Conformal Mapping

“Conformal Image Warping” by Frederick and Schwartz (see Ref. [9]), offers a some-

what whimsical depiction of the mapping.
Notice that the upper half-circle, where the unknown function ¢ equals 1. is

mapped to the positive imaginary axis, whereas the lower half-circle (where ¢ = —1)
corresponds to the negative imaginary axis. Consequently, by the methods of Sec. 3.4
we find the solution in the w-plane to be

2
Yu,v) = — Arg(w).
b1

Hence the solution to the original problem is derived from ¥ by the mapping (7):

2 } 2 1+z
Gx,y) = Yulx, y),vix,y) == Arg(f(z) = — Arg( > :
T T 11—z

A little algebra results in the expression
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X, y)=—tan " ——="3,
pLe =g 1 —x2—y?
where the value of the arctangent is taken to be between —7 /2 and /2. Note that
¢ (x,0) = 0, as we would expect from symmetry. W

tion we devote the next few sections to a study of
The final two sections of the chapter will return
f this technique in handling many different
s Appendix II, for

With this example as motiva
mappings given by analytic functions.
us to applications, illustrating the power 0
situations. A table of some of the more useful mappings appears a
the reader’s future convenience.

The MATLAB toolbox mentioned in the preface provides a
visualizing most of the mappings studied in the chapter.

n excellent tool for

EXERCISES 7.1

1. Show that the function w = % maps the half-strip x > 0, —7/2 < y < 7/Z0nto

the portion of the right half w-plane that lies outside the unit circle (see Fig. 7.6).
What harmonic function ¥ (w) does the w-plane “inherit,” via this mapping, from
the harmonic function ¢(z) = x + ! What harmonic function ¢ (z) is inherited
from ¥ (w) = u +v?

nd (6) describe a one-fo-one analytic mapping. Let ¢ (x. )

2. Suppose that Egs. (5) a
ction that is carried over in the

be a real-valued twice-continuously differentiable fun
w-plane to the function

Yu,v) = o (x(u, v), y(u, v)).

(a) The gradient of ¢ (x, y) is the vector (3¢/0x, 3¢/dy); it corresponds to the
complex number (recall Sec. 1.3) g /ax +i(09/3y). Similarly, the gradient




7.1 Invariance of Laplace’s Equation
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Figure 7.6 Exponential mapping of half-strip.

of ¥ corresponds to d4/du + i (9% /3v). Use the chain rule and the Cauchy-
Riemann equations to show that these gradients are related by

s ()]
au v - lay dw )’

(b) Show that the Laplacians of ¥ and ¢ are related by

Ry Py 82¢+82¢
au? - av2 [ | ax2 T ogy2

dz |?

dw

(¢) Show that if ¢ (x, y) satisfies Laplace’s equation in the z-plane, then y satis-
fies Laplace’s equation in the w-plane.,

(d) Show thatif ¢ satisfies Helmholtz's equation,
e 9?
2o, 2o
ax ay

(A is a constant), in the z-plane, then ¥ satisfies

A

2 2 2
Py By (el
duz  3u? [dw

in the w-plane. (Helmholtz’s equation arises in transient thermal analysis.)

3. Find a function ¢ harmonic in the upper half-plane and taking boundary values as
indicated in Fig. 7.7. [HINT: Reread Sec. 34]

4. Consider the problem of finding a function ¢ that is harmonic in the right half-plane
and takes the values ¢ (0. y) = y /(] +y2) onthe imaginary axis. Observe that the
obvious first guess

Z
¢(z) =Im Y
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Figure 7.7 Dirichlet problem in Prob. 3.

fails because z /(1 — z?) is not analytic at ¢ = 1. However, the following strategy
can be used.

(a) According to the text, the mappings (7) and (8) provide a correspondence
between the right half-plane and the unit disk. (Of course, one should inter-
change the roles of z and w in the formulas.) Thus the w-plane inherits from
¢ (z) a function ¥ (w) harmonic in the unit disk. Show that the values of Y (w)
on the unit circle w = ¢'% must be given by

iy, sind
ve =5

(b) Argue that the harmonic function v (w) must be given by

y(w) = %Imw

throughout the unit disk.
(¢) Use the mappings to carry ¥ (w) back to the z-plane, producing the function

y

o) = m

as a solution of the problem.

