On a Semilinear Elliptic Equation in R^2 When the Exponent Approaches Infinity

XIAOFENG REN* AND JUNCHENG WEI

School of Mathematics, University of Minnesota, Minnesota, Minnesota 55455

Submitted by L. C. Evans

Received April 27, 1993

We consider a semilinear elliptic equation in R^2 with the nonlinear exponent approaching infinity. In contrast to the blow-up behavior of the corresponding problem in R^n with $n \ge 3$, the $L^n(R^2)$ norms of the solutions to the equation in R^2 remain bounded from below and above. After a careful study on the decay rates of several quantities, we prove that the normalized solutions will approach the fundamental solution of $-\Delta + 1$ in R^2 . So as the exponent tends to infinity, the solutions to the problem look more and more like a peak. $\frac{1000}{1000}$ 1995 Academic Press. Inc.

1. Introduction

This paper is devoted to the behavior of the ground state solution to a semilinear elliptic equation with large exponent of the nonlinear term.

Considering

$$\begin{cases} \Delta u - u + u^p = 0 & \text{in } R^2 \\ u > 0, & \lim_{|x| \to \infty} u(x) = 0, \end{cases}$$
 (1.1)

we would like to understand the behavior of the solutions to (1.1) when the exponent p approaches ∞ .

The corresponding problem in higher dimensions

$$\begin{cases} \Delta u - u + u^p = 0 & \text{in } R^n, \text{ with } n \ge 3\\ u > 0, & \lim_{|x| \to \infty} = 0, \end{cases}$$
 (1.2)

* Current address: Department of Mathematics, Brigham Young University, Provo, Utah 84602.

was studied by X. Pan and X. Wang in [9]. Due to the existence of the critical exponent, namely (n + 2)/(n - 2) there, they were led to study the behavior of the solution to the corresponding equation in higher dimensions when p approaches (n + 2)/(n - 2). It turns out that solutions to their problem will blow up as $p \rightarrow (n + 2)/(n - 2)$.

Because of the critical exponent for $n \ge 3$, in higher dimensions we have a profile equation

$$\begin{cases} \Delta u - u + u^{(n+2)/(n-2)} = 0 & \text{in } R^n \\ u > 0, & \lim_{|x| \to \infty} u(x) = 0. \end{cases}$$
 (1.3)

In fact the nonexistence of solutions to (1.3) implies the blow-up of solutions to (1.2) when $p \rightarrow (n + 2)/(n - 2)$.

In R^2 , however, due to the lack of Eq. (1.3), we will approach the problem in a different way. We will start with a sharp estimate on the growth rate of c_p where c_p is the best constant of the embedding

$$W^{1,2}(\mathbb{R}^2) \hookrightarrow L^{p+1}(\mathbb{R}^2).$$

From this estimate and estimates of some other quantities, we will prove

THEOREM 1.1. Let u_p be a solution to (1.1). Then for p large enough, there exists C independent of p such that $1 < ||u_p||_{L^1(\mathbb{R}^2)} < C$.

THEOREM 1.2. Let u_p be a radially symmetric solution to (1.1). Then, as $p \to \infty$, we have

(1)
$$\frac{u_p}{\int_{R^2} u_p} \to G$$
 in the sense of distribution,

(2)
$$\frac{u_p}{\int_{R^2} u_p} \to G \quad \text{in } C^{2,\alpha}_{loc}(R^2 \setminus \{0\}) \text{ for all } \alpha \in (0, 1),$$

where G is the fundamental solution to $-\Delta + 1$, i.e.,

$$-\Delta G + G = \delta.$$

Remark 1.3. G has an integral representation

$$G(x) = \frac{1}{\Gamma(1/2)} \sqrt{\frac{\pi}{2}} \frac{e^{-x}}{\sqrt{x}} \int_0^\infty e^{-t} t^{-1/2} \left(1 + \frac{1}{2} \frac{t}{x}\right)^{-1/2} dt.$$

Moreover, G decays exponentially at infinity. We refer to [7] for more information.

We see, in contrast to the higher dimensions, the solutions look more and more like a peak as p gets large.

