INFINITELY MANY POSITIVE SOLUTIONS FOR AN NONLINEAR
FIELD EQUATION WITH SUPER-CRITICAL GROWTH

MONICA MUSSO, JUNCHENG WEI, AND SHUSEN YAN
ABSTRACT. We consider the following nonlinear field equation with super critical growth:

) —Au+ du= Q(y)u%ig7 u>0 inRNt™
u(y) — 0 as [y — +oo,

where m > 1, A > 0 and Q(y) is a bounded positive function. We show that equation (*)
has infinitely many positive solutions under certain symmetry conditions on Q(y).

1. INTRODUCTION

In this paper, we consider the following nonlinear field equation with super critical

growth:

{—Au%—)\u:Q(y)uﬁ, u>0 inRNt™ (1.1)

u(y) — 0 as |y| — +o0,
where m > 1, A > 0 and Q(y) is a bounded positive function. Note that % is a super
critical exponent in RV+™,
Equation (1.1) is a special case of the following problem:
{—Au+)\u—Q(y)up, u>0 inRVN, (1.2)
u(y) =0 as |y| — +oo0,

. . N 2 .
where p > 1. If X > 0, (1.2) is the field equation. When p < 37, existence of the

ground state solution, or positive solutions with higher energy for the field equations were

considered in [4, 5, 7, 13, 20, 26, 27]. If A =0 and p = %, (1.2) is the prescribed scalar

curvature problem on SV, which was studied extensively in the last thirty years. See for
example [2, 3, 6, 8,9, 10, 11, 12, 21, 22, 23, 24, 25, 38, 40] and the references therein. For
the super-critical case, no result is known for (1.2), except for the case A = 0 and p is very
close to %2, See [39].

The aim of this paper is to prove that under some conditions on @, (1.1) has infinitely

many positive solutions. We will achieve this goal by constructing solutions concentrating
1



2 MONICA MUSSO, JUNCHENG WEI, AND SHUSEN YAN

along large number of m-dimensional manifolds. As far as we know, this seems to be the
first result on the infinite multiplicity for nonlinear field equation with super crtical growth.

To simplify (1.1), we impose the following symmetry condition on Q(y):

(Q): Suppose that Q(y) = Q(r,d), where y = (y*,y**), y* € RN=1 ¢y € R™t r = |y*|
and d = |y**|.

In this paper, we assume that there is a pair (rg, dy), 70 > 0, dy > 0, such that (1o, dp) is

a non-degenerate critical point of the function %(). That is, the pair (rg, dy) satisfies
Q 2 (rd
Qr(’f’o,do) :O, (13)
N -2 mQ)(ry, d
Qa(ro, do) = M) (1.4)
2 dy
and that the 2 x 2 matrix (DZQNEZ—;”()) at (ro,dp) is invertible. Moreover, we assume
2 (rd
)\ . ﬂg(N - 2) . (N - 4)(N - 2) QT"I‘(T(L dO) + Qdd(TOa dO)
d% 4N —1) 8(N —1) Q(ro,do)
) (1.5)
m 5N — 14

R R TI T

Our main result in this paper can be stated as follows:

Theorem 1.1. Suppose that N > 5 and Q satisfies the symmetry condition (Q). Assume

that the function —x%—— has a non-degenerate critical point (rg,dy), satisfying ro > 0,

Q2 (rd)

do > 0, and (1.5). Then problem (1.1) has infinitely many distinct positive solutions.

In the end of the introduction, let us outline the proof of Theorem 1.1. We will construct
solutions which concentrate at large number of spheres and we will use the number of the
sphere as the parameter in the construction. This technique was first developed in [35] to
study the prescribed scalar curvature problem and then was used to study other elliptic
problems [33, 34, 36, 37].

Denote 2* = ]\2,—]172 It is well-known that the functions

N-2

= H o N

are the only solutions to the following problem

—Au=v*"" u>0inR".
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For any positive integer k, let

2(5—1 2(5 —1
U1 g 201

Then I'; is an m-dimensional sphere in R¥*™. Near T';, we denote

L' = (rocos J0,-4,0,5™), Jy™| = do.

N—-2

wi(y) = (N(N =2)) = Q"% (1o, do) (1 +2ly - @-Pi (g - do)2> ’

where

2(7—Dm 2(7—Dm
k k

Then, if ;1 is large, w; is a function concentrating at the sphere I';. In this paper, we will

JZ‘j:(rocos , o Sin ,0,---,O)E]RN_1.

prove that for £ > 0 large, (1.1) has a solution u; with

k
U; ~ E Wy,
i=1

for some large p.

If m = 0, it was shown in [35] that if the potential @) has a non-degenerate local minimum
point (rg, 0) with 7o > 0, one can construct positive solutions with large number of bubbles.
These conditions correspond to (1.3), (1.4) and (1.5) in the case m = 0. But there are some
striking differences between the case m = 0 and m > 0. When m = 0, the construction can
be carried out starting from w; as first approximation of the solution. In fact, in this case,
the condition DQ(rg,0) = 0 gives that this approximation is good enough to construct
bubbling solutions. On the other hand, when m > 0, we have Qq4(ro,dy) # 0. This is the
reason why, in this case, if we just consider w; as starting point for our construction, the
error of the approximation is too big, being of order x~t. This implies that the contribution
from the perturbation would be of order ;. =2. The calculations show that one needs to find
the exact formula up to order ©=2 in order to be able to determine the concentration rate
1 of the bubbling solutions. This fact forces us to find explicitly the second term in the
expansion of the approximate solution in the case m > 0. Indeed, the second term in the
expansion of the approximate solution is not negligible and it contributes to the constant
in the left hand side of (1.5).

Using the symmetry of the function ), we will look for solution of the form u =
u(y*, |[y™]). Another major difference between the case m = 0 and m > 0 is that if

m > 0, though the problem can be reduced to a problem in R¥, the reduced equation
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has singularity at |y**| = 0. This will create some difficulty in carrying out the reduction
argument. Note that in [37, 1], to avoid such difficulty, it requires that the domain does
not intersect the hyper-plane y** = 0. Arguing in the same way as in this paper, we can
get rid of this condition imposed on the domains in [37, 1].

The existence of positive solutions for elliptic problems involving super-critical nonlinear-
ities is a very delicate problem. See for example [1, 14, 15, 16, 19, 31, 32, 37| for the results
for problems in bounded domains. In [1, 16, 17, 37|, existence results were obtained by
constructing solutions concentrating at curves or higher dimensional manifolds at higher
critical Sobolev exponents in bounded domains. The readers can find other results on
solutions concentrating at curves or higher dimensional manifolds in [18, 28, 29, 30].

