Counting Peaks of Solutions to Some Quasilinear Elliptic Equations with Large Exponents

XIAOFENG REN* AND JUNCHENG WEI*

School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church Street S.E., Minneapolis, Minnesota 55455 Received January 8, 1993; revised May 3, 1993

We consider the asymptotic behavior of certain solutions to a quasilinear problem with large exponent in the nonlinearity. Starting with the investigation of a Sobolev embedding, we get a sharp estimate for the embedding constant. Then we obtain a crucial L^1 -estimate for the N-Laplacian operators in R^N . Using these estimates we prove that the solutions obtained by the standard variational method will develop a spiky pattern of peaks as the nonlinear exponent gets large, and we also have an upper bound depending on N only of the number of peaks. Stronger results for some special convex domains and some special solutions are also achieved.

1. Introduction

In this paper we shall study the asymptotic behavior of certain solutions, as $p \to \infty$, of the quasilinear elliptic equation

$$\begin{cases}
\Delta_N u + u^p = 0 & \text{in } \Omega \\
u|_{\partial\Omega} = 0, \ u > 0 & \text{in } \Omega
\end{cases}$$
(1.1)

where p > 1, $N \ge 2$, $\Delta_N u = \text{div}(|\nabla u|^{N-2} |\nabla u|)$ is the N-Laplacian operator and $\Omega \subset \mathbb{R}^N$ is a smooth bounded domain. We shall only focus on the solutions of the problem obtained by the following variational method. Let

$$\mathcal{A}_{p} = \left\{ v \in W_{0}^{1,N}(\Omega) \colon \|v\|_{p+1} = 1 \right\}$$

be the admissible set and define

$$J_p: \mathscr{A}_p \to R \tag{1.2}$$

by

$$J_p(v) = \int_{\Omega} |\nabla v|^N.$$

- * Current address: Department of Mathematics, Brigham Young University, Provo. UT 84602.
- *Current address: SISSA, Via Beirut 2-4, 34013 Trieste, Italy.

Clearly J_p is bounded from below. Standard arguments show that J_p has at least one nonnegative minimizer in \mathcal{A}_p . If we denote such a minimizer by u'_p , then a suitable multiple of u'_p , say u_p , solves (1.1) and

$$c_{p}(N) := \inf \left\{ \left[\int_{\Omega} |\nabla u|^{N} \right]^{1/N} : u \in \mathcal{A}_{p} \right\} = \frac{\|\nabla u_{p}\|_{L^{N}(\Omega)}}{\|u_{p}\|_{L^{p+1}(\Omega)}}. \tag{1.3}$$

A Hopf-type boundary lemma, see Guedda and Veron [7], shows that u_p is positive in Ω . It is also known that the solutions of (1.1) are $C^{1,\alpha}$ functions. We refer the reader to [7, 17, and 16] for the regularity, comparison principle, and Hopf boundary lemma for N-Laplacian operators.

Our goal is to understand the asymptotic behavior of the variational solutions u_p obtained above when p, serving as a parameter, gets large. The case where N=2 is studied in our earlier work [12]. In that article, we proved that $||u_p||_{L^r}$ are bounded both from below and above as p tends to infinity. We also proved that u_p approach zero except at one or two points. u_p hence develop a pattern of peaks in Ω . In this paper we shall show that our method developed there can be successfully extended to higher dimensional cases with Δ replaced by Δ_N . Our first result is

Theorem 1.1. Let u_p be a variational solution of (1.1) obtained above. Then there exist positive C_1 , C_2 , independent of p, such that

$$0 < C_1 < \|u_p\|_{L^r} < C_2 < \infty$$

for p large.

To state the second theorem, let

$$v_p = \frac{u_p}{(\int_{\Omega} u_p^p)^{1/(N-1)}}.$$
 (1.4)

For a sequence $\{v_{p_n}\}$ of v_p we define the blow-up set \mathcal{B} of $\{v_{p_n}\}$ to be the subset of $\overline{\Omega}$ such that $x \in \mathcal{B}$ if there exist a subsequence, still denoted by v_{p_n} , and a sequence x_n in Ω with

$$v_{p_n}(x_n) \to \infty$$
 and $x_n \to x$. (1.5)

We also define, with respect to $\{v_{p_n}\}$,

$$S = \mathcal{B} \cap \Omega,$$

$$S' = \mathcal{B} \cap \partial \Omega.$$
(1.6)

We use $\#\mathcal{B}$ (#S, #S'), to denote the cardinality of \mathcal{B} (S, S' respectively). It turns out later that $\mathcal{B}(S, S')$ will be the set of global (interior, boundary)

peaks of the subsequence v_{p_n} respectively. We also call them global (interior, boundary) peak sets.

Theorem 1.2. Let $N \ge 2$. Then for any sequence $\{v_{p_n}\}$ of v_p with $p_n \to \infty$, the global peak set \mathcal{B} of v_{p_n} is not empty and there exists a subsequence of v_{p_n} such that the interior peak set S of the subsequence has the property

$$0 \leqslant \#S \leqslant \left[\frac{1}{d_N} \left(\frac{N}{N-1} \right)^{N-1} \right]$$

where

$$d_N = \inf_{X \neq Y \in \mathbb{R}^N} \frac{(|X|^{N-2} |X - |Y|^{N-2} |Y)(X - Y)}{|X - Y|^N}$$

is a positive number depending on N only.

From the above results, we see that the variational solutions develop a spiky pattern as p approaches infinity and the number of peaks is controlled in Theorem 1.2. If we impose more conditions on the domain as well as solutions, we can prove that they develop a single peak in the interior of the domain. We note that single-peak spiky patterns also appear in the works of Ni and co-workers [8–10] and Pan [11] where some biological pattern formation problems are considered.

Our paper is organized as follows. In Section 2, we prove a crucial sharp estimate for $c_p(N)$ defined in (1.3). Theorem 1.1 will be proved in Section 3. In Section 4 we extend an estimate of Brezis and Merle [1] to the N-Laplacian cases using the level set method. Theorem 1.2 will then be proved in Section 5. Stronger conclusions for some special convex domains and some special variational solutions u_p are obtained in Section 6; namely, #S=1 and $S'=\emptyset$.

2. An Estimate for $c_n(N)$

Recall $c_p(N)$ defined in (1.3). We first prove

Lemma 2.1. For every $t \ge 2$ there is D_t such that

$$\|u\|_{L^t} \leqslant D_t t^{(N-1)/N} \|\nabla u\|_{L^N}$$

for all $u \in W_0^{1,N}(\Omega)$ where Ω is a bounded domain in \mathbb{R}^N , furthermore

$$\lim_{t \to \infty} D_t = (\alpha_N)^{-(N-1)/N} \left(\frac{N-1}{Ne}\right)^{(N-1)/N}$$

where $\alpha_N = N\omega_{N-1}^{1/(N-1)}$ and ω_{N-1} is the area of unit (N-1)-sphere in \mathbb{R}^N .

Proof. Let $u \in W_0^{1,N}(\Omega)$. We know

$$\frac{1}{\Gamma(s+1)} x^s \leqslant e^x$$

for all $x \ge 0$, $s \ge 0$ where Γ is the Γ function. From Moser's sharp form of Trudinger's inequality (see [5, p. 160; 6]), we have

$$\int_{\Omega} \exp\left[\alpha_N \left(\frac{u}{\|\nabla u\|_{L^N}}\right)^{N/(N-1)}\right] dx \leqslant C |\Omega|$$

where α_N is defined in Lemma 2.1, C depends on N only, and $|\Omega|$ is the Lebesgue measure of Ω . Therefore

$$\begin{split} &\left(1/\Gamma\left(\frac{N-1}{N}t+1\right)\right)\int_{\Omega}u'\,dx\\ &=\left(1/\Gamma\left(\frac{N-1}{N}t+1\right)\right)\int_{\Omega}\left[\left.\alpha_{N}\left(\frac{u}{\left\|\nabla u\right\|_{L^{N}}}\right)^{N/(N-1)}\right]^{((N-1)/N)\,t}\\ &\quad\times dx(\alpha_{N})^{-((N-1)/N)\,t}\left\|\nabla u\right\|_{L^{N}}^{t}\\ &\leqslant \int_{\Omega}\exp\left[\left.\alpha_{N}\left(\frac{u}{\left\|\nabla u\right\|_{L^{N}}}\right)^{N/(N-1)}\right]dx(\alpha_{N})^{-((N-1)/N)\,t}\left\|\nabla u\right\|_{L^{N}}^{t}\\ &\leqslant C\left\|\Omega\right\|\left(\alpha_{N}\right)^{-((N-1)/N)\,t}\left\|\nabla u\right\|_{L^{N}}^{t}. \end{split}$$

Hence

$$\left(\int_{\Omega} u^t dx\right)^{1/t} \leq \left(\Gamma\left(\frac{N-1}{N}t+1\right)\right)^{1/t} \left(C\left|\Omega\right|\right)^{1/t} \alpha_N^{-(N-2)/N} \|\nabla u\|_{L^N(\Omega)}.$$

Note that according to Stirling's formula,

$$\left(\Gamma\!\left(\frac{N-1}{N}\,t+1\right)\right)^{1/t} \sim \left(\frac{N-1}{Ne}\right)^{(N-1)/N} t^{(N-1)/N}.$$

Choosing D_i to be

$$\left(\Gamma\left(\frac{N-1}{N}t+1\right)\right)^{1/t}(C|\Omega|)^{1/t}\alpha_N^{-(N-1)/N}t^{-(N-1)/N}$$

we get the desired result.