5. Use the strategy of Prob. 4 to find a function ¢ harmonic in the right half-plane such
that $(0, y) = 1/(3* + 1.

6. Suppose that the harmonic function ¢ (x, y) in the domain D 1s carried over to the
harmonic function ¥ (i, v) in the domain D’ via the one-to-one analytic mapping
w = f(z). Prove that if the normal derivative d¢/dn is zero on a curve ["in
D, then the normal derivative 9v/dn is zero on the image curve of I under f.
(The boundary condition d¢/dn = 0 is known as a Neumann condition.) [HINT:
d¢/dn is the projection of the gradient (3¢ /dx) + i(3¢/dv) onto the normal. and
the gradient is orthogonal to the level curves ¢ (x, v) = constant.]
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7. Suppose that f(z) is analytic and one-to-one. Then, according to the text, you may
presume that £ 7" is also analytic, If x, ¥, u, vare as in Egs. (5) and (6), explain the
identities

dx  dy ox _ dy

du v v ou

7.2  Geometric Considerations

The geometric aspects of analytic mappings split rather naturally into two categories:
local properties and global properties. Local properties need only hold in sufficiently
small neighborhoods, while global properties hold throughout a domain. For example,
consider the function e?. It is one-to-one in any disk of diameter less than 2, and
hence it is locally one-to-one, but since e?! = %2 when 2y — 23 = 2mi, the function
is not globally one-to-one. On the other hand, sometimes local properties can be ex-
tended to global properties; in fact, this is the essence of analytic continuation (see
Sec. 5.8).

[
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Figure 7.8 Locally one-to-one mapping.

Let us begin our study of local properties by considering “one-to-oneness.” As
the example e shows, a function may be locally one-to-one without being globally
one-to-one. (Of course, the opposite situation is impossible.) Furthermore, an analytic

] function may be locally one-to-one at some points but not at others. Indeed, consider

@) =2

: In any open set that contains the origin there will be distinct points z; and z; such
) that z = —z;, and hence (since z% = z%) the function f will not be one-to-one.
However, around any point other than the origin, we can find a neighborhood in which

% is one-to-one (any disk that excludes the origin will do; see Fig. 7.8). Thus f(z) =

22 s locally one-to-one at every point other than the origin. An explanation of the

exceptional nature of z = 0 in this example is provided by the following.
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The remainder of this chapter will deal with constructing and applying specific
conformal mappings.

EXERCISES 7.2

1.

For each of the following functions, determine the order m of the zero of the deriva-
tive f' at zg and show explicitly that the function is not one-to-one in any neighbor-
hood of zg.

@ fl@)=z2+27+1,70=—1
(b) f(z) =cosz,zg =0, %m, X271, ...

© f@)=e" 20=0

Prove that if w = f(z) is analytic at zo and f’ (z9) # 0, then z = f‘l(w) is
analytic at wg = f (zg), and

df__l.(w) =
dw ) g(z)
dz

for w = wy. z = zg. [HINT: Theorem 1 guarantees that f~!(w) exists near wy
and Theorem 3 implies that £~!(w) is continuous. Now generalize the proof in
Sec. 3.2.]

What happens to angles at the origin under the mapping f(z) = z* fora > 1? For
O<a<1?

Use the open mapping theorem to prove the maximum-modulus principle.

Find all functions f(z) analytic in D : |{z| < 1 that assume only pure imaginary
values in D.

If f is analytic at zg and f’ (z0) # 0, show that the function g(z) = f(z) preserves
the magnitude, but reverses the orientation, of angles at z¢.

. Show that the mapping w = z + 1/z maps circles |z| = p (p # 1) onto ellipses

5
M2 V2

) G

Let f be analytic at zp with f' (z0) # 0. By considering the difference quotient,
argue that “infinitesimal” lengths of segments drawn from zg are magnified by the
factor if/ (z0)| under the mapping w = f(2).