This paper is arranged as follows. In section 2, we will construct the second approximate
of the solutions. In section 3, we will find the equations which determine the location and
the concentration rate of the bubbles by neglecting the perturbation term. Section 4 is
devoted to the study of a linear problem in a cylinder which plays a crucial role in carrying
out the reduction argument in Section 5. Theorem 1.1 is proved in Section 6. We put all

the other estimates needed in the proof of the main theorem to appendixes.

Acknowledgment. M.Musso is partially supported by Fondecyt Grant 1120151 and
CAPDE-Anillo ACT-125, Chile. J.Wei is partially supported by NSERC of Canada
S.Yan is partially supported by ARC.

2. THE APPROXIMATE SOLUTIONS NEAR A GIVEN CURVE

In this section, we construct approximate solutions for (1.1) concentrating at the m-

dimensional sphere I';, where

20— 20i— D7
(Jk ) rosin (]k )

By the rotational invariance of the problem, we just need to construct an approximate

I'j= (To cos U ,O,y**), |y | = do.

solutions for (1.1) concentrating at I'y.
Using the symmetry condition on @), we can look for solutions of the form wu(y*, |y**|)
for (1.1). Then u(y*,t), t = |y**|, satisfies

= T = Q) HuiE, e

where A is the Laplace operator for (1, ,yn_1,1).
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Remark 2.1. Equation (2.1) can be written as the following divergent form

N+2
N-—-2

—div(t™ Du) + Xt"u = t"Q(|y*], t)u

2

—2

Z

For large positive integer k, we let ¢ = &k~
e"2 u(ey*, et). Then (2.1) becomes

—Au — ?ut + 2\ = Q(ely|, gt)u%.

(2.2)

-1, We make the change of variable

(2.3)

To simplify the notations in the calculations, we use yx to replace ¢ in (2.3). So we have

N+2

m
—Au — —uy,, + 2 u = Q(ey*, eyn)uN-2.
YN
For any constant 5 > 0, let
2 N—-2

a=Q T (ro,do)3 7.
We define v(z) by the relation

u(y) = aw(z),
where y= (yl; e 7?JN)7

l’z:ﬁyz; Z.:27”'7N_17

w1 =B~ 7~ h). v =Bluy — 2~ fr).

and f; and fy are small parameters.

We expand
Q(ey) =Q(ro, do) + Qa(ro, do)e <%V + fN)
+ 38D )5 + 1,5 + )+ Ol
since Q,(ro,dy) = 0. Here we let f; =0,i=2,--- /N — 1.
Let

S(u) = Au + yﬂuw —e®u+ Q(ey)u* L
N

(2.4)

(2.5)

(2.6)

(2.7)
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N-2 N+2

Then S(u) = Q™7 (ro,do)B3 2 S(v), where

S(v) = Bi(v) + By(v) + Av +0v* 7L (2.8)
Here A denotes the Laplace operator for y, Bi(v) is a linear differential operator defined
by

me

Bi(v) = —f%%A . 2.
) = =B e T e (2:9)
and
Qa(ro,do) <5UN ) e® D*Q(ro, do) ($ z )] 2% -1
Bo(v) = |20 (Xt fy ) + e (S f, S+ v
2(v) [ Qlronde) \ 5 ") T T Qrndy) \5 T (2.10)
+ 0|z v]* 7).
The major term of an approximate solution concentrating along I'. ; := % is given by
N-2 1 =R
We have
S(w) =By(w) + Bs(w)
2
=5 [5—’” S (I—N + fN> } Wey — B2\
o @& \7 o)
Qa(ro, do) (-’EN ) e? D*Q(ro, do) ($ T )} 21 .
+lew——F< | 5+ + =\t /[5t w
ey (54 0) + Sy (5 o5+
+O(E 2Pl ™ + P lwyy )
Write
S(w) = 851 + ESQ + 6253 + 6254 + O<€3|ZL‘|3|’LU -l +€3|£L‘|2|wyN|),
where
_ z do) * Qa(ro, do) *_
Sy = 1mwN+Qd(TO’O:cw2 D, Sy =222 2 fuw? 2.12
1=F ( do Q(ro, do) N ) ’ Q(ro, do) I ( )
mfNw, D*Q(ro, do) (95 ) 251
S3 = — =+ — flw 2.13
’ Bdj Q(ro,do) B d ( )

and
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MITNWy
Bdg
1<D2Q(ro,d0) (2.7) + D?*Q(ro,0,e2)
2 52Q(T0;d0) ’ Q(Toado)

Note that S; and S3 are odd, while S5 and S4 are even.

S4 = — - ﬂiZ)\’LU

(f, ) )w? ™

(2.14)

Next, we will make a correction for the first approximate w. We will choose ¢, such that

S(w + &) is of order £2. For this aim, we calculate

S(w + €p) =By(w + €¢) + Bs(w + £¢) + eLo(¢) + No(e¢)

=S(w) + £Lo(¢) + No(ep) + Bo(w + e¢) — By(w) + £ Bs(o),

where
Lo(¢) = Ag + (2° — Dw” %9
and
No(¢) = (w+¢)" 7' —w” 7' = (2" = Duw” ¢

Consider the following problem:

—A¢ — (2 = Dw?* 2p = 51 + Ss.

We can write down the solutions for (2.17). First, we consider

% -2, o _ p-1/MWgy Qa(ro, do) 2" —1
—Ap— (2" —Dw* =5 =0 i +Q(r0,d0)wa )
1Qd(?”0,d0) N 2 1 2% _1

Q(To,do) Z’N< 5 ;'LU + w ),

where r = |z|. For (2.18), we let ¢ = 5~ le;;OCZO))a: ©(r). Then

=3~

/! N—"_]‘ /

9 _ )2 "2 — i w2l
( Jw Y= —5 rw+

It is easy to check that

is a solution of (2.19). So,

_N — 2 Qd<7“0,d0)
4 Q(T‘o,do)

B e yw

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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is a solution of (2.18).