We then prove a sharp estimate for $c_p(N)$.

LEMMA 2.2.

$$\lim_{p \to \infty} \frac{c_p(N)}{p^{-(N-1)/N}} = \left(\frac{N}{N-1} \alpha_N e^{-(N-1)/N}\right).$$

Proof. Without loss of generality, we assume $0 \in \Omega$. Let L > 0 be such that $B_L \subset \Omega$ where B_L is the ball of radius L centered at the origin. For 0 < l < L, consider the so-called Moser function

$$m_{I}(x) = \frac{1}{\omega_{N-1}^{1/N}} \begin{cases} \left(\log \frac{L}{l}\right)^{(N-1)/N}, & 0 \leq |x| \leq l \\ \frac{\log(L/|x|)}{\left[\log(L/l)\right]^{1/N}}, & l \leq |x| \leq L \\ 0, & |x| \geqslant L. \end{cases}$$

Then $m_1 \in W_0^{1,N}(\Omega)$ and $\|\nabla u\|_{L^N} = 1$. Now

$$\left(\int_{\Omega} m_{l}^{p+1}(x) dx\right)^{1/(p+1)}$$

$$\geqslant \left(\int_{B_{l}} m_{l}^{p+1}(x) dx\right)^{1/(p+1)}$$

$$= \frac{1}{\omega_{N-1}^{1/N}} \left(\log \frac{L}{l}\right)^{(N-1)/N} \left(\frac{1}{N} l^{N} \omega_{N-1}\right)^{1/(p+1)}.$$

Choosing $l = L \exp(-((N-1)/N^2)(p+1)))$, we have

$$||m_I||_{p+1} \ge \frac{1}{\omega_{N-1}^{1/N}} \exp\left(-\frac{N-1}{N}\right) \left(\frac{N-1}{N^2}\right)^{(N-1)/N} \times (p+1)^{(N-1)/N} \left(\frac{1}{N}\omega_{N-1}L^N\right)^{1/(p+1)}.$$

Therefore

$$\begin{split} c_p(N) \leqslant \omega_{N-1}^{1/N} \exp\left(\frac{N-1}{N}\right) & \left(\frac{N^2}{N-1}\right)^{(N-1)/N} \\ & \times (p+1)^{-(N-1)/N} \left(\frac{1}{N} \omega_{N-1} L^N\right)^{-1/(p+1)}. \end{split}$$

Combining this with Lemma 2.1, we get the conclusion.

By the construction of the variational solutions u_p in Section 1, we have

$$c_p(N) = \frac{\|\nabla u_p\|_{L^{N}(\Omega)}}{\|u_p\|_{L^{p+1}(\Omega)}}.$$

If we multiply Eq. (1.1) by u_p and integrate both sides on Ω , we have

$$\int_{\Omega} |\nabla u_p|^N = \int_{\Omega} u_p^{p+1}.$$

Hence we derive from Lemma 2.2

COROLLARY 2.3.

$$\lim_{p \to \infty} p^{N-1} \int_{\Omega} u_p^{p+1} = \left(\frac{N\alpha_N e}{N-1}\right)^{N-1},$$

$$\lim_{p \to \infty} p^{N-1} \int_{\Omega} |\nabla u_p|^N = \left(\frac{N\alpha_N e}{N-1}\right)^{N-1}.$$

Define

$$v_{p} = \left[\int_{\Omega} u_{p}^{p} \right]^{1/(N-1)},$$

$$L'_{0} = \overline{\lim}_{p \to \infty} \frac{p v_{p}}{e},$$

$$L_{0} = L'_{0} d_{N}^{-1/(N-1)},$$
(2.1)

where d_N is as defined in Theorem 1.2. We have the following rough estimates for L_0 and L_0' .

COROLLARY 2.4. For any smooth bounded domain Ω in \mathbb{R}^N ,

$$L'_0 \leqslant \frac{N}{N-1} \alpha_N, \qquad L_0 \leqslant \frac{N}{N-1} \alpha_N d_N^{-1/(N-1)}$$

Proof. From Corollary 2.3 we have by Holder's inequality

$$L'_{0} = \overline{\lim}_{p \to \infty} \frac{p v_{p}}{e} \leqslant \overline{\lim}_{p \to \infty} p \left[\int_{\Omega} u_{p}^{p+1} \right]^{(p/(p+1))(1/(N-1))} |\Omega|^{(1/(p+1))(1/(N-1))} e^{-1}$$

$$\leqslant \frac{N \alpha_{N}}{N-1} \quad \blacksquare$$

3. Proof of Theorem 1.1

To get a lower bound for $||u_p||_{L^{\infty}}$, we define

$$\lambda = \inf \left\{ \frac{\|\nabla u\|_{L^{N}}}{\|u\|_{L^{N}}} : u \in W_{0}^{1,N}(\Omega), \ u \neq 0 \right\}.$$

From Poincaré's inequality, we have $0 < \lambda < \infty$. For u_p we have

$$\begin{split} \int_{\varOmega} u_p^{p+1} &= \int_{\varOmega} |\nabla u_p|^N \geqslant \lambda^N \int_{\varOmega} u_p^N, \\ \int_{\varOmega} (u_p^{p+1} - \lambda^N u_p^N) \geqslant 0. \end{split}$$

Therefore

$$||u_p||_{L^{\frac{p}{\lambda}}}^{\frac{p+1-N}{2}} \geqslant \lambda^N.$$

Letting $p \gg N - 1$, we obtain

$$||u_p||_{L^\infty} \geqslant \lambda^{N/(p+1-N)} \geqslant C_1 > 0.$$

To get a upper bound for $||u_p||_{L^{x}}$, let

$$\gamma_{p} = \max_{x \in \Omega} u_{p}(x),$$

$$A = \{x : u_{p}(x) > \gamma_{p}/2\},$$

$$\Omega_{t} = \{x : u_{p}(x) > t\}.$$
(3.1)

Both A and Ω_i depend on p. From Lemma 2.1 and Corollary 2.3, we have

$$\|u_{p}\|_{L^{N_{p},(N-1)}} \leq D_{N_{p},(N-1)} \left(\frac{Np}{N-1}\right)^{(N-1)/N} \|\nabla u\|_{L^{N}}$$

$$\leq C \left(\frac{Np}{N-1}\right)^{(N-1)/N} p^{-(N-1)/N} < M,$$

where M is a constant independent of p. Then

$$\left(\frac{\gamma_{p}}{2}\right)^{Np/(N-1)} |A| \leq \int_{\Omega} u_{p}^{Np/(N-1)} \leq M^{Np/(N-1)}. \tag{3.2}$$

