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Abstract

The first stage in the transition from a coarse structure to a fine structure in many pattern

formation problems involves the change of a standard geometric object such as a round disc

to a less standard geometric object such as an oval shaped set. On a generic domain two

small oval shaped sets are found as solutions to a nonlocal geometric problem. This problem

arises as the singular limit of both the Ohta-Kawasaki theory for diblock copolymers and the

Gierer-Meinhardt theory for morphogenesis in cell development. The two sets have the same

center which is a global minimum of the diagonal of the regular part of a Green’s function.

This minimum point may be regarded as a kind of center of the domain. Moreover the second

derivatives of the regular part of the Green’s function define a major axis and a minor axis for

the domain. One of the oval shaped solutions is stable and it aligns itself along the major axis.

The other oval shaped solution is unstable and is parallel to the minor axis.

1 Introduction

Fine, periodic structures are often preferred to coarse, single structures in many pattern formation
problems. Examples include the Ohta-Kawasaki density functional theory for block copolymers
[13] and the Gierer-Meinhardt theory for morphogenesis in cell development [6]. In the the Ohta-
Kawasaki theory, the level of structure saturation is controlled by the strength of the long range
interaction between polymer chains. In the Gierer-Meinhardt theory the diffusion coefficient of the
inhibitor performs the same function.

The transition from a coarse structure to a fine structure is not well understood mathematically.
Such a saturation process may contain several steps. As depicted in Figure 1, first a well known
single object, like a round disc, deforms to a less standard structure, such as an elongated, oval
shaped set. Then deformation continues and a neck appears on the set signaling splitting. Finally
the structure breaks off to two disjoint pieces.
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Figure 1: A round droplet deforms to an oval droplet, then to a necked droplet, before splits to two
droplets.

Our study uses a nonlocal geometric model. We are given a smooth and bounded domain D
in R2 and two parameters a ∈ (0, 1) and γ > 0. To each subset E of D with the prescribed size
|E| = a|D|, where |E| and |D| are the Lebesgue measures of E and D respectively, we associate a
free energy by

J(E) = PD(E) +
γ

2

∫

D

|(−∆)−1/2(χE − a)|2 dx. (1.1)

Here PD(E) is the perimeter of the part of the boundary of E that is inside D, i.e. the total
length of the curves ∂E ∩ D. The characteristic function χE of E is defined by χE(x) = 1 if x ∈ E
and χE(x) = 0 if x ∈ D\E. The most interesting part in (1.1) is the nonlocal operator (−∆)−1/2.
From the −∆ operator on D with the Neumann boundary condition on ∂D, one obtains its inverse,
(−∆)−1 which is a nonlocal operator applied to functions on D with zero average, such as χE − a.
Our (−∆)−1/2 is the positive square root of the operator (−∆)−1.

If a subset E of D, satisfying |E| = a|D|, is a critical point of J and ∂E ⊂ D, there exists a
number λ such that

H(∂E) + γ(−∆)−1(χE − a) = λ, on ∂E. (1.2)

The constant λ is a Lagrange multiplier from the constraint |E| = a|D|, and H(∂E) is the curvature
of the curve ∂E viewed from E.

The equation (1.2) arises from several problems. One of them is the Ohta-Kawasaki theory for
diblock copolymers. In a diblock copolymer a molecule is a linear chain of an A-monomer block
grafted covalently to a B-monomer block. Because of the repulsion between the unlike monomers,
the different type sub-chains tend to segregate, but as they are chemically bonded in chain molecules,
segregation of sub-chains cannot lead to a macroscopic phase separation. Only a local micro-phase
separation occurs: micro-domains rich in A monomers and micro-domains rich in B monomers
emerge as a result. A pattern formed from micro-domains is known as a morphology phase. Various
phases, including lamellar, cylindrical, spherical, gyroid, etc, have been observed in experiments [1].
Figure 2 shows the spherical, cylindrical, and lamellar phases.

The free energy of a diblock copolymer melt proposed by Ohta and Kawakaki can be written on
a bounded domain as

I(u) =

∫

D

[ǫ2

2
|∇u|2 + W (u) +

ǫγ

2
|(−∆)−1/2(u − a)|2

]

dx (1.3)

The relative density of the A monomers is u; the relative density of the B monomers is 1 − u.
The function W is a balanced double well potential such as (1/4)u2(1 − u)2. Nishiura and Ohnish
identified (1.1) as a formal singular limit of the Euler-Lagrange equation of (1.3) [12]. Ren and Wei
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Figure 2: The spherical, cylindrical, and lamellar morphology phases commonly observed in diblock
copolymer melts. The dark color indicates the concentration of type A monomers, and the white
color indicates the concentration of type B monomers.

noted that (1.1) is the Γ-limit of (1.3) as ǫ tends to 0 [16], and hence put the convergence of I to
its singular limit J under a rigorous mathematical framework. More studies on the lamellar phase
of diblock copolymers, Figure 2 (3), may be found in [5, 18, 17, 3, 19, 23, 22, 2, 24, 25]. Solutions
in three dimensions matching the spherical phase, Figure 2 (1), were found in [28]. More complex
copolymer systems such as triblock copolymers and polymer blends were studied in [20, 21, 4].

A cross section of the cylindrical phase, Figure 2 (2), is a two dimensional domain D. The type
A monomers form a subset E that is a union of many small droplets. The number of the droplets
in a cross section is controlled by the parameter γ. The larger γ is, the more numerous and smaller
the droplets are.

Another place where one finds (1.2) is the Gierer-Meinhardt theory for morphogenesis in cell de-
velopment. It is a minimal model that provides a theoretical bridge between observations on the
one hand and the deduction of the underlying molecular-genetic mechanisms on the other hand.
Mathematically it is an activator-inhibitor type reaction-diffusion system with two unknowns of
space variable x ∈ D ⊂ R2 and time variable t > 0. The first unknown, denoted by u describes the
short-range autocatalytic substance, i.e., the activator, and the second unknown, denoted by v, is
its long-range antagonist, i.e., the inhibitor. They satisfy the equations

ut = ǫ2∆u − u +
up

(1 + κup)vq
; ιvt = d∆v − v +

ur

vs
. (1.4)

Here u and v satisfy the Neumann condition on the boundary of D, i.e.

