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We consider a semilinear elliptic equation in R? with the nonlinear exponent
approaching infinity. In contrast to the blow-up behavior of the corresponding
problem in R" with n = 3, the L*(R?) norms of the solutions to the equation in R?
remain bounded from below and above. After a careful study on the decay rates of
several quantities, we prove that the normalized solutions will approach the fun-
damental solution of —A + | in R*. So as the exponent tends to infinity, the
solutions to the problem look more and more like a peak.  © 195 Acudemic Press, Inc.

1. INTRODUCTION

This paper is devoted to the behavior of the ground state solution to a
semilinear elliptic equation with large exponent of the nonlinear term.
Considering

Au—u+u”=0 in R?
(1.n

u>0, limy . u(x) =0,

we would like to understand the behavior of the solutions to (1.1) when
the exponent p approaches .
The corresponding problem in higher dimensions

Au—u+ur =20 in R", withn =3
(1.2)

u>0, limy ... = 0,
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was studied by X. Pan and X. Wang in [9]. Due to the existence of the
critical exponent, namely (n + 2)/(n — 2) there, they were led to study the
behavior of the solution to the corresponding equation in higher dimen-
sions when p approaches (n + 2)/(n — 2). It turns out that solutions to
their problem will blow up as p — (n + 2)/(n — 2).

Because of the critical exponent for n = 3, in higher dimensions we
have a profile equation

Au — u + ym* -2 =0 inR"
(1.3)

u >0, limy,. t(x) = 0.
In fact the nonexistence of solutions to (1.3) implies the blow-up of solu-
tions to (1.2) when p — (n + 2)/(n — 2).
In R?, however, due to the lack of Eq. (1.3), we will approach the

problem in a different way. We will start with a sharp estimate on the
growth rate of ¢, where ¢, is the best constant of the embedding

WI.2(R2) (SN L’HI(R:).

From this estimate and estimates of some other quantities, we will prove

THEOREM 1.1.  Let u, be a solution to (1.1). Then for p large enough,
there exists C independent of p such that 1 < ||u,|;-x» < C.

THEOREM 1.2.  Let u, be a radially symmetric solution to (1.1). Then,
as p — ©, we have

(1) G in the sense of distribution,
Jr: uy
Q) ~22 LG in CRARMNOY for all & € (0, 1),

..rRZ Up

where G is the fundamental solution to —A + 1, i.e.,
—AG + G = 8.

Remark 1.3. G has an integral representation

__ L met e -1/2( li)ﬁm
Gx) = /2 \/; e do et 1+ 7% dt.

Moreover, G decays exponentially at infinity. We refer to [7] for more
information.
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We see, in contrast to the higher dimensions, the solutions look more
and more like a peak as p gets large.

Our paper is organized as follows. In Section 2, we give necessary
background of the solutions to (1.1) together with some integral identities.
Then we prove a growth rate estimate of ¢, in Section 3. Finally we prove
Theorem 1.1 in Section 4 and Theorem 1.2 in Section 5.

" 2. PRELIMINARIES

There are various ways to obtain solutions to (1.1). We shall adapt the
variational approach developed in [2].
Let

o, = {u € WIARY: [ urt = 1}.
Consider the functional J,: 4, — R defined by
! 2y
Jp(u) = 3 fR: [ Veul]® + u?].

By the theory of Schwartz symmetrization (see, for example, [6]), we can
replace any minimizing sequence of the functional by a radially symmetric
minimizing sequence. Then it is easy to show, with the aid of a compact-
ness result of radial embedding in [10], that J, has a radial minimizer in
A, . If we denote this minimizer by «,,, a scalar multiple of «, will solve
Eq. (1.1). We denote this radial solution by «,. A further L* estimate
shows limy.~ «(x) = 0. Hence u, solves (1.1).

According to a result in [3] all solutions of (1.1) up to a parallel transla-
tion are radially symmetric. Applying the uniqueness result in [8] or [5],
we know that the radial solution is unique. Therefore (1.1) has a unique
solution up to a translation. From now on we will denote this unique
radial solution by u«,.

It is easy to see that u, is related to the embedding

WIR?) < L7 \(RY),

We refer to [1] for the proof of this embedding theorem.
If we denote ¢, as the best constant of the above embedding, i.e., ¢, is
the least number among all possible constant C’s which make the inequal-

ity
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lullr vy = Cllullwiage

for all u € WHX(R?), then ¢, is achieved by u,. Hence we have

LEMMA 2.1.  Let u, be the radial solution to (1.1) as above. Then we
have

H”p”w'-lez) = inf {H”||W'~34R1>

”“p”l.""(R:) i|ll”1,f"w3)

1
TuE W'RH u# 0} =—,

n

where ¢, is the best constant defined above.
Now let us state some integral identities.