Our paper is organized as follows. In Section 2, we give necessary background of the solutions to (1.1) together with some integral identities. Then we prove a growth rate estimate of c_p in Section 3. Finally we prove Theorem 1.1 in Section 4 and Theorem 1.2 in Section 5.

2. Preliminaries

There are various ways to obtain solutions to (1.1). We shall adapt the variational approach developed in [2].

Let

$$\mathcal{A}_p = \left\{ u \in W^{1,2}(\mathbb{R}^2) : \int_{\mathbb{R}^2} u^{p+1} = 1 \right\}.$$

Consider the functional $J_p: \mathcal{A}_p \to R$ defined by

$$J_p(u) = \frac{1}{2} \int_{R^2} [|\nabla u|^2 + u^2].$$

By the theory of Schwartz symmetrization (see, for example, [6]), we can replace any minimizing sequence of the functional by a radially symmetric minimizing sequence. Then it is easy to show, with the aid of a compactness result of radial embedding in [10], that J_p has a radial minimizer in \mathcal{A}_p . If we denote this minimizer by u'_p , a scalar multiple of u'_p will solve Eq. (1.1). We denote this radial solution by u_p . A further L^{∞} estimate shows $\lim_{|x| \to \infty} u(x) = 0$. Hence u_p solves (1.1).

According to a result in [3] all solutions of (1.1) up to a parallel translation are radially symmetric. Applying the uniqueness result in [8] or [5], we know that the radial solution is unique. Therefore (1.1) has a unique solution up to a translation. From now on we will denote this unique radial solution by u_p .

It is easy to see that u_p is related to the embedding

$$W^{1,2}(\mathbb{R}^2) \hookrightarrow L^{p+1}(\mathbb{R}^2).$$

We refer to [1] for the proof of this embedding theorem.

If we denote c_p as the best constant of the above embedding, i.e., c_p is the least number among all possible constant C's which make the inequality

$$||u||_{L^{p+1}(\mathbb{R}^2)} \leq C||u||_{W^{1,2}(\mathbb{R}^2)}$$

for all $u \in W^{1,2}(\mathbb{R}^2)$, then c_p is achieved by u_p . Hence we have

LEMMA 2.1. Let u_p be the radial solution to (1.1) as above. Then we have

$$\frac{\|u_p\|_{W^{1,2}(R^2)}}{\|u_p\|_{L^{p+1}(R^2)}} = \inf\left\{\frac{\|u\|_{W^{1,2}(R^2)}}{\|u\|_{L^{p+1}(R^2)}} : u \in W^{1,2}(R^2), u \neq 0\right\} = \frac{1}{c_p},$$

where c_p is the best constant defined above.

Now let us state some integral identities.

LEMMA 2.2. Let u_p be a solution to (1.1). We have

(1)
$$\int_{\mathbb{R}^2} \left[|\nabla u_p|^2 + |u_p|^2 \right] = \int_{\mathbb{R}^2} u_p^{p+1}$$

(2)
$$\int_{R^2} u_p = \int_{R^2} u_p^p$$

(3)
$$\frac{1}{2} \int_{\mathbb{R}^2} u_p^2 = (1/(p+1)) \int_{\mathbb{R}^2} u_p^{p+1}.$$

Proof. (1) Multiplying (1.1) by u_p and integrating over B(R), the ball of radius R centered at the origin, we get

$$\int_{B(R)} [|\nabla u_p|^2 + |u_p|^2] = \int_{\partial B_R} u_p \frac{\partial u_p}{\partial n} + \int_{B_R} u_p^{p+1}.$$

Using an exponential decay property of u_p which says that there exist C, μ independent of x such that

$$u_p(x) \le Ce^{-\mu|x|}, \qquad |Du_p(x)| \le Ce^{-\mu|x|}$$

we can let R approach ∞ yielding 1. The proof of the exponential decay estimate can be found, for example, in [2]. We shall prove a refined result, Lemma 5.1, by the same method in Section 5.

- (2) Similar to (1), but we integrate the equation directly.
- (3) This is the R^2 version of the well known Pohozaev identity. We refer to [2] for a proof.