∂νu(x, t) = ∂νv(x, t) = 0, ∀x ∈ ∂D, ∀t > 0 (1.5)

where ∂ν is the outward normal derivative operator on the boundary of D.
Activator-inhibitor systems were studied by Turing [30]. They may be used to model animal coats

and skin pigmentation, Figure 3. In Appendix A we give a formal justification for the convergence
of steady states of (1.4) to solutions of (1.2).
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Figure 3: Spots on Gold Nugget Plecostomus and stripes on Distichodus Sexfasciatus.

In this paper we study the stage of the saturation process depicted in Figure 1 (2). We show that
when a is sufficiently small and γ is in a particular range, on a generic domain there exist two
solutions to (1.2), each of which has the shape of a small oval set. The location and direction of each
oval droplet solution are determined via the regular part R of the Green’s function of the domain D.
The precise definition of R is given in (2.1). Note that the regular part R(x, y) = R(x1, x2, y1, y2)
is a function of two sets of variables x ∈ D and y ∈ D, each of which has two components. The
diagonal of R, given by R̃(z) = R(z, z), is a function defined on D. If z → ∂D, R̃(z) → ∞. Hence
R̃ has at least one global minimum in D.

It is often convenient to use another parameter ρ in place of a. We set

ρ =

√

a|D|
π

. (1.6)

It is the average radius of a set E whose measure is fixed at a|D|. In other words if E were a round
disc of the same measure a|D|, ρ would be the radius of E. The first stage of saturation occurs if γ
is slightly greater than 12

ρ3 . The number 12
ρ3 first emerged in the proof of an existence theorem for a

round droplet solution in [27]. We will explain in Section 2 that it is the first point to avoid for the
existence of the round droplet solution, and the stability of the round droplet solution changes as γ
moves past it.

Our first result in this paper is the following.

Observation 1.1 A vector S ∈ R2 is determined by the domain D via the second derivatives of R
at a global minimum ζ of R̃. If S 6= (0, 0), there exists δ > 0 such that for each c ∈ (12, 12+ δ) there
exists ρ0 > 0 so that (1.2) admits two oval shaped droplet solutions, both centered at ζ, if γ = c

ρ3

and ρ < ρ0.

Because of the symmetry R(x, y) = R(y, x), ∂R(z,z)
∂xj

= ∂R(z,z)
∂yj

= 1
2

∂R̃(z)
∂zj

, j = 1, 2, and conse-

quently
∂R(ζ, ζ)

∂x1
=

∂R(ζ, ζ)

∂x2
= 0. (1.7)

In some sense a global minimum of R̃ is a center of D. Interestingly one can define a major axis
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Figure 4: The solid line and the dashed line are the major and minor axes respectively. The stable
oval droplet solution (in solid curve) is parallel to the major axis and the unstable oval droplet
solution (in dashed curve) is parallel to the minor axis.

and a minor axis on a generic domain D. Let a vector S = (S1, S2) be given by

S1 =
1

2

(∂2R(ζ, ζ)

∂x2
1

− ∂2R(ζ, ζ)

∂x2
1

)

, S2 =
∂2R(ζ, ζ)

∂x1∂x2
(1.8)

The domain D is considered generic, or non-degenerate, with respect to ξ, if (S1, S2) 6= (0, 0). In
this case let σ be an angle such that

cos 2σ =
S1

|(S1, S2)|
, sin 2σ =

S2

|(S1, S2)|
. (1.9)

The minor axis is the line whose angle is σ and the major axis is the line whose angle is σ + π
2 . The

two oval droplets align themselves along the major and minor axes respectively, Figure 4.

Observation 1.2 One of the two oval droplet solutions found in Observation 1.1 is stable and is
parallel to the major axis whose angle is σ + π

2 ; the other oval droplet solution is unstable and is
parallel to the minor axis whose angle is σ.

If D is a rectangle with its length greater than its height, we found numerically that S1 < 0 and
S2 = 0. Therefore σ = π

2 and σ + π
2 = π. So the major axis is parallel to the length side and the

minor axis is parallel to the height side. The two oval droplet solutions are depicted in Figure 5.
The degenerate case S = (0, 0) is not covered in the two observations above. It occurs if for

instance D is a disc or a perfect square. These two domains have no distinct major or minor axes.
Results similar to Observation 1.1 have appeared in many other problems in recent decades

[7, 29, 14, 15], etc. To our knowledge, Observation 1.2 is new. It is the first result that links the
direction of a solution to the shape of the domain via the second derivatives of R.
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Figure 5: The domain D is (0, 6)× (0, 4) and S = (−0.0118, 0) found numerically. The first droplet
solution is stable while the second is unstable.
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Figure 6: Round droplet solutions for K = 2, 3, ..., 10.

This paper is organized as follows. Some existing results regarding round droplet solutions are
recalled in Section 2. In Section 3 we describe the shape of an oval droplet, by identifying some
bifurcation solutions of a rescaled version of (1.2) formulated on the entire plane R2. In Section 4, we
study (1.2) on a bounded domain D and find two solutions with the shape of oval droplets. We also
determine the location of these droplets. In Section 5, we show that the direction of the oval droplets
must be either along the major axis or the minor axis of the domain. A few remarks are included in
Section 6. The first appendix gives a formal derivation of (1.2) from the Gierer-Meinhardt system
(1.4); the second appendix contains some technical calculations.

For simplicity we often write eiθ for (cos θ, sin θ), although no complex structure is used.