Now, we consider

—A¢p— (2" —Dw* g =8, = %mw?*—l. (2.22)

So, it is easy to see

N — 2 Qd(To, do)

¢ =— T Qo) faw (2.23)
is a solution of (2.22).
Combining (2.21) and (2.23), we find that
N —2Qq(ro,do) , 4 N —2Qu(ro,do)
P Q(ro, do) g =y Q(ro, do) e (2.24)
— — 28w — o fyw
2dy 2d,

is a solution of (2.17).
Let ¢ be defined in (2.24). Then

S(w+ e¢) =S5 + 254 + Ba(w + £¢) — By(w) + eBs(9)

2.25
+ No(6) + O(°|z*|w (225)

Tt P wyy |).

The approximate solution for S(v) = 0, where S(v) is defined in (2.8), near I'.; to be

w + €¢. (2.26)

To avoid the possible singularity of the term we further modify the ap-

me
Bdo+ezn+eBfN’
proximate solution as follows. Let £(s) be a function such that £ = 1if 0 < |s| < %5, £=0

if |s| > 6, and 0 < & < 1. Define

w(z) =E(exn)(w + <) . (2.27)

For any function v, let

d
Uraly) = av (Bl — = = f1) By, Byw-r Bluw — = = f)).

Define
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k
Wi(y) = Y wss((B)y), (2.28)

j=1
where R{; is the rotation of angle QJT” in the y1y2 plane, 7 = 1,--- k. We will use W}, as

an approximate solution for (2.3).

Using the symmetry condition on the function @), we introduce the following space:

Hy={u:u=u(y"|y™*|), w(Rp)=u(-),uiseveniny, h=2,--- ,N—1

/RMm(|Du|2 + \u?) < +o0}.

It is easy to check that W) € H,.

Theorem 1.1 is a direct consequence of the following result:

Theorem 2.2. Under the same conditions as in Theorem 1.1, there exists a large constant
ko > 0, such that for all k > ko, (1.1) has a solution uy € Hy satisfying

wp = Wi + o(1) (2.29)
where o(1) — 0 uniformly in RNT™ as k — oo.
3. KEY ESTIMATES

Let w be the approximate solution defined in (2.27). In this section, we will find the

equations that determine the parameters in the approximate solutions.

Proposition 3.1. We have the following estimates:

82/ S (X 20w+ 2Duw) = 2 01112 + <), (3.1)
RN B
_ dw _ Qrr (10, do) Qra(ro, do) 1 *
e 2/RN S(w) o = _<—Q(To,d0) fi+ SO Iv) 35 L0 T0E, 32)
and
-9 a_w _ Qrd(r(]?d(])l -1 2%
¢ /RN S(W) 833N - fl Q(To,do) Q*ﬂ /RN v

m 2 m?  Qaa(ro,do) 1 ,_ .
Mg NI E T Qrdy) 2)° 1/RN w? +0)
(3.3)
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where
_ m3(N —2) (N —4)(N = 2) Qrr(ro, do) + Qaalro, do)
PR i s Qlrody) 2
m? SN — 14

— Bs.
TEIN DN -2
Proof. Recall that

S(w+ e9)
=e?S3 + &Sy + Ba(w + €¢) — Bao(w) + £B3(¢)
b (w+eg) T — - (2 - Dt e

+ O(&%z]*|w

T4 )P lwyy )
QQd(deO) (xN

<NV * 2*—2
Q(ro,do) * B )@ = Dut

(2*=1)(2*-2)
2

Tt P wyy ]).-

=285 4+ e2Sy + ¢

em
fBdy
+ O0(&°|z*|lw

4 ¢mN 4 52 w2*—3¢2

Since %w + xDw is even, we have

/RN S(w)(N;2w+wa)

_ /RN St +20)(" 2w+ 2Dw) + 0

:52/ S4(N2_ 2w + wa)

n E2Qd(7‘0,do) / (w_N 4 fN) (2* . 1)w2*_2¢(¥w + wa)
RN

Q(To,do) 5}
5 m
+ € %/NQ%N( 5 UJ—{—Z’DU})
12 /RN (2% — 1)2(2 — 2)102*_3@52(?10 +wa) +O().
From
- _mewch 1 D2Q(T0,d0> DQQ(T’O,dg) 21 2
So= 5 (G ? It Gy PO e

(3.5)

(3.6)

(3.7)
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we find

2w+wa) :%+O(|f\2), (3.8)

fo 52

where, in view of (A.1), (A.3) and (A.6),

D:—)\/ w(Euwl—wa) _@/ :L'waN(Ew+:va)
RN 2 d% RN 2

1 [ D*Qro,do) p1 N =2
+2/sz Do dg) B0 T (5wt aDw) (3.9)

m3(N — 2) (N — 4)(N = 2) AQ(ro, do)
CBZAN-1DT BN-1) Qro,dy) 7

and By = [y w?
JFrom (1.3) and (1.4), we find

N —

To

=Qrr (10, do) + Quaa(ro, do) +

AQ(ro, do) =Qrr(r0, do) +

QQr(TO, do) + Qaa(ro, do) + dEOQd(T(]a do)

2 m?
md—%Q(To,do)-

Therefore,

m3(N —2) m? N —4
S @IV B,

R AN-1)
(N = 4)(N = 2) Qpr(ro,do) + Qaalro, do)
8(N —1) Q(ro, do)

(3.10)

Bs.

On the other hand,

6do/ bun (5w 2D)
N —2
=d /RN(——ﬁ — %wa)xN(—Q w + zDw)

B (3.11)
=-p" 22d2/ (w+waxN)(N 2w+wa)

2
2 N+2

m
_6 2 mB%
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Qa(ro, do )/ (—+fN)( _1)w2*—2¢(¥w—|—wa)

Q. 4
:j—ga?(ﬁ _*22>2 S o)

/RN (2* — 1)2(2* — 2)w2*‘3¢2(¥w + 2Dw)
:/RN (2 — 1)2(2* 2) 2 3( %dﬂog—lmw)z(—w +aDw) + O(|f%)
s =2 B oqs)

So,

N -2
5—1%/RN gbe(—w—Fwa)

Qd(r(),d()) N 2% _9 N — 2
" Q(ro,do) /RN( B )@ = e 2 w+eDuw)
@ -DE -2 . 2
[ e

/(N +2)(N —4) N+2
:d_gﬁ (8(N —D(N=2) 8N —1)
_m g (N + DN - 3)
2T 4N —-1)(N-2)
Thus, using (3.6), (3.8), (3.10) and (3.14), we find

) B2+ O(f?)

By + O(|f1?)-

» N -2 D
. /RNS(w+€¢)(Tw+$Dw) = +OUf1P).

