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We consider the asymptotic behavior of certain solutions to a quasilinear
problem with large exponent in the nonlinearity. Starting with the investigation of
a Sobolev embedding, we get a sharp estimate for the embedding constant. Then we
obtain a crucial L'-estimate for the N-Laplacian operators in R™. Using these
estimates we prove that the solutions obtained by the standard variational method
will develop a spiky pattern of peaks as the nonlincar exponent gets large, and we
also have an upper bound depending on N only of the number of peaks. Stronger
results for some special convex domains and some special solutions are also
achieved. © 1995 Academic Press. Inc.

1. INTRODUCTION

In this paper we shall study the asymptotic behavior of certain solutions,
as p— oo, of the quasilinear elliptic equation

(Apu+u’=0 in

1.1
Ulp, =0, u>0 in Q2 (.

where p> 1, N> 2, 4u=div(|Vu|"* Vu) is the N-Laplacian operator and
Q < R" is a smooth bounded domain. We shall only focus on the solutions
of the problem obtained by the following variational method. Let

o, = {ve WiMQ): el per = 1}

be the admissible set and define

by

J{v)= J V| ™.
2
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Clearly J, is bounded from below. Standard arguments show that J,, has
at least one nonnegative minimizer in .«Z,. If we denote such a minimizer

by ). then a suitable multiple of u),, say u,, solves (1.1) and

. LN \% N,
A N) :=inf§U ]Vu]‘”} :uepﬁ,}—wi--{-‘--)-!. (13)
L 2

||“,-H £r=1ig2)

A Hopf-type boundary lemma, see Guedda and Veron [7], shows that u,
is positive in Q. It is also known that the solutions of (1.1) are C'* func-
tions. We refer the reader to [7, 17, and 16] for the regularity, comparison
principle, and Hopf boundary lemma for N-Laplacian operators.

Our goal is to understand the asymptotic behavior of the variational
solutions u, obtained above when p, serving as a parameter, gets large. The
case where N =2 is studied in our earlier work [12]. In that article, we
proved that {u,], . are bounded both from below and above as p tends to
infinity. We also proved that u, approach zero except at one or two points.
u, hence develop a pattern of peaks in €. In this paper we shall show that
our method developed there can be successfully extended to higher dimen-
sional cases with 4 replaced by 4. Our first result is

TueoreM 1.1 Let u, be a variational solution of (1.1) obtained above.
Then there exist positive C,, C,, independent of p, such that

0<Ci<|u,l, <Cy<w
for p large.
To state the second theorem, let

1]

£ ) (1.4)

r= 1N = 1
‘y:z“,':) ‘

For a sequence {t,} of v, we define the blow-up set 4 of {v, } to be the
subset of Q2 such that x e 4 if there exist a subsequence, still denoted by ¢,, ,
and a sequence x, in 2 with

U, {X,) = % and X, X, (L.5)
We also define, with respect to {v, }.

S=4nQ,
S'=4n00Q.

(1.6)

We use #.4 (#S. #S5’), to denote the cardinality of 4 (S, S’ respectively).
It turns out later that .4(S, S') will be the set of global (interior, boundary )
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peaks of the subsequence v, respectively. We also call them global (inte-
rior, boundary) peak sets.

THEOREM 1.2, Let N>=2. Then for any sequence {v,} of v, with
p.— %, the global peak set 4 of v, is not empty and there exists a sub-
sequence of v, such that the interior peak set S of the subsequence has the

property
1 N AV
0< #S< [dx <N—_l> ]
where
doe inf X1 TXSIYIY PYNX-T)
' X# YeRY lx_ Ylw

is a positive number depending on N only.

From the above results, we see that the variational solutions develop a
spiky pattern as p approaches infinity and the number of peaks is con-
trolled in Theorem 1.2. If we impose more conditions on the domain as
well as solutions, we can prove that they develop a single peak in the inte-
rior of the domain. We note that single-peak spiky patterns also appear in
the works of Ni and co-workers [8-10] and Pan [ 11] where some biologi-
cal pattern formation problems are considered.

Our paper is organized as follows. In Section 2, we prove a crucial
sharp estimate for ¢,(N) defined in (1.3). Theorem 1.1 will be proved in
Section 3. In Section 4 we extend an estimate of Brezis and Merle [1] to
the N-Laplacian cases using the level set method. Theorem 1.2 will then be
proved in Section 5. Stronger conclusions for some special convex domains
and some special variational solutions u, are obtained in Section 6; namely,
#8S=1and S'=¢.