On the other hand,

$$\int_{\Omega_t} u_p^p = -\int_{\Omega_t} \operatorname{div}(|\nabla u_p|^{N-2} |\nabla u_p|) = \int_{\partial \Omega_t} |\nabla u_p|^{N-1} ds$$

and

$$-\frac{d}{dt}\left|\Omega_{t}\right| = \int_{\partial\Omega_{t}} \frac{ds}{\left|\nabla u_{p}\right|},$$

where the second is the co-area formula (see Federer [3]). By the Schwartz inequality and the isoperimetric inequality we have

$$\begin{split} &\left(-\frac{d}{dt}\left|\Omega_{t}\right|\right)^{N-1}\int_{\Omega_{t}}u_{p}^{p} \\ &=\left(\int_{\partial\Omega_{t}}\frac{ds}{\left|\nabla u_{p}\right|}\right)^{N-1}\left(\int_{\partial\Omega_{t}}\left|\nabla u_{p}\right|^{N-1}ds\right) \\ &\geqslant\left(\int_{\partial\Omega_{t}}\frac{ds}{\left|\nabla u_{p}\right|}\right)^{N-1}\left(\int_{\partial\Omega_{t}}\left|\nabla u_{p}\right|\right)^{N-1}\left|\partial\Omega_{t}\right|^{-(N-2)} \\ &\geqslant\left|\partial\Omega_{t}\right|^{2(N-1)}\left|\partial\Omega_{t}\right|^{-(N-2)}=\left|\partial\Omega_{t}\right|^{N}\geqslant C_{N}\left|\Omega_{t}\right|^{N-1}, \end{split}$$

where $|\partial \Omega_t|$ denotes the (N-1) -dimensional Hausdorff measure of $\partial \Omega_t$ and C_N is the best constant in the isoperimetric inequality (we refer to [3] for more information about the Hausdorff measures and the isoperimetric inequality). Now we define r(t) for $0 \le t \le \gamma_p$ such that

$$|\Omega_t| = \frac{1}{N} \omega_{N-1} r^N(t);$$

then

$$\frac{d}{dt}|\Omega_t| = \omega_{N-1}r^{N-1}(t)\frac{dr}{dt}.$$

Hence we have

$$\left(-\omega_{N-1} r^{N-1}(t) \frac{dr}{dt} \right)^{N-1} \int_{\Omega_{t}} u_{p}^{p}(x) dx \ge C_{N} \left(\frac{1}{N} \omega_{N-1} r^{N}(t) \right)^{N-1};$$

$$\left(-\frac{dr}{dt} \right)^{N-1} \int_{\Omega_{t}} u_{p}^{p}(x) dx \ge C_{N} r^{N-1};$$

$$-\frac{dt}{dr} \le C_{N}' \frac{1}{r} \left(\int_{\Omega_{t}} u_{p}^{p}(x) dx \right)^{1/(N-1)}$$

$$\le C_{N}' \frac{1}{r} \gamma_{p}^{p/(N-1)} |\Omega_{t}|^{1/(N-1)}$$

$$= C_{N}' \gamma_{p}^{p/(N-1)} r^{1/(N-1)}.$$

Integrating the inequality from 0 to r_0 , we have

$$t(0) - t(r_0) \le C_N'' \gamma_p^{p/(N-1)} r_0^{N/(N-1)}.$$

Choosing r_0 so that $t(r_0) = \gamma_p/2$, we get

$$\begin{split} & \gamma_{p} \leqslant C'_{N} \gamma_{p}^{p/(N-1)} r_{0}^{N/(N-1)}; \\ & \gamma_{p} \leqslant C'_{N} \gamma_{p}^{p/(N-1)} \, |A|^{1/(N-1)}. \end{split}$$

Combining this with (3.2), we obtain

$$\begin{split} \gamma_{p} & \leq C'_{N} \gamma_{p}^{p/(N-1)} \left(\frac{(2M)^{Np/(N-1)}}{\gamma_{p}^{Np/(N-1)}} \right)^{1/(N-1)}; \\ \gamma_{p} & \leq C^{1/(1+Np/(N-1)^{2}+p/(N-1))} \left(2M \right)^{Np/(1+Np/(N-1)^{2}+p/(N-1))} \\ & \leq C' \end{split}$$

for p large enough where the last C' is a constant independent of large p. This proves Theorem 1.1.

We derive a consequence of Theorem 1.1 which will be used later.

COROLLARY 3.1. There exist C_1 and C_2 independent of p such that

$$\frac{C_1}{p^{N-1}} \leqslant \int_{\Omega} u_p^p \leqslant \frac{C_2}{p^{N-1}}$$

for large p.

Proof. The first inequality follows from Theorem 1.1 and the first limit of Corollary 2.3; the second inequality follows from the first limit of Corollary 2.3 by an interpolation.

4. A PRIORI ESTIMATES FOR N-LAPLACIAN OPERATORS

In this section we extend the L^1 estimate of Brezis and Merle [1] to N-Laplacian operators. Due to the nonlinearity of N-Laplacian operators for $N \ge 3$, we use the level set argument here.

LEMMA 4.1. Let u be a $C^{1,\alpha}$ solution of

$$\begin{cases} -\Delta_N u = f(x) & \text{in } \Omega \\ u|_{\partial\Omega} = 0 \end{cases}$$

where $f \in L^1(\Omega)$, $f \ge 0$. Then for every $\delta \in (0, N\omega_{N-1}^{1/(N-1)}) = (0, \alpha_N)$ we have

$$\int_{\Omega} \exp \left[\frac{(\alpha_N - \delta) |u(x)|}{\|f\|_{L^1}^{1/(N-1)}} \right] dx \leq \frac{\alpha_N}{\delta} |\Omega|$$

where $|\Omega|$ denotes the volume of Ω .

Proof. We prove this by the symmetrization method. Consider the symmetrized problem

$$\begin{cases} -\operatorname{div}(|\nabla U|^{N-2}|\nabla U| = F(x) & \text{in } \Omega^* \\ U|_{\partial \Omega^*} = 0 \end{cases}$$

where Ω^* is the ball centered at the origin with the same volume as Ω and F is the symmetric decreasing rearrangement of f. We refer the reader to Talenti [14, 15] for properties of the rearrangement. According to [15], we have

$$u^* \leq U$$

where u^* is the symmetric decreasing rearrangement of u. U clearly satisfies the following ODE.

$$\begin{cases} (|U'|^{N-2} |U'|)' + \frac{N-1}{r} |U'|^{N-2} |U'| + F(r) = 0 \\ U'(0) = 0, & U(R) = 0. \end{cases}$$

Therefore

$$-U'(r) = \frac{(\int_0^r s^{N+1} F(s) \, ds)^{1/(N-1)}}{r} \leq \frac{1}{\omega_{N-1}^{1/(N-1)}} \frac{1}{r} \|F\|_{L^1(\Omega^*)}^{1/(N-1)}.$$

Hence

$$|U(r)| \leq \frac{1}{\omega_{N-1}^{1/(N-1)}} ||F||_{L^{1}(\Omega^{*})}^{1/(N-1)} \log \frac{R}{r};$$

$$\int_{\Omega^{*}} \exp\left[\left(N-\varepsilon\right) \omega_{N-1}^{1/(N-1)} \frac{U}{||F||_{L^{1}(N-1)}^{1/(N-1)}}\right] dx \leq \int_{B(R)} \exp\log\left(\frac{R}{|x|}\right)^{N-\varepsilon} dx$$

$$= \omega_{N-1} \int_{0}^{R} \left(\frac{R}{r}\right)^{N-\varepsilon} r^{N-1} dr$$

$$= \varepsilon^{-1} \omega_{N-1} R^{N}.$$

Letting $\varepsilon \omega_{N-1}^{1/(N-1)} = \delta$, we have

$$\int_{\Omega^{\bullet}} \exp\left[\left(\alpha_{N} - \delta\right) \frac{U(r)}{\|F\|_{L^{1/N-1}}^{1/(N-1)}}\right] \leqslant \frac{\omega_{N-1}^{N/(N-1)}}{\delta} R^{N}.$$

According to the properties of the symmetric decreasing function, we have

$$\begin{split} \|F\|_{L^{1}(\Omega^{\bullet})} &= \|f\|_{L^{1}(\Omega)}, \\ \int_{\Omega} \exp\left[\left(\alpha_{N} - \delta\right) \frac{u(x)}{\|f\|_{L^{1}(\Omega)}}\right] dx &= \int_{\Omega^{\bullet}} \exp\left[\left(\alpha_{N} - \delta\right) \frac{u^{*}(x)}{\|f\|_{L^{1}}^{1/(N-1)}}\right] \\ &\leq \int_{\Omega^{\bullet}} \exp\left[\left(\alpha_{N} - \delta\right) \frac{U(r)}{\|F\|_{L^{1}}^{1/(N-1)}}\right] \\ &\leq \frac{\omega_{N-1}^{N/(N-1)}}{\delta} R^{N} &= \frac{\alpha_{N}}{\delta} |\Omega|. \quad \blacksquare \end{split}$$

An interesting consequence is

COROLLARY 4.2. Let u_n be a sequence of $C^{1,\alpha}$ solutions of

$$\begin{cases} \Delta_N u_n + V_n e^{u_n} = 0 & \text{in } \Omega \\ u_n |_{\partial \Omega} = 0 \end{cases}$$

such that

$$\|V_n\|_{L^q} \leqslant C_1;$$

$$\int_{\Omega} |V_n| e^{u_n} \leqslant \varepsilon_0 < \frac{\alpha_N}{q'}$$

for some $1 < q < \infty$ and q' = q/(q-1). Then

$$||u_n||_{L^{\infty}(\Omega)} \leq C$$

where C depends on N, C_1 , $|\Omega|$, and ε_0 only.