Let w = f(z) be a one-to-one analytic mapping of the domain D onto the domain
D', and let A" = area (D'). Using Prob. 8, argue the plausibility of the formula

e ot s
D
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10. Why is it impossible for D to be the whole plane in the Riemann mapping theorem? ‘
(HINT: Appeal to Liouville's theorem. ] 4 )

11. Describe the image of each of the following domains under the mapping w = e*.

(a) thestrip0 <Imz < 7

(b) the slanted strip between the two lines y = x and y=x+42r
(¢) the half-stripRez < 0,0 < Imz < 7

(d) the half-stripRez > 0,0 < Imz < 7

(e) therectangle ] < Rez < 2,0 < Imz < 77

(f) the half-planes Rez > 0 and Rez < 0

12. Let P(z) = (z ~a)(z — B), and let L be any straight line through (@ + 8)/2. Prove
that £ is one-to-one on each of the open half-planes determined by L.

13. Describe the image of each of the following domains under the mapping w =
cosz = cosx coshy — i sinx sinh y. [HINT: Consider the image of the boundary in
each case.]

(a) the half-strip0 < Rez < 7, Imz < 0 ",
(b) the half-strip 0 < Re z < % Imz >0

(c) thestrip0 < Rez < #
(d) therectangle0 < Rez <, -1 <Imz < 1

14. Prove thatif f has a simple pole at zq, then there exists a punctured neighborhood
of zg on which £ is one-to- one.

15. A domain D is said to be convex if for any two points z1, zz in D, the line segment
joining z and z; lies entirely in D. Prove the Noshiro-Warschawski theorem: Let
/ be analytic in a convex domain D. If Re f'(z) > 0 for all z in D, then f is
one-to-one in D. [HINT: Write f (z2) — f (z1) as an integral of f'.]

16. (For students who have read Sec. 4.4a) Argue that a one-to-one analytic function
will map simply connected domains to simply connected domains.

7.3 Mobius Transformations

The problem of finding a one-to-one analytic function that maps one domain onto
another can be quite perplexing, so it is worthwhile to investigate a few elementary
mappings in order to compile some rules of thumb that we can draw upon. The basic
properties of Mébius transformations,” which we shall investigate in this section, con-
stitute an essential portion of every analyst’s bag of tricks. (Some of these mappings
were previewed in Exercises 2.1.)

TIn 1865 August Mobius (1790-1860) described the Mdbius strip, a piece of paper that has only
one side and one edge. ]
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From the geometric properties of Mobius transformations that we have learned,
we can conclude that (11) maps {z] = 1 onto some straight line through the origin. To
see which straight line, we plug in z = i and find that the point

i+1 .
W= —— = —|
i —1

also lies on the line. Hence the image of the circle under f1 must be the imaginary i
axis. :

To see which half-plane is the image of the interior of the circle, we check the
point z = 0. It is mapped by (11) to the point w = ~1 in the left half-plane. This is
not what we want, but it can be corrected by a final rotation of 7, yielding

Z+1_l+z

w:f(g):—z_l_l—-z

(12)

as an answer to the problem. (Of course, any subsequent vertical translation or magni-
fication can be permitted.) Observe that (12) is precisely the mapping that was intro-

duced in Example 1, Sec. 7.1, to solve a thermal problem, and we have thus verified
the claims made there. W

EXERCISES 7.3

1. Find a linear transformation mapping the circle |z| = 1 onto the circle lw~-35]=3
and taking the point z = i to w = 2.

2. What is the image of the strip 0 < Im z < | under the mapping w = (z — i)/z?

3. Discuss the image of the circle |z — 2| = 1 and its interior under the following
transformations.

2
() w =z — 2 (b) w = 3iz (c)w:i—1

7 —

7—4

(D w

z—3

1
(e)w=—
Z

- Find a Mobius transformation mapping the lower half-plane to the disk lw+1 < 1.
[HINT: Do it in steps.]

5. Find a Mobius transformation mapping the unit disk |zl < 1 onto the right half-
plane and taking z = —/ to the origin.

6. A fixed point of a function f(z) is a point zg satisfying f (z0) = zo. Show that a
Mobius transformation f(z) can have at most two fixed points in the complex plane
unless f(z) = z.