2. AN ESTIMATE FOR ¢,(N)
Recall cpN) defined in (1.3). We first prove
LemMMmA 2.1, For every t =2 there is D, such that

fael , < DN VN V| v

Jor all ue W5ENQ) where 2 is a bounded domain in R, furthermore

. N—1 (N TN
]‘ D = . (N 1N
’m, = (ay) Ne

’

where oy =No """ and wy | is the area of unit (N — 1)-sphere in R".
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Proof. Let ue W;"(2). We know

1
Ns+1)

x*ge'

for all x>0, s >0 where I' is the I function. From Moser’s sharp form of
Trudinger’s inequality (see [5, p. 160; 6]), we have

- u NAN-=1)
J exp[%( > ]dst|Q|
I [Vl »

where a, is defined in Lemma 2.1, C depends on N only, and |Q2] is the
Lebesgue measure of £2. Therefore

(1/1“<N; Lot 1>> L u' dx
N _ 1 u NAN-=DTUN—=1}N)
=<”F< N ’+l>>L[“N<HVuHu> ]

X dX(x’XN) - N - 1WN Yt HVM‘[ IL‘V

) u NN -1 )
<[, = () ] dx{ag) IR
2

[Vul 1~

< C Q] (ay) ™ NN vyl

Hence

L/t N—l Lir ) ‘
(j u'dx> <<r< z+1>> (C1NY oy ™= 2N (V|| v -
Q N

Note that according to Stirling’s formula,

N-1 veN I\
r r+1 ~ (NN,
() -5

Choosing D, to be

N—l Lt “ . ) “
<I—~< N I+1>> (C|Q|)lu1;(!\’—[)‘,At7(l’v—];,‘N

we get the desired result. ||

We then prove a sharp estimate for ¢, (N).

505 117:1-
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LEMMA 2.2.

3 C,)(N) N (N = 1)N
,,hfn,x p SN T N_1 o€ )

Proof. Without loss of generality, we assume O e £2. Let L >0 be such
that B, = Q where B, is the ball of radius L centered at the origin. For
0 < /< L, consider the so-called Moser function

INN N
<log 7) , 0< x| <l

log L/| _|l_
[log(L/N]"
0, x| = L.

m,(x)=

WY

Then m;e W§™(2) and |Vu|,~=1. Now

1ip+ 1)
<J m{’*'(x)dx)
02
ip+ 1)
2([ m{’“(.\‘)dx)
By

] L (N - 1N 1 v Litp+1)
o) (e

1

Choosing /= L exp(—({N—1)/N?)(p+ 1))), we have

_ NN N
4 2—‘1#7‘ exp < _iV_l)(N 7]>
Y, N N2

) ) 1 . 1ip+1)
X (p+ 1)V VN <—wN ,,L‘\> )

N

Therefore

_ 1 N?. (N —-1WN
(N <oV, exp< " )(N—l)

x(p+1)» l»w(_l_ LN>1(1’+1)
P Na)N_l .

Combining this with Lemma 2.1, we get the conclusion. }
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By the construction of the variational solutions u, in Section 1, we have

¢ _ E‘VI‘RH 1.N0)
r H“,}H L+ gy

If we multiply Eq. (1.1) by u, and integrate both sides on 2, we have

f [Vae, | =)[ ub* !
Q2 Q2

Hence we derive from Lemma 2.2
COROLLARY 2.3.

. Noye\V !
im p¥='| wrt' =)
p— P Jn " <N_ 1

N e\
P L' =\ N

Define

where d, is as defined in Theorem 1.2. We have the following rough
estimates for L, and Lj.

COROLLARY 2.4. For any smooth bounded domain Q in R",

N N .
N_laN, L(,<ma1\,d;"““ b

Ly<

Proof. From Corollary 2.3 we have by Holder’s inequality

(p/p+11AN-- 1)

L,= Tim PYr  im p f ur+l || Vir+ AN =) 1
) -~
px € p—x e 7 i
No
N
< i
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3. PrRoOOF oF THEOREM 1.1

To get a lower bound for {u,||, ., we define

Vul  » .
).=inf{H uls cue WiNQ), 11;60}.

el v

From Poincaré’s inequality, we have 0 <A < oc. For u, we have

p+l_ N N N
j u’ —f |Vu, | = 4 J u,,
Q g2 2

f (uh ' =2 M) 2 0.
2

Therefore

lu g3t V= 2N
Letting p > N — 1, we obtain

[, = NP+ >0,
To get a upper bound for |ju,|l, -, let
i = )

A={x1u,(x)>7y,/2},
Q,={x:1u,(x)>1t}.