Proof. Fix $\delta > 0$ so that $\alpha_N - \delta > \varepsilon_0(q' + \delta)$. By Lemma 4.1 we have

$$\int_{\Omega} \exp[(q' + \delta) |u_n|] \leqslant C$$

for some C independent of n. Therefore e^{u_n} is bounded in $L^{q'+\delta}(\Omega)$; hence $V_n e^{u_n}$ is bounded in $L^{1+\epsilon_0}(\Omega)$. Then the standard Moser iteration method implies that u_n is bounded in $L^{\infty}(\Omega)$.

Next we give a version of Lemma 4.1 without homogeneous boundary condition.

LEMMA 4.3. Let u and φ be $C^{1,\alpha}(\bar{\Omega})$ solutions of

$$\Delta_N u + f(x) = 0$$
 in Ω , $f > 0$,

and

$$\begin{cases} \Delta_N \varphi = 0 & \text{in } \Omega \\ \varphi \mid_{\partial \Omega} = u, \end{cases}$$

respectively. Then there exists a constant C depending on Ω only such that

$$\int_{\Omega} \exp\left[\frac{(\alpha_N - \delta) d_N^{1/(N-1)}}{\|f\|_{L^1(\Omega)}^{1/(N-1)}} (u - \varphi)\right] \leq \frac{C}{\delta}$$

where d_N is defined in Theorem 1.2.

Proof. Let u_{ε} and φ_{ε} be solutions of the nondegenerate equations

$$\begin{cases} -\operatorname{div}((\varepsilon + |\nabla u_{\varepsilon}|^{2})^{(N-2)/2} \nabla u_{\varepsilon}) = f & \text{in } \Omega, \qquad f > 0 \\ u_{\varepsilon}|_{\partial\Omega} = u & \end{cases}$$

and

$$\begin{cases} -\operatorname{div}((\varepsilon + |\nabla \varphi_{\varepsilon}|^{2})^{(N-2)/2} \nabla \varphi_{\varepsilon}) = 0 & \text{in } \Omega \\ \varphi_{\varepsilon}|_{\partial \Omega} = u, \end{cases}$$

respectively. (These solutions are smooth and obtained easily by the variational method. Furthermore,

$$\lim_{\varepsilon \to 0} u_{\varepsilon} = u,$$

$$\lim_{\varepsilon \to 0} \varphi_{\varepsilon} = \varphi$$

in $C^{1,\beta}$ for some β . See [16].) Let $\Omega_t = \{x \in \Omega : u_{\varepsilon} - \varphi_{\varepsilon} > t\}$.

Claim.

$$\frac{\partial u_{\iota}(x)}{\partial v} < \frac{\partial \varphi_{\iota}(x)}{\partial v}$$

on $\partial \Omega_t$ for almost all $t \ge 0$.

Let $x_0 \in \partial \Omega_t$. For almost all t > 0 we can find a ball $B_{\delta}(x_1) \subset \Omega_t$ with $B_{\delta}(x_1) \cap \Omega_t = x_0$ by Sard's theorem. Let $w = u_x - \varphi_x - t$. Then w verifies

$$-\sum_{i,j}\frac{\partial}{\partial x_i}\left(a_{ij}\frac{\partial w}{\partial x_j}\right)=f>0,$$

where

$$\begin{split} a_{ij} &= (\varepsilon + |t_i \nabla u_\varepsilon + (1 - t_i) \nabla \varphi_\varepsilon|^2)^{(N - 4)/2} \left\{ \delta_{ij} (\varepsilon + |t_i \nabla u_\varepsilon + (1 - t_i) \nabla \varphi_\varepsilon|^2) \right. \\ &+ (N - 2) \left(t_i \frac{\partial u_\varepsilon}{\partial x_i} + (1 - t_i) \frac{\partial \varphi_\varepsilon}{\partial x_i} \right) \left(t_i \frac{\partial u_\varepsilon}{\partial x_j} + (1 - t_i) \frac{\partial \varphi_\varepsilon}{\partial x_j} \right) \right\} \end{split}$$

and $t_i \in (0, 1)$. Because this equation is nondegenerate, we can apply Hopf's lemma. Therefore

$$\frac{\partial w}{\partial v} < 0;$$

hence we prove the claim.

Following the standard level set argument, we have

$$\begin{split} \int_{\Omega_{t}} f(x) &= -\int_{\Omega_{t}} \operatorname{div}((\varepsilon + |\nabla u_{\varepsilon}|^{2})^{(N-2)/2} |\nabla u_{\varepsilon}|) \\ &+ \int_{\Omega_{t}} \operatorname{div}((\varepsilon + |\nabla \varphi_{\varepsilon}|^{2})^{(N-2)/2} |\nabla \varphi_{\varepsilon}|) \\ &= \int_{\partial\Omega_{t}} ((\varepsilon + |\nabla u_{\varepsilon}|^{2})^{(N-2)/2} |\nabla u_{\varepsilon}| \\ &- (\varepsilon |\nabla \varphi_{\varepsilon}|^{2})^{(N-2)/2} |\nabla \varphi_{\varepsilon}| \frac{(\nabla u_{\varepsilon} - \nabla \varphi_{\varepsilon})}{|\nabla u_{\varepsilon} - \nabla \varphi_{\varepsilon}|} \\ &\geqslant d_{N}^{\varepsilon} \int_{\partial\Omega_{t}} |\nabla u_{\varepsilon} - \nabla \varphi_{\varepsilon}|^{N-1}, \end{split}$$

where

$$d_N^{\varepsilon} = \inf_{X \neq Y \in \mathbb{R}^N} \frac{((\varepsilon + |X|^2)^{(N+2)/2} |X - (\varepsilon + |Y|^2)^{(N+2)/2} |Y|(X-Y)}{|X - Y|^N}$$

is a positive number,

$$\lim_{\varepsilon \to 0} d_N^{\varepsilon} = d_N$$

and d_N is as defined in Theorem 1.2. Also by the co-area formula we have

$$-\frac{d}{dt}\left|\Omega_{t}\right| = \int_{\partial\Omega_{t}} \frac{ds}{\left|\nabla u_{t} - \nabla \varphi_{t}\right|}.$$

Hence by the Schwartz inequality and the isoperimetric inequality,

$$\begin{split} &\left(-\frac{d}{dt}\left|\Omega_{t}\right|\right)^{N-1}\int_{\Omega_{t}}f(x)\\ &\geqslant\left(\int_{\partial\Omega_{t}}\frac{ds}{\left|\nabla u_{\varepsilon}-\nabla\varphi_{\varepsilon}\right|}\right)^{N-1}d_{N}^{\varepsilon}\left(\int_{\partial\Omega_{t}}\left|\nabla u_{\varepsilon}-\nabla\varphi_{\varepsilon}\right|^{N-1}\right)\\ &\geqslant\left(\int_{\partial\Omega_{t}}\frac{ds}{\left|\nabla u_{\varepsilon}-\nabla\varphi_{\varepsilon}\right|}\right)^{N-1}d_{N}^{\varepsilon}\left(\int_{\partial\Omega_{t}}\left|\nabla u_{\varepsilon}-\nabla\varphi_{\varepsilon}\right|\right)^{N-1}\left|\partial\Omega_{t}\right|^{-(N-2)}\\ &\geqslant d_{N}^{\varepsilon}\left|\partial\Omega_{t}\right|^{2(N-1)}\left|\partial\Omega_{t}\right|^{-(N-2)}=d_{N}^{\varepsilon}\left|\partial\Omega_{t}\right|^{N}\\ &\geqslant d_{N}^{\varepsilon}\omega_{N-1}N^{N-1}\left|\Omega_{t}\right|^{N-1}=d_{N}^{\varepsilon}\alpha_{N}^{N-1}\left|\Omega_{t}\right|^{N-1}. \end{split}$$