32
where
m 3(N — 2) (N — 4)(N — 2) er<7"0, do) + Qdd(ro, do)
17 VY Qo dy)
m? 5N — 14

Bs.

A2 AN —1)(N —2)
So (3.1) follows from (3.15) and (3.6).

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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We now compute [,y S(w + e¢)w,,. Let us compute [,y Ssw,,. Recall

Sy = _ MfNWay n D*Q(ro, do) (l‘

2% —
58 T QUudy) \57 ) wt (3.17)
For i =1,

. er(’r'o,do)ﬁ Qrd(TOadO)f_N 2% _1
/RN 5 =( Q) 3 Q) ﬁ>/RN““’““’

3.18
(er(ro,do)f i Qrd(ro,do)f ) w2* ( )
Q(ro,do) Q(ro,do) N2 RN
Fori= N,
_ m Qad(ro,do) 1 -
[ Siwen == ez + Gy 7 L
Qalro,do) 1 (3.19)
_fl rd\" 0, 40 U}2*
Q(ro,do) 2°8 Jr
On the other hand,
_ _ m, 1m 1m
e do%w“ B T .
= 2 N N Yx; — N d2 N y
Qd To,do - TN
Q(deo 2 1/ +f o,
Qd ro,do a:Nlm 1m 9% g
Q(To,do / 7§d_fN —fN§d—05 l"Nw)w Wy, o)
fNQd(TO,dO)( ) ﬁ 1 zN/ o )
(Toado)
_ —1 (N+2>52N 9%
g m/ v
(2* —1)(2* = 2) ,._
/RN > w? 3¢,
:<2*_1)2(2*_2) /R ) wz*_ii; B e nw? fyw,, (3.22)

N+2 m? o
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So, we obtain

7 [ Stk et = (G G ) 35 [ 00 6

and

e / S(w + ed)wsy
RN
Qra(ro,dp) 1

—1 2%
_ 2 3.94
fl Q(To,do) 2*5 RNw ( )
m 2 m?  Qaalro,do) 1 2
- fN(ng TNIN—2) @ " Qre, do) 5:)0 /RN w” +0(e).

O

Recall that
S(u) = Au + yﬁuw — 2+ Qey)u Tt = Q7T (r, do) 37T S (), (3.25)

N

and for any function 1y 3, we use the notation

d
Qﬂf,ﬁ(y) = Oﬂ/f(ﬁ(yl - %0 - f1),5yz, e aﬁyN—laﬁ(yN - zo - fN))>

and £(s) is a function such that £ =1if 0 < |s| < 35, £ =01if [s] > 6, and 0 < € < 1.
To find the equations that determine the parameters f and (3, we need the following

result.

Proposition 3.2. We have the following estimates:

Qo)) '7 [ s, HEEDI s
. RY (3.26)
— 5 ~ v +O(|f]? +¢),

Qo)) = [ sm, XTI

8:61
Qrd(Tm do)

1
Q(ro, do) 2*3 Jgw

(3.27)

_ (Qw(rm do)

o
Q0ro.do) w” + O(e),

Ji+ fN)

and
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872 1,,07 dO / S ng)w>fﬂ
_ Qra(ro, do) 1 2%
- flm g RN (3.28)

2 Qdd(r()adO) _ .
IS N G ) [ 00

where the constant D s the same as in Proposition 3.1, and B s a positive constant.

Proof. 1t follows from (2.8),

:Z (aws5((Ry) ™))

) (3.29)
+Q(WET = Y (awpa((R) 9> ).
j=1
To prove (3.26), we use (2.25) to find that
k
o (& (exy)w
|3 Stawpal(rpy ) 2
o 2 5
(3.30)
20 - eh? 20 (EN-2N-2
N <JZ=; ’333'—951|N2>_6 ( =)
On the other hand, it is standard to prove
k
. i\ 1\ 0(&(exn)w
@ =Syl g, 2y ) A
e =1 (3.31)
— B k,N—28N—2

(Q(ro, dy)) =" N2

where B > 0 is a constant.
It is easy to see that (3.1), (3.30) and (3.31) imply (3.26).
To prove (3.27), we first note that
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/RN JZ:; S(awss((R)™y)) a(g(ng;i)w)m

(3.32)
2 . eh? 2 (1.N-2_N-2
=€ O<ZW> = £ O(k g ),
Jj=2
and
k
. - -1\ € (ezn)w)s 5
Q<W2 1 vy 5((RD) ™1y, 2))? 1) :
f @ = Semsattr .21 . .
—O(KN-1eN )
which, together with (3.2), imply (3.27). We can prove (3.28) in a similar way.
Ul

4. A LINEAR PROBLEM

Let Q = {rg — 46 < |y*| <ro+40} x {dy — 45 < yn < do+ 45}, y* = (y1," -+ ,yn—-1)-
Define Q. = e7'Q. For j =1,--- , k, denote

2(5—1 2(5 —1
z; = ((e7'ro = fi) cos ¥, (e7'ro — f1) sin %Jl o ,0,67 dy — fv) € RY.
Let
K -1
Jeal = sup ( ) u)]
yeQ ; 1+|y—%|) z 7
) 1 (4.1)
+sup ) IDu(y).
(i e
and
K . »
[#1l.e = sup ) 1w, (42)
yeQs ; (L4 [y — )55+
where 7 = ¥=24_ For this choice of 7, we find that

N-2
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S| N
PEEENPOTES o s
= |lzj — o] — 7
i= =
Lou=—Au— yﬂNuyN + Ae?u. (4.3)

Consider

Lou— (2 — 1)@(5|y*|,€yN)Wk2*_2u =h in Q.
u=0, on 0%, (4.4)
u € Hy,

Lemma 4.1. Let u be the solution of (4.4). Then there is a constant C > 0 and 6 > 0,
such that

k k

(> ) el )|+ (Y ——————) " 1Du(y.2)

N,
=1 (1 +ly —z4]) j=1 (I+ ]y —z4))=2™
1
=1 1+|y—xj|)N22+T+9)

Shar
<C(alles + lull =z ;

i=1~.___  N—-2_ _
I=0 Atly—ay)) "2 F7

Proof. To use Lemma C.2, we first make the change of variable @(-) = e~ "2 u(e~'-). Then,

u satisfies

Lo~ (2° = Q| yw) W % = " h(e™") in Q,
u=0, on 0,
u € Hg,

where Wi(-) = e "7 Wi(e™")