7. Find the M&bius transformation that maps 0, 1, oc to the following respective points.
(70,7, 00 h)0.1,2 (¢) —i, 00,1 (d)—1,00,1

8. What is the image, under the mapping w = (z + 1)/(z — i), of the third quadrant?
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9.

10.

11,

12.

13.

What is the image of the sector —7/4 < Argz < m/4 under the mapping w =
z/(z = 1)?

Find a conformal map of the semidisk |z| < 1,Imz > 0, onto the upper half-plane.
[HINT: Combine a Mébius transformation with the mapping w = z°. Make sure
you cover the entire upper half-plane. ]

Map the shaded region in Fig. 7.21 conformally onto the upper half-plane. [HINT:
Use a M6bius transformation to map the point 2 to co. Argue that the image region
will be a strip. Then use the exponential map.]

Figure 7.21 Region for Prob. 1.

Find a Mdbius transformation that takes the half-plane depicted in Fig. 7.22 onto
the unit disk |w| < 1.

Figure 7.22 Region for Prob. 12.

(Smith Chart) The impedance Z of an electrical circuit oscillating at a frequency w
is a complex number, denoted Z = R + { B, which characterizes the voltage-current
relationship of the circuit; recall Sec. 3.6. In practice R can take any value from 0
to 0o and B can take any value from —oo to 0o. Thus the usual representation of
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Figure 7.23 Smith chart.

Z as a point in the complex plane becomes unwieldy (inasmuch as the entire right
half-plane comes into play). The Smith chart provides a more compact graphical
description, displaying the entire range of impedances within the unit circle. The
impedance Z is depicted as the point

_z-1
T Z4+ 1

This mapping (its inverse, actually) is portrayed in Figs. 7.4 and 7.5. W is also
known as the reflection coefficient corresponding to Z.

w

(a) Show that the circles in the Smith chart depicting the lines ReZ = R =
constant, indicating constant-resistance contours, have the equations

R )2 5 1
U——— +tv=———=s.
I+ R (1+ R)?

(b) Show that the circles in the Smith chart depicting the lines InZ = B =
constant, indicating constant-reactance contours, have the equations

1\? 1
— 1)+ - =) ==,
(u ) (v ) 5

14, If a circuit with impedance Z is connected to a length £ of transmission line with
“phase constant” § and a “characteristic impedance” of unity, then the new config-

(See Fig. 7.23.)



7.4 Mdobius Transformations, Continued 395

uration has a transformed impedance Z’ given by

7 Zcos B2 +1sin 8¢
© cospl+iZsinpe’

Show that the Smith chart point depicting Z’ can be obtained from the Smith chart
point depicting Z by a clockwise rotation of 28¢ radians about the origin.!

1. Show that the transformation (5) maps lines not passing through the origin onto

circles passing through the origin. [HINT: The equation of such a line is Ax + By =
C, with C # 0. Solve

Z=xtiy=1/w=1/(u+1iv) (13)

for x and y in terms of i and v and substitute. Show that the result can be expressed
in the form

A B

u2+U2—Ez4+Ev=O.] (14)

16. Show that the transformation (5) maps circles passing through the origin onto lines
not passing through the origin. [HINT: Use the preceding problem.]

17. Show that the transformation (5) maps circles not passing through the origin onto
circles not passing through the origin. [HINT: The equation of such circles is

x2+yz+Ax—§—By:C, with C # 0.
Substitute the expressions for x and y derived from (13) to obtain

A B 1
2 2

U+ 0" = —u 4+ —v =
C

cv=¢l

7.4 Mobius Transformations, Continued

We shall now explore some additional properties of Mobius transformations that en-
hance their usefulness as conformal mappings. These are the group properties, the
cross-ratio formula, and the symmetry property.

Given any Mdbius transformation

az+b
F = f(z) = d be), (1
== (ad £ b0 )

its inverse f~!(w) can be found by simply solving Eq. (1) for z in terms of w. This
computation yields
dw—b

P P et
e=frw) ~cw+a’

TP H. Smith patented the Smith chart in the late 1930s. It is the only known conformal mapping
to be protected by copyright!