LEMMA 2.2.  Let uy, be a solution to (1.1). We have
n IR: Vi, | + [u, '] = fR: wht!
(2) fR: ", = L: uh
@ 5[ = p [

Proof. (1) Multiplying (1.1) by u, and integrating over B(R), the ball
of radius R centered at the origin, we get

ou
v 2+uz=[ —"+j ub*t,
JBlR) V] | ) we P an By P

Using an exponential decay property of «, which says that there exist C,
w independent of x such that

uy(x) = Ce ™M, |Duy(x)| = Ce M

we can let R approach = yielding 1. The proof of the exponential decay
estimate can be found, for example, in [2]. We shall prove a refined result,
Lemma 5.1, by the same method in Section 5.

(2) Similar to (1), but we integrate the equation directly.

(3) This is the R? version of the well known Pohozaev identity. We
refer to [2] for a proof. |

We also present some simple radial lemmas which will be used in later
sections.

LEMMA 2.3. Let n = 2. Every radial function u € W' (R") is almost
equal to a function U(x) which is continuous for x # O; furthermore
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[U)] = Colx|""7| ]| 12

for |x| = a, where C,, a, depend on n only.
The proof of this lemma can be found in [2].

LEMMA 2.4. Let u € LA(R?) be a radial, nonnegative, non-increasing
in |x| > 0, continuous function except at 0. Then we have

u(jx)) = x|~ eell L xm2-

37
Proof.

8 wi(s)s~ ! ds

fx|/2

Hu”iz(Rz) =2x f(]" uz(r)r dr = 27

i

3 ) = -3277—- |xa3(|x]).

=2r % 112(\x()<\x\2 -

Therefore we have the lemma. |

3. ON THE GROWTH RATE OF ¢,

In this section, we establish a sharp estimate for the growth rate of ¢,.
Notice that according to the Schwartz symmetrization theory, the ¢, is
actually obtained in the class of radial functions. We will use C to denote
various constants independent of p.

LEMMA 3.1. Ifu € WHA(Q) where Q is a bounded smooth domain in
R?, then for every t = 2

lellreqy = Ct2(Q"|[Vael| 2y
Proof. Let u € Wi (). We know

1
s+~

Ssex

forall x = 0, s = 0 where I' is the I" function. From Trudinger’s Inequality
(see {4, p. 160]), we have

| exp [C, (WVTL:HT” dx = G0,
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where C,, C, are constants which depend on the dimension of Q only
and | | denotes the Lebesgue measure. Therefore

———————~1 I3
ra2 +1) J;l u' dx
1 w12
= = e —t/2 ‘.
T2+ Do [Cl (HVHHL:) ] dxCy"|Vul|7:

....L : =12 [ 12 [
= |, exp [C, <”V14||1,2) ] dxCy V| = COQICT™|Vaully-.

Hence

1 1/t
(J;; u! dx) < (F (% + 1)) CYC"™QMVul Ly -

Notice that, according to Stirling’s formula,
Ny e 12 \ 1
2
) (2 V) v
2 e
where 0 < 6, < 1/12. This completes our lemma. |

LEMMA 3.2. For each u € W'A(R?Y), we have

[l ey = Cr2lullwiagey

for every t = 4.

Proof. As we mentioned earlier, by the Schwartz symmetrization the-
ory, we need only to prove the inequality for radial functions. So in the
proof all functions are assumed to be radial. Let w := 1) + 43 1= =0y +

UX{r=ay Where a; is defined in Lemma 2.3.
Then

lellzomry = el + [leez

Lr-

And by Lemma 2.3

1t

1/ 1t
P P A o R S T )
2 ‘ — 11242yt
= CH”HW‘:(RED |l — ]| ) Wi = Cn“HW”(Rz)-
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Hence combining this with Lemma 3.1, we obtain
lullee = Co'flullwigy + Cllusllwiagy = COPlullwigy. 1
LEMMA 3.3, For p large enough, there exist Cy, Cs independent of p
such that
Clp”z < ¢p < Cgp“z.

