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..ConformallmageWatping''byFreclerickandSchwartz(seeRef.[9])'offersaSolne-

what ivhimsical depiction of the mapptng'

Noticethattheupperhalf-circle,wheretheunknownfunction@equalsl'is
rnapped to the positiv"'i,-I-,ugina'y axis' whereas the lower half-circle (where Q : -l)
corresponds to trt. n"goiiu."imuginu'y n*i'' Consequently' by the methods of Sec' 3'4

rve find the solution in the u-piane to be

1

{(u'u): : Arg(u)'

Hence the solutron to the original problem is derivecl from ry' by the mapping (7):

2 2 /rr?\
r)t.r,.v) : ./tll(.r. )')' r'({. )')1 - l Alg( f 'ztl:; ot* ( 

' -, 
)

A little algebla results in the expre:siort

a. _1
d(r,y)--tan

7r

where the vaiue of the arctangent is taken to be between -r 12 and n 12' Note that

d (r , 0) : 0, as we would expect from symmetry' I

Withthisexampleasmotivationwedevotethenextfewsectionstoastudyof
mappings given by unutfti. functions. The inal two sections of the chapter will return

us to applicatlons, ittusirating the power of this technique in handling many different

situations. A table or ,o*" Jt ,n"''.,-,or" useful mappings appears as Appendix II, for

the reader's future convenience'

TheMATLABtoolboxmentionedintheprefaceprovidesanexcellenttoolfor
visr.ralizing most of the mappings studied in the chapter'

EXERCISES 7.1

1. Show that the function u) : eZ maps the half-strip 'r > 0' -7T 12 < )' < n 12 onlo

the por.tion of the light half u,-plane that lies otrtslde the unit circle (see Fig 7 61'

what harmonic tbnJtion ry'(u) does ths x.r-plane "inherit," via this mapping, frorn

the harmonic t"".,i* oi.l'- -r- * r? what harmotric function d(l) is inherited

flotrr ry'lu, )- ir * u?

2.SupposethatEqs.(5)and(6)clescribe^aone-to-oneanalyticnrapping.Let@(.1.1')
be a real-valu.O i*i.i-.""rinuourly differentiable funcrion that is canied o'er in the

Lr,,-Plane to the function

t(u, u) '.- Q(x(tt, u), 1'(r' u))'

(a) The graclient of @(x,.v) is the vector (3dlD x'0Ql3y'); it con'esponds to the

complex number (r.rutis"t' 1'3) d(tlsr + iQQlag' Simrlarly' the gladient

2y

I - t2 - r'2'
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7. I Invariance of Laplace.s Equation 375

Figure 7.6 Exponential rnapping of half-str.ip.

of ry' corresponds to 0//Dr.t * i(?tgl.du). Use the chain rule and the Cauchy-
Riemann equations to show that these gradients are related by

U - ia'! : (U n,ry \ fit\du fiu \,1r " 01'I\.d,, )'
(b) Show that the Lctplcrcicrtts of ry' and @ are related by

Ia'1, , a',1

I rP -;7 d-Q d'Q
__f---

dr2 3)'2

I clz 12

I

ldw I

3.

4.

(c) Showthatif@(r.,r,)satisfiesLaplace'sequationinthez-plane,thenry'satis_
fies Laplace's ecluation in the u_,-planc.

(d) Show that if @ sarisfies Hehnlrcltz'.s equatlorl,

d-Q d'a

--f-=A@OX" d)'"

(A rs a constant), in the z-plane, then ry' satisfies

A2^!t *A7',lt _ nld, ' .,,
duz 3u2 - " .a*l Y

tn the u-plane. (Helmholtz's equation arises in transient thermal alalysis.)

Find a functio' @ harmonic in the upper half-plane and taki'g boundary varues as
indicatecl in Fig. 7.7. [HINT: Reread Sec. 3.4.]

Consicler the problem of findi'g a function o that is harrnonic in the r.ight half-plane
ancl takes the'alues p (0. .r) : r, / (r * .r'2) on the irnagi'ary axis. observe tliar rhe
obvior-rs first guess

7
Qtl): llll 

-.

l-t
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Figure 7'7 Dirichlet problcrn in Prob' 3'

fails because. 1 0 - z2) ts notanalytic at I : l However' the following strategy

can be used.

