In each of Problems 1 through 6, sketch the graph of the given function on the interval r > 0,

Log) =ur)+ 2u3(1) — 6u 1) 2080 =t = 3juaity — (1 — 2)us(r)

3. g = fr— T (1), where f(1) = 2 4 g0 =fu - 3us(t), where £(1) = sin ¢
5.8 = f(r — Dy (), where f(r) = 2;
6. g(1) = (1 — Dy () — 21 — Dty + (¢ — 3ua(r)

In each of Problems 7 through 12:

(a) Sketch the graph of the given function
(b) Express 7 () in terms of the unit step function w, (),

0. 0<r<3 ST
—1 Il <1 <2,
7 -2, 3<1<5, 8. f ;
. 1) = . (1) = 1, 2 <y a,
/ 2, S5<r<7, ) ’ =0=
r>7. -1, 3<rt<q4,
0, r>4
9 o 1, 0<t<2, 0. ¢ 2 0<t<2,
. (t) = . . /[) =
: et p s a L, =2
I8 O<r<1, ‘, 0<rt<?,
=1, 1<r<2, 2. 2<t <5,
L fuy = 12 fuy =
=2, 2<t<3 7 -1, S<r<7,
0, r >3, 0, t>7.
In each of Problems 13 through 18, find the Laplace transform of the given function.
0. t<?2 0. <1
13- fo (t=22 r>2 14 fu) P22 >
0, I <
15 finy = {¢ ~ T, m<t<27y 6. f(oy = w0 + 2u3(1) — buy(r)
0. t>27
17. f() = (t—B)le(t)~(t—2)L¢3(f) 18. f(z):t—m(t)(t—l), >0
In each of Problems 19 through 24, find the inverse Laplace transform of the given function.
. 3! e~
19. Fis) = A 20. F(s) = ]
205 — 1y~ e
2 . F S) = ——— 2. Fiyg —
LFus) ) 22 Fis) s 4
(s —2)e . e + e~ _ e~ e
23 Fsy = L22¢ 24, F(s) = —_—
&) $2—4ds + 3 )

25. Suppose that F(s) = L{f(0} exists for s » g4 > 0.
(a) Show thatifcis g positive constant, then

N

L{f(ct)) = ;[(E), 5> ca.
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(b) Show that if k is a positive constant, then
1, /¢
LTYFks)) = —f =),
(Fuks)) = 3 f ( k)

(¢) Show that if @ and b are constants with @ > 0, then

L7 Flas + b)) = Loty <£> '
a

a

In each of Problems 26 through 29, use the results of Problem 25 to find the inverss __=
transform of the given function.

20+ 2s + 1
26, Fls) = — 1" 27, Fls) = 2200
= O = raTs
28, Fis) ! 29, Fis) = S8
. S)= ——-«—— . §) =
( 952 — 125+ 3 2s — 1

In each of Problems 30 through 33, find the Laplace transform of the given fur:-
Problem 33, assume that term-by-term integration of the infinite series is permissibz

1, O0<r<1
L O=r<l 0, 1<tr<2
30. f = N 31 f() = =
f 0 =1 f@ .
0, =3
2n+1
2. f) =11+ + Uz () =tz () =1 + Z(—l)kuk(l)
k=1
B =1+ Z (=D*u (). See Figure 6.3.7.
k=
‘)/
1 \ ¢ I ¢ I
\ ! ! ! i
| ! ! | |
$— . ¢ . ¢
1 2 3 4 5 !

FIGURE 6.3.7 The function f(z) in Problem 33: a square wave.

34. Let fsatisty f(t + T) = f(r) for all 7 > 0 and for some fixed positive number 7: - - .
to be periodic with period 7 on () < 1 < oo. Show that

’
/ e~ f (1) dr A
LA N E

l —esT

L{fn =

In each of Problems 35 through 38. use the result of Problem 34 to find the Laplace traz«
of the given function.

I, O0=r<l, I, O0=t<1.
35 fi = - 36. f(1) = ' -
fo U, 1 <1<2; ) [—l, l <t <2
fu+2)=fu. fle+2)=f@).

Compare with Problem 33. See Figure 6.3.8.
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1 1 = ) "
| | | | |
1 | ! | |
1y 21 3] 4 5i
i | I | ! ¢
| | | i |
[ | I I !
i & — & J &
FIGURE 6.3.8 'The {unction f(¢) in Problem 36; a square wave.
37 f(n =1, O=<t<l; 38, f(H =sint, 0<t<m
fle+ 1) =f@. fa+m = fu.
Sec Figure 6.3.9. See Figure 6.3.10.
¥
i \ | 1
i [ \/
& A [
2 3 4 t l n 2r 3r ¢
FIGURE 6.3.9 The function f(#) in FIGURE 6.3.10 The function f(#) in
Problem 37; a sawtooth wave. Problem 38; a rectified sine wave.

