.Ss

L

il

6.3 Improper Integrals of Certain Functions over (—00, 00) 325

? 2ni
—p+2ni :3 5 p+2m

74 ) Xl A7

Dp=?  +vp+ Y5 Y4

Figure 6.6 Closed contour for Example 3.

again approaching zero as p — 00 since a > 0.
As a result, on taking the limit as p — 00O we have

[o.¢] eax

az ,
lim ¢ _dz= (1 - eﬂ"‘> pov. / — dx
p—o0 Jr, 1+ € _oo l+e

®)

Now we use residue theory to evaluate the contour integral in Eq. (8). For each
p > 0, the function e??/(1 4 %) is analytic inside and on T', except for a simple pole
at 7 = i, the residue there being given by

PLx eam’
Res(mwi) = = —
d i
— (1 +e) ¢
daz z

— __eani " 9)

=i

(recall Example 2, Sec. 6.1). Consequently, putting Egs. (8) and (9) together we obtain

000X 1 . i
p.V./ dx = W . (27'[1) (—eanl>

—oo L+ €*
—2mi
T p—ami — eani
v
= — . N
simman

EXERCISES 6.3

Verify the integral formulas in Problems 1-7 with the aid of residues.

1 v/oo dx =7
Py o XE+2x+2

00 2
2. p.v./ —E—E dx = il
—00 (x2 +9) 6

Dl et

g 2

R
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11.

integrate e

0 x2 41 n
L [
g x*+1 J2

fooe"‘zdx=—£,
0 2

2 ) .
-2” around a rectangle with vertices at

A > 0)andlet p —> 0010 derive

o0
(a) f

0
®) ]

0

(The right-hand side of (b), as & function of

: T
% cos(2hx) dx = {—- ¢ z

A
e sin(2Ax) dx = ¢ N f e’ dy
0

Abramowitz and Stegun in Ref. [5].)

o+ i

4 oy / ° dx T
PG TE A O
o0 x T
5. p.v.f L —dx=7
—oo (52 + 4x +13)° 27
0 X2 i
o [Tt
SR IEED R
0 6 3 2
" / x , dx = /2
0 (x4 4+ 1) 16
8. Show that if f(z) = P(z)/Q() is the quotient of two polynomials such that
deg Q > 2+deg P, where Q has no real zeros, then p.v. [ fooo f(x) dx equals
—2mi - Z[residues of f(z) at the poles in the lower half-plane].
9, Show that
(%] er P )
p¥ /_oo cosh(mx) x = e
by integrating e / cosh(rz) around rectangles with vertices at z = +p,
—p+i
10. Given that

z=0,p, p+ A, and M (with

A, is known as the Dawson integral and

is tabulated by
Show that
/ ® dx 27r+/3
o x3+4+1 9

ound the boundary of the circular sector

by integrating 1/ + Dar
Sp:{z=re’9 0<0<2m

12. Confirm the values of the integrals

/3,0<r = p} and lefting p — ©%.

discussed in Prob. 18, Exercises 4.7.




AR

6.3 TImproper Integrals of Certain Functions over (~co, 0) 327

13. Show that

00 |
/ —l\dx=ZLn)'2, forn=0,1,2,....
o0 (14 22y 2 (a))

Summation of Series

14. Let £(z) be a rational function of the form P(2)/0(z), where deg O > 2 + deg P.
Assume that no poles of J () occur at the integer points z = 0,41, 2, . ... Com-
plete each of the following steps to establish the summation formula ‘

N
lim Z S (k) = —{sum of the residues of w £ (z) cot(z) at the poles of f(z2)}.
N—+o0o Pyt

(10)

(a) Show that for the function 8(2) == f(z) cot(rz), we have
Res(gi k) = f(k), k=0,%1,%2,.. ..

(b) Let I'y be the boundary of the square with vertices at (N + %](l + i),

(N + D=1+, (v + D=1-d), v + 3)(1 = i), taken in that order,
where N is a positive integer. Show that there is a constant M independent of
N such that |7 cot{mz)| < M forall z on IS

(¢) Prove that

lim mf(z)cot(rz)dz = 0,
N—+o0 T'y

where 'y is defined previously.

(@) Use the residue theorem and parts (a) and (c) to derive (10).