Proof. The second inequality follows from Lemma 3.2. To prove the
first inequality, we consider the so-called Moser’s function

, 1
(p + 1)- 1.2 lOg -, ()7(/)*Ii < r =]
q)(r) = r

(p + 1) 2 log ert!, 0<r=<e D

‘ 1
(p + l)fl“‘z l0g7, e Pt <= p < |

I

(p + )7 0=r=erh,

So ¢ € WiH(B,) C W'2(R?) where the trivial extension is used to interpret
the second incluston.
On the one hand

2 T, 1 ~ 1
[Volis = 27 || @i dr=2m [ o+ 0t L ar=2m

Therefore by Poincaré’s Inequality on B,
bl rsmey = [llwizs, = ClIVell s, = C. 3.1

where C is a constant depending on the first eigenvalue of A on the unit
disk with Dirichlet boundary condition only.
On the other hand

J dPY =27 J’] &P 'r dr = 27 fl (p + H-tprin (log 1>p" rdr
B 0 - e tptl r

= 2m(p + o2 1 g gy

= 2m(p + 1)~ fp”

(pt1)2

tPilent dy

p + 1
= 277'(p + l)"ﬁ’WZ‘ (&%—__l.)l evlpw‘l)l,z_“z‘__l

= 277-2*(/”2»(1) + 1)(/)*-3)#2(,'»(/}+I|'
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Hence

”d)”u*' > (2n)|(p+l)2*{p¥2)/(p+I)(p + l)(l"2|llp+3)/(p+]||e—| > C(p + 1)1/2.
3.2)

Combining (3.1) and (3.2), we have the lemma. |

4. ON THE L*(R?) NORM OF u,

We are now in the position to study the L*(R?) norms of u,. Because
our solutions u, are radially symmetric, they satisfy the following ordi-
nary differential equation

1
W+ —-—uw —u+u =0
r 4.1)

u'(0) = 0, lim,_,.. u(r) = 0.

From [8] or [5], we know u,(r) < 0 for all r > 0 where u, is a solution to
(1.1) with the exponent in the equation being p. We define

Yp 1= Uup(0) = Jlup -

LEMMA 4.1.  |u,|lwiag: = C/p"? when p is large.
Proof. From the integral identity (1) in Lemma 2.2, we deduce
||“p"2w'-2fR2) = H“p”'ﬁ"'(m)-
Combining this with Lemma 2.1 and Lemma 3.2, we get

== +IH(p— 1))y — (12 p+ 1M (p-1 —12
lupllwiags = C'Pt D= bp=02pp=10 < Cp

when p is large. |
We now prove Theorem 1.1,

Proof of Theorem 1.1. The uniform fower bound 1 follows from the
maximum principle. To find a uniform upper bound let

E,(r) = —ruy(r) — % riul — u).
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Then E,(0) = 0, and

' ' " ] ~ -
E(r) = —up — rup — r(uf — up) — 3 ri(pult - Du,
= — 1)‘2( p-1 _ ) '
> rilpug u,.

Let ry > 0 be such that u,(ry) = (1/p)!"7=1. Clearly such r, exists, and it
depends on p. Notice E,(r) = 0 for r € (0, ro). Therefore £, = 0 on (0, ry).
From the definition of £, we have

1
—uy(r) — 3 r(uh, —u,) = 0
on (0, ry). Combining this with Eq. (4.1) of u,, we get
" 1 p " ] P
Uy = 3 (u, — uh), up, = 3 v, — vp) 4.2)

for all r in (0, ry).
Integrating both sides of (4.2) twice with respect to r on (0, r), we obtain

] N,
Y~ 3 up(r) = i rdyh = y,) 4.3)

for r € (0, ry).
Now let T, be such that u,(7,) = }vy,. Ty depends on p. From (4.3), we
have

I, I
Yo =3 Tivh = %) % =3 T (4.4)

b —

Yr T
Applying Lemma 3.2 with r = 2p and Lemma 4.1, we get
lepllzmgsy = CEPYHutpllwrzgyy = C2p)'2C'p 17 1= M,

where M is independent of p for large p. Hence

2
J LUy dx = M7
R
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But
f u¥® dx = 2w J u P(ryr dr = f“ w’lrdr = (zg)p L T3
R? 0o 7 “\2/ 2°"%
Therefore
1 s 2M\”
ir(ﬁ) < M7, 73s2ﬂ—). (4.5)
Yo

Combining (4.4) with (4.5), we obtain

2MN\? 2M\? )
<7) (i) = <7> ve, oy =My |
r

p

IA

We now derive the decay rates for some quantities.

CoROLLARY 4.2. There exist Cy, C; independent of p such that for
large p we have

1
DS fwwmu<al
(2) G [1) = L: uh™ dx = CZ%)
1 , 1
B Cis=| u,dx=C =
p? e P

1
(4) C';S[R:"de:j l»l,,dX<C1—.

Proof. Combining Lemma 2.1, LLemma 2.2, and Lemma 3.3 we have
(1)-(3). To prove (4), we see from Theorem 1.1 and (2)

ul = 1 u”“ = L u"*l = G
, Up , Up .
R p

Yp C
On the other hand, an interpolation argument shows

il = Bl 0t 12,

Therefore (2) and (3) imply
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for C, independent of p when p is large. Therefore with the aid of Lemma
2.2(2) we have (4). 1

5. ON THE NORMALIZED u,

Before we turn to the proof of Theorem 1.2, we first give a uniform
exponential decay estimate in p of u,,.