2 Round droplet solutions

Before we construct oval droplet solutions of (1.2), we recall some existing results about round droplet
solutions. Let the Green’s function of −∆ with the Neumann boundary condition be denoted by G.
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It is a sum of two parts:

G(x, y) =
1

2π
log

1

|x − y| + R(x, y). (2.1)

The regular part of G(x, y) is R(x, y). The Green’s function satisfies the equation

−∆xG(x, y) = δ(x − y) − 1

|D| in D, ∂ν(x)G(x, y) = 0 on ∂D,

∫

D

G(x, y) dx = 0 for ∀y ∈ D.

Here ∆x is the Laplacian with respect to the x-variable of G, and ν(x) is the outward normal
direction at x ∈ ∂D. We set

F (ξ1, ξ2, ..., ξK) =

K
∑

k=1

R(ξk, ξk) +

K
∑

k=1

K
∑

l=1,l 6=k

G(ξk, ξl), (2.2)

for ξk ∈ D and ξk 6= ξl if k 6= l. Because G(x, y) → ∞ if |x − y| → 0 and R(x, x) → ∞ if x → ∂D,
F admits at least one global minimum.

The first result shows the existence of a solution with a pattern of round droplets.

Theorem 2.1 ([26]) Let K ≥ 1 be an integer and

ρ =

√

a|D|
Kπ

. (2.3)

1. For every ǫ > 0 there exists δ > 0, depending on ǫ, K and D only, such that if

γρ3 log
1

ρ
> 1 + ǫ, (2.4)

|γρ3 − 2n(n + 1)| > ǫn2, for all n = 2, 3, 4, ..., (2.5)

and
ρ < δ, (2.6)

then there exists a solution E of (1.2) which is a union of K disconnected components.

2. Each component is close to a round disc whose radius is ρ.

3. Let the centers of these discs be ζ1, ζ2, ..., ζK . Then ζ = (ζ1, ζ2, ..., ζK), is a global minimum
of the function F .

The first condition (2.4) is an anti-coarsening condition. It prevents droplets from growing or
shrinking. This condition is not needed if K = 1. The second condition (2.5) is known as the
resonance condition, also called the gap condition. The next theorem shows that the stability of the
droplet pattern depends on how (2.5) is satisfied.

Theorem 2.2 ([26]) If (2.5) is satisfied because

γρ3 − 2n(n + 1) < −ǫn2, for all n ≥ 2, (2.7)

then the round droplet solution is stable. Otherwise if (2.5) is satisfied but

ǫn2 < γρ3 − 2n(n + 1), and γρ3 − 2(n + 1)(n + 2) < −ǫ(n + 1)2 (2.8)

for some n ≥ 2, then the round droplet solution is unstable.
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Figure 7: A round droplet solution with K = 100.

Figure 6 shows some round droplet solutions when D is a unit disc. The locations of the droplets
are determined by numerically minimizing F of (2.2). Physicists believe that the droplets in a block
copolymer must pack in a hexagonal pattern. This happens away from the boundary of D, if we
take the number K of droplets to be large, Figure 7.

The single droplet case, i.e. K = 1, was treated in [27]. The three dimensional analogies of the
two theorems were proved in [28]. Solutions there are unions of a number of small sets that are close
to balls, Figure 2 (1).

The first resonance point in (2.5) is relevant to the saturation phenomenon we are studying in
this paper. This is the first number 12 in the sequence 2n(n + 1) attained when n = 2. The round
droplet solution changes from being stable to unstable when γ increases past 12

ρ3 . We will find oval

shaped droplet solutions when γ is near 12
ρ3 .

3 The shape of an oval droplet

The shape of an the oval shaped object in an oval droplet solution is approximately determined by
a solution of a problem in the entire plane R2.

We define a free energy functional

JR2(E) = PR2(E) +
c

2

∫

E

Γ(χE)(x) dx. (3.1)

The functional (3.1) is used to model an enlarged droplet, so we impose the constraint

|E| = π. (3.2)

The parameter c > 0 here is a scaled version of γ in (1.2). The periemter PR2(E) of E in R2 is the
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lenght of ∂E. The operator Γ denotes the Newtonian potential operator given by

Γ(χE)(x) =

∫

R2

1

2π
(log

1

|x − y| )χE(y) dy. (3.3)

The Euler-Lagrange equation of (3.1) is

H(∂E) + cΓ(E) = λ, on ∂E (3.4)

where the constant λ is the Lagrange multiplier from the constraint |E| = π on ∂E.
Consider sets that can be parametrized in the polar coordinates in the following way. There is a

2π periodic function u such that

E =
⋃

θ∈[0,2π]

(

⋃

r∈[0,
√

1+u(θ)]

{reiθ}
)

. (3.5)

The requirement that |E| = π implies that

∫ 2π

0

u(θ) dθ = 0, (3.6)

for |E| =
∫ 2π

0

∫

√
1+u(θ)

0
r drdθ =

∫ 2π

0
1+u(θ)

2 dθ = π.
Obviously the unit disc B(0, 1) = {x ∈ R2 : |x| < 1}, corresponding to u = 0, is a solution for

any c > 0. The spectrum of the linearized operator of (3.4) at the unit disc was found in [27].

Lemma 3.1 ([27]) The eigenvalues of the linearized operator at B(0, 1) are

Λc,n =
n2 − 1

2
+

c(1 − n)

4n
, n = 1, 2, 3...

The corresponding eigenfunctions are cosnθ and sin nθ.

Due to the translation invariance of this problem, one always has Λc,1 = 0 with the eigenfunctions
cos θ and sin θ. We will only address stability modulo translation. The other eigenvalues, Λc,2, Λc,3,
Λc,4,..., are all positive if 0 < c < 12; when c = 12, Λ12,2 = 0. In general if c = 2n(n + 1) where
n = 2, 3, 4..., then Λ2n(n+1),n = 0.