We also present some simple radial lemmas which will be used in later sections.

LEMMA 2.3. Let $n \ge 2$. Every radial function $u \in W^{1,2}(\mathbb{R}^n)$ is almost equal to a function U(x) which is continuous for $x \ne 0$; furthermore

$$|U(x)| \le C_n |x|^{(1-n)/2} ||u||_{W^{1,2}(\mathbb{R}^n)}$$

for $|x| \ge \alpha_n$ where C_n , α_n depend on n only.

The proof of this lemma can be found in [2].

LEMMA 2.4. Let $u \in L^2(\mathbb{R}^2)$ be a radial, nonnegative, non-increasing in |x| > 0, continuous function except at 0. Then we have

$$u(|x|) \le \frac{2}{\sqrt{3\pi}} |x|^{-1} ||u||_{L^2(\mathbb{R}^2)}.$$

Proof.

$$||u||_{L^{2}(\mathbb{R}^{2})}^{2} = 2\pi \int_{0}^{\infty} u^{2}(r)r \ dr \ge 2\pi \int_{|x|/2}^{|x|} u^{2}(s)s^{-1} \ ds$$
$$\ge 2\pi \frac{1}{2} u^{2}(|x|) \left(|x|^{2} - \frac{|x|^{2}}{4}\right) \ge \frac{3\pi}{4} |x|^{2} u^{2}(|x|).$$

Therefore we have the lemma.

3. On the Growth Rate of c_p

In this section, we establish a sharp estimate for the growth rate of c_p . Notice that according to the Schwartz symmetrization theory, the c_p is actually obtained in the class of radial functions. We will use C to denote various constants independent of p.

LEMMA 3.1. If $u \in W_0^{1,2}(\Omega)$ where Ω is a bounded smooth domain in R^2 , then for every $t \ge 2$

$$||u||_{L^{1}(\Omega)} \leq Ct^{1/2}|\Omega|^{1/t}||\nabla u||_{L^{2}(\Omega)}.$$

Proof. Let $u \in W_0^{1,2}(\Omega)$. We know

$$\frac{1}{\Gamma(s+1)} x^s \le e^x$$

for all $x \ge 0$, $s \ge 0$ where Γ is the Γ function. From Trudinger's Inequality (see [4, p. 160]), we have

$$\int_{\Omega} \exp \left[C_1 \left(\frac{u}{\|\nabla u\|_{L^2}} \right)^2 \right] dx \le C_2 |\Omega|,$$

where C_1 , C_2 are constants which depend on the dimension of Ω only and || denotes the Lebesgue measure. Therefore

$$\begin{split} \frac{1}{\Gamma(t/2+1)} & \int_{\Omega} u^{t} dx \\ & = \frac{1}{\Gamma(t/2+1)} \int_{\Omega} \left[C_{1} \left(\frac{u}{\|\nabla u\|_{L^{2}}} \right)^{2} \right]^{t/2} dx C_{1}^{-t/2} \|\nabla u\|_{L^{2}}^{t} \\ & \leq \int_{\Omega} \exp \left[C_{1} \left(\frac{u}{\|\nabla u\|_{L^{2}}} \right)^{2} \right] dx C_{1}^{-t/2} \|\nabla u\|_{L^{2}}^{t} \leq C_{2} |\Omega| C_{1}^{-t/2} \|\nabla u\|_{L^{2}}^{t}. \end{split}$$

Hence

$$\left(\int_{\Omega} u^{t} dx\right)^{1/t} \leq \left(\Gamma\left(\frac{t}{2} + 1\right)\right)^{1/t} C_{2}^{1/t} C_{1}^{-1/2} |\Omega|^{1/t} ||\nabla u||_{L^{2}(\Omega)}.$$

Notice that, according to Stirling's formula,

$$\left(\Gamma\left(\frac{t}{2}+1\right)\right)^{1/t} \sim \left(\left(\frac{t/2}{e}\right)^{t/2} \sqrt{te}e^{\theta_t}\right)^{1/t} \sim Ct^{1/2},$$

where $0 < \theta_t < 1/12$. This completes our lemma.