(a) According to the text, the mappings (7) and (8) provide a correspondence

betweentherighthalf.planeandtheunitdisk.(ofcourse,oneshouldinter-
change the roles of z aid u' in the formulas ) Thus the u-plane t*"ti15 frcrm

d(z)afunctlonry'(u,)hamonicintheunitdisk.Showthatthevaluesofry'(irt)
on the unit circle ru = eiO must be given by

tl.,(e,'): {9
2

(b) Argue that the hannonic function ry'(u'') must be given by

lt (.ut) - | ttt.t '2

throughout the unlt disk'

(c) Use the mapplngs to canJ ry' (ur) back to the z-plarte' producing the function

a\z)=F=,1

as a solution of the Ploblem'

5. Use the strategy of Prob. 4 to find a function @ hannonic in the right half-plane :ruch

that d(0, y) : 1/(1'2 * 1)'

6. Suppose that the harmouic function d('r' y) in the domain D is carried over tc) the

harmonic function $Qt.u) in the domain D'via the one-to-one analytic mapplng

, : f (z). Prove that if the normal clerivative EQlSn is zero on a curve f in

D,thenthenormalderivative0{lAniszeroontheirragecurveoffunde'rf'
Gh. boun.Iu,y corrdition 3sl3n - 0 is known as a Newnanlr condition') IHINT:

0Q l3n is the pro.lection of the gradient QQ lAr) + iQQ l}y'l onto the normal and

the gradient is orthogonal to the ievel curves @(x' ']') = constant ]



to 7,2 Geometric Considerations J/l

7. Suppose that./(z) is analytic and one-to-one. Then, according to the text. you may
presLrme that /-i is also analytic. if x, )), Lt, D are as in Eqs. 15; and (6), explain the
identities

0x

3tt

E),

3u

u' : -u,3u }Lt

7.2 Geometric Considerations

The geomett'ic aspects of analytic mappings split lather naturally into two categories:
Iocal properties and globcrl properties. Local properties need only hold in sufficiently
small neighborlioods. while global properties hold throughout a dtmain, For example,
consider the function e.. It is one-to-one in any disk of diameter less than 2n, and
hence it is locally olte-to-one, but since e?t : ezz when 21 - zz : 2ni, the function
is not globally oue-to-one. On the other hand, sometimes locafproperties can be ex-
tended to global properties; in fact, this is the essence of analytic corttinucrtiott (see
Sec.5.8).

Figure 7.8 Locally one-to-one rnapping.

Let us begin our study of local properties by considering "one-to-oneness." As
the example ez shows, a function may be locally one-to-one without being globally
one-to-olle. (Of course, the opposite situation is impossible.) Furthermore, an analytic
function may be locally one-lo-olte at some points but not at others. Indeed. consider

f\:): z2

In any opeli set that contains the origin there will be distinct points 11 and z2 such
that 72 - -21, and hence (since zl : 7l; the function l witt not be one_to_one.
H.owever, around any point other than the oiigin, we can find a neighborhood in which
z'lsolre-to-one(anydiskthatexciudestheoriginwilldo;seeFig,7.g).Thus.f(z):
z- ls locai ty one-to-olle at e\rery point other than tire origilt. An explanatiol of the
exceptional nature of : : 0 in tliis example is provided by the following.
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The remainder of this chapter will deai with constmcting and applying spectfic
confonnal mappings.

EXERCISES 7.2

L. For each of the following functions, determine the order m of the zero of the deriva-
live f' at z0 and show explicitly that the function is not one-to-one in any neighbor-
hood of zo.

(a),f(z) : z2 +22+ 1,Zo : -1
(b) /(z) : coS Z, Z0 = 0, Xn, -t-2n. . . .

l(c) /(z):ez,zu:0
2. Prove that rf ur : f (2)) is analytic at zo and f'(.20 I 0, then 2 = 1-11u,) is

analytic at &,0 - / (zo), and

df-t,. 1

t--dw dL.
*\z)

tor u : L!)0, z : zo. IHINT: Theorem 1 guarantees that /-l(ur) exists near u0
and Theorem 3 implies that /-1(ri,,) is continuous. Now generalize the proof in
Sec.3.2.l

3. What happens to angles at the origin undel the mapping f (z) : zd for q > 1? For
0<a<1?

4. Use the open mapping theorem to prove the maximum-modulus principle.

5. Find all functions /(z) trnalytic in D : zl < I that assume only pure imaginary
values in D.

6. If f is analytic at zs and J' ko) I 0, show that the function BQ) : ffi preseruet
the magnitude. but reverses the orientation, of angles at zg.

7. Show thatthemapping w = z+ 1/z napscircles z = p (p I 1) ontoellipses

u2 u2____i*---------------_:1.
r l\l / lr2
\'- ,) \'-;)

8. Let / be analytic at ze r.vith f ' (zO t' 0, By considering the difference quotient,
argue that "infinitesimal" lengths of segments drawn from zg are magnified by the

factor i/' (u o) j under the mapping w : f (z).