Define r(t) so that

$$|\Omega_i| = \frac{1}{N} \omega_{N-1} r^{N-1}(t);$$

then

$$\frac{d |\Omega_t|}{dt} = \frac{1}{N} \omega_{N-1} N r^{N-1}(t) \frac{dr}{dt} = \omega_{N-1} r^{N-1}(t) \frac{dr}{dt}$$

Hence we have from the above that

$$\left(-\omega_{N-1}r^{N-1}(t)\frac{dr}{dt}\right)^{N-1} \int_{\Omega_{t}} f(x) dx \geqslant d_{N}^{\varepsilon} N^{N-1} \omega_{N-1} \left(\frac{1}{N}\omega_{N-1}r^{N}(t)\right)^{N-1};$$

$$\left(-\frac{dr}{dt}\right)^{N-1} \int_{\Omega_{t}} f(x) dx \geqslant d_{N}^{\varepsilon} \omega_{N-1} r^{N-1};$$

$$\left(-\frac{dt}{dr}\right)^{N-1} \leqslant \frac{1}{d_{N}^{\varepsilon} \omega_{N-1}} \frac{1}{r^{N-1}} \int_{\Omega_{t}} f(x) dx$$

$$\leqslant \frac{1}{d_{N}^{\varepsilon} \omega_{N-1}} \frac{1}{r^{N-1}} \|f\|_{L^{1}(\Omega)};$$

$$-\frac{dt}{dr} \leqslant \frac{1}{(d_{N}^{\varepsilon})^{1/(N-1)} \omega_{N}^{1/(N-1)}} \|f\|_{L^{1}(\Omega)}^{1/(N-1)} \frac{1}{r}.$$

Integrating the last inequality over (r, R) (note that $|\Omega| = (1/N) \omega_{N-1} R^N$), we have

$$t(r) \leqslant \frac{1}{(d_{N}^{\varepsilon})^{1/(N-1)}} \frac{1}{\omega_{N-1}^{1/(N-1)}} \|f\|_{L^{1}(\Omega)}^{1/(N-1)} \log \frac{R}{r};$$

$$\exp\left(\frac{(d_{N}^{\varepsilon})^{1/(N-1)} \omega_{N-1}^{1/(N-1)} (N - \varepsilon_{0})}{\|f\|_{L^{1}(\Omega)}^{1/(N-1)}} t(r)\right) \leqslant \left(\frac{R}{r}\right)^{N - \varepsilon_{0}};$$

$$\int_{0}^{R} \exp\left(\frac{(d_{N}^{\varepsilon})^{1/(N-1)} \omega_{N-1}^{1/(N-1)} (N - \varepsilon_{0})}{\|f\|_{L^{1}(\Omega)}^{1/(N-1)}} t(r)\right) r^{N-1} dr$$

$$\leqslant \int_{0}^{R} \left(\frac{R}{r}\right)^{N - \varepsilon_{0}} r^{N-1} dr = \frac{C}{\varepsilon_{0}}.$$

However, the left-hand side of the last inequality,

$$\begin{split} &\int_{0}^{R} \exp\left(\frac{(d_{N}^{\varepsilon})^{1/(N-1)} \omega_{N-1}^{1/(N-1)}(N-\varepsilon_{0})}{\|f\|_{L^{1}(\Omega)}^{1/(N-1)}} t(r)\right) r^{N-1} dr \\ &= &\int_{\infty}^{0} \exp\left(\frac{(d_{N}^{\varepsilon})^{1/(N-1)} \omega_{N-1}^{1/(N-1)}(N-\varepsilon_{0})}{\|f\|_{L^{1}(\Omega)}^{1/(N-1)}} t\right) \frac{1}{\omega_{N-1}} d\left|\Omega_{t}\right| \\ &= &\frac{1}{\omega_{N-1}} \int_{\Omega} \exp\left(\frac{(d_{N}^{\varepsilon})^{1/(N-1)} \omega_{N-1}^{1/(N-1)}(N-\varepsilon_{0})}{\|f\|_{L^{1}(\Omega)}^{1/(N-1)}} (u_{\varepsilon}-\varphi_{\varepsilon})\right) dx. \end{split}$$

Letting $\delta = \omega_{N-1}^{1/(N-1)} \varepsilon_0$, we have the desired estimate for u_{ε} and φ_{ε} . Finally, letting $\varepsilon \to 0$, we get the estimate for u and φ themselves.

In order to have a local analogy of Corollary 4.2, we state a result from Serrin [13] which can be proved following Moser's iteration scheme.

Proposition 4.4. Let u be a weak solution of

$$\Delta_N u + f(x) = 0$$

in $B_{2R} \subset \Omega$ and $f \in L^{N/(N-\varepsilon)}(B_{2R})$. Then we have

$$||u||_{L^{\infty}(B_R)} \le CR^{-1}(||u||_{L^N(B_{2R})} + KR)$$

where

$$K = (R^{\varepsilon} \|f\|_{L^{N(N-\varepsilon)}(B_{2R})})^{1/(N-1)}$$

and C depends on N only.

COROLLARY 4.5. Let

$$\Delta_N u_n + V_n e^{u_n} = 0 \qquad in \ \Omega$$

and

$$||u_n||_{L^{N_t(Q)}} \leq C_1, \qquad ||V_n||_{L^{q}(B_R)} \leq C_2.$$

where $1 < q < \infty$ and B_R is a ball compactly contained in Ω . Assuming

$$\int_{B_R} V_n e^{u_n} \leqslant \varepsilon_0 < \frac{\alpha_N d_N^{1/(N-1)}}{q'}$$

where q' = q/(q-1), we have

$$||u_n||_{L^{L}(B_{\mathbb{R}^{n+1}})} \leqslant C$$

for some C depending on N, C_1 , C_2 , R, and ε_0 only.

Proof. Consider on B_R

$$\begin{cases} \Delta_N \varphi_n = 0 & \text{in } B_R \\ \varphi_n|_{\partial B_R} = u_n|_{\partial B_R}. \end{cases}$$

By the comparison principle in [7], we have

$$\varphi_n \leqslant u_n; \qquad \|\varphi_n\|_{L^N(B_R)} \leqslant C_1.$$

Using Proposition 4.4, we conclude

$$\|\varphi_n\|_{L^{x}(B_{R};\gamma)} \leqslant C \tag{4.1}$$

for some constant C depending on N, C_1 , C_2 , and R only. From Lemma 4.3 we also know

$$\int_{B_R} \exp\left[\frac{(\alpha_N - \delta) d_N^{1/(N-1)}}{\varepsilon_0} (u_n - \varphi_n)\right] \leqslant \int_{B_R} \exp\left[\frac{(\alpha_N - \delta) d_N^{1/(N-1)}}{\|V_n e^{u_n}\|_{L^1(B_R)}} (u_n - \varphi_n)\right] \leqslant \frac{C}{\delta}.$$

Combining this with (4.1), we obtain

$$\int_{B_{R^{n}}} \exp\left[\frac{(\alpha_{N} - \delta) d_{N}^{1/(N-1)}}{\varepsilon_{0}} u_{n}\right] \leqslant \frac{C}{\delta}.$$
(4.2)

Choosing δ small enough so that

$$(\alpha_N - \delta) d_N^{1/(N-1)} > \varepsilon_0(q' + \delta),$$

we get from (4.2)

$$\|\exp u_n\|_{L^{q'+\delta}(B_{R/2})} \leqslant C.$$

Therefore

$$||V_n \exp u_n||_{L^{1+\epsilon_1}(B_{R/2})} \le C$$

for some $\varepsilon_1 > 0$. Using Proposition 4.4 again, we finally conclude

$$||u_n||_{L^{\infty}(B_{R/4})} \leqslant C. \quad \blacksquare$$

We close this section with a positive lower bound for d_N .

Proposition 4.6. Let

$$d_N = \inf_{X \neq Y \in \mathbb{R}^N} \frac{(|X|^{N-2} |X| - |Y|^{N-2} |Y|(X-Y))}{|X-Y|^N}.$$

Then

$$d_N \geqslant \frac{2}{N} \left(\frac{1}{2}\right)^{N-2},$$

in particular $d_2 = 1$.