(3.1)

Both 4 and Q, depend on p. From Lemma 2.1 and Corollary 2.3, we have

Np \V—1iN
H“,;H JEAEEIES D.’\",,;‘(N— ¥ <~1\/le> IVl x

N (N-- 1WA ) -
<cghy) eem

where M is a constant independent of p. Then

y Np/(N—1)
yi NpiN -1} NpiAN—1)
(-—2> |A|<L}ul,’ <MY .

On the other hand,

_ : N2 _ N—-1 g,
J upb = —J div(|Vu,,| Vup)—f [V, | ds
@, € g

a£2,

(3.2)
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and
d ds
— Q| = _
d[ l ’l fr’lﬂ, [Vll,,l’

where the second is the co-area formula (see Federer [3]). By the Schwartz
inequality and the isoperimetric inequality we have

d N—1
- P
(-S1e) | w

dy \V !

— V N-—-1 d >

<Jm, |V”;J> (Ln, Vil ’
R ds \N! N-1 RV
> <Jm, tVu > (Lsz, |V11p|> €2

pl

Z0Q,PV 1V 0Q,| TN =10Q, V= Cy 12|V,

where |0Q2,| denotes the (N — 1) — dimensional Hausdorff measure of 6€2,
and C is the best constant in the isoperimetric inequality (we refer to [3]
for more information about the Hausdorff measures and the isoperimetric
inequality). Now we define r(r) for 0 <7<y, such that

1 ;
1R, =5 @5 N

then

d o~ dr
i 1Ql=wy " l(”E~

Hence we have

dt . 1 AN~ 1}
~2<Che <L}{ u?(x) dx>

1 .
’ N —1) 1AN—1)
<Chy—pp e

_ L pAN DLTAN - 1)
=Cyi! r :
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Integrating the inequality from 0 to r,, we have
[(0) — ’.U) < CT/\"V,’,N N - 1),.3W(N -1 "

Choosing r, so that #(ry) =7y,/2, we get

PN —1)
Fa

- PN - ) LAN - 1)
)'p < Ci\" I'/,;I |A| .

’ NAN -1,
7, < Clyy a ;

v
Combining this with (3.2), we obtain

. 2M NpHAN - T\ 1AN - 1)
},I) < C’Nyﬁr‘h\‘ -1 <( ) ) R

NpiN 1)
}'I’
i Npi N 2 AN Np NpiAN — A AN —-
},I’<C1(1+'\p,(\ 1) PAN l))(zj‘/[) Pl + Npi(N — 1) PAN-=-T1))
'
<C

for p large enough where the last C’ is a constant independent of large p.
This proves Theorem 1.1.
We derive a consequence of Theorem 1.1 which will be used later.

COROLLARY 3.1.  There exist C, and C, independent of p such that

C, ¢

5
» 2
N I\J up\ N-1
Q P

r
for large p.

Proof. The first inequality follows from Theorem 1.1 and the first limit
of Corollary 2.3; the second inequality follows from the first limit of
Corollary 2.3 by an interpolation. |

4. A PrIORI ESTIMATES FOR N-LAPLACIAN OPERATORS

In this section we extend the L' estimate of Brezis and Merle [1] to
N-Laplacian operators. Due to the nonlinearity of N-Laplacian operators
for N >3, we use the level set argument here.

Lemma 4.1, Let u be a C* solution of

{~ANu=f(.\‘) in Q2

Ulog=0
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where fe L'(2), f = 0. Then for every § (0, NoN'™ )= (0, ay) we have
¢ (2 —0) Ju(x)] e
J exp[%ﬁ— (Z\nglgl
@ (WA

where |Q| denotes the volume of Q.

Proof. We prove this by the symmetrization method. Consider the
symmetrized problem

{—div(lVUIN‘Z VU)=F(x) in Q*
Ulog-=0

where Q* is the ball centered at the origin with the same volume as 2 and
F is the symmetric decreasing rearrangement of /. We refer the reader to
Talenti [ 14, 15] for properties of the rearrangement. According to [15],
we have

u*r U

where u* is the symmetric decreasing rearrangement of u. U clearly satisfies
the following ODE.

o N-1 ,
(l(]ll,\‘ -2 U!)1+ - ‘L/l{}\72 U’+F(’)=O

U'0)=0, U(R)=0.