It is not too hard to see that all these 2n(n + 1), n = 2, 3, 4..., are bifurcation points. Let us
treat the n = 2 case. The other cases can be dealt in a similar way. When c = 2n(n + 2) = 12,
Λ12,2 = 0. The eigenfunctions of Λ12,2 are cos 2θ and sin 2θ, both of which are π-periodic. We look
for bifurcation solutions among π-periodic u’s of zero average. Such u’s are expanded as

u(θ) =

∞
∑

j=1

(A2j cos 2jθ + B2j sin 2jθ). (3.7)

It can be shown that the bifurcation diagram is of the generalized pitch-fork type, Figure 8. The
diagram consists of a line and a surface that is similar to a paraboloid. The line represents the
trivial solution u = 0 and the surface represents the bifurcation solutions. Whether the bifurcation
solutions are stable depends on whether the paraboloid opens toward larger c direction (the super-
critical case) or the smaller c direction (the sub-critical case). Numerical calculations suggest that
it is the super-critical case. We make the following assumption in this paper.
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Figure 8: The bifurcation diagram when c is near 12.

Hypothesis 3.2 The bifurcation diagram at c = 12 is super-critical. Hence the bifurcation solutions
of (3.4) at c = 12 are stable.

Following Hypothesis 3.2 we have δ > 0 such that for each

c ∈ (12, 12 + δ), (3.8)

there exists a family of bifurcation solutions. Among this family one solution, which we denote by
ũ, satisfies

A2 > 0 and B2 = 0 (3.9)

where A2 and B2 are the coefficients of cos 2θ and sin 2θ respectively in the expansion (3.7) of ũ.
Then ũ has the form

ũ = d cos 2θ + ũ⊥(·, c, d), (3.10)

where d > 0 and ũ⊥ is of order d2. We have denoted the A2 coefficient of ũ by d. Other bifurcation
solutions, with the same c value, are obtained from ũ by a rotation of angle Ω. We denote them by

u(θ, Ω) = ũ(θ − Ω). (3.11)

Each solution u(·, Ω) of (3.4) is degenerate since the linearized operator has a three dimensional
kernel at u. The kernel is spanned by T1, T2, and P where

T1(θ, Ω) =
√

1 + u(θ, Ω) cos(θ−Ω), T2(θ, Ω) =
√

1 + u(θ, Ω) sin(θ−Ω), P (θ, Ω) =
∂u(θ, Ω)

∂Ω
. (3.12)

Geometrically T1 and T2 come from the translation invariance of the problem and P comes from
the rotation invariance. More specifically place u(·, Ω) in the equation (3.4) and differentiate the
equation with respect to Ω. Then P appears as a member in the kernel.

To see T1 and T2 are also in the kernel, consider the solution ũ. Let us shift the set Eũ determined
by the function ũ along the horizontal axis by h ∈ R. Denote the new set by Eh = {x ∈ R2 :
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x − (h, 0) ∈ Eũ}. Let the boundary of Eh be parametrized by v(η), η ∈ [0, 2π], where v(η) is 2π
periodic and is related to ũ(θ) via

√

1 + v(η)eiη = (h, 0) +
√

1 + ũ(θ)eiθ. (3.13)

Inserting v into (3.4) and differentiating the equation with respect to h yield that ∂v
∂h

∣

∣

∣

h=0
is in

the kernel of the linearized operator. Implicit differentiation of (3.13) shows that





∂η
∂θ

∂η
∂h

∂v
∂θ

∂v
∂h



 = −







√
1 + v sin η − cos η

2
√

1+v

−
√

1 + v cos η − sin η
2
√

1+v







−1 





cos θ
2
√

1+ũ
∂ũ
∂θ −

√
1 + ũ sin θ 1

sin θ
2
√

1+ũ
∂ũ
∂θ +

√
1 + ũ cos θ 0







=

[

− sin η√
1+v

cos η√
1+v

2
√

1 + v cos η 2
√

1 + v sin η

]







cos θ
2
√

1+ũ
∂ũ
∂θ −

√
1 + ũ sin θ 1

sin θ
2
√

1+ũ
∂ũ
∂θ +

√
1 + ũ cos θ 0






.

This implies that
∂v

∂h

∣

∣

∣

h=0
= 2

√

1 + v(η) cos η
∣

∣

∣

h=0
= 2

√

1 + ũ(θ) cos θ. (3.14)

Therefore
√

1 + ũ(θ) cos θ is in the kernel of the linearized operator at ũ. A similar argument with

a shift of Eũ along the vertical direction shows that
√

1 + ũ(θ) sin θ is also in the kernel. Finally a
rotation by an angle Ω shows that T1 and T2 are in the kernel of the linearized operator at u(·, Ω).

It follows from the fact that ũ has no sin 2θ component that T1 and T2 are orthogonal. Since
the integral of any π-periodic function multiplied by cos θ or sin θ is zero, Tj and P are orthogonal.
Hence T1, T2, and P form an orthogonal basis. Moreover T1, T2, and P are all perpendicular to 1.

4 The location of an oval droplet

From now on we consider (1.2) on a bounded domain D with a small a. The profile determined by
u(θ, Ω) will be scaled down to become an approximate solution. We set

γ =
c

ρ3
. (4.1)

The constant c is fixed in the range (12, 12+ δ) determined in (3.8), and ρ is a sufficiently small. As
claimed in Observations 1.1 and 1.2, under Hypothesis 3.2 two oval shaped, droplet solutions will
be found. One is stable and the other one is unstable.

If Hypothesis 3.2 were false, one could still find two oval droplet solutions, this time for c ∈
(12 − δ, 12). However if this were to occur, the bifurcation diagram of (3.4) near c = 12 would be
sub-critical. Consequently the two oval droplet solutions found on a bounded domain would be both
unstable.