LEMMA 3.2. For each $u \in W^{1,2}(\mathbb{R}^2)$, we have

$$||u||_{L^{1}(\mathbb{R}^{2})} \leq Ct^{1/2}||u||_{W^{1,2}(\mathbb{R}^{2})}$$

for every $t \geq 4$.

Proof. As we mentioned earlier, by the Schwartz symmetrization theory, we need only to prove the inequality for radial functions. So in the proof all functions are assumed to be radial. Let $u := u_1 + u_2 := u\chi_{\{r \le \alpha_2\}} + u\chi_{\{r \ge \alpha_2\}}$ where α_2 is defined in Lemma 2.3.

Then

$$||u||_{L^{t}(\mathbb{R}^{2})} \leq ||u_{1}||_{L^{t}} + ||u_{2}||_{L^{t}}.$$

And by Lemma 2.3

$$\begin{aligned} \|u_2\|_{L^t} &\leq \left(\int_{R^2 \setminus \mathbf{B}_{\alpha_2}} u^t\right)^{1/t} \leq \left(2\pi \int_{r \geq \alpha_2} r^{-t/2+1} (C\|u\|_{W^{1,2}(R^2)})^t\right)^{1/t} \\ &\leq C\|u\|_{W^{1,2}(R^2)} \left(\frac{2}{|t-1|}\right)^{1/t} (\alpha_2^{-t/2+2})^{1/t} \leq C\|u\|_{W^{1,2}(R^2)}. \end{aligned}$$

Hence combining this with Lemma 3.1, we obtain

$$||u||_{L^{t}} \leq Ct^{1/2}||u||_{W^{1,2}(\mathbb{R}^{2})} + C||u_{2}||_{W^{1,2}(\mathbb{R}^{2})} \leq Ct^{1/2}||u||_{W^{1,2}(\mathbb{R}^{2})}.$$

LEMMA 3.3. For p large enough, there exist C_1 , C_2 independent of p such that

$$C_1 p^{1/2} \le c_p \le C_2 p^{1/2}$$
.

Proof. The second inequality follows from Lemma 3.2. To prove the first inequality, we consider the so-called Moser's function

$$\Phi(r) = \begin{cases} (p+1)^{-1/2} \log \frac{1}{r}, & e^{-(p+1)} \le r \le 1 \\ (p+1)^{-1/2} \log e^{p+1}, & 0 \le r \le e^{-(p+1)} \end{cases}$$
$$= \begin{cases} (p+1)^{-1/2} \log \frac{1}{r}, & e^{-(p+1)} \le r \le 1 \\ (p+1)^{1/2}, & 0 \le r \le e^{-(p+1)}. \end{cases}$$

So $\phi \in W_0^{1,2}(B_1) \subset W^{1,2}(R^2)$ where the trivial extension is used to interpret the second inclusion.

On the one hand

$$\|\nabla\phi\|_{L^2}^2=2\pi\int_0^1\phi_r^2r\ dr=2\pi\int_{e^{-(p+1)}}^1(p+1)^{-1}\frac{1}{r}\ dr=2\pi.$$

Therefore by Poincaré's Inequality on B_1 ,

$$\|\phi\|_{W^{1,2}(\mathbb{R}^2)} = \|\phi\|_{W^{1,2}(B_1)} \le C \|\nabla\phi\|_{L^2(B_1)} = C, \tag{3.1}$$

where C is a constant depending on the first eigenvalue of Δ on the unit disk with Dirichlet boundary condition only.

On the other hand

$$\int_{B_1} \phi^{p+1} = 2\pi \int_0^1 \phi^{p+1} r \, dr \ge 2\pi \int_{e^{-(p+1)}}^1 (p+1)^{-(p+1)/2} \left(\log \frac{1}{r} \right)^{p+1} r \, dr$$

$$= 2\pi (p+1)^{-(p+1)/2} \int_0^{p+1} t^{p+1} e^{-t} \, dt$$

$$\ge 2\pi (p+1)^{-(p+1)/2} \int_{(p+1)/2}^{p+1} t^{p+1} e^{-t} \, dt$$

$$\ge 2\pi (p+1)^{-(p+1)/2} \left(\frac{p+1}{2} \right)^{p+1} e^{-(p+1)} \frac{p+1}{2}$$

$$\ge 2\pi 2^{-(p+2)} (p+1)^{(p+3)/2} e^{-(p+1)}.$$

Hence

$$\|\phi\|_{L^{p+1}} \ge (2\pi)^{\lfloor (p+1)} 2^{-(p+2)/(p+1)} (p+1)^{\lfloor 1/2 \rfloor ((p+3)/(p+1))} e^{-1} \ge C(p+1)^{1/2}.$$
(3.2)