LEMMA 5.1.  There exists a constant C independent of p, such that for
large p and r = 1

-2

C .
uplr) = » e

= 12 cati
Proof. Letuv, = rY2u,. Then v, satisfies

|
vy = [q(r) - 4—r-2] Up,

where g(r) = 1 — u’~!(r). Note for large p, by Lemma 2.4 and Corollary
4.2

1 2 |
a) —gp=1- | lwle]  —3=

AW

(C)”" 3
(&Y 2
p 4

as p — =. Hence for large p we have

forr = 1.
Let w, = v;; then w, satisfies

| , 1
sz = (U,,)2 + [q(r) - E‘f] W, .
Thus for r = 1, one has wj, = w, and w, = 0.
Let z, = e "(w, + w,). We have z, = e "(w, — w,) = 0; hence z, is a
nondecreasing function on (1, =). If there exists r; > 1 such that z,(r;) > 0,

then z,(r) = z,(r;) > 0 for r > r;. This implies that

wp + w, = (Z,(ry))e’
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whence w, + w, is not integrable on (r|, ). But vf, and v,v,, are integrable
near = for u, € WI2(R?), so that wy, and w), are also integrable, a contradic-
tion.

Hence z,(r) = 0 for r = 1. This implies that

(e"w,) = €%z, =0

for r = 1. Hence

w, = e'w(le ", u, = eu,(l)er 2,

But u,(1) can be estimated by LLemma 2.4 and Corollary 4.2 as

C

2
(1) = — ||t 2r2) =
»(1) \/3—;” ollr g2 )

Therefore

efr/?. =172

up(r) = r

T O

forr=1. |

Proof of Theorem 1.2. Let
, 1
A, = {x ERLe=|x|= g}
Then by Lemma 2.4 and Corollary 4.2 we have that for large p

Hp_
f U,

Hence ||u,/[ w,l; ) is bounded uniformly for large p.
On the other hand, by Lemma 2.4 and Corollary 4.2

Cy\
< C (_'.) -
LA, P 14 £

which is bounded uniformly for large p. So the elliptic L?-estimate shows
that u,,/f u, is bounded in C*(A,) for all &« € (0, 1). Using the Schauder
estimate, we have that u,,/f u, is bounded uniformly in C2(A,) for all « €

= Cs:p””pHL2 = Ce-

L*(A,)

P
uh

f 7
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(0, 1). Therefore a subsequence of {u,/ [ u,}, still denoted by {u,,/f u,}, will
approach a function, say G', in C1%(R>\{0}). So we almost have (1) except
that we need to show ' = G where G is the fundamental solution given in
Remark 1.3.

We now prove

Y__, o

.f Up
in the sense of distribution and
-AG' + G' =6,

Let ¢(x) € C5(R?Y), £ > 0. A standard kernel argument shows that (note
fur = J u, by Lemma 2.2), with the aid of Lemma 2.4

n
1,

[ u

P
u
+ 2 max (o) |~ —
J‘ i, xER? RMB, f ",

up

‘ fR: ¢(x) T dx - ¢<0)| = jR: |B(x) = ¢ (0)

P
ub

= [, 1600 - 6(0)

=1 (Y
= max (¢(x) — $(0) + 2 max [$(x)] Cp f " (5)

=-+s=¢

N{m
o

if we choose & small enough first, then choose p large enough.
Hence,

uP
m | ¢(x) —= = $(0).
P u,
But
u” u
d(x) = = | [(-A + Do(x)] . (5.1)
f S u, f f”p

To pass the limit in Eq. (5.1), we need a dominating function.
Let us first consider «,/f u, in By, the unit disc. Lemma 2.4 and Corol-
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lary 4.2 imply that

2

x|

D]

|

=

(5.2)

Up
Ju,
So we take the latter to be the dominating function in B;.
Then we use Lemma 5.1 to get the following decay estimate on R?\ B,

tp(x) -

f Up

where the latter gives a dominating function on R\ B,.
Combining (5.2) with (5.3), we can pass the limit in (5.1); hence

Ce*\x?/zlxrlﬂf\/z’ (5.3)

f[(-A + Dd]G(x) = lim f [(—A + Do) 4ptx)
a [ u,
. u,(x)
= lim | ¢(x) = = ¢(0).
= fu,,
Therefore G’ satisfies
_AG' + Gl — 8;

hence
-AG-G)Y+(G-G")=0,

where G is the fundamental solution given in Remark 1.3. Because G — G’
decays, actually decays exponentially by Remark 1.3 and (5.3), at infinity,
the maximum principle implies G = G'; hence we get (1) and (2) simulta-
neously. |
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