Proof. Without loss of generality, let $0 \le |Y| \le |X|$, $X \ne Y$, and $X \ne 0$. Let

$$t = \frac{|Y|}{|X|}, \quad \cos \theta = \frac{\langle X, Y \rangle}{|X| |Y|}.$$

Then

$$\frac{(|X|^{N-2}|X-|Y|^{N-2}|Y)(X-Y)}{|X-Y|^N} = \frac{1 - (t^{N-1} + t)\cos\theta + t^N}{(1 - 2t\cos\theta + t^2)^{N/2}}.$$

Let

$$f(t,x) = \frac{1 - (t^{N-1} + t)x + t^N}{(1 - 2tx + t^2)^{N/2}}$$

for $0 \le t \le 1$ and $-1 \le x \le 1$. Fix t and set

$$\frac{\partial f}{\partial x} = 0.$$

Then

$$1 - (t^{N-1} + t)x + t^{N} = \frac{t^{N-2} + 1}{N}(1 - 2tx + t^{2}).$$

Therefore at the critical points x of f(t,),

$$f(t,x) = \frac{t^{N-2} + 1}{N} \frac{1}{(1 - 2tx + t^2)^{(N-2)/2}}$$

$$= \frac{1}{N} \frac{t^{N-2} + 1}{(1 - 2tx + t^2)^{(N-2)/2}} \ge \frac{1}{N} \frac{t^{N-2} + 1}{(t+1)^{N-2}}$$

$$\ge \frac{1}{N} \min_{0 \le t \le 1} \frac{t^{N-2} + 1}{(t+1)^{N-2}}.$$

Let

$$g(t) = \frac{t^{N-2} + 1}{(t+1)^{N-2}}.$$

Then

$$g'(t) = \frac{(t+1)^{N-3}}{(t+1)^{2(N-2)}} (N-2)(t^{N-3}-1) \le 0$$

and

$$\min_{0 \le t \le 1} g(t) = g(1) = \frac{2}{2^{N-2}}.$$

Hence

$$d_N \geqslant \frac{2}{N} \left(\frac{1}{2}\right)^{N-2}$$
.

Remark 4.7. An upper bound for #S in Theorem 1.2 can therefore be

$$\frac{N}{4} \left(\frac{2N}{N-1} \right)^{N-1},$$

which equals 2 when N = 2.

5. Proof of Theorem 1.2

Recall (1.4) and (2.1)

$$v_{p} = \frac{u_{p}}{\left(\int_{\Omega} u_{p}^{p}\right)^{1/(N-1)}}, \quad v_{p} = \left[\int_{\Omega} u_{p}^{p}\right]^{1/(N-1)}.$$

Define

$$f_p = \frac{u_p^p}{\int_{\Omega} u_p^p} = v_p^{p - (N - 1)} v_p^p. \tag{5.1}$$

Then we have

$$\Delta_N v_p + f_p = 0. ag{5.2}$$

We first prove $\mathscr{B} \neq \emptyset$ for any sequence $\{v_n\} = \{v_{p_n}\}$ of v_p with $p_n \to \infty$. Let x_n be such that

$$v_n(x_n) = \max_{x \in \bar{\Omega}} v_n(x) = \frac{\max u_n(x)}{\left(\int_{\Omega} u_n^{p_n}\right)^{1/(N-1)}}$$
$$\geqslant \frac{C_1}{\left(\int_{\Omega} u_n^{p_n}\right)^{1/(N-1)}} \to \infty$$

by Theorem 1.1 and Corollary 3.1. Therefore cluster points of $\{x_n\}$ belong to \mathcal{B} ; hence $\mathcal{B} \neq \emptyset$.

Since $\int_{\Omega} f_p = 1$ and $f_p > 0$, for any sequence of $\{f_p\}$ we can subtract a subsequence

$$\{f_n\} = \{f_{p_n}\}$$

which converges to a measure μ weakly in $M(\Omega)$ where $M(\Omega)$ is the space of real bounded measures on Ω and μ is a positive measure with $\mu(\Omega) \leq 1$. From now on in the rest of this section we shall work on this subsequence $\{f_n\}$ and the corresponding $\{v_n\} = \{v_{p_n}\}$. For any $\delta > 0$, we call $x_0 \in \Omega$ a δ -regular point if there is a function $\varphi \in C_0(\Omega)$, $0 \leqslant \varphi \leqslant 1$ with $\varphi = 1$ in a neighborhood of x_0 , such that

$$\int_{\Omega} \varphi \, d\mu < \left(\frac{\alpha_N}{L_0 + 3\delta}\right)^{N-1} \tag{5.3}$$

where L_0 is as defined in (2.1). We also define the δ -irregular set

$$\Sigma(\delta) = \{ y_0 : y_0 \text{ is not a } \delta\text{-regular point} \}.$$

Clearly

$$\mu(y_0) \geqslant \left(\frac{\alpha_N}{L_0 + 3\delta}\right)^{N-1} \tag{5.4}$$

for all $y_0 \in \Sigma(\delta)$. We shall frequently say "regular" and "irregular," not mentioning δ if there is no confusion.

LEMMA 5.1. If x_0 is a regular point, then v_n is uniformly bounded in $L^{\infty}(B_{R_0(x_0)})$ for some R_0 .

Proof. Let x_0 be a regular point. From (5.3), we can find $R_1 > 0$ such that

$$\int_{B_{R_1}(x_0)} f_n < \left(\frac{\alpha_N}{L_0 + 2\delta}\right)^{N-1}.$$
 (5.5)

Applying Lemma 4.1 to f_n on Ω (note that $||f_n||_{L^1(\Omega)} = 1$), we have

$$\int_{\Omega} \exp[(\alpha_N - \varepsilon) v_n] dx \leqslant \frac{C}{\varepsilon},$$

especially $||v_n||_{L^N(B_{R_1}(x_0))} \le C$ for some C independent of n. Let φ_n be a solution of

$$\begin{cases} -\Delta_N \varphi_n = 0 & \text{in } B_{R_1}(x_0), \\ \varphi_n|_{\partial B_{R_1}(x_0)} = v_n|_{\partial B_{R_1}(x_0)}. \end{cases}$$

Then by Proposition 4.4, we have (note that $\varphi_n \leq v_n$ by the comparison principle)

$$\|\varphi_n\|_{L^{\epsilon}(B_{R,\gamma}(x_0))} \leqslant C.$$

By Lemma 4.3 and (5.5), if we choose " δ " in Lemma 4.3 small enough,

$$\int_{B_{R,(N_0)}} \exp[(L_0 + \delta) d_N^{1/(N-1)} (v_n - \varphi_n)] \le C;$$

hence

$$\int_{B_{R_1},\gamma(x_0)} \exp[(L_0 + \delta) d_N^{1/(N-1)} v_n] dx \le C.$$
 (5.6)

Let $t = L'_0 + d_N^{1/(N-1)} \delta/2$. Observe

$$\log x \leqslant \frac{x}{\rho}$$

for x > 0. We get

$$\begin{aligned} p_n \log \frac{u_n}{v_n^{(N-1)/p_n}} &\leq \frac{p_n}{e} \frac{u_n}{v_n^{(N-1)/p_n}} \\ &\leq \frac{L_0' + d_N^{1/(N-1)} \delta/3}{v_n} \frac{u_n}{v_n^{(N-1)/p_n}} = \frac{t - d_N^{1/(N-1)} \delta/6 u_n}{v_n^{(N-1)/p_n} v_n} \\ &\leq t \frac{u_n}{v_n} = t v_n \end{aligned}$$

for *n* large enough where $v_n = v_{p_n}$ is defind in (2.1) and the last inequality is based on

$$\lim_{n\to\infty} v_n^{(N-1)/p_n} = 1$$

which follows from Corollary 3.1. Hence

$$f_n \leqslant e^{tv_n}$$
.

Note that

$$t = L'_0 + d_N^{1/(N-1)} \delta/2 = (L_0 + \delta/2) d_N^{1/(N-1)} < (L_0 + \delta) d_N^{1/(N-1)};$$

hence with the aid of (5.6) we see that f_n is bounded in $L^q(B_{R_1/2}(x_0))$ where

$$q = \frac{L_0 + \delta}{L_0 + \delta/2} > 1.$$

Using Proposition 4.4 again, we conclude that for large n there exists C > 0 such that

$$||v_n||_{L^{\infty}(B_{R_1/4}(N_0))} \leq C.$$

This proves Lemma 5.1 if we choose $R_0 = R_1/4$.