It is easy to check that

—div(y Du) + A\yRu

Y

Lou=

)

and —div(yRrDu) + A\yRu is uniformly elliptic in Q. It follows from Lemma C.2 that
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|a(ex)] Z}/Q Glex, ) (2 = DQUy*|, yn)WE =2 + e~ 2 h(ey) )y dy

1 Tr2¥ -2 — g2 -1

=Ce 2 W22 u| + |h(y)]
0. Ix—le‘Z( : ) (4.5)
<Ce ' ! [(i ! JWE 2]
2 — 5 U\«
- wv o —y V2N (1 )t
i 1
+ (X e ) Inl-.].
=1+ ly — ;)=
So, we obtain
1 i 1
u(x SC/ —_— — W2$_2u*
I <0 | e (O Ty
. 1 (4.6)
+ Z vy ) 1Al |-
( Y (Lt Jy— )= ) ]
Using Lemma B.3, we have
—— W22
/RN Ix— y|IN- 2<; 1+|y—x]|)N22+7>
. (4.7)
Zl+]w—x|) 24740
It follows from Lemma B.2 that
dy
/RN |z —y IN 2<Z +|y—x\) ”+T>
= ’ (4.8)

So, from (4.7), (4.8) and (4.6), we find
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k

]«
Z 1+|x—x )z e

(4.9)
i 1
¢ — 1]
Z (14 |z — )=+
For the estimate of |Dul, we use
|Du(ex)|
— *_o _u _ m
ZI/QDG(@U,?J))((Q*—1)Q(|y*l,yN)W;3 20+ e72 h(e™'y)) YR dy|
<Ce ¥ / W2 ul. (4.10)
RN !x— R 1[<; 1+|y—x]|) ) g
i 1
+ 1Al |-
<Z (L+ [y — ;) 2 -
So, we obtain
| Du(z)|
1 b 1
<c / _ W22l
e & gy )
k
1 (4.11)
+ ([ 7]
<Z R o -
k k 1
[ull« +C (|7l
Z_: (1+ |z — )%”W ;(1+|x—xj|)1§+7
and the result follows.
O

Recall that for any function 1, we use the notation

bpp(r) = ap(Blar — ; — f1): Bz, -+ Brn-, Blan — % — fn)),

and £(s) is a function such that { =1if 0 < |s| < 36, { =01if [s| >0, and 0 < £ < 1. In

the following, we will use that notations:
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Zhy = Op (Elexn)w)pp, Zip = Ouy(§lean)w)sp, Z1s = Os(§(exn)w) g,
and Z;(-) = Z14(R; '), where R; is the rotation of angle 2% in the z;z5 plane.

Now we consider the a priori estimates for the following problem:

Lep — (2 = D)Q(ely*|, eyn)WZE 2o = h+ 32 e, 8 | Ziy in QU
=0 on 08,

Jow 00 Zi5 =0, § = 1,2,3,

¢ € H,.

(4.12)

Lemma 4.2. Assume that ¢y solves (4.12). Then || k|« < C||hws-

Proof. We argue by contradiction. Suppose that there are k — 400, and ¢y, solving (4.12)
with ||hg][«« — 0, and ||¢g||« = 1. For simplicity, we drop the subscript k.
We estimate ¢;, [ = 1,2,3. Multiplying (4.12) by Z;; and integrating over RY we see

that ¢, satisfies

ZZ/ Zi1 Z1,¢4
t=1 =1 /RY (4.13)
:/N (Lago — (2* — 1)Wk2*_2g0)le - / thl
R
It follows from Lemma B.1 that
[(h. Z1))|
k
<Cll.. [ | dy (414)
(1 +|y ; +\y—%\) R
<C|[A]]ss-
On the other hand, we have
[ (o= @ = QeI ) WE ) 2
RN
:/N(_AZIJ — (2" = DQely"], eyn) W 7 25) ¢ (4.15)
R

m
+ / (= e+ €200) Z1s = o).
RN N
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Thus we obtain from (4.13), (4.14) and (4.15) that

a = of[lell+) + O([[All)- (4.16)

So, it follows from Lemma 4.1,

é (1+ 1y - x]|>N22+r)_1’“0<y>| * (i 1 |>§+T>_1|D90<y>‘

_]=1 j=1 (L4 y — z;
k 1 (417)
; N—2
U (ly—a,) 2T
< (Ml + ol ),
=L (Lly—asl) 2 17

Next, we show that for any R > 0,

lok| + | Dgr| — 0, uniformly in Bg(x;). (4.18)
Suppose that there is (z*) € Bg(z;), such that

|g0k(xk)| + |Dg0k(xk)| > > 0. (4.19)

Then, @i(-) = pi(- — 2%) — ¢ in CL _(RY) and ¢ satisfies

—Ap — (2° = Dw* 2p =0.

Thus, @ is a linear combination of 0, w, %w + xDw. By the assumption, we can deduce

N —2
/ Oy, wp = 0, / (—w + wa)g?J =0.
RN RN 2

This implies ¢ = 0. So we obtain a contradiction.
JFrom (4.18) and (4.17), we find

o]+ = max [(i ey _1xA|)1\r2—2+T>1|‘;0k(y)|
X ) 1P

<o(1) + Cllhglx + 0r(1) [0k

This is a contradiction to ||kl = 1.
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JFrom Lemma 4.2, using the same argument as in the proof of Proposition 4.1 in [14],

we can prove the following result :

Proposition 4.3. There exists ko > 0 and a constant C > 0, independent of k, such that

for all k > ko, problem (4.12) has a unique solution py. satisfying

lexlls < CliR ]l

5. FINITE-DIMENSIONAL REDUCTION

Our objective is to construct a solution of the form

UZWk+Q0,

for

—Au+ e*\u = Q(e|y*], 6\y**|)u%, >0, inRNT™
u(y) — 0 as [y| — +oo,
where ¢ € H, is some small perturbation. Then ¢ satisfies

Ap =FE+ N(p),
where
Ap = —Ap+*hp — (2F — 1)Q(5|y*|,5|y**|)W,f*_2gp,
E = Q(ely"|.ely™ NWE ™" + AW, — AW,
and

N(@) = QUely | ely™ ) (Wi )" ™ = W= — (2 — )W %),

(4.20)

(5.1)

(5.3)

(5.4)

(5.5)

The solutions we will construct are radially symmetric in y**. So they satisfy (2.4). To

overcome the difficulty caused by the singularity at yy = 0 in (2.4), we need to separate

this problem into two problems.
Let

k
D.s= U{x sd(y,Tje) < 55_1},
j=1
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where

20 — 1) 92— D
(]k)’f%wm(]k)

Similar to Section 4, we define the norms

L. = (5_17“0 cos

k 1 1
Jullr = sup (3 ) lu(y)l

yeDe 26

b (X ) IDu() >0

yE€D, 25 =1 (1 + d(y> Fj,é))7
+  sup  Ju(y)l,

RN"'m\Dg,g

and
£ Z 1)
w0 — sup ( ) Y
yEDs 26 1 + d(?/,Fz E))¥+T (57)
+ sm>\ﬂ)%
RN+m\Ds,5

where 7 = %.

