dt = m2

∫ mπ/2

π/2

1

t
dt+

(∫ mπ/2

π/2

t dt
)
O(1) +

(∫ mπ/2

π/2

1

t3
dt
)
O(m2)

= m2 logm+O(m2). (B.7)

The second part of the lemma follows from (B.5), (B.6), and (B.7).

C. Proof of Lemma 3.4

Expand √
ρ

r
= 1− r − ρ

2ρ
+

3(r − ρ)2

8ρ2
+O(|r − ρ|3). (C.1)

Note that |r − ρ| = O(q) and β = O(q2). For m ≥ 2, by Lemmas 3.2 and 3.3, one finds that

Gm(r, z, ρ, ζ) =
1

2π

√
ρ

r

∫ π/2

0

cos 2mτ dτ√
β + sin2 τ

=
1

2π

√
ρ

r

(1

2
+
(m2

2
− 1

8

)
β
)

log
16

β
+

1

2π

√
ρ

r

(
dm0 + dm1 β

)
+O

(
m2+2αq2+2α

)
=

1

2π

(
1− r − ρ

2ρ
+

3(r − ρ)2

8ρ2

)(
1 +

(
m2 − 1

4

)
β
)

log
8
√
rρ

|(r, z)− (ρ, ζ)|

+O
(
q3 log

8

q

)
+O

(
m2q5 log

8

q

)
+

1

2π

√
ρ

r

(
dm0 + dm1 β

)
+O(m2+2αq2+2α)

=
1

2π

(
1− r − ρ

2ρ
+

3(r − ρ)2

8ρ2
+
(
m2 − 1

4

) (r − ρ)2 + (z − ζ)2

4rρ

)
log

8
√
rρ

|(r, z)− (ρ, ζ)|
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+O(m2q3 log
8

q
) +O(q3 log

8

q
) +

1

2π

√
ρ

r

(
dm0 + dm1 β

)
+O

(
m2+2αq2+2α

)
=

1

2π

(
1− r − ρ

2ρ
+

(4m2 + 5)(r − ρ)2 + (4m2 − 1)(z − ζ)2

16ρ2

)
log

8
√
rρ

|(r, z)− (ρ, ζ)|

+
dm0
2π

√
ρ

r
+
(dm1

2π

) (r − ρ)2 + (z − ζ)2

4ρ2

+O(m2q3 log
8

q
) +O((m2 logm)q3) +O

(
m2+2αq2+2α

)
.

The proof for the m = 0 and m = 1 cases are similar.

D. Proof of Lemma 3.5

Let
δ =

π

2m
(D.1)

and write∫ π/2

0

m2 sin2 τ − sin2mτ

sin3 τ
dτ =

∫ δ

0

m2 sin2 τ − sin2mτ

sin3 τ
dτ +

∫ π/2

δ

m2 sin2 τ − sin2mτ

sin3 τ
dτ := I1 + I2. (D.2)

Using

τ − τ3

6
< sin τ < τ, and

2τ

π
< sin τ (D.3)

we estimate the first term as

I1 >

∫ δ

0

m2(τ − τ3/6)2 − sin2mτ

sin3 τ
dτ

>

∫ δ

0

m2τ2 − sin2mτ

sin3 τ
−
∫ δ

0

m2τ4

3 sin3 τ
dτ

> 0−
∫ δ

0

m2τ4

3(2τ/π)3
dτ

= − π5

192
(D.4)

and the second term as

I2 >

∫ π/2

δ

m2(2τ/π)2 − 1

τ3
dτ

=
4m2

π2
logm+

2

π2
(1−m2). (D.5)

By (D.4) and (D.5), one obtains

I1 + I2 >
4m2

π2
logm+

2

π2
(1−m2)− π5

192
. (D.6)

The right side of (D.6) is increasing with respect to m, and when m = 3 it is 0.7923... > 0. So Part 1 of this
lemma holds for m ≥ 3. When m = 2,∫ π/2

0

22 sin2 τ − sin2 2τ

sin3 τ
dτ =

∫ π/2

0

4 sin τ dτ = 4. (D.7)
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Hence Part 1 holds for all m ≥ 2.
Regarding Part 2, let

δ =
1

m
(D.8)

and estimate ∫ π/2

0

sin2mτ

sin τ
dτ =

∫ δ

0

sin2mτ

sin τ
dτ +

∫ π/2

δ

sin2mτ

sin τ
dτ

<

∫ δ

0

(mτ)2

2τ/π
dτ +

∫ π/2

δ

1

2τ/π
dτ

=
π

4
+
π

2
log

mπ

2
. (D.9)

Combining this with (D.6) one sees that the quantity in Part 2 is bounded below by

1−
(π

4
+
π

2
log

mπ

2

)
+

4m2

π2
logm+

2

π2
(1−m2)− π5

192
. (D.10)

The quantity (D.10) is increasing with respect to m when m ≥ 2. And if m = 4, it is equal to 1.6837... > 0,
so Part 2 holds if m ≥ 4. If m = 2,

1−
∫ π/2

0

sin2 2τ

sin τ
dτ +

∫ π/2

0

22 sin2 τ − sin2 2τ

sin3 τ
dτ = 1− 4

3
+ 4 =

11

3
> 0. (D.11)

In the m = 3 case, since

−
∫ π/2

0

sin2 3τ

sin τ
dτ = −23

15
(D.12)

and the quantity in Part 1 is bounded below by 0.7923..., seen after (D.6), one has

1−
∫ π/2

0

sin2 3τ

sin τ
dτ +

∫ π/2

0

32 sin2 τ − sin2 3τ

sin3 τ
dτ > 1− 23

15
+ 0.7923... = 0.2590... > 0. (D.13)

Hence Part 2 holds for all m ≥ 2.
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