Back to the proof of Theorem 1.2, we claim $S = \Sigma(\delta)$ for any $\delta > 0$ where S is the interior peak set with respect to $\{v_n\}$ defined in (1.6).

Clearly, $S \subset \Sigma$. In fact, letting $x_0 \notin \Sigma$, then we know that x_0 is a regular point. Hence by Lemma 5.1, $\{v_n\}$ is uniformly bounded in a neighborhood of x_0 . Therefore $x_0 \notin S$. Conversely, suppose $x_0 \in \Sigma$. Then we have for every R > 0,

$$\lim_{n\to\infty}\|v_n\|_{L^{L}(B_R(x_0))}=\infty.$$

Otherwise, there would be some $R_0 > 0$ and a subsequence of v_n , again denoted by v_n , such that

$$||v_n||_{L^{\infty}(B_{R_0}(x_0))} < C$$

for some C independent of n. Then

$$f_n = v_n^{p_n - (N-1)} v_n^{p_n} < v_n^{p_n - (N-1)} C^{p_n}$$

$$\to 0$$

uniformly on $B_{R_0}(x_0)$ as $n \to \infty$. Then

$$\int_{B_{R_0}(x_0)} f_n = \int_{B_{R_0}(x_0)} v_n^{p_n - (N-1)} v_n^{p_n} \le \varepsilon_0 < \left(\frac{\alpha_N}{L_0 + 3\delta}\right)^{N-1}$$

for large n which implies that x_0 is a regular point. This proves the claim. Back to the measure μ defined earlier in this section. We have from (5.4)

$$1 \geqslant \mu(\Omega) \geqslant \left(\frac{\alpha_N}{L_0 + 3\delta}\right)^{N-1} \# \Sigma(\delta) = \left(\frac{\alpha_N}{L_0 + 3\delta}\right)^{N-1} \# S.$$

Hence

$$0 \leqslant \#S \leqslant \left(\frac{L_0 + 3\delta}{\alpha_N}\right)^{N-1}.$$

Letting $\delta \rightarrow 0$, we get with the aid of Corollary 2.4

$$0 \leqslant \#S \leqslant \left(\frac{L_0}{\alpha_N}\right)^{N-1} \leqslant \left(\frac{N}{N-1}\right)^{N-1} d_N^{-1}.$$

This proves Theorem 1.2.

Remark 5.2. From the proof of the theorem we see that the measure μ is atomic. Actually,

$$\mu = \sum_{k=1}^{\#S} a_k \, \delta(x_k)$$

where $S = \{x_1, x_2, ..., x_{\#S}\}$ and

$$a_k \geqslant \left(\frac{\alpha_N}{L_0}\right)^{N-1}$$
.

The subsequence v_n approaches a function G in $C_{loc}^{1,\alpha}(\Omega \backslash S)$ and G is N-harmonic in $\Omega \backslash S$ but singular on S.

Remark 5.3. It is also clear from the proof of Theorem 1.2 and Corollary 3.1 that the subsequence

$$u_n \to 0$$

in $L_{loc}^{\times}(\Omega \backslash S)$.

6. Further Results

So far, we have not touched the boundary peak sets S' yet. Our next result shows that when Ω is strictly convex and u_p are generic in some sense, S' is empty; i.e., $\mathcal{B} = S$.

Recall that u_p are solutions of (1.1) obtained by minimizing

$$J_p(v) = \int_{\Omega} |\nabla v|^N$$

in the class

$$\mathcal{A}_{p} = \left\{ v \in W_{0}^{1,N}(\Omega) \colon \|u\|_{p+1} = 1 \right\}.$$

Let

$$J_p^e \colon \mathscr{A}_p \to R$$
 (6.1)

defined by

$$J_p^{\varepsilon}(v) = \int_{\Omega} (\varepsilon + |\nabla v|^2)^{N/2}.$$

We call u_p a generic solution if there exist a sequence ε_n of ε with

$$\varepsilon_n \to 0$$

and a sequence of positive minimizers $\{u'_{p\varepsilon_n}\}$ of $J_p^{\varepsilon_n}$ such that $\{u'_{p\varepsilon_n}\}$ converges to u'_p weakly in $W^{1,N}(\Omega)$ as $\varepsilon_n \to 0$ where $u_p = cu'_p$ for some scalar c. Clearly $\{u'_{p\varepsilon_n}\}$ is a minimizing sequence of J_p in \mathcal{A}_p . Actually, any sequence $\{u'_{p\varepsilon_n}\}$ of minimizers of $J_p^{\varepsilon_n}$ is a minimizing sequence of J_p , so generic solutions exist for all smooth bounded domains.

Theorem 6.1. Let Ω be a strict convex domain. Assume u_p are generic solutions for all p. Then S', the boundary peak set of $\{u_p\}$, is empty; i.e., $\mathcal{B} = S$.

Proof. Let

$$\{u'_{p\varepsilon_n}\} \to u'_p$$

weakly in $W^{1,N}(\Omega)$ where $u'_p = cu_p$ for some c and $u'_{p\varepsilon_n}$ are positive minimizers of $J_p^{\varepsilon_n}$. Then $u'_{p\varepsilon_n}$ solve

$$\begin{cases} \operatorname{div}((\varepsilon + |\nabla u'_{p\varepsilon_n}|^2)^{(N-2)/2} \nabla u'_{p\varepsilon_n}) + \lambda_n u'_{p\varepsilon_n} = 0 & \text{in } \Omega \\ u'_{p\varepsilon_n}|_{\partial\Omega} = 0 \end{cases}$$

for some $\lambda_n > 0$.

Therefore, using the moving plane method for nondegenerate equations developed by Gidas, Ni, and Nirenberg in [4], we can find a neighborhood ω of $\partial\Omega$ and a cone Γ of fixed size, both depending on Ω only such that

$$u'_{p_{\nu_n}}(x) \leqslant \frac{1}{|\Gamma|} \int_{\Omega} u'_{p_{\nu_n}}(x) \, dx \tag{6.2}$$

for all $x \in \omega$. We refer the reader to DeFigueiredo *et al.* [2] for details of this trick.

Since $\{u'_{p\varepsilon_n}\}\to u'_p$ weakly in $W^{1,N}(\Omega)$, we have

$$u'_{p_{\nu_n}} \to u'_p$$
 strongly in $L^1(\Omega)$;
 $u'_{p_{\nu_n}} \to u'_p$ almost everywhere. (6.3)

Hence passing limit in (6.2), we get

$$u_p(x) \leq \frac{1}{|\Gamma|} \int_{\Omega} u_p(x) dx$$

for almost all $x \in \omega$. Therefore

$$u_p(x) \le \frac{1}{|\Gamma|} \int_{\Omega} u_p(x) \, dx$$

and

$$v_p(x) \le \frac{1}{|\Gamma|} \int_{\Omega} v_p(x) \, dx$$

for almost all $x \in \omega$. But $\int_{\Omega} v_p(x) dx \le C$ by Lemma 4.1. Therefore v_p are uniformly bounded in $L^{\infty}(\omega)$; hence $S' = \emptyset$.

It is interesting to see when the peak set \mathcal{B} contains one point only.

THEOREM 6.2. Let Ω be a strict convex domain and u_{p_n} be a sequence of generic solutions. If we further assume

$$\int_{\partial\Omega} \frac{ds}{\langle x-y, n(x)\rangle^{N-1}} < (2d_N)^N (e\alpha_N)^{N-1} \left(\frac{N-1}{N^2}\right)^{N-1} \left(\frac{N-1}{N}\right)^{(N-1)^2},$$

then there exists a subsequence of u_{p_n} , again denoted by u_{p_n} , such that the peak set \mathcal{B} of the subsequence equals the interior peak set S and it contains one point only.

Proof. The assertion $\mathcal{B} = S$ follows from Theorem 6.1. We also know $\#\mathcal{B} \ge 1$ from Theorem 1.2.