Combining (3.1) and (3.2), we have the lemma.

4. On the $L^{\infty}(\mathbb{R}^2)$ Norm of u_p

We are now in the position to study the $L^{\infty}(R^2)$ norms of u_p . Because our solutions u_p are radially symmetric, they satisfy the following ordinary differential equation

$$\begin{cases} u'' + \frac{1}{r}u' - u + u^p = 0\\ u'(0) = 0, & \lim_{r \to \infty} u(r) = 0. \end{cases}$$
 (4.1)

From [8] or [5], we know $u_p'(r) < 0$ for all r > 0 where u_p is a solution to (1.1) with the exponent in the equation being p. We define

$$\gamma_n := u_n(0) = \|u_n\|_{L^{\infty}}$$

LEMMA 4.1. $||u_p||_{W^{1,2}(\mathbb{R}^2)} \le C/p^{1/2}$ when p is large.

Proof. From the integral identity (1) in Lemma 2.2, we deduce

$$||u_n||_{W^{1,2}(\mathbb{R}^2)}^2 = ||u_n||_{L^{p+1}(\mathbb{R}^2)}^{p+1}.$$

Combining this with Lemma 2.1 and Lemma 3.2, we get

$$||u_p||_{W^{1,2}(\mathbb{R}^2)} = C^{(p+1)/(p-1)}p^{-(1/2)(p+1)/(p-1))} \le Cp^{-1/2}$$

when p is large.

We now prove Theorem 1.1.

Proof of Theorem 1.1. The uniform lower bound 1 follows from the maximum principle. To find a uniform upper bound let

$$E_p(r) = -ru'_p(r) - \frac{1}{2} r^2 (u_p^p - u).$$

Then $E_p(0) = 0$, and

$$E'_{p}(r) = -u'_{p} - ru''_{p} - r(u''_{p} - u_{p}) - \frac{1}{2}r^{2}(pu''_{p} - 1)u'_{p}$$

$$= -\frac{1}{2}r^{2}(pu''_{p} - 1)u'_{p}.$$

Let $r_0 > 0$ be such that $u_p(r_0) = (1/p)^{1/(p-1)}$. Clearly such r_0 exists, and it depends on p. Notice $E_p'(r) \ge 0$ for $r \in (0, r_0)$. Therefore $E_p \ge 0$ on $(0, r_0)$. From the definition of E, we have

$$-u'_p(r) - \frac{1}{2} r(u_p^p - u_p) \ge 0$$

on $(0, r_0)$. Combining this with Eq. (4.1) of u_p , we get

$$u_p'' \ge \frac{1}{2} (u_p - u_p^p), \qquad u_p'' \ge \frac{1}{2} (\gamma_p - \gamma_p^p)$$
 (4.2)

for all r in $(0, r_0)$.

Integrating both sides of (4.2) twice with respect to r on (0, r), we obtain

$$\gamma_p - \frac{1}{2} u_p(r) \le \frac{1}{4} r^2 (\gamma_p^p - \gamma_p)$$
 (4.3)

for $r \in (0, r_0)$.