In this section, we discuss the solvability of

Ap=FE+N(p)+ 30 eS8 Ziy in RN+,
SF L Janim 9Zij =0, 5 =1,2,3, (5.8)
p € Hy,

for some constants c;.

The main result of this section is the following:
Proposition 5.1. There is an integer ko > 0, such that for each k > kg, (5.8) has a unique

solution @, satisfying

lellr < Ce'*,

where o > 0 is a small constant.

Proof. Step 1. Decomposition of the problem.
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To use the results obtained in section 4, we need to decompose (5.2) into two problems.
Let m15(|y*|) be a function satisfying m s = 1 if 0 < ||[y*| — e 'ro| < €719, ms = 0 if
l|y*| —etro| > 26715, and 0 < < 1, where y* = (y1, -+ ,yn_1). We take another function
mo.s(|y™]), satistying mos = 1if 0 < [[y™[ — e do| < 710, mp5 = 0 if |[y™| — 7 do| >
2¢710, and 0 < n < 1, where y** = (yn, -+ ,Yn4m). Define ns(y) = n(ly*|, [y**]) =
Ns(Y )n26(y*). Then, ¢ = ny.—15w + ¢ satisfies (5.8), if w and 9 satisty

{Aw = 115 (E + N(nsw + ) — (2 = DQ(ely"|,ely™ W 7*0) + iy e iy Zias
w =0, on 0f),

(5.9)
where Q. = {e7lrg—40e7! < |y*| < e7lrg+4de x {7 dy—40e7! < |y**| < e ldp+40e7,

and

— A+ 2N — (25— 1)(1 — n2s) Q(ely*, ely™ YWE 24
3 k

=1 =) (E+ ) Y Zis)
22 510
+ (1 = 135) N (1asw + ¢) 4 2Dz Dw + WA

=(1 = 135) N (25w + 1) + 2 D125 Dw + wAipas.
Step 2. Solving (5.10).

Given any w satisfying ||w|l,r < C (see (5.6) for the definition of the norm || - ||.r), we
find
12055 Dw + wAnss| < Cllw|lere2ke = 7 < Cllw|lore 2 . (5.11)
So,

(1 = 73)N (1125w + ) + 2D1ps Dw + wAnas]
<O = 5) (s ™ + [0 ) + Cllllure ™=
<Cllw)Z e + Cl
=C (¥ + wllr)e ™= +Clel*

On the other hand, the operator —Aw + £2\p — (2° — 1)(1 — n25) Q(e|y*|, ey YWZ 2o
is invertible in L>°(RN*™). So using the contraction mapping theorem, we can prove that
(5.10) has a solution ¢ = ¢)(w), satisfying

(5.12)

21 4 Cllwflere
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N+2

||w||Loo RN+m) < C’(Hw ol + HWH*F) 2, (513)
Moreover, we can also prove
* * N+t2
(@) = (ws)l|pogremy < C(lwillZr? + lwal 252 + 1) llwr — wollre s . (5.14)

Step 3. Solving (5.9).
We insert ¢ = ¥ (w) into (5.9). Given w, it follows from Proposition 4.3 that there exists
B(w), satisfying

AB(w) = he + Z?:l Ct Zi‘c:l Zi,
(5.15)
B(w) =0, on oS,
and
[B(w)llsr < Cllhe]lasr, (5.16)
where

he = 125 (B + N(msw + ) = (2 = 2)Q(ely", ely™ YW (w)).
It is easy to check that

s W2 21|
k
*_ 7126
(Il e + lwllr)e ™2
(s ; (1 +d(y,Tje))* (5.17)
k
(||CU| ! —f-CHWH*F T N+2 )
]z; 1+d(y7FJE)) 2+
and
725N (m2sw + )| < Cs (Jw* " + [0 )
* * 21 (@"-1)(N+2)
<Cos|w|? 1+C7725(||w 2 wllr)” e 2 (5.18)

k

<C|lwlf?;

Z (1+d(y,T; ))¥+T'

So, we obtain
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hellasr < CllwlZr™ + Cllewlls e (5.19)

Let

k
F:{w: lw|lsr <€, we H, Z/ wZ;; =0, j:1,2,3}.
=1 JRN+™
iFrom (5.19) and (5.16), we find that B maps F' to F'.

On the other hand, @ =: B(w;) — B(ws) satisfying

AD =15 (N (nsw1 + 1h(w1)) — N(nswz + ¢ (w2)))

. LA 5.20
= (2 = Qe ely™ NWE ((wn)) = wlw)) + D e D Zu, o

which, together with (5.14), gives

2% -2

@llr < C(lwrllZr? + lwa X 2) lon = weller + Cllwr — wallare*™ (5.21)

Thus, B is a contraction map.
Using the contraction mapping theorem, we find that (5.9) has a solution w, satisfying
w € F, and

[wller < ClE]sxr-

So, the result follows from Lemma 5.3.

Lemma 5.2. If N > 5, then

min(2*—1,2
IN(@)[lenr < Ol =12,

Proof. If N > 6, we have

2*—1

IN(p)l < Cle

Using
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we obtain that for y € D, s,

9% _1 k 1 2% —1
el = el (; (1+ d(y,F]a))22+T>
<CllelZ™ i S (i L T>4‘2 (5.22)
7=1 (1 + d(y> Fj,a)) 2 T j=1 (1 + d(yv F],E))
<Cllgl* 2 L
j=1 (1 + d(y> Fj,s)) 3 T

Thus, the result follows for N > 6.
If N =5, then

IN(@)| < CWZ Pl + Clg]* !