15. Using the summation formula in Prob. 14 verify that
o0

(a) kEoo ﬁ = 70 coth(rr) [HINT: Take f(z) = 1/(z2 + 1).]

e 1

(b) k:X_‘,OO \(k 3 l>2 =72

(o]
() kiz = % [HINT: The formula in Prob. 14 needs to be modified to com-
k=1

LSRN 1

pensate for the pole of f(z) = 1 /2% atz =0

16. Show that for n a positive integer,

2n—1

2 _ n—1_2n
S =D s B
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are the Bernoulli numbers, which are defined by the power

z By
Z k
g - Tt —_,
et —1 k=0k!

[HINT: To determine the required residue at z = 0 when

where the constants Ban
series expansion

[Compare Prob. 15(c).]
f(z) =1 /7%, show that

i B
nzcot(nz) = f‘;)(—l)km(m)z".]

17. Show that if @ is real and noninteger and 0 < r < 1,

(a) i% ! =nlesc?wa
k=—00 (k + a)2 -
& 1 4
(b) k:;oo AT cothra
00 k? .}
© 2 9 — —n2esch’na
k=—00 (kz + az)z
(d) § 1 = sinh 2am
Mo T | a2~ 2a sin*mr+sinh?7a
® (k- P2 - a? _ 72 1— cos2nrcosh2ma

e X —— Q-
k=—oo [(k —1)? + a2]2 2 (sin*mr+ sinh? na)2
(f) For which complex values of @ are the preceding identiti
18. To evaluate sums of the form Zz‘f___m(—l)kf(k) involving a sign alternation, we

modify the approach of Prob, 14 by replacing 7 f(2) cot(rz) by 7f (z) cse(mrz).
Again assuming that f(z) is a rational function of the form P/Q, with deg Q =

2 + deg P and that f has no poles at the integer points, derive the formula

es valid?

Z (—1)kf(k) = —{sum of residues of nf(z) cse(mz) at the poles of f}.

k=—00
19. Use the formula of Prob. 18 to verify that
{2 (=t _ m
D) - T
= k 12

6.4 TImproper Integrals Involving
Trigonometric Functions

Our purpose in this section is to use residue theory to evaluate integrals of the general

forms
/°° P(x) f°° P(x) .
p.v. cosmx dx, p.v. sinmx dx,
Q(x)

Qx) —00

-0
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erform one evaluation of residues, in the upper

respectively. Then we only have to p
nary parts at the end. However, this shortcut is

half-plane, and take the real or imagi
not valid for Example 3 since
e eix

X cosx
V. d Re p.v.
P /—oox+i s P /—oox+i

ax .

In fact the left-hand member is pure imaginary, as we have seen.

EXERCISES 6.4

Using the method of residues, ver

X cos(2x) T
1, pv. dx = =5
PV f_oo x2 41 )

ify the integral formulas in Problems 1-3.

®©  xsinx 7 .
2. pr mdx = ég(3 cos 1+ sin 1)

o0
3. f 8% dx= T
0 (x2+ 1) 2e

Compute each of the integrals in Problems 4-9.

o) eSix
4, p.v.f - dx
oo X — 2

% xsin(3x)
5. p.v. ——d
pvf—oo Wi

[} e—2ix
6. p.v. d
Py f_oo x4+ 4 *

7. oy f°° _oeosx
EANENCEDICER
%0 3 gin(2%) "
f A 2dx
o (2+1)

oo
9, P-V-f cos(2x? dx
oo X 3i i

10. Derive the formula

f°° cos X mwietV if Imw >0,
p.v. dx = L . i
—oo X — W _mie~'v if Imw <0. |
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11. Give conditions under which the following formula is valid:

/-oo imx @dx
e o

= 2mi - Z {residues of e P(z)/Q(z) at poles in the upper half-plane} .

12. Given that I's e dx = VT /2, integrate ¢% around the boundary of the circular
sector Sp ¢ {z =re? 10 <9 < 7/4,0 <7 < p}, and let p — +00 to prove that

[oe]
/ e gy = —‘j”u +1),
0

6.5 TIndented Contours

In the preceding sections the integrands f were assumed to be defined and continuous
over the whole interval of integration. We turn now to the problem of evaluating special
integrals where | f (x)| = oo as x approaches certain finite points. Our first step is to
give precise meaning to the integrals of I

Let f(x) be continuous on [a, b] except at the pointc, a < ¢ < b. Then the
improper integrals of J over the intervals [a, cl, [e, b], and [a, b] are defined by

/Cf(x) dx = .lir61+ /C—r f&x)dx,

b b
/ fx)dx ;= lim Sx)dx,
c 50t c+s
and
b c—r b
/ Sx)dx = lim / fx)dx + lim / S0 dx, (1)
a r—0t J, s=>0% Joug
provided the appropriate limit(s) exists. For example,
1 1 1 1 \/_1
—dx = lim — = lim 2./x
_/(; ﬁ * s~1>0+ 5 ﬁ s—=07t i
= lim [2-25] =2,
s—~0t

and therefore one can say that the area under the graph in Fig. 6.9 is finite, despite the
vertical asymptote.