Therefore
5 V"F{S db)l‘\f” 1
4 U —
-Utn= < HFHHZ.”-
r Wy
Hence
_ R
U< 1, log
Wy,
r U ; RA\N—*
J exp{( —F)w""”—m——]d_\'gj explog(—-—> dx
(R ]
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Letting cw 'YV =3, we have

R".

. [ T Utr) NS
exp | (o — <
Jn* Pt ilFIL,'N”} d

According to the properties of the symmetric decreasing function, we have

HF“L‘(!Z‘> = Hf” Lls2)s
u(x) u*(x)
exp{(alv—é)——} dx = exp{(av—é)———,—w}
J;) A fQ' ¥ A ;,‘(,'\» "

S exp':(lhv_é).ﬂLJ

T
NN~ 1)
Wy . N
< RN = Ql.
- Yol

An interesting consequence is

CoROLLARY 4.2. Let u, be a sequence of C"* solutions of

{A‘\.u,, + V,e=0 in
U, lﬁ{l =0

such that

Valo < Cy;
[ Ve o<
Q q
Jor some 1 <g< oo and q' = q/(q—1). Then

”unHL"(Q)gC

where C depends on N, C,, ||, and ¢, only.
Proof. Fix 3>0 so that ay—d>¢,(q' +3). By Lemma 4.1 we have

| explq +0) 1< C
2

for some C independent of n. Therefore e* is bounded in L? % Q); hence
V,e* is bounded in L'**(). Then the standard Moser iteration method
implies that u,, is bounded in L™(Q). [
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Next we give a version of Lemma 4.1 without homogeneous boundary
condition.

LEMMA 4.3. Let u and ¢ be C“*Q) solutions of

Ayu+ f(x)=0 in Q, >0,
and

{AW:o in

@ lag=1u,
respectively. Then there exists a constant C depending on Q only such that

- (ay—0)dy"™ " C

JQCXP [W(ll—(ﬂ) <g
where d is defined in Theorem 1.2.

Proof. Let u, and ¢, be solutions of the nondegenerate equations
{’ —div((e+ |Vu )Y Vu)=f inR, [f>0
U, |ap=1U
and
{—div((m-IVrpalz)‘”z"2 Vg,)=0 inQ

@ '(”!l =Uu,

respectively. (These solutions are smooth and obtained easily by the
variational method. Furthermore,

lim u,=u,
£—+0
lim ¢, =¢
£ =0

in C"7 for some . See [16].) Let Q,={xeQ:u,— ¢, >1}.

Claim,

dux) Jp,(x)
ov = ov

on d€2, for almost all 1 > 0.
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Let x,€8Q,. For almost all >0 we can find a ball B,(x,)< 2, with

B,(x])nQ,=x, by Sard’s theorem. Let w=u, — ¢, —t. Then w verifies

where

a;=(e+t,Vu,+(1—1,) Vg, |5V 47 {(5”(8+ |6, Vi, +(1—1,)Ve,|?)

du, e, du, Op,
N=2yit,—+ (1 —t)— )1, —¢, :
* )<[' (7.\‘»+( & 5‘.\',>< 'Bx_,-+“ 2 (7.\'_,)}

{

and r,€ (0, 1). Because this equation is nondegenerate, we can apply Hopf’s
lemma. Therefore

ow

av
hence we prove the claim.
Following the standard level set argument, we have

J‘ f(,\'):—Jp div((& + |Vu,|H)™Y 22 Vu,)

2, €2,

£2,

:J~ ((e+ |V“,,|2)(N - 2)72 Vu,
a8,

SN 21 (Vu,—Veg,)
— (& Ik (N 2)2 V ] & &
eIV ) |V, Vg,

>d‘;NJ Vi, — Vo |V 1,
a2,
where
, e XPYY PR X — e+ | Y)Y VYN - Y)
diy,= inf N
X% Ye R |X* YII

is a positive number,

lim d’y=dy
"o
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and d 1s as defined in Theorem 1.2. Also by the co-area formula we have

d ds
— |2, = e

Hence by the Schwartz inequality and the isoperimetric inequality,

d N
<AEIQ,I> ngf(_\)
o (I'S N- 1
= P — i y — LA
([, )Vu,,—v(pnl> @i (], Vo)

. ClS N-—-1 N o1 )
> i”, V .«-AV . OQ (N 2}
(JFQ/ |Vu;: - V(pr|> @ <J‘(”“)l | . (P|> 1 ’l

> d 109, 116Q,) VY = dy 162,

Bd’,‘:\"(‘);\’—leNgl ‘QI|N”I =de\"a:NN.'¥l |Q1|N 1'