So, for y € D, 5,

k 2
IN (o) <Cllgl? 77
o <Z (1+d(y,T Ja>>2+f)
n cusouf‘l(i =)
T
=C (gl + 1l (i )
7=1 1+dy7 JE))%+T
- 1
<Cllely -

j=1 (1+d(y,Tje)) 2
Next, we estimate E.
Lemma 5.3. If N > 5, then

1E]lsr < C™7,

where o > 0 is a small constant.
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Proof. Define

1y Yoz Ty
Q]_{y yGQ’<|y’|’\xj|>ZCOSk}7 y_(yl7y27707

Using the estimates in Section 3, we find for y € D, o5,

B <CWE™ =3 _(owps((Ry, )y)"

k 1

2
O iy T

:IJ() + Jl.

JFrom the symmetry, we can assume that y € €2;. Then,

ly— ;| > |y — 21|, VyeQ.

Firstly, we claim

! < ;
Lty — o = oy — x|

(5.23)

In fact, if |y — z1| < $|lz1 — x|, then |y — x;] > 3|a1 — a5]. If |y — 21| > 5|z1 — 2|, then

ly — x| > |y — 21| > %|x1 — x|, since y € €.
For the estimate of Jy, we have for y € D, 95 N {2y,

k k .
Jol < ( ) . (5.24
%l (+dy,F15 4; 1+dy, )N J;de, )N (5:24)

Using (5.23), we obtain for any y € ),

1 i 1
(T4 d(y, T o))t = (L4 d(y, T)V 2

k

< Z _— (5.25)

(1+ d(%rl 6) ]:2 (1 + [x; — xl’) 277
C N+2 Celte

(k)2 T <

< :
T (L 4d(y,Ti)) (L+d(y,T10) 7 7

Using the Holder inequality, we obtain



INFINITELY MANY SOLUTIONS 29

Mw

(

3 1 1 Nz
= NA2 ( 2, N—2 _N-2 )
j=2 (1 + d(ya Fj E)) ;_ T =2 (1 -+ d(y’ Fj,a)) 2_ (%5 _TN+2)

(1+d(y r N )2*_1

]:

Ead
Ed

o
Ed

1 1 N
< Z N+2 ( Nt2 / N—2_ _N-2 ) (5 26)
j=1 (1 + d(y, F] e))TJFT =2 (1 —+ ’331 — ;17J-|)T(T_Tm)
: 1
<C'(ek) (N+2) (37752 .
; (1+d(y,[;0) 5+
: 1
<cery”
o (L+d(y, L)) = +r
So, we obtain
[ ol < G
For the estimate of Jy,
k ) K
Al < G o S O - (5:27)
which gives
[ il < G2
O

6. PROOF OF THEOREM 2.2

In this section, we will choose f and f3, such that the constants ¢; in (5.8) is zero. For

this purpose, we only need to solve the following problem:

[ (Ao BN 2 (6.1)

and

/RNM (Ap — E = N(yp)) a@(gg?w)m =0;i=1N. (6.2)
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Using Proposition 5.1, we can prove the following result.

Proposition 6.1. We have

Qo 02) ' [ (o= B - () AEERI s
D B . (6.3)
T3 pN-2 +O(If]* +¢7),
6—2(Q(T0707z))¥ /RN (Ago _p_ N(gp)) 5(f(€gz)w)m
e ' (6.4)
_ er(rm dO) Qrd(TO; do) 1 o .
- ( Q(ro, do) it Q(ro, do) fN) 28 Jan " +0(),
and
5*2(Q(7’0,0’z))¥ /RN+m (.Ago _E_ N(@) a(&(sgivz\)[w)m
Q)L [
- Q(ro, do) 2" v (6.5)

m 2 m?  Qaa(ro,do) 1 _ . "
_fN(Nd%_N(N—Q)d_g Q(ro, o) §)ﬁl/RNw2 + 0(e7),

where B and D are the same as in Proposition 3.2.

Proof. We use 0 to denote either J,,, or dg. It is standard to show that

/ (Ap - E - N(¢))d(E(ean)w) 15

= (Win)0(§(ezn)w) 1 + O(elldller + 18112 )

RN
_ / S(W)a(E(Ern)w) g+ OE).
R
So (6.3), (6.4) and (6.5) follow from Propositions 3.2 and 5.1. We omit the details of the

proof here.
O

Proof of Theorem 2.2. By Proposition 6.1, we need to solve the following equations:

D B
g

=0(|ff+¢°) =0, (6.6)
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Qra(ro, do) 1

er(ro,do) - .
( Q(ro, do) it Q(ro,dp) fN) 23 wa = 0(%), (6.7)
and
Mi -1 2%
fl Q(T[))d()) 2*6 RNU}
m 2 m?  Quaa(ro,do) 1\ 4 - (6.8)
+fN(ng_N(N—2)d_g+m§)ﬂ /szw =0(e).

At a critical point (rg,dp), direct calculations show

Y

O dm N N=2d7Qu(r,do)
RTINS

W ¥(T,d 2 Q%(Toydo)

82 < dm ) _ _N — ZdSnQrd(To,do)
Orod\Q"™z* (r, d) 2 Q¥ (ro,dy)

Y

and using (1.4),

0? dm
od? <QN22(7“, d>)
:m(m — 1)d8172 _ ( _ )mdglile(To,d()) 1 N(N — 2) dBHQz(To,do)
Q¥(T0,do) Q%(T()ad()) 4 Q%H(To,do)
. N —2dg'Qaa(ro, do)

2 Q%(Toado)

N 2 dm—Q N _9 dm d
=<m(m —1) —2m? + m ) _— _ 0 C?Vdd(ro, 0)
N =27Q7% (ro, do) 2 Q3 (rg,do)
2m” dgl_Q N -2 dGnQdd(T07 do)
:( - m) N_2 - N .
N—2 Q= (ro,do) 2 Q= (g, dp)

So, we find that the matrix in (6.7) and (6.8) equals

N

Q%(To’d())l wz* <D2 dm )
(ro,do)

Ndg B Jrn Q% (r,d)

By our assumptions, we can prove easily that (6.6), (6.7) and (6.8) have solution:

B._ 1

Be=(F) T+ 0, fuxl [fwal = O().
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APPENDIX A. SOME ESTIMATES

Recall that

o) N—2
w(‘r):—NM7 ay = (N(N—-2)) 7.
(1+ [f?) =
Let
B2 :/ w2.
RN
Let wy be the area of the unit sphere S¥~!. We compute
N —2 N —2 1
/ w(—w+a:Dw) = — w2—|——/ zDw?
RN 2 2 RN 2 RN