Now let T_0 be such that $u_p(T_0) = \frac{1}{2}\gamma_p$. T_0 depends on p. From (4.3), we have

$$\gamma_p - \frac{1}{2} \gamma_p \le \frac{1}{4} T_0^2 (\gamma_p^p - \gamma_p), \qquad \gamma_p \le \frac{1}{2} T_0^2 \gamma_p^p.$$
(4.4)

Applying Lemma 3.2 with t = 2p and Lemma 4.1, we get

$$||u_p||_{L^{2p}(\mathbb{R}^2)} \le C(2p)^{1/2}||u_p||_{W^{1,2}(\mathbb{R}^2)} \le C(2p)^{1/2}C'p^{-1/2} := M,$$

where M is independent of p for large p. Hence

$$\int_{\mathbb{R}^2} u_p^{2p} \ dx \le M^{2p}.$$

But

$$\int_{\mathbb{R}^2} u^{2p} \ dx = 2\pi \int_0^\infty u_p^{2p}(r) r \ dr \ge \int_0^{T_0} u_p^{2p} r \ dr \ge \left(\frac{\gamma_p}{2}\right)^{2p} \frac{1}{2} T_0^2.$$

Therefore

$$\frac{1}{2} T_0^2 \left(\frac{\gamma_p}{2}\right)^{2p} \le M^{2p}, \qquad T_0^2 \le 2 \left(\frac{2M}{\gamma_p}\right)^{2p}. \tag{4.5}$$

Combining (4.4) with (4.5), we obtain

$$1 \leq \left(\frac{2M}{\gamma_p}\right)^{2p} (\gamma_p^{p-1}) \leq \left(\frac{2M}{\gamma_p}\right)^{2p} \gamma_p^p, \qquad \gamma_p \leq (2M)^2. \quad \blacksquare$$

We now derive the decay rates for some quantities.

COROLLARY 4.2. There exist C_1 , C_2 independent of p such that for large p we have

(1)
$$C_1 \frac{1}{p} \le \int_{\mathbb{R}^2} |\nabla u_p|^2 dx \le C_2 \frac{1}{p}$$

(2)
$$C_1 \frac{1}{p} \le \int_{\mathbb{R}^2} u_p^{p+1} dx \le C_2 \frac{1}{p}$$

(3)
$$C_1 \frac{1}{p^2} \le \int_{\mathbb{R}^2} u_p^2 dx \le C_2 \frac{1}{p^2}$$

(4)
$$C_1 \frac{1}{p} \le \int_{R^2} u_p \ dx = \int_{R^2} u_p^p \ dx \le C_2 \frac{1}{p}$$
.

Proof. Combining Lemma 2.1, Lemma 2.2, and Lemma 3.3 we have (1)–(3). To prove (4), we see from Theorem 1.1 and (2)

$$\int_{R^2} u_p^p \ge \frac{1}{\gamma_p} \int_{R^2} u_p^{p+1} \ge \frac{1}{C} \int_{R^2} u_p^{p+1} \ge \frac{C_1}{p}.$$

On the other hand, an interpolation argument shows

$$||u_p||_{L^p} \le ||u_p||_{L^2}^{(p-2)/(p+1-2)} ||u_p||_{p+1}^{(p+1-p)/(p+1-2)}.$$

Therefore (2) and (3) imply

$$\int_{R^2} u_p^p \le \frac{C_2}{p}$$

for C_2 independent of p when p is large. Therefore with the aid of Lemma 2.2(2) we have (4).

5. On the Normalized u_p

Before we turn to the proof of Theorem 1.2, we first give a uniform exponential decay estimate in p of u_p .

LEMMA 5.1. There exists a constant C independent of p, such that for large p and $r \ge 1$

$$u_p(r) \leq \frac{C}{p} e^{-r/2} r^{-1/2}.$$

Proof. Let $v_p = r^{1/2}u_p$. Then v_p satisfies

$$v_p'' = \left[q(r) - \frac{1}{4r^2}\right] v_p,$$

where $q(r) = 1 - u_p^{p-1}(r)$. Note for large p, by Lemma 2.4 and Corollary 4.2

$$q(1) - \frac{1}{41^2} \ge 1 - \left[\frac{2}{\sqrt{3\pi}} \|u_p\|_{L^2} \right]^{p-1} - \frac{1}{4} \ge \frac{3}{4} - \left(\frac{C}{p} \right)^{p-1} \to \frac{3}{4}$$

as $p \to \infty$. Hence for large p we have

$$q(r)-\frac{1}{4r^2}\geq \frac{1}{2}$$

for $r \ge 1$.