Define r(¢) so that

1 .
IQ,|=NLU~,,)‘A’]([),
then
d(2, 1 , dr . dr
D — oy NrY T = Y T
r Nwm—n ¥ ( )dt Wy _F ( )dl

Hence we have from the above that

7 AN , 1 N
<_w‘\;lr1\ lu)E) Jsz, f(x)dxzd NY oy, (Nw\ 1"N(1)> ;

dr

N
<_~"> ff(X)dxza";vw‘\_]r»\u];
€@,

dt
dar\¥ ! 1 1
<—~> SNAfJ Six)dx
dr diywy . r¥ e,

1 |
<

< .
; Hf”l.‘(szw
diawy (rV !
dr 1 anv- 11
o S e
dr (d}:\) AN~ )(l) ( 1 r
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Integrating the last inequality over (r, R} (note that |2|=(1/N)w, ,RY),
we have

1 LN R
AN = 1)
Hr) < | £} log —;
AN — AN ALY ATYe] >
(ciﬂ'\,)“"w H‘U.elv""\l 1y (£2) r

(d) Y=ot N —y) R\N -t
oo (D)

A r
R (d:';w)lu,\ “(1)3.\} Nr “(N—L‘o) )
J exp < e r(r)> N Vdr
0 ”fh’(uz;

R R N - &y . C
<J <—> PNV dr =—.
0 r &g

However, the left-hand side of the last inequality,

R (di;v)lg(.‘\*,uw‘l’\iur\«l, “(N—(.‘(,) v
’ exp wr) ) r dr

0 f“}‘(c?zw

0 dY D QYN N — )
“j eP( AN = 1) t> 12|
“ﬂ» Wy

1.1($2)

ES

. (d7)" N DN TN —gy)
J exXp < (u,— @,)) dx.
£

AN = 1)
11! £2)
Letting d =wX'Y, "&,, we have the desired estimate for u, and ¢,. Finally,
letting ¢ — 0, we get the estimate for « and ¢ themselves. |}

Wy

In order to have a local analogy of Corollary 4.2, we state a result from
Serrin [ 13] which can be proved following Moser’s iteration scheme.

ProOPOSITION 4.4. Let 1 be a weak solution of
Adyu+ flx)=
in Byrc Q and fe LYY “'(B,g). Then we have
4l 1o e < CR™Mull 5 gy + KR)

where

K=(R||f 550, B:m)u.m» h

and C depends on N only.
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CoOROLLARY 4.5. Let
Ayu,+V, e =0 in £
and
‘3]“,,“1,‘«52» <C), | Vn]] Lisn S C2~
where | <gq < ot and By is a ball compactly contained in 2. Assuming

a\(JU( N—-1)

NN

[ Vné"”"<80<—’-—‘¢'"
Br

!

q
where q' =g/(q — 1), we have
%’llIIHL’(BR.H S C

Jor some C depending on N, C,, C,, R, and &, only.

Proof. Consider on B,

%’A;’V(pnzo in BR

Pulone=H, oBg:
By the comparison principle in { 7], we have
o<ty @l v < Cr
Using Proposition 4.4, we conclude
[@ull s gen < C (4.1

for some constant C depending on N, C,, C,, and R only. From
Lemma 4.3 we also know

(xp-d)d g1 (y-0) ™1
J exp {'—“—*—“—‘(u"—%,)] SJ. exp{—*-__._(u"_(p”) <
Bg 5e

() H Vneunnl_l(ﬂm

SR

Combining this with (4.1), we obtain
l

Choosing J small enough so that

(ay—8)d ™1

exp { u,,} <

R:2 €a

(xy—=38)d N " V>e4lq +6),
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we get from (4.2)
Nexp u,ll 1o vogpay < C.
Therefore

“ Vn exp unﬂ LY 0 BR) g C
for some &, > 0. Using Proposition 4.4 again, we finally conclude
[[aa,,| roitpn S C |

We close this section with a positive lower bound for d,.

PROPOSITION 4.6. Let

L UXY XYY - Y)
(N—x;e ve RY |X— Y|V '

s 2 /INYV2
wEN\2)
in particular d, =1.