N —2 N
:—/ w? — — w2:—/ wQ:—Bg,
2 RN 2 RN RN

N -2 N(N
/ tDw(——w + zDw) :—<—/ w2—|—/ |z|?| Dw|?
RN 2 RN RN
N-1

_ 2)
4
(e [ M

1, ) /00 t2t  N(N-2) /°° 2!
— N -2 - )
2QNMN(( ) o L+ 4 o (L+¢N=2
C3(N-2)N1 /°° t2 !
TAN 1) 2N )N
_3(N - 2)NBQ’
A(N = 1)

N -2 1 N -2
/RN TNWg (Tw—l—:ch) = N/]RN a:Dw(Tw—l—wa)
3(N - 2)

TA4N-—1)

We also need
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/ zfPw® TN (——w + zDw) = —— || ?w?
RN 2 R

N —2 2*/ |z|?
= — —aN _—_—
N ry (14 |22V

But

o0 t%+1
JNL _/o (14 t)N
__ N (N42)N e gh
_2<N —2) /0 (1+t)N=2 B 4(N - 1)(N —2) /o (1+¢)N-2 (A.5)

_ N(N -4 R
_4(N—2)(N—1)/0 (14+t)N-2

So, we obtain

/ Pw? (¥w t2Dw) = - ;E‘J)VN_(jlv)_ g, (A.6)

APPENDIX B. BAsic ESTIMATES

In this section, we list some lemmas, whose proof can be found in [35].

For each fixed i and j, i # 7, consider the following function

1 1
Lty =z (U + |y — @)

where o > 1 and > 1 are two constants.

(B.1)

Lemma B.1. For any constant 0 < ¢ < min(a, 3), there is a constant C' > 0, such that

C 1 1
9ii(y) < ( — _).
W) < o \ Ty —ay e T Oy =g

Lemma B.2. For any constant 0 < 0 < N — 2, there is a constant C' > 0, such that
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/ 1 1 5y < C

z < .
ry [y = 2N (14 [2])>H (1 +[yl)7
Let recall that Wy, is defined in (2.28).

Lemma B.3. Suppose that N > 4. Then there is a small > 0, such that

1
—_— d
/RN’y_Z|N2 Z )2+T z

k

1

SC
= (L +ly—a) = 0

Proof. The proof can be found in [35].

APPENDIX C. FUNDAMENTAL SOLUTIONS FOR LINEAR ELLIPTIC OPERATORS

In this section, we discuss the fundamental solutions for some elliptic linear operators

in divergent form. Firstly, we consider the existence of fundamental solution in R for

N > 3. The following result may be known. But we can not find the references.

will give the proof of it.
Lemma C.1. Suppose that N > 3. The following elliptic problem

N
—ZDZCLW )Dju) + c(x)u =6, inRY

ol€]? < Zjvzl aij()&&; < )\1|£|2, A1 > X >0, c(z) >0, has a solution T'(x, p) satisfying

C

0 <T(z,p) < mé | Dl (z,p)| < EEYLEE as T — p.
Proof. 1t is well known that
N
_ZDzaw )Dju) + c(p)u =, inRY
has a solution I'(z, p) sat1sfy1ng
0<T < ——— |DT <
(I‘,p)_ |(L’—p‘N_27 ‘ (:L’,p)|_ |$—p|N_1
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where C' > 0 is independent of p.

Consider
— ZDZ(GU(I')D]U) + C(l’)?) = f(l’,p)
j;l (C.1)
== 3 Di((03(w) — 4y (0)) DT (. ) + (o) = c(p) T (wp)) i RY,

where &, = 1 in By(p), & = 0 in RN \ By(p) and 0 < &, < 1. Since

|f(z,p)| € L"(RY),
for 7 € (1,525), (C.1) has a solution v € W2 (RY). So, I'(z,p) = &I (z,p) + v is the
solution. It is easy to show that I'(z,p) > 0.

On the other hand, let w be a the solution of

— 3" Diay(@) Do) + e(a)o = [f(z,p)], mRY. (C.2)

Then |v] < w.
Now we estimate the blow up rate of w at the singularity *+ = p. By the Harnack

inequality, we find for = # p,

1 1
sup w0 it wl) e s [ r@pl))
veby, (@) YEB Y|, (@) (|93—P|N Bla—p/(@) )
212—P
1
co( nf wr Ao
eyt "W e g

Nr
if % —r > 0 is small enough, where 7; > 0 is a small constant. From w € W?" C L~¥-2,

we find that for a small n > 0,

C
inf w(y) < ——————, Vuaxclose to p.
senyt oW S v

Otherwise, we have a sequence of z,, — p, such that

i () > C
m w — V5 -
yeB%‘xn_p‘(rn) y N |$n - p|N_2_77
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Then for ¢ = 7%, r € (1, 75),

Co
CZ/ qu/ w! > (N—2—)—N_>+OO’ as T, — P,
Bi(p) Byl py(@n) |z, — p| )4

since (N —2—mn)g— N > 0ifr > 1 and n > 0 is small. This is a contradiction. So, we
have proved that

C

v < w(x) < TN

Using the LY estimate, we also have

sup  |Du(y)]
YeBy |y (@
1
C 1 1
< ( sup  |u(y +x—p2—/ ffc,p‘”)
rEn SRS el AR
C
o=
Since I'(z,p) = ['(x, p) + v, we find that for x € Bi(p),
0<T <—— |DT < —
(l‘,p)_ |x_p‘N_2a ‘ (fL’,p)|_ ]a:—p]N_l
O
Lemma C.2. Let Q be a bounded domain in RN. The following elliptic problem
— > Di(ag(x))Dju) + c(x))u = 6,, inQ
(C.3)
u =0, on 0X,
where a;; and c satisfy the same condition as in Lemma C.1 in Q, has a solution G(x,p)
satisfying
C
0< @ <—  |DG < —
(l‘,p)_ |x_p‘N_27 ‘ (flf,p)|_ ’Q?—p’N_l
Proof. Let + be the solution of
- Zévzl Di(aij(x)Djy) +c(x)y =0, inQ, (C.4)
V(z) = =I'(z, p) on 9¢,

where I'(x, p) is the function obtained in Lemma C.2. Then v < 0. So, G(z,p) =T + v is

the solution satisfying the condition.
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