Let $w_p = v_p^2$; then w_p satisfies

$$\frac{1}{2}w_p'' = (v_p')^2 + \left[q(r) - \frac{1}{4r^2}\right]w_p.$$

Thus for $r \ge 1$, one has $w_p'' \ge w_p$ and $w_p \ge 0$.

Let $z_p = e^{-r}(w_p' + w_p)$. We have $z_p' = e^{-r}(w_p'' - w_p) \ge 0$; hence z_p is a nondecreasing function on $(1, \infty)$. If there exists $r_1 > 1$ such that $z_p(r_1) > 0$, then $z_p(r) \ge z_p(r_1) > 0$ for $r > r_1$. This implies that

$$w_p' + w_p \ge (z_p(r_1))e^r$$

whence $w_p' + w_p$ is not integrable on (r_1, ∞) . But v_p^2 and $v_p v_p'$ are integrable near ∞ for $u_p \in W^{1,2}(\mathbb{R}^2)$, so that w_p' and w_p are also integrable, a contradiction.

Hence $z_p(r) \le 0$ for $r \ge 1$. This implies that

$$(e^r w_n)' = e^{2r} z_n \le 0$$

for $r \ge 1$. Hence

$$w_p \le e^{1} w_p(1) e^{-r}, \qquad u_p \le e^{1/2} u_p(1) e^{-r/2} r^{-1/2}.$$

But $u_p(1)$ can be estimated by Lemma 2.4 and Corollary 4.2 as

$$u_p(1) \leq \frac{2}{\sqrt{3\pi}} \|u_p\|_{L^2(R^2)} \leq \frac{C}{p}.$$

Therefore

$$u_p(r) \le \frac{C}{p} e^{-r/2} r^{-1/2}$$

for $r \ge 1$.

Proof of Theorem 1.2. Let

$$A_{\varepsilon} = \left\{ x \in \mathbb{R}^2 : \varepsilon \leq |x| \leq \frac{1}{\varepsilon} \right\}.$$

Then by Lemma 2.4 and Corollary 4.2 we have that for large p

$$\left\|\frac{u_p}{\int u_p}\right\|_{L^2(A_{\varepsilon})} \leq C_{\varepsilon} p \|u_p\|_{L^2} \leq C_{\varepsilon}.$$

Hence $||u_p|/\int u_p||_{L^r(A_n)}$ is bounded uniformly for large p. On the other hand, by Lemma 2.4 and Corollary 4.2

$$\left\|\frac{u_p^p}{\int u_p}\right\|_{L^r(A_r)} \le Cp \left(\frac{C_2}{p}\right)^p \varepsilon^{-p}$$

which is bounded uniformly for large p. So the elliptic L^p -estimate shows that $u_p/\int u_p$ is bounded in $C^{\alpha}(A_{\varepsilon})$ for all $\alpha \in (0, 1)$. Using the Schauder estimate, we have that $u_p/\int u_p$ is bounded uniformly in $C^{2,\alpha}(A_{\varepsilon})$ for all $\alpha \in$

(0, 1). Therefore a subsequence of $\{u_p/\int u_p\}$, still denoted by $\{u_p/\int u_p\}$, will approach a function, say G', in $C_{loc}^{2,\alpha}(R^2\setminus\{0\})$. So we almost have (1) except that we need to show G'=G where G is the fundamental solution given in Remark 1.3.

We now prove

$$\frac{u_p}{\int u_p} \to G'$$

in the sense of distribution and

$$-\Delta G' + G' = \delta.$$

Let $\phi(x) \in C_0^{\infty}(\mathbb{R}^2)$, $\varepsilon > 0$. A standard kernel argument shows that (note $\int u_p^p = \int u_p$ by Lemma 2.2), with the aid of Lemma 2.4

$$\left| \int_{R^{2}} \phi(x) \frac{u_{p}^{p}}{\int u_{p}} dx - \phi(0) \right| \leq \int_{R^{2}} \left| \phi(x) - \phi(0) \right| \frac{u_{p}^{p}}{\int u_{p}}$$