Proof. Without loss of generality, let 0<[Y|<|X]|, X# Y, and X#0.
Let

Then

SRS )
X [ X|1Y]
Then
(JX|¥ 2X— Y|V 2 Y)HX— Y)_l—(t_{"*‘+z)cos()+t“"
|X— 1|V T (1 —2tcos @+ 132
Let

-V "+ ) x+1V

S == T A

for 0<r<1and —1<x<1. Fix 7 and set

Then



COUNTING PEAKS OF SOLUTIONS

Therefore at the critical points x of f{¢, ),

/({ _)_[Niz‘f'l l
. , X = N (1—2[v‘:+[2)1;’\"72)‘52
_1 [N 2_+_1 >1 IN.3+1
TN =2+ YN DTN (p 1)V 2
RS
2— min ——————.
No<i<t (t+ 1)V 2
Let
N4
1)=——"7%"3-
£ (t+ 1)V
Then
(t+1)V7 ,
= (V=2 =1 <0
g ([+1)2H\‘——2)(N ) )
and
; 2
min g(f)=g(l)=-5—
0<rg 2
Hence

45

Remark 4.7.  An upper bound for #.S in Theorem 1.2 can therefore be

N( 2N )N‘
4 \N—1 '
which equals 2 when N =2.

S. PROOF OF THEOREM 1.2

Recall (1.4) and (2.1)

14N -1
. lll, _ P
l‘[, =, 1'/, = llp .
(juull’r)l,“il\fﬂ Q

Define

r
”I’
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Then we have

Ayv,+ f,=0. (5.2)

We first prove 4 # (J for any sequence {v,} = {v,} of v, with p, - «.
Let x, be such that

max u,(x)
vn(xn) = ma},( Un( .\') = 1AN—1
xef2 (L} “,l;") 1 )
C, o

/(S,)u””)“““"' 1
n

by Theorem 1.1 and Corollary 3.1. Therefore cluster points of {x,} belong
to 4, hence # # .

Since {, f,=1 and f,> 0, for any sequence of {f,} we can subtract a
subsequence

Uy ={/)

which converges to a measure g weakly in M(Q) where M(Q) is the space
of real bounded measures on 2 and u is a positive measure with u(Q) < 1.
From now on in the rest of this section we shall work on this subsequence
{ f.} and the corresponding {v,} ={v,}. For any 6>0, we call x,eQ a
d-regular point if there is a function ¢ € Cy(Q), 0<p <1 with ¢=11in a
neighborhood of x,, such that

| od ( G )Ml (5.3)
< .
L <\ T3

where L, is as defined in (2.1). We also define the J-irregular set

Z(8)={yq: yo is not a d-regular point}.

Clearly

N1
u(yo) > < all ) (5.4)
’ Ly+36

for all y e 2(d). We shall frequently say “regular” and “irregular,” not

mentioning ¢ if there is no confusion,

LemMma 5.1, If x4 is a regular point, then v, is uniformly bounded in
L*(Bgryy) for some R,.



COUNTING PEAKS OF SOLUTIONS 47

Proof. Let x,, be a regular point. From (5.3), we can find R, > 0 such
that

a-}\' N1
JBR]‘»\'mAf” = <L()+26> . (55)

Applying Lemma 4.1 to f, on @ (note that | f,|l,1o,= 1), we have
J exp[(xy-¢) v,] dx gg,
2 £

especially Hu,,H,‘\‘,BR‘(,‘.“,, < C for some C independent of ».
Let ¢, be a solution of

{ “AN(/’”=O n BR,('\.O)’
‘q)n |ﬁBR|(.\‘u) =t, |FBR11.\’|,)'

Then by Proposition 4.4, we have (note that ¢, <v, by the comparison
principle)

H(an 1,’(BR, 2 < C
By Lemma 4.3 and (5.5), if we choose “4” in Lemma 4.3 small enough,
expl(Ly+0)d " (v, —9,)]1<C
BRI(,\'M

hence

exp[(Ly+0)d 'Y Vv, ]dx<C. (5.6)

Bry 20x0)

Let t=Ly+d "™ " 5/2. Observe

X
log x < -
¢
for x> 0. We get
ll" p” llll
P log (N—1yp S (N—1)p
by ] EAN i "
‘Il e ‘ n
B Ly+d\y"N 163 u, t—d\"™N " 6/6u,
= = -
N i A - ;
v, vil.’\ ip, vi{’\ Nipy, v,
llll
st—= v,
»

505 117 1-4
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for n large enough where v, =v, is defind in (2.1) and the last inequality
is based on

lim ¥ Dien— |
n

which follows from Corollary 3.1. Hence

Jusem

Note that
t=Ly+dy"N VR =(Lo+82)d\'N V< (Lo +8)dYNY,
hence with the aid of (5.6) we see that f, is bounded in LY B, (x,)) where

Ly+0

=70 o,
Lo+0/2

Using Proposition 4.4 again, we conclude that for large » there exists C >0
such that

Hl‘nH L‘IBRI 4(xn)) S C

This proves Lemma 5.1 if we choose R,=R,/4. |

Back to the proof of Theorem 1.2, we claim S = X(J) for any & > 0 where
S is the interior peak set with respect to {v,} defined in (1.6).