(a) If f()=1-u (), find L{f()}; compare with Problem 30. Sketch the graph of
y=r.

(b) Letg(t) = / F(€) d&. where the function f is defined in part (a). Sketch the graph of
0
v =gl and find L{g(n)}.

(¢) Let h(t) = g(t) — u,(1)gt — 1), where g is defined in part (b). Sketch the graph of
y = h(t) and find L{h(}}.

Consider the function p defined by

t O0<t<l1
=1 - ’ t+2) = p().
P lz—r\ 1<t <2 Pl P

(a) Sketch the graph of v = p(n).

(b) Find L{pity} by noting that p is the periodic extension of the function A in
Problem 39(c) and then using the result of Problem 34.

(¢) Find C{p(r} by noting that

4
p) :/f(t) dr,
0

where f is the function in Problem 36, and then using Theorem 6.2.1.
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| | ! |
5 10 15 20t

FIGURE 6.4.3 Solution of the initial value problem (16), (17). (18).

Note that in this example, the forcing function g is continuous but g is discor: s
=5 and t = 10. It follows that the solution ¢ and its first two derivatives are < -
everywhere, but ¢” has discontinuities at 7 = 5 and atr = 10 that match the discor:. - .

&' at those points,

(.
" PROBLENS

In each of Problems 1 through 13:

5

(a) Find the solution of the given initial value problem.
(b) Draw the graphs of the solution and of the forcing function; explain how thev ar: -

1, O0<r<3m

0, 3 n<tr<m

$0 LY Hy=f0r vy =0, yo) =1, ﬂ”zl

@"Q 2. ¥+ 2y + 2y = h(1); Yy =0, yO) =1; hr) = ;é: ZSS: << jﬁ .
@’Q 30" +dy = sint — up, (1) sin( — 27 yO)y =0, viO)=0

@'1"2 40y dy = sint 4w, (10 sin(r — ) y0) =0, y=0
S VLW R =F0 WO =0 YO =0 f) = {(1) ?;’(i 0
6‘?, 0.y 43y + 2y = (1), Y0 =0, y=1

L T ty=unr v =1, V) =0

& 8V V=1 wa U —/2): YOy =0, V() =0

12, 0<i<6

§0 9 v v =00 W =0, y(O0) =1 (1) =
@a Yoy =gy A s y(0) g( {3’ (> 6

sint, U<t <nw

@QJU>”+y+§y:gm; YOy =0, Y =0 ﬁn:{a >

FL LYy =) —us ;Y0 =0, V() =0
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@ -

¥

12.
13.

14.

N

Y=y = () - w0, y0y=0, YO =0, y(0) =0, y(0)=0
YW S dy = | -0 vy =0, v =0 y(O) =0y (0)=0

Find an expression involving w. (1) for a function f that ramps up from zero at ¢ = 5 to the
value fratr =, + k.

. Find an expression involving u.(1) for a function g that ramps up from zero at f = 1, to the

value i att = ¢, + k and then ramps back down to zero at 1 = 1 + 2k.

- A certain spring-mass system satisfies the initial value problem

u' + %u' +u = kgD, W =0, w0 =0,

where g(1) = Uz (1) —usp(tyand k > Oisa parameter.

(a) Sketch the graph of g(r). Observe that it is a pulse of unit magnitude extending over
one time unit.

(b) Solve the initial value problem.

(c) Plot the solution for k = 1/2,k = 1,and k = 2. Describe the principal features of the
solution and how they depend on .

(d) Find, to two decimal places, the smallest value of k for which the solution u(t) reaches
the value 2.

(e) Suppose k = 2. Find the time 7 after which ()] < 0.1 forallr > 7.
Modity the problem in Example 2 of this section by replacing the given forcing function
g{1) by

fioy = [u_;(r)([ =5y — s (D = 5 — /()} /k.
(a) Sketch the graph of f(s) and describe how it depends on k. For what value of k is f(r)
identical to g(r) in the example?
(b) Solve the initial value problem

¥+ dy = fn, vy =0, V({0 =0

(¢) The solution in part (b) depends on k. but for sufficiently large ¢ the solution is always
a simple harmonic oscillation about v=1/4 Try to decide how the amplitude of this
eventual oscillation depends on k. Then confirm your conclusion by plotting the solution
for a few different values of k.

. Consider the initial value problem

YtV Hdy=filn, v =0, y(O0) =0,
where

1/”2/(. 4*/\’2{(4—{—/\'

) = 0, O<t<d4—k and 1z=4d+k

and 0 < k < 4.

(a) Sketch the graph of £ (r). Observe that the area under the graph is independent of k.
If fx(t) represents a force, this means that the product of the magnitude of the force and
the time interval during which it acts does not depend on k.