$$\leq \int_{B_{b}} \left| \phi(x) - \phi(0) \right| \frac{u_{p}^{p}}{\int u_{p}} + 2 \max_{x \in R^{2}} \left(\phi(x) \right) \int_{R^{2} \setminus B_{b}} \frac{u_{p}^{p}}{\int u_{p}}$$

$$\leq \max_{B_{b}} \left(\phi(x) - \phi(0) \right) + 2 \max_{R^{2}} \left[\phi(x) \right] Cp \int_{\delta}^{\infty} \frac{1}{r^{p}} r \left(\frac{C}{p} \right)^{r}$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

if we choose δ small enough first, then choose p large enough. Hence,

$$\lim_{p\to\infty}\int\phi(x)\,\frac{u_p^p}{\int u_p}=\phi(0).$$

But

$$\int \phi(x) \frac{u_p^{\rho}}{\int u_p} = \int \left[(-\Delta + 1)\phi(x) \right] \frac{u_p}{\int u_p}.$$
 (5.1)

To pass the limit in Eq. (5.1), we need a dominating function. Let us first consider $u_p/\int u_p$ in B_1 , the unit disc. Lemma 2.4 and Corollary 4.2 imply that

$$\frac{u_p}{\int u_p} \le \frac{2C}{|x|}. (5.2)$$

So we take the latter to be the dominating function in B_1 .

Then we use Lemma 5.1 to get the following decay estimate on $R^2 \setminus B_1$

$$\frac{u_p(x)}{\int u_p} \le C e^{-|x|/2} |x|^{-|x|/2},\tag{5.3}$$

where the latter gives a dominating function on $R^2 \setminus B_1$.

Combining (5.2) with (5.3), we can pass the limit in (5.1); hence

$$\int [(-\Delta + 1)\phi(x)]G'(x) = \lim_{p \to \infty} \int [(-\Delta + 1)\phi(x)] \frac{u_p(x)}{\int u_p}$$
$$= \lim_{p \to \infty} \int \phi(x) \frac{u_p(x)}{\int u_p} = \phi(0).$$

Therefore G' satisfies

$$-\Delta G' + G' = \delta;$$

hence

$$-\Delta(G-G')+(G-G')=0,$$

where G is the fundamental solution given in Remark 1.3. Because G - G' decays, actually decays exponentially by Remark 1.3 and (5.3), at infinity, the maximum principle implies G = G'; hence we get (1) and (2) simultaneously.

References

- 1. Adams, "Sobolev Spaces," Academic Press, New York, 1975.
- H. BERESTYEKI AND P. J. LIONS, Nonlinear scalar field equations, I, Arch. Rational Mech. Anal. 82 (1983), 313-345.
- 3. B. GIDAS, W.-M. NI, AND L. NIRENBERG, Symmetry of positive solutions of nonlinear equations in Rⁿ, Adv. Math. Stud. A 7 (1981), 369-402.
- 4. D. GILBARG AND N. S. TRUDINGER, "Elliptic Partial Differential Equations of Second Order," 2nd ed., Springer-Verlag, Berlin/Heidelberg/New York, 1983.
- 5. M. K. Kwong, Uniqueness of positive solutions of $\Delta u u + u^p = 0$ in \mathbb{R}^n , Arch. Rational Mech. Anal. 105 (1989), 243-266.

- 6. E. H. LIEB, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, *Stud. Appl. Math.* **57** (1977), 93–105.
- 7. W. MAGNUS AND F. OBERHETTINGER, "Formulas and Theorems for the Special Functions of Mathematical Physics," Springer-Verlag, Berlin/New York, 1966.
- 8. K. Mcleod and J. Serrin, Uniqueness of positive radial solutions of $\Delta u + f(u) = 0$ in R^n , Arch. Rational Mech. Anal. 99 (1987), 115–145.
- X. PAN AND X. WANG, Blow-up behavior of ground states of semilinear elliptic equations in Rⁿ involving critical Sobolev exponents, J. Differential Equations 99 (1922), 78–107.
- 10. W. A. STRAUSS, Existence of solitary waves in higher dimension, *Comm. Math. Phys.* 55 (1972), 149-162.