Clearly, S< X' In fact, letting x,¢ X, then we know that x, is a regular
point. Hence by Lemma 5.1, {v,} is uniformly bounded in a neighborhood
of x,. Therefore x, ¢ S. Conversely, suppose x,€ 2. Then we have for every
R>0,

hm Hl"nEL"(BR(,\u)) = .

"~z

Otherwise, there would be some R;,>0 and a subsequence of v,, again
denoted by v,, such that

Iil“nH L‘—(BR”(,\*“)) < C
for some C independent of #. Then

— oyl — (N1 p, Pu—AN—1)p
fn_vn l'n"<vn" C "

-0
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uniformly on B, (x,) as n— 2. Then

. o N1
. (N — N
J ./n = J v'l"n et jlwl’a’” < £o < ( >
Bp,(xo) Byt xa) L() +30

for large n which implies that x, Is a regular point. This proves the claim.
Back to the measure p defined earlier in this section. We have from
(5.4)

2y Nl ay N
I>u(Q) |-y S0)= (2N s,
Hl82) <L(,+3()> # 2(0) (L(,+3(>> #

Hence

0< #S< <L{,+ 3(5)” !

A p

Letting 6 — 0. we get with the aid of Corollary 2.4

L()).'\'] N N )
0 #S<(— <l — 1yt
# <a~ N—1 @x

This proves Theorem 1.2.

Remark 5.2. From the proof of the theorem we see that the measure
4 is atomic. Actually,
#.5
u=73 a,(x;)

k=1

where S={x;, X5, ..., ¥ .} and

()"
apz| - .
L,

The subsequence v, approaches a function G in C[JX02\S) and G is
N-harmonic in 2\S but singular on S.

Remark 5.3. It is also clear from the proof of Theorem 1.2 and
Corollary 3.1 that the subsequence

i, — 0

in L/ (Q\S).

loc
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6. FURTHER RESULTS

So far, we have not touched the boundary peak sets S’ yet. Our next
result shows that when € is strictly convex and u, are generic in some
sense, S’ is empty; ie., #=S.

Recall that u, are solutions of (1.1) obtained by minimizing

o) = 1vel¥
2

in the class
A, ={ve WeNQ):ull,, =1}
Let
Ji: o, — R {6.1)
defined by

yd

=] v
£2

We call u, a generic solution if there exist a sequence ¢, of ¢ with
&, 0

and a sequence of positive minimizers {u,, } of J% such that {u, } con-
verges to u), weakly in W'"(Q) as ¢, — 0 where u, = cu), for some scalar c.
Clearly {u), } is a minimizing sequence of J, in ./,. Actually, any sequence
{u,,,} of minimizers of J7 is a minimizing sequence of J,, so generic
solutions exist for all smooth bounded domains.

THEOREM 6.1.  Let Q be a strict convex domain. Assume u, are generic
solutions for all p. Then S', the boundary peak set of {u,}, is empty; ie.,
#=S.

Proof. Let
Ut = 1

weakly in W"Y(Q) where u), = cu, for some ¢ and u),,
mizers of J». Then u}, solve

Pen

are positive mini-
{div( (e+ Vi, [Py N 22V, y+ A1, =0 in Q

Pl ey
! p—
“p:;,, |(7!2 =0

for some 4, >0.
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Therefore, using the moving plane method for nondegenerate equations
developed by Gidas, Ni, and Nirenberg in [4], we can find a
neighborhood w of 802 and a cone I" of fixed size, both depending on Q
only such that

1
2

1 -
) () < ITIJ £,,(x) dx (62)

for all x e w. We refer the reader to DeFigueiredo er al. [2] for details of
this trick.
Since {u), } —u, weakly in W), we have

Pen
w,, = U, strongly in L'(£);

o0 (6.3)

' 7 P
Uy = U, almost everywhere.