(b) Write fi(#) in terms of the unit step function and then solve the given initial value
problem.

(c) Plotthesolutionfork = 2.k = 1,and k = % Describe how the solution depends on k.

feleinl
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However, if the actual excitation extends over a short, but nonzero, time

then an error will be introduced by modeling the excitation as taking pla:«
taneously. This error may be negligible, but in a practical problem it shou.:
dismissed without consideration. In Problem 16 you are asked to investiia-
issue for a simple harmonic oscillator.

In each of Problems 1 through 12
(a) Find the solution of the given initial value problem.
(b) Draw a graph of the solution.
Loy +2y +2y =68t —m): yOy=1, y0)=0
29" +4y =8t —m) = 8(t — 2m): y0) =0, y(0)=0
3V 3y 42y =80t = 5) 4+ u(n); y0)y =0, y(0) =1/2
4. y" —y = 2080t — 3); yO) =1, yO) =0
S.y"+ 2y +3y =sint + 8(t — 37); y@) =0, y(0)=0
6. ¥ +4y = §(t — 4n); yO =1/2, yih=0
7.y +yv =181 ~2mcost; yO)y =0, v =1
8 y'+dy =28(r — /4, yO =0, y0) =0
9. V" + ¥ = U (1) + 3808 — 3m/2) — 1, (1); y0)=0, y(©0)=0
10. 2y" + ¥ + 4y = 8(t — m/6) sint; y0) =0, y(0)=0
LL y" +2y" +2y = cost + §(t — n/2); vy =0, y©0) =0
1239 —y=080-1);  yO=0. y0) =0, y(0) =0, y"(0) =0
I3, Consider again the system in Example | of this section. in which an oscillation : - :
by a unit impulse at 1 = 5. Suppose that it is desired to bring the system to rest 22

exactly one cycle—that is, when the response first returns to equilibrium mov:-: -
positive direction.

(a) Determine the impulse k8(t — 1,) that should be applied to the system ir -
accomplish this objective. Note that k is the magnitude of the impulse and r; is 17
of its application.

(b) Solve the resulting initial value problem, and plot its solution to confir= -
behaves in the specified manner,

14. Consider the initial value problem
Yoy Fv=680—1). y0) =0, y) =0,

where v is the damping coefficient (or resistance).
(a) Let y = . Find the solution of the initial value problem and plot its graph.

maximum value y, of the solution.

(¢) Lety = 1 and repeat parts (a) and (b).

(d) Determine how t, and y, vary as y decreases. What are the values of ¢, and -
y = 0?

15. Consider the initial value problem

Vit vy +y = ki - 1), y0)y =0, y©) =0,
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& 16

where k is the magnitude of an impulse at r = 1, and y is the damping coefficient (or
resistance).

(a) Lety = % Find the value of & for which the response has a peak value of 2; call this
value k.

(b) Repeat part (a) for y = 1.
(¢) Determine how k| varies as v decreases. What is the value of k;, when y = 0?

Consider the initial value problem
Yity=f0,  y0 =0 y(0) =0,
where fi () = [Mai () — tha 1 (1)]/2k with 0 < k < 1.

(a) Find the solution y = ¢(¢, k) of the initial value problem.

(b) Calculate klir& ¢(t, k) from the solution found in part (a).

(c) Observe that lim fi(r) = §(t — 4). Find the solution ¢o(f) of the given initial value
k0
problem with £, (1) replaced by §(r — 4). Is it true that ¢o(t) = klin)) ot k)?
-0

(d) Plot ¢(1,1/2), #(1,1/4), and ¢y () on the same axes. Describe the relation between
o, ky and ¢o(6).

Problems 17 through 22 deal with the effect of a sequence of impulses on an undamped
oscillator. Suppose that

Viey=Ffn., v =0, Y0 =0

For each of the following choices for f(1):

(a)

Try to predict the nature of the solution without solving the problem.

{b) Test your prediction by finding the solution and drawing its graph.

(c)

6 17
&' 19

& 2L
& 23

& 24

Determine what happens after the sequence of impulses ends.

20 20

fiy =3 8t — km) & 18 f(n =Y (~DFSU k)
k=1 k=1
20 20

f =3 80— knj2) &0 20. [0 =3 (=DF8( = knj2)
k=1 k==1
15 40

fi =358t - 2k — 1yr) &0 22 f() =3 (=D = 11k/4)
k=1 k=1

The position of a certain lightly damped oscillator satisfies the initial value problem

24y
Y00y =Y (=D =k, y(O0) =00 Y0 =0.

k=i

Observe that. except for the damping term, this problem is the same as Problem 18.

(a) Try to predict the nature of the solution without solving the problem.

(b) Test your prediction by finding the solution and drawing its graph.

(¢) Determine what happens after the sequence of impulses ends.