Given a subset E of D whose measure is fixed at |E| = a|D| = πρ2, in addition to the operators
H and Γ given in Section 3, we define another operator R by

R(E)(x) =

∫

E

R(x, y) dy (4.2)
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where R(x, y) is the regular part of the Green’s function G (see (2.1)).
Let ξ ∈ D be an arbitrary point and w(θ, Ω) = ρ2u(θ, Ω). Define a set Ew by

Ew =
⋃

θ∈[0,2π]

(

⋃

r∈[0,
√

ρ2+w(θ)]

{ξ + reiθ}
)

. (4.3)

Ew is a scaled down version of Eu, centered at ξ. Note that |Ew| = πρ2 = a|D|. This set serves as
an approximate solution. To find an exact solution, we perturb w by another zero average function
φ to w + φ. When acting on Ew+φ, the operators H , Γ, and R are considered as operators on the
function w + φ. Then w + φ satisfies

H(w + φ) + γ(Γ(w + φ) + R(w + φ)) = Const. (4.4)

The equation (4.4) holds on the boundary of Ew+φ. Since the boundary is parametrized by θ,
H(w + φ), Γ(w + φ) and R(w + φ) are all functions of θ. Linearizing (4.4) and using the fact that
H(w) + γΓ(w) = Const., we find that φ approximately satisfies

[H ′(w) + γΓ′(w)]φ + γR(w) ≈ Const. (4.5)

The linearized operator H ′(w) + γΓ′(w) is self-adjoint and has the kernel spanned by T1, T2, and
P . Three solvability conditions follow:

R(w) ⊥ Tj (j = 1, 2) and R(w) ⊥ P. (4.6)

We use them to determine ξ and Ω.

To this end we expand R(w) in terms of ρ: R(w) =
∑∞

k=0
ρk

k!
∂kR
∂ρk

∣

∣

∣

ρ=0
. Calculations in Appendix

B show that

R|ρ=0 = 0,
∂R

∂ρ

∣

∣

∣

ρ=0
= 0, and

∂2R

∂ρ2

∣

∣

∣

ρ=0
= 2πR(ξ, ξ).

Here 2πR(ξ, ξ) is a constant independent of θ. The first three terms in the expansion of R(w) are
all perpendicular to Tj and P , and no information can be deduced from them. The next order is

∂3R

∂ρ3

∣

∣

∣

ρ=0
= 6πRx(ξ, ξ)[

√

1 + u(θ)eiθ].

We use Rx(ξ, ξ) to denote the vector ( ∂R
∂x1

, ∂R
∂x2

) of the two partial derivatives at the point (ξ, ξ).

The quantity Rx(ξ, ξ)[
√

1 + ueiθ] is just the inner product of Rx(ξ, ξ) and
√

1 + ueiθ. For a more
consistent notation we view Rx(ξ, ξ) as a linear functional and view the inner product as the result
of the functional on the vector

√
1 + ueiθ. We also need to expand ξ in terms as ρ so that

ξ = ζ + ρη + ... (4.7)

where ζ and η are independent of ρ. Then

∂3R

∂ρ3

∣

∣

∣

ρ=0
= 6πRx[

√
1 + ueiθ] + ρ6πRxx[η,

√
1 + ueiθ] + ρ6πRxy[

√
1 + ueiθ, η] + O(ρ2). (4.8)
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We have used the short hand notation

Rx = (
∂R(ζ, ζ)

∂x1
,
∂R(ζ, ζ)

∂x2
) (4.9)

for the vector, and

Rxx =





∂2R(ζ,ζ)
∂x2

1

∂2R(ζ,ζ)
∂x1∂x2

∂2R(ζ,ζ)
∂x2∂x1

∂2R(ζ,ζ)
∂x2

2



 , Rxy =

[

∂2R(ζ,ζ)
∂x1∂y1

∂2R(ζ,ζ)
∂x1∂y2

∂2R(ζ,ζ)
∂x2∂y1

∂2R(ζ,ζ)
∂x2∂y2

]

. (4.10)

for the matrices. Rxx[η,
√

1 + ueiθ] is the result of the matrix Rxx, considered as a bilinear form,
acting on the vectors η and

√
1 + ueiθ, and Rxy[

√
1 + ueiθ, η] is the result of the matrix Rxy acting

on
√

1 + ueiθ and η.
Hence the ρ3 order of R(w) is

6πρ3

3!
Rx[

√
1 + ueiθ]. (4.11)

Now examine the ρ3 order terms in 〈R(w), Tj〉 = 0 (j = 1, 2) and 〈R(w), P 〉 = 0. The last equation
implies that

〈Rx[
√

1 + ueiθ],
∂u

∂Ω
〉 = 0, (4.12)

which always holds since
√

1 + u ∂u
∂Ω is π-periodic, and the integral of any π-periodic function multi-

plied by eiθ is 0.
The equation 〈Rx[

√
1 + ueiθ], T1〉 = 0 implies that

∫ 2π

0

(1 + u)(Rx1
(ζ, ζ) cos θ + Rx2

(ζ, ζ) sin θ) cos(θ − Ω) dθ = 0.

Note that
∫ 2π

0

(1 + u) cos θ cos(θ − Ω) dθ =

∫ 2π

0

(1 + u)[cos(θ − Ω) cosΩ − sin(θ − Ω) sin Ω] cos(θ − Ω)

= cosΩ‖T1‖2
2 −

sin Ω

2
〈1 + u, sin 2(θ − Ω)〉 = cosΩ‖T1‖2

2

where the last step follows from the fact that ũ(θ) has no sin 2θ component. Similarly
∫ 2π

0

(1 + u) sin θ cos(θ − Ω) dθ = sin Ω‖T1‖2. (4.13)

We therefore obtain the consequence that

Rx1
(ζ, ζ) cos Ω + Rx2

(ζ, ζ) sin Ω = 0. (4.14)

In a similar way the equation 〈R(w), T2〉 = 0 implies that

−Rx1
(ζ, ζ) sin Ω + Rx2

(ζ, ζ) cos Ω = 0. (4.15)

The equations (4.14) and (4.15) form a non-singular linear homogeneous system, so