Now we state a Pohozaev-type identity for (1.1). The proof of this integral identity can be found in ([7, Theorem 1.1]). Let $u \in L'(\Omega) \cap W_{1,q}(\Omega)$ solve

$$\begin{cases} -\operatorname{div}(|\nabla u|^{q-2}|\nabla u) = g(x,u) & \text{in } \Omega \\ u_{\partial\Omega} = 0 \end{cases}$$

where g is smooth with its growth bounded either by $|u|^{(Nq-N+q)/(N-q)}$ if q < N or like a polynomial in u if q = N. Let $G(x, u) = \int_0^u g(x, r) dr$. Then

$$\int_{\Omega} NG(x, u) dx + \left(1 - \frac{N}{q}\right) \int_{\Omega} ug(x, u) dx + \int_{\Omega} \langle x - y, \nabla_{x} G(x, u) \rangle dx$$
$$= \left(1 - \frac{1}{q}\right) \int_{\partial \Omega} \langle x - y, n(x) \rangle \left| \frac{\partial u}{\partial n} \right|^{q} ds$$

for all $y \in \mathbb{R}^N$.

Apply it to (1.1). Let "y" in the integral identity be "y" in the statement of Theorem 6.2. Without loss of generality, we can assume y = 0. Then

$$\frac{N}{p+1} \int_{\Omega} u_p^{p+1} dx = \left(1 - \frac{1}{N}\right) \int_{\Omega} \langle x, n(x) \rangle \left| \frac{\partial u_p}{\partial n} \right|^N ds. \tag{6.5}$$

On the other hand,

$$\int_{\Omega} u_p^p \, dx = \int_{\partial \Omega} \left| \frac{\partial u_p}{\partial n} \right|^{N-1} \, ds.$$

Hence by Holder's inequality,

$$\int_{\Omega} u_{p}^{p} dx \leq \left(\int_{\partial \Omega} \frac{1}{\langle x, n(x) \rangle^{N-1}} ds \right)^{1/N} \left(\int_{\partial \Omega} \langle x, n(x) \rangle \left| \frac{\partial u_{p}}{\partial n} \right|^{N} ds \right)^{(N-1)/N}$$

$$= \left(\int_{\partial \Omega} \frac{1}{\langle x, n(x) \rangle^{N-1}} ds \right)^{1/N} \left(\frac{N^{2}}{(N-1)(p+1)} \int_{\Omega} u^{p+1} dx \right)^{(N-1)/N}.$$

Therefore

$$\begin{split} \left(\frac{L_0}{\alpha_N}\right)^{N-1} &= \frac{1}{d_N} \left(\frac{L'_0}{\alpha_N}\right)^{N-1} \\ &= \frac{1}{d_N} \lim_{p \to \infty} \left(\frac{p}{e\alpha_N} \left(\int_{\Omega} u_p^p \, dx\right)^{1/(N-1)}\right)^{N-1} \\ &= \frac{1}{d_N} \lim_{p \to \infty} \frac{p^{N-1} \int_{\Omega} u_p^p \, dx}{\left(e\alpha_N\right)^{N-1}} \end{split}$$

$$\leqslant \overline{\lim}_{p \to onfit} \frac{1}{d_{N}} \frac{1}{(e\alpha_{N})^{N-1}} \left(\int_{\partial \Omega} \frac{1}{\langle x, n(x) \rangle^{N-1}} ds \right)^{1/N} \\
\times p^{N-1} \left(\frac{N^{2}}{N-1} \right)^{(N-1)/N} \left(\frac{1}{p+1} \frac{1}{p^{N-1}} \left(\frac{N\alpha_{N}e}{N-1} \right)^{N-1} \right)^{(N-1)/N} \\
= \frac{1}{d_{N}} \frac{1}{(e_{N})^{N-1}} \left(\frac{N^{2}}{N-1} \right)^{(N-1)/N} \left(\frac{N\alpha_{N}e}{N-1} \right)^{(N-1)^{2}/N} \\
\times \left(\int_{\partial \Omega} \frac{1}{\langle x, n(x) \rangle^{N-1}} ds \right)^{1/N} \\
< 2.$$

Hence from the last inequality in the proof of Theorem 1.2 we have $\#S \le 1$, and in turn #S = 1.

Remark 6.3. It turns out that when N=2 the assumptions that Ω is strict convex and that u_p are generic solutions are both superfluous for Theorems 6.1 and 6.2. In our earlier article [12], we proved the corresponding results of Theorems 6.1 and 6.2 without these two conditions. In that work we used Kelvin transform to take care of non-convex domains and we applied the moving plane method to u_p directly since the equations (1.1) are nondegenerate when N=2.

Finally we confine ourselves to the problem when $\Omega = B_R$, the ball of radius R centered at the origin. We also consider generic solutions. Applying the moving plane method to each approximate solution u_{pe_n} of u_p , we conclude that u_{pe_n} are all radially symmetric, and so are u_p . Therefore u_p solve the following ODE.

$$\begin{cases} (|u'|^{N-2}u')' + \frac{N-1}{r}|u'|^{N-2}u' + u^p = 0 & \text{in } (0, R) \\ u'(0) = 0, & u(R) = 0. \end{cases}$$

Applying Theorem 1.2, we know $\mathcal{B} = S = \{0\}$; otherwise there would be infinitely many peaks by the symmetry. A straightforward argument shows

$$f_p \to \delta$$

in the sense of distribution where f_p is defined in (5.1) and δ is the Dirac mass at 0. We can actually prove the following. We leave the proof to the reader.

Theorem 6.4. Let u_p be generic variational solutions of (1.1) on B_R , the ball of radius R. Then as $p \to \infty$,

$$v_p = \frac{u_p}{(\int_{B_R} u_p^p)^{1/(N-1)}} \to \frac{1}{\omega_{N-1}^{1/(N-1)}} \log\left(\frac{R}{r}\right)$$

in $C_{loc}^{1,\alpha}(\bar{B}_R\setminus\{0\})$ for some $\alpha>0$ and also in the sense of distribution on B_R .

ACKNOWLEDGMENT

The authors thank their adviser, Professor Wei-Ming Ni, for bringing solutions with a spiky pattern to their attention.

REFERENCES

- 1. H. Brezis and F. Merle, Uniform estimate and blow-up behavior for solutions of $-\Delta u = V(x) e^u$ in two dimensions, *Comm. Partial Differential Equations* 16, Nos. 8/9 (1991), 1223–1253.
- D. G. DeFigueiredo, P. L. Lions, and R. D. Nussbaum, A priori estimates and existence of positive solutions of semilinear elliptic equations, J. Math. Pure. Appl. 61 (1982), 41-63.
- H. FEDERER, "Geometric Measure Theory," Springer-Verlag, Berlin/Heidelberg/New York, 1969.
- 4. B. Gidas, W.-M. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68, No. 3 (1979), 209-243.
- D. GILBARG AND S. N. TRUDINGER, "Elliptic Partial Differential Equations of Second Order," 2nd ed., Springer-Verlag, Berlin/Heidelberg/New York/Tokyo, 1983.
- J. Moser, A sharp form of an inequality by Trudinger, *Indiana Univ. Math. J.* 20, No. 11 (1971), 1077-1092.
- M. GUEDDA AND L. VERON, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. 13, No. 8 (1989), 879-902.
- W.-M. NI, X. PAN, AND I. TAKAGI, Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents, *Duke Math. J.* 67, No. 1 (1992).
- 9. W.-M. NI AND I. TAKAGI, On the shape of least-energy solutions to a semilinear Neumann Problem, *Comm. Pure. Appl. Math.* Vol. XLIV, No. 7 (1991).
- W.-M. NI AND I. TAKAGI, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J., to appear.
- 11. X. Pan, Condensation of least-energy solutions of a semilinear Neumann problem, J. Partial Differential Equations, to appear.
- 12. X. Ren and J. Wei, On a two-dimensional elliptic problem with large exponent in non-linearity, *Trans. AMS* 343 (1994), 749-763.
- J. SERRIN, Local behavior of solutions of quasilinear equations, Acta Math. 111 (1964), 247-302.
- G. TALENTI, Elliptic equations and rearrangements, Ann. Scuola. Norm. Pisa. Sci. 3 (1976), 697-718.

- 15. G. TALENTI, Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces, *Ann. Mat. Pura. Appl.* (4) **120** (1977), 159-184.
- P. TOLKSDORF, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), 124–150.
- 17. J. I. VAZQUEZ, A strong maximum principle for quasilinear elliptic equations, *Appl. Math. Optim.* 12 (1984), 191–202.