9. Let * : J k') be a one-to-one analytic mapping of the domain D onto the domain
D', and let A' : area (D'). Using Prob. 8, argue the plausibility of the formula

tf . ,1A':ll I',r)'-drdy.
J JD
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10' Why is it rnpossible for D to be the whole plane in the Riernann mapping theorern?
[HINT: Appeal to Liouvi]le's rheorem.l

11. Describe the irnage of each of the following domains under the napplng u.t : ez.

(a) the strip 0 < Imt < n.

(b) the slanted stlip between the two lines y, : x and )) : x l2n
(c) thehalf-str.ipRez = 0, 0 < In.rz < n
(d) thehalf-strip Rez > 0, 0 < hnz < n
(e) the fectangle I < Re z, < 2,0 < Imz < r
(f) the half-planes Re z > 0 and Re z < 0

12' Let P(z) : (z - a')(z - d), and let l be any srraight line through (a -f il12. prove
that P is one-to-one o'each of tl.re ope' half-pla'es deternrinecl by l.

13' Desc'ibe the image of each of the following dornains under the mapping u :
coST : cos;i cosh)' - I sin.r sinh.1,. IHINT: consider.the irnage of the bounciary in
each case.l

(a) thehalf-strip0 < Re 7 <:T,Irrrz < 0

(b) thehatf-str.ip 0 < Re, . :.Irn: > 0

(c) thestrip0<Rez<ir
(d) thet'ectangle0 < Re z < 7T, -1 < Lnz < 1

14. Prove that if / has a srnple pole at 20, then there exists a punctured neighborhood
of zs on which 7 is one-to- one.

15. A domain D is said to be conttex if for any two points zt, zz in D, the line segment
joining zl and z2 lies entirely in D. Prove the Noshiro-Wctrschawski theorem: Ler
/ be analytic in a convex dornain D. If Re .l',k) > 0 for all z jn D, then f is
one-to-one in D. IHINT:Write I e) _ f (er) as an integral of f ,.1

16. (For students who have read Sec, 4.4a) Argue that a one-to-one analytic fulction
wrll niap simpl;' connectecl clornains to sirrplv connectecl domains.

7.3 Miibius Tiansformations

The probiem of finding a one-to-one analytic function that maps one domain onto
atiothet' can be qulte perplexing, so it is worthwhile to iuvestigate a few elementary
mappings in order to compile some rules of thumb that we can draw upon. The basic
properties of Mdbius transforntations,t rvhich we shall investigate in this section, con-
stitute an essential portion of every analyst's bag o1'tr.icks. (Some of these mappings
were previewed in Exercises 2.1.)

TIn 1865 August Mcibius (1790-i860) desclibed the MdhiLt.s str4r, a piece of paper that has only
one side and one edse.
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Frorn the geometric properties of Mobius transformations that we have learned,
we can corrclude that (11) maps lzl : 1 onto some straight line through the origin. To
see which straight line, we plug in z : I and find that the point

t- ).

also lies on the iine. Hence the image of the crrcle under /1 must be the iniaginary
AXIS.

To see which half-plane is the image of the intenor of the circie, we check thepointl:0, Itisrrappedby(11)rothepoint 1L) = -1 inthe tefthalf_plane. Thrsis
not what we want, but it can be conected by' a final rotation of z, yieldrng

7-ll l-Lzw:f(z):-- ; - ^ ''
7 - | 1-,

as an answer to the problem. (Of course, any subsequent vertical translation or magni-
fication can be permitted.) observe that (12) is precisely the mapprng that was intro-
duced in Example 1, Sec.7.1, to solve a thermal problem, and wi have thus verified
the claims made there. I

EXERCISES 7.3

1. Find a linear transformation mapping the circle zl : I onto the circle lu _ 5 : 3
and taking the point z : I to w : 2.

(12)

2. What is the rmage of the str.ip 0 < Im z

3. Discuss the image of the circle z - 2l
transfonnations.

(a) ut = z. - 2i (b) u., : 3iz
-n1

td) u':1 (e) u:l.--.1 z

4. Find a Mobius tlansformation mapping the lower half-plane to the disk lu, -f- 1 < 1.

[HINT: Do it in steps.]

5. Find a Mcibius transfbrmation mapping the unit disk lzl < I onro the rieht half-
plane and taking e : -i to the origin.

6. Afred point of a funcrion 
"f 

(z) is a point z0 sarisfying f (zd : zo. Show rhat a
Mobius transformation .l'(z) can have at most two fixed points in the complex plane
unless /(s) : 1.