Rx1
(ζ, ζ) = Rx2

(ζ, ζ) = 0. (4.16)

Because of the symmetry R(x, y) = R(y, x), (4.16) means that ζ is a critical point of the diagonal
R̃(z) = R(z, z). Since R̃(z) → ∞ as z → ∂D, the global minimum of R̃ is attained in D. One can
have ζ in (4.16) to be this minimum of R̃. This completes our justification of Observation 1.1.
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5 The direction of an oval droplet

Calculations in Appendix B show that

∂4R

∂ρ4

∣

∣

∣

ρ=0
= 12πRxx(ξ, ξ)[

√
1 + ueiθ,

√
1 + ueiθ] + Const. (5.17)

Because of (4.8) the ρ4 order of R(w) is

24πρ4

4!
Rxx[η,

√
1 + ueiθ] +

24πρ4

4!
Rxy[

√
1 + ueiθ, η] +

12πρ4

4!
Rxx[

√
1 + ueiθ,

√
1 + ueiθ] + Const.

(5.18)
In the ρ4 order of 〈R(w), P 〉, since P is π-periodic, the inner products of P with the first two

terms in (5.18) are 0. Hence we have

〈Rxx[
√

1 + ueiθ,
√

1 + ueiθ], P 〉 = 0. (5.19)

Let us set S1 and S2 by (1.8) and introduce σ ∈ [0, 2π) so that

cos 2σ =
S1

√

S2
1 + S2

2

, sin 2σ =
S2

√

S2
1 + S2

2

. (5.20)

Note that

Rxx[eiθ, eiθ] = Rx1x1
(ζ, ζ) cos2 θ + 2Rx1x2

(ζ, ζ) cos θ sin θ + Rx2x2
(ζ, ζ) sin2 θ

=
√

S2
1 + S2

2 cos 2(θ − σ) +
Rx1x1

+ Rx2x2

2
.

We claim that

〈(1 + u)
Rx1x1

+ Rx2x2

2
, P 〉 = 0. (5.21)

This is because

〈1 + u, P 〉 = 〈1 + ũ(θ − Ω),−ũ′(θ − Ω)〉 = −
∫ 2π

0

(1 + ũ(θ))ũ′(θ) dθ =
(

ũ +
ũ2

2

)∣

∣

∣

2π

0
= 0.

Therefore (5.19) becomes

〈(1 + u) cos 2(θ − σ), P 〉 = 0, i.e. 〈(1 + ũ(θ − Ω)) cos 2(θ − σ),−ũ′(θ − Ω)〉 = 0.

A change of variable turns this to

−
∫ 2π

0

(1 + ũ(θ))ũ′(θ) cos 2(θ + Ω − σ) dθ = 0. (5.22)

This equation determines Ω in terms of σ.
Finally we consider the inner products of (5.18) with Tj . The inner products of the third term

in (5.18) and Tj are 0. We deduce

〈Rxx[η,
√

1 + ueiθ] + Rxy[
√

1 + ueiθ, η], Tj〉 = 0. (5.23)
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Arguing as in the last section we find that

(Rx1x1
+ Rx1y1

)η1 + (Rx2x1
+ Rx1y2

)η2 = 0, (Rx1x2
+ Rx2y1

)η1 + (Rx2x2
+ Rx2y2

)η2 = 0. (5.24)

By the the symmetry of R we deduce that

1

2

∂2R̃(ζ)

∂z2
1

= Rx1x1
+Rx1y1

,
1

2

∂2R̃(ζ)

∂z1∂z2
= Rx2x1

+Rx1y2
= Rx1x2

+Rx2y1
,

1

2

∂2R̃(ζ)

∂z2
2

= Rx2x2
+Rx2y2

.

If ζ is a non-degenerate minimum of R̃, the linear system (5.24) is non-singular and

η = 0. (5.25)

Recall γ = c
ρ3 . When c is close to 12, the equation (5.22) can be solved explicitly. In this case

ũ(θ) is close to d cos 2θ where d is a small positive constant and ũ′(θ) is close to −2d sin 2θ. We can
approximately write (5.22) as

2d

∫ 2π

0

sin 2θ cos 2(θ + Ω − σ) dθ = 0. (5.26)

This implies that Ω = σ + nπ
2 , n = 0, 1, 2, ... We have actually found two, not four, solutions. The

first one corresponds to Ω = σ and the second one corresponds to Ω = σ + π
2 . Since ũ is π-periodic,

we have the fact that
w(·, Ω) + φ(·, Ω) = w(·, Ω + π) + φ(·, Ω + π).

Therefore Ω = σ and Ω = σ + π represent the same solution; and Ω = σ + π
2 and Ω = σ + 3π

2 also
represent the same solution.

To determine the stability of the two solutions we study the dependence of the energy of w + φ
on Ω. This energy of w + φ is close to the energy of w, and it suffices to consider

J(w) = PD(∂Ew) +
γ

2

∫

Ew

∫

Ew

1

2π
log

1

|x − y| dxdy +
γ

2

∫

Ew

∫

Ew

R(x, y) dxdy, (5.27)

in which only the third term depends on Ω. Hence we study the derivative of this term with respect
to Ω

∂J(w)

∂Ω
=

γ

2

∂

∂Ω

∫

Ew

∫

Ew

R(x, y) dxdy =
γ

2

∫ 2π

0

R(w)
∂u

∂Ω
dθ. (5.28)

The calculations of R(w) and 〈R(w), P 〉 earlier show that

∂J(w)

∂Ω
=

γρ2

2

∫ 2π

0

R(w)
∂u

∂Ω
dθ =

γρ2

2

ρ4π

2

∫ 2π

0

−(1+ũ(θ))ũ′(θ) cos 2(θ+Ω−σ) dθ+O(γρ7). (5.29)

When c is close to 12, the above is approximated by

∂J(w)

∂Ω
≈ γρ6π

4

∫ 2π

0

2d sin 2θ cos 2(θ + Ω − σ) dθ =
γρ6π2

2
(−d) sin 2(Ω − σ). (5.30)

Note that d > 0. Hence the solution corresponding to Ω = σ gives a maximum of J with respect to
Ω and therefore is unstable; the solution corresponding to Ω = σ + π

2 gives a minimum of J with
respect to Ω and therefore is stable.
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Figure 9: (1): The major triangle (solid line) and the minor triangle (dashed line) for a general
domain. (2) and (3): Two triangular droplet solutions corresponding to the two triangles.