Proceed as in Problem 23 for the oscillator satisfying

VA0 vy =) ol —2k—Dhal. x0) =0 y0)=0.

fe==1

Observe that, except for the damping term, this problem is the same as Problem 21.
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where ¢(1) = £7H{P ()} and ¥(1) = L7 {W(s)}. Observe that ¢(r) is the s =
the initial value problem

ay’ + by +cy =0, yO) =yo. YO =y

obtained from Egs. (20) and (21) by setting g(¢) equal to zero. Similarly. -
solution of
ay" + by +cy =g, y0)y =0, y(0) =0,

in which the initial values yo and y, are each replaced by zero.

Once specific values of ¢, b. and ¢ are given. we can find ¢(r) = £~ o -
Table 6.2.1. possibly in conjunction with a translation or a partial fraction ¢x:
To find (1) = £ {W(s)}, it is convenient to write W(s) as

W(s) = H(s)GLs),

where H(s) = (as? + bs + ¢)~!. The function H is known as the transfer fem
and depends only on the properties of the system under consideration; that ;= -
determined entirely by the coefficients a, b, and c. On the other hand, Gis xm
only on the external excitation g(¢) that is applied to the system. By the cor
theorem we can write

4
U = L7HH($)GG)) = / h(t — 0g(r) dr,
0
where A(f) = £7{H (s)}. and g(¢) is the given forcing function.
To obtain a better understanding of the significance of A (f), we consider i7-
which G(s) = 1. consequently, g(f} = §(¢) and W(s) = H(s). This means tha: =
is the solution of the initial value problem

ay’ + by +cy =8(1), y(0) =0, y(0) =0,

obtained from Eq. (26) by replacing g(1) by 8(¢). Thus A(r) is the respons: -
system 1o a unit impulse applied at + = 0, and it is natural to call A(r) the i ‘
response of the system. Equation (28) then says that ¥(r) is the convolutic -
impulse response and the forcing function.

Referring to Example 2, we note that in that case, the transfer fur:z.x
H(s) = 1/(s* + 4) and the impulse response is A(r) = (sin2¢)/2. Also, the ==~
terms on the right side of Eq. (19) constitute the function ¢(r), the solutic=
corresponding homogeneous equation that satisfies the given initial condit:. -

1. Establish the commutative, distributive, and associative properties of the ccr:
integral.
(a) frg=gxf
(b) frigr+g)=1*g [+
(¢) frigrh)=(f*xg)xh

>This terminology arises from the fact that H(s) is the ratio of the transforms of the output an< .=
of the problem (26).
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2. Find an example different from the one in the text showing that (f * 1)(t) need not be
equal to f(1).

3. Show, by means of the example f(1) = sint, that f # f is not necessarily nonnegative.

[n each of Problems 4 through 7, find the Laplace transform of the given function.

4 f) = / (t — 1)’ cos2rdr 5.0 =/‘e'<"” sintdr
0 0
t 1

6. f(r):/(t—r)efdt 7. f(t):/ sin(t — rycos rdr
) 0

In each of Problems 8 through 11, find the inverse Laplace transform of the given function by
asing the convolution theorem.

99

1 s
CFs) = e . I
O = e O FO =TT+ 8

1 G($)

X 0. Fls) = —————7 , §) = ——
(s) s+ D22+ 4 11. F(s) 241

120 (a) Iff() =" and g(1) = ", where m and n are positive integers, show that

1
f *g = tm—Hz*l / Ltm(l __ “)n du.
0

(b) Use the convolution theorem to show that

m'n!

1
m — H d — .
fg Wil -y du (m+n+D!

(c) Extend the result of part (b) to the case where m and n are positive numbers but not
necessarily integers.

Tn each of Problems 13 through 20, express the solution of the given initial value problem in
-2rms of a convolution integral.

Doy ety =g y0 =0y =1

T4y 2y 4 2y =sinoet y(0)=0, y(O)=0

154y 44y + 17y =g y0) =0, y©® =0

6y sy y=lowo;  yO =1 yO=-1

17y e dy +dy =g yO) =2, YO =-3

18. ¥ 43y + 2y = cosar; y0y=1, YO =0

19, y& —y =g y(0) =0, y(@ =0y =0, ¥y =0

0.0 4S5y +ay =gy YO =1, YO =0 yO=0 yO= 0

21. Consider the equation
s+ [ k= op@) ds =f0.
0

in which f and k are known functions, and ¢ is to be determined. Since the unknown
function ¢ appears under an integral sign. the given equation is called an integral equation;
in particular,it belongs to aclass of integral equations known asVolterra integral equations.
'ake the Laplace transform of the given integral equation and obtain an expression for
L{o(0)} in terms of the transforms £{f (1)} and L{k(0)} of the given functions f and k. The
inverse transform of £{¢ (1)} is the solution of the original integral equation.