7. Find the Mobius transformation that maps 0, I, oc to the following l'espectrve ponts.
(a) 0, i, oc (b) 0, 1, 2 (c) *r, oo, I (d) -1, rc. t

8. What is the image, under the mapping ut : (2, + i)lk - l), of the thtrd quaclranr?

< 1 under rhe mapping w : (.2 - i)lz?
: 1 and its interior under the following

(c) u -- l---:Z,_ I
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O. 
Yl:t is the image of rhe secror _ft14 < Argl < trl4under the nrapprng u., :
(/ t(. - l, i

393

10.

11.

Find a conforntal nap of the semiclisk lz I < 1, Im z > 0, onto the upper. ha1t._plane.
[HINT: Combine a Mobius transformation rvith the rlapping .,r, -' )2. Make sureyou cover the entire upper half_plane.l

Map the shaded region in Fig. 7.21 confonnally onro rhe upper. half-prane. [HINT:Use a Mbbius transfonrration to map the point 2 to oo. Ar.gue that the image regronwill be a strip. Then use the exponential map.l

72.

Figure 7.21 Rcgion for prob. 1 1.

Find a Mobius transformation that takes
the unit disk lu | < 1.

the hal1'-plane depicted in Fig. 7.22 orto

Figure 7.22 Rcgion for prob. 12.

(.Smith Chart) The impeclance Z of an electncal circuit oscillating at a frequelcy ru
is a complex nurnber, clenoted Z : R * i B, which character.izes ti'" uoltng"_.urr.nt
relationship of the circuit; recall Sec. 3.6. In pr.actice R can take any value fro' 0
to oo and B can take any value from -oo to oo. Thus the usual represe'tatio'of

13.
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Figure 7.23 Smrth chart.

Z as a point in the complex plane becomes unwieldy (inasrnuch as the entire nght

half-plane comes into play). The Smith chart provides a more compact graphical

description, displaying the entire range of impedances within the unit circle. The

impedance Z is depicted as the poittt

w:Z-1.
Z+T

This mapprng (its inverse, actually) is portrayed in Figs. 1,4 and7.5. W is also

known as the reflection coeJftcient correspondin g to Z.

(a) Shorv that the circles in the Smith char-t depicting the lines Re Z = R :
constant, indicating constant-l'esistance contours, have the equations

a/ R \'. , 1lu-- I +r'-\- I+R) (lrp;z'
(b) Shorv that the circles in the Smith chart depicting the lines Im Z : B =

constant, indicating constant-reactance colltours, have the equations

(See Fig 7 23.)

14. If a circuit with impedance Z is connected to a length !. of transmission line w\th
"phase constant" p and a "charactedstic impedance" of unity, then the ner.v config-

- / I '2 l
,u - l)2 - (, - = ) - -\ rl / 82'
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uration has a tr.ansfonned impeclance Z, given by

Z,: Z cos Bl. * i sin Bl

z :) + i) : l/tu : ll(tt I iu) (13)

tor x and y in terms of l ar.rd u and substitute. Show that the result can be expressed
in the form

))ABu-lu'-ar+cr=o.l (14)

cos dl * iZ stn B(.

Show that the Smith chart point depictrng Z' canbeobtainecl frorn the Srnith chart
point depictin g z by a clockwise rotatiori of 2Br radians about the origin.i

15' Show that the transforrration (5) niaps lines 
'ot 

passing thr.ough the origin onto
circles passi'g th.ough the origin. [HINT: The equation of such a line rs Ar * By :
C, with C I 0. Solve

16' Show that the tlansfolmatron (5) maps crrcles passing through the origin onto lines
not passing through the origin. [HINT: Use the p....Ji,rg proUtern.l

17' Show that the transfonnation (5) maps circles not passing through the origin onto
circles not passi'g througrr the origin. [HINT: The eqr-ration of such circles is

,2+!2*Ar* B),-c, with C+0.
Sr.rbstitute the expressions for-r and y derivecl frorn (13) to obtain

ttZ -r u2 - 1,, * 4, = 1.,
CCC

7.4 Miibius TFansformations, Continued
We shall now explore some additional properties of Mobius transformatrons that en-
hance their usefulness as conforrnat mappingt. These are the group properties, the
closs-ratio formula, and the symmetry propet.ty,

Given any Mcjbius transformation

az+b
u' : .t l:) : ..ll @d I bc), (1)

its inverse .f-It.*7 ca'be found by sirnply solving Eq.(1) for z in terms of u,. This
computation yields

^-r ,lw - b- _ i ,u,, 1: _r*_la.
> 1P H Snrith patented the Srnith cliart in the late 1930s. It is the only knorvn conformal rnapprng
to be prorected by copyrightl