On the other hand, the areas on either side of the vertical asymptote in the graph
of f(x) =1/(x — 2), depicted in Fig. 6.10, are both infinite, because

El
dx
= Log |x — 2|
/?;-H x =2

x=4

=Log2 —Logs > c0 as s— 0T,
x=2+4y
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and indent around each of its simple poles, as indicated in Fig. 6.15. Then since f(2)
is analytic inside the closed contour, we obtain

—~1-r 1-r p erix
/ f f 5 dx + Jpy + Jry +Jp =0, C)]
4 J1tr) X2 -1

Cjf, respectively. Now by

where Jp,, Jr,, Jp @€ the integrals of f(z) over Sy, Sty
Jordan’s lemma we have
lim J, =0,

p—> 00
and from Eq. (5) of Lemma 4,
lim J,, = —iwRes(—1) = —im lim (z + D f(@)

r—0t z—>—1
eZiz __”Te—Zi
= —imr lim = ,
-1z —1 2
and
lim J,, = —iwRes(l) = —ix lim(z — D f(@)
1p—>0 =1
iz _ime?
= —im hm .
—1z+1 2
Hence on taking the limits in Eq. (9) we get
00 4,2 =2 iU
me T
pV-/_oof—ei—ldx= i 3 —l—l 2e —0=incos2. N
EXERCISES 6.5

1. Compute each of the following limits along the given circular arcs.

222 +1
z
e3iz T
(b) lim,_q+ / ———dz, where Iy 1z =1+ ré, — <6 <m
r, 2% — 1 4

)

dz, where T, 1 z =re?,0 <6 E%

(a) lim, o+ /
T,

’

(¢) lim, o+ / dz where yp 1z =1+re ", m <6 <2

eZ — ,
(d) lim,_,g+ / 5 dz, where S, 1z = re % w <6 <2
z K

»

Using the technique of residues, verify each of the integral formulas in Problems 2-8.

oo e2ix .
2. pv. / dx = mie ¥
—oo X1
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o) eix )
3, n.v. s — i 20 i
p.v _/_w(x—l)(x——Z)dx m(e e)
4 /"o sin(2x) i (1 1>
: ————dx=nlz—=
0o x(x2+1) 2 &

® cosx — 1 T
5. A s =
/0 ) dx >

o0 sinx n "
6. p.v. f‘oo ——————<x2 " 4) G- D dx = 3 ‘:cos(l) e ]

0
0
7. pv. [_ _ x—2x_—°3;—x+—2 dx = sin(1) — 2sin(2)]

© cos(2x) L 7 sin(2)
8. pv LOO P dx = 3¢ [sm(l) + ﬁcos(l)] +

5. C % sin® x o 3eir 31
. Compute p.v. o dx. | HINT: sin” x = Im 1 - "3

10. Verify that

[HINT: Sinzx — %(1 — c082x) = %RE‘, (1 _ e2ix>

[o0] ax

11. Compute p.v. / dx for 0 < a < 1. [HINT: Indent the contour of Fig. 6.6

oo B —
around the points z = 0 and z = 271.]

12. Verify that fora > Oand b > 0
@ gin(ax) T —ab
_OMAY) gy = (1 —e7").
/0 x (x% + b?%) g 2b2< ¢ >

6.6 Integrals Involving
Multiple-Valued Functions

Tn attempting to apply residue theory to compute an integral of f(x), it may turn out
that the complex function f(z) 1s multiple-valued. If this happens, we need to modify
our procedure by taking into account not only isolated singularities but also branch
points and branch cuts. In fact we may find it necessary to integrate along a branch
cut, so we turn first to a discussion of this technique.

To be specific, let o denote a real number, but not an integer, and let f(z) be the
branch of z% obtained by restricting the argument of z to lie between 0 and 27, that is,

£(z) = 20870, where z = re'?, 0 <6 < 2m. M




