MATH 516-101 Homework TWO
Due Date: October 13, 2015

1. This problems concerns the Green’s representation formula in a ball.
(a) using the Green’s function in a ball to prove
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whenever u is positive and harmonic in B,(0).
(b) use (a) to prove the following result: let « be a harmonic function in R™. Suppose that u > 0. Then u = Constan
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2. This problem concerns the heat equation
uy = Au
Let
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O(x —y,t) = (4nt) e At
(a) Show that [, ®(x —y,t)dy =1 for all t >0
(b) Show that there exists a generic constant C), such that

(I)(‘:U - yat) < Cnlx - y‘in

Hint: maximize the function in ¢.
(¢) Let f(z) be a function such that f(zo—) and f(xo+) exists. Show that
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3. This problem concerns the one-dimensional wave equation
2
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u(:c,()) - f(x),ut(:c,()) - g(l‘)

(a) Show that all solutions to the following equation
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are given by a combination of two functions

u=F(X)+G(Y)

(b) Show that all solutions to
U = gy

are given by
u=F(x—ct)+ Gz — ct)



Hint: let
X=x—-t,Y =0+t

and then use (a)
(c) Prove the d’Alembert’s formula: all solutions to
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u(x,O) = f(a:),ut(x,()) = g(a:)

are given by
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(d) use (c) to show that Maximum Principle does not hold for wave equation, i.e.,

max u(z,t) > maxu(z,t)
UT 3’ UT

Hint: Let f =0and g =1, U = (—1,1) and choose T large.

4. This problem concerns Sobolev space
(a) Let U = (—1,1) and
u(z) = |z|
What is its weak derivative v’ ? Prove it rigorously.

(b) Does the second order weak derivative u” exist?
(c) For which integer k and positive p > 1, does u belong to W*»?(U)?