6 Discussion

If Hypothesis 3.2 can be confirmed, then using a type of Lyapunov-Schmidt reduction procedure
we can prove Observations 1.1 and 1.2 rigorously. If Hypothesis 3.2 is false, we can still prove
Observations 1.1 and 1.2 for c in the range (12 − δ, 12), although the two oval droplet solutions are
both unstable.

We have only considered the first resonance point c = 12 corresponding to n = 2. One can
also study higher resonance points c = 2n(n + 1), for n = 3, 4, ... The solutions found near those
resonance points are all unstable. Nevertheless these solutions are quite interesting.

Consider the n = 3 case first. The shape of a non-circular, droplet solution for γ close to
2n(n+1)

ρ3 = 24
ρ3 looks like a triangle with corners smoothed out. As in Section 3, if we denote the

profile by ũ, then ũ(θ) ≈ d cos 3θ. Instead of axes one can define two triangles on a generic domain
D with the help of the third order derivatives of R. One of them can be termed the major triangle
and the other the minor triangle. A rotation by π

3 turns one triangle to the other, Figure 9 (1).
There should be two triangular droplet solutions on a generic D. One is in the direction of the major
triangle of D and the other is in the direction of the minor triangle of D, Figure 9 (2) and (3).

For a general n, when γ is close to 2n(n+1)
ρ3 , there should be two n-polygon shaped (with smoothed

corners), droplet solutions on a generic D. The profile is given by ũ(θ) ≈ d cosnθ. The n-th order
derivatives of R define two n-polygons for D. The two n-polygon droplets are parallel to the two
n-polygons of D respectively.

The existence of a stable oval droplet solution and an unstable oval droplet solution indicates a
type of imperfect bifurcation near the first resonance point 12

ρ3 . However to understand the solution

diagram completely near 12
ρ3 , one must consider (1.2) with a small ρ for all c near 12. This is a

harder problem than the one studied in this paper, since in Observation 1.1 the number ρ0 in the
restriction ρ < ρ0 depends on c ∈ (12, 12 + δ). One will have to derive results for ρ < ρ0 that hold
uniformly with respect to c in a neighborhood of 12.

This paper only addresses the first stage of saturation, namely the deformation to an elongated
shape from a round shape. A complete saturation theory will contain at least two more stages of
transformation: appearance of necked droplets and breaking off of necked droplets. On the other
hand, the opposite of saturation is simpler and much better understood. The Lifshitz-Slyozov-
Wagner theory [9, 31] for the Ostwald ripening phenomenon describes how in a pattern of many
droplets, some droplets grow larger while others shrink and disappear. This theory has been formu-
lated mathematically by Niethammer [10, 11].
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Kolokolnikov, Ward and Wei [8] have shown that oval shaped droplets appear as time dependent
solutions in dynamic problems. The shape of a dynamic oval is similar to the one discussed here.
However the oval direction there is not determined by the domain geometry. Instead it is related to
the motion of the oval.

A The reduction of the Gierer-Meinhardt system

In this section we derive a singular limit for (1.4). The diffusion coefficient ǫ2 of the variable u must
be small: 0 < ǫ ≪ 1. The diffusion coefficient of v must be large in the sense that d = d0

ǫ where
d0 > 0 is independent of ǫ. Saturation in this problem is controlled by d0. The smaller d0 is, the
finer the pattern becomes. Moreover in the second equation of (1.4) we take ι = 0. This case is
known as the fast inhibitor limit.

The nonlinearity in the first equation of (1.4) is denoted by

f(u, v) = −u +
up

(1 + κup)vq
. (A.1)

It has a cubic shape with respect to u. For each v > 0, there exist three zeros of f(u, v) as a
function of u. There is a particular value v0 such that at v = v0, f(·, v0) becomes a balanced cubic
nonlinearity, in the sense

∫ z

0
f(u, v0) du = 0. Here z is the largest zero of f(·, v0).

We expect the u variable to develop a pattern shortly after the system (1.4) is started. A subset
E of D emerges so that u(x, t) is close to z in the set E and close to 0 in the set D\E. The boundary
of E in D is a collection of curves which we denote by Γ. The value of u changes abruptly across Γ.

The boundary Γ changes in time and we denote it by Γ(τ) where τ is a slow time variable so
that τ = ǫ2t. Away from Γ(τ) we take u ≈ zχE where χE is the characteristic function of E. The
shape of u near Γ(τ) is more complicated. Let Q(ξ, s) be the traveling wave solution of the problem

Qξξ + c(s)Qξ + f(Q, s) = 0, ξ ∈ (−∞,∞). (A.2)

In (A.2), s is a parameter. As ξ tends to −∞, we require that Q(ξ, s) tend to 0, and as ξ tends to
∞, we require that Q(ξ, s) tend to the largest zero of f(·, s). The constant c(s) is the velocity of the
traveling wave. It is unknown and must be determined from the equation (A.2).

Let d(x, τ) be the signed distance function from a point x to Γ(τ). The sign of d(x, τ) is positive
if x is in the set E and negative if x is in D\E. We assume that approximately

u(x, t) ≈ Q(
d(x, ǫ2t)

ǫ
, s) (A.3)

where s is constant, discussed later. Insert this Q into the first equation in (1.4) to find

ǫQξdτ = Qξξ|∇d|2 + ǫQξ∆d + f(Q, s).