Hence passing limit in (6.2), we get

[ i, (x) dx

f X) S )
up(x) |F'J” !

for almost all x € w. Therefore
<[ wx) dx

1,(X) \l—ﬂ J” u,(x) dx
and

. - < l [ . IYA

vX) < |-7:| JQ v,(x) dx
for almost all xew. But jg v,(x)dx < C by Lemma 4.1. Therefore v, are
uniformly bounded in L”(w); hence S'=F. |}

It is interesting to see when the peak set .4 contains one point only.

THEOREM 6.2, Let 2 be a strict convex domain and u, be a sequence of
generic solutions. If we further assume

ds NNV /N V-7
Y7 AN (g 3V
Jagg {x — ¥, n(x))“\'*’<(“d“) (e ) < N2 > < N ) ,

then there exists a subsequence of u, , again denoted by u, , such that the
peak set A of the subsequence equals the interior peak set S and it contains
one point only.

nt

Proof. The assertion 4 =S follows from Theorem 6.1. We also know
# 4> 1 from Theorem 1.2.
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Now we state a Pohozaev-type identity for (1.1). The proof of this
integral identity can be found in {[7, Theorem 1.1]). Let ue L’ " (2)n
W, (L) solve

{—div(|Vu|" 2Vu) = g(x, u) in Q2
ua =0

where g is smooth with its growth bounded either by |u|'¥7 - ¥ +@ N @) jf
¢ < N or like a polynomial in 1 if ¢=N. Let G(x, )= { g(x, r) dr. Then

. J AN .
J NG(x, u)dy+ <1 — *) J ug(x, v) dx + ‘ {x =1, V.G{x,u)> dx
Q q £ Yo

[/
s

N -
:<l——> ' {x— vy, n(x)>
g/ Yo

for all ye R™.
Apply it to (1.1). Let “»” in the integral identity be “y” in the statement
of Theorem 6.2. Without loss of generality, we can assume y = 0. Then

ot

an

N o N e,
Py Lz uy dx = <l _N> JQ {x,n(x)) o ds. (6.5)
On the other hand,

i Ou |V !

ydx = = Is.

JS! e Jaga | On @
Hence by Holder’s inequality.
] I Cu

r

- N - N (NN
P - g - - .
Lz T4 dx < <Jm (v SN ] ds) <Jm {x, nix)y ; d.s)

N 1 N NZ “ I (N - TEN
([ — Cods) [ PV gy .
(jm Cxyn(x)d N '”> <(N-1)(p+l)Jsz “ ‘\>

Therefore
B )
&y T d N Ny

1 . . AN NN -1
=-- lim L J u’l d,\‘> >
d,v/' > \€Ry \YQ !

O
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—_ 1 1 N
s, ,1"533,-,.@(()@(,\()“’ '<Lz<\ n(x)yN ! d')
1 [Naye\V 1yv O
r ( 1 <p+1p 1<N_1> )
1 1 N2 AW Noye\N =N
V‘TT““(N 1> ( —1>

. | .
x <~Jﬂg) Con(x)yh T s >

<2.

Hence from the last inequality in the proof of Theorem 1.2 we have
#S<I1,and in turn #S=1. |

Remark 6.3. It turns out that when N =2 the assumptions that @ is
strict convex and that u, are generic solutions are both superfluous for
Theorems 6.1 and 6.2. In our earlier article [12], we proved the corre-
sponding results of Theorems 6.1 and 6.2 without these two conditions. In
that work we used Kelvin transform to take care of non-convex domains
and we applied the moving plane method to u, directly since the equations
(1.1) are nondegenerate when N =2

Finally we confine ourselves to the problem when Q= B,, the ball of
radius R centered at the origin. We also consider generic solutions. Apply-
ing the moving plane method to each approximate solution u,, of u,, we
conclude that u,, are all radially symmetric, and so are u,. Therefore u,
solve the following ODE.

I N—1 s .
(Ju'|¥ 2w’y + [/ |V 2w +uP =0 in (0, R)
1'(0)=0, u(R)Y=0.

Applying Theorem 1.2, we know #=5={0}; otherwise there would be
infinitely many peaks by the symmetry. A straightforward argument shows

f,—9
in the sense of distribution where f, is defined in (5.1) and 4 1s the Dirac

mass at 0. We can actually prove the following. We leave the proof to the
reader.
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THEOREM 6.4. Let u, be generic variational solutions of (1.1) on B, the

ball of radius R. Then as p— oo,

n

pa

2

b, = u, . 1 log (5)
PALAN 1) AN 1) .
(j,,,k np) wWn 1

CLUBR\{0}) for some a>0 and also in the sense of distribution on Bg.

loc
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