It is known that on the set Γ(τ), |∇d| = 1 and ∆d(x, τ) = H(x, τ) where H(x, τ) is the curvature of
Γ(τ) at x, viewed from E. Therefore we obtain

Qξξ + (ǫH − ǫdτ )Qξ + f(Q, s) = 0. (A.4)
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Comparing (A.4) to (A.2) we deduce

c(s) = ǫH − ǫdτ . (A.5)

Note that dτ is the normal velocity of the boundary Γ(τ) at the slow time τ , which we denote by
V (τ): V (τ) = dτ .

Now we discuss c(s). On the boundary Γ(ǫ2t), s must be equal to v(x, t). However unlike u(x, t),
v(x, t) changes slowly in x. Asymptotically we have the expansion v(x, t) ≈ v0 + ǫw(x, t), so that
c(s) = c(v) ≈ c(v0) + ǫc′(v0)w. Since v0 is the point where f(·, v0) is balanced, c(v0) = 0. Hence
(A.5) implies that

V = H − c′(v0)w. (A.6)

It remains to find an equation for w. In the second equation in (1.4) (with ι = 0) we deduce

d0

ǫ
∆(v0 + ǫw(x, t) − (v0 + ǫw(x, t)) +

ur

(v0 + ǫw(x, t))s
= 0.

As ǫ → 0, we find

d0∆w − v0 +
zr

vs
0

χE = 0 (A.7)

The equations (A.6) and (A.7) form a system for the evolution of the boundary Γ:

V = H − c′(0)w on Γ, d0∆w − v0 +
zr

vs
0

χE = 0 in D. (A.8)

Note that the Neumann boundary condition for v implies the same boundary condition for w
and hence

∫

D

(−v0 +
zr

vs
0

χE) dx = 0.

Therefore |E| =
vs+1

0

zr |D|. Define

a =
vs+1
0

zr
, γ = −c′(v0)z

r

d0vs
0

. (A.9)

A steady state satisfies V = 0. Then (A.8) becomes (1.2).

B Expansion of R(w)

Recall that

R(w)(θ) =

∫

Ew

R(ξ + ρ
√

1 + ueiθ, y) dy =

∫ 2π

0

∫ ρ
√

1+u(ω)

0

R(ξ + ρ
√

1 + u(θ)eiθ, ξ + teiω) tdtdω.

Here the dependence of u on Ω is unimportant and hence not indicated.
Differentiation shows that

∂R

∂ρ
=

∫ 2π

0

R(ξ + ρ
√

1 + u(θ)eiθ, ξ + ρ
√

1 + u(ω)eiω)(1 + u(ω))ρ dω

+

∫

Ew

Rx(ξ + ρ
√

1 + u(θ)eiθ, y)[
√

1 + u(θ)eiθ] dy. (B.1)
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From now on it is understood that in
√

1 + ueiθ, u is a function of θ and in
√

1 + ueiω, u is a
function of ω. Differentiation of (B.1) shows that

∂2R

∂ρ2
=

∫ 2π

0

R(ξ + ρ
√

1 + ueiθ, ξ + ρ
√

1 + ueiω)(1 + u(ω)) dω

+2

∫ 2π

0

Rx(ξ + ρ
√

1 + ueiθ, ξ + ρ
√

1 + ueiω)[
√

1 + ueiθ](1 + u(ω))ρ dω

+

∫ 2π

0

Ry(ξ + ρ
√

1 + ueiθ, ξ + ρ
√

1 + ueiω)[(1 + u)3/2eiω]ρ dω

+

∫

Ew

Rxx(ξ + ρ
√

1 + ueiθ, y)[
√

1 + ueiθ,
√

1 + ueiθ] dy. (B.2)

Next

∂3R

∂ρ3
= 3

∫ 2π

0

Rx(ξ + ρ
√

1 + ueiθ, ξ + ρ
√

1 + ueiω)[
√

1 + ueiθ](1 + u(ω)) dω

+2

∫ 2π

0

Ry(ξ + ρ
√

1 + ueiθ, ξ + ρ
√

1 + ueiω)[(1 + u)3/2eiω] dω

+3

∫ 2π

0

Rxx(ξ + ρ
√

1 + ueiθ, ξ + ρ
√

1 + ueiω)[
√

1 + ueiθ,
√

1 + ueiθ](1 + u(ω))ρ dω

+2

∫ 2π

0

Rxy(ξ + ρ
√

1 + ueiθ, ξ + ρ
√

1 + ueiω)[
√

1 + ueiθ,
√

1 + ueiω](1 + u(ω))ρ dω

+

∫ 2π

0

Ryx(ξ + ρ
√

1 + ueiθ, ξ + ρ
√

1 + ueiω)[
√

1 + ueiθ,
√

1 + ueiω](1 + u(ω))ρ dω

+

∫ 2π

0

Ryy(ξ + ρ
√

1 + ueiθ, ξ + ρ
√

1 + ueiω)[
√

1 + ueiω,
√

1 + ueiω](1 + u(ω))ρ dω

+O(ρ2). (B.3)

Finally we deduce

∂4R

∂ρ4

∣

∣

∣

ρ=0
= 12πRxx(ξ, ξ)[

√
1 + ueiθ,

√
1 + ueiθ]

+5

∫ 2π

0

Rxy(ξ, ξ)[
√

1 + ueiθ,
√

1 + ueiω](1 + u(ω)) dω

+3

∫ 2π

0

Ryx(ξ, ξ)[
√

1 + ueiθ,
√

1 + ueiω](1 + u(ω)) dω

+3

∫ 2π

0

Ryy(ξ, ξ)[
√

1 + ueiω,
√

1 + ueiω](1 + u(ω)) dω

= 12πRxx(ξ, ξ)[
√

1 + ueiθ,
√

1 + ueiθ]

+3

∫ 2π

0

Ryy(ξ, ξ)[
√

1 + ueiω,
√

1 + ueiω](1 + u(ω)) dω. (B.4)
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