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[n each of Problems 1 through 6:

(a) Express the general solution of the given system of equations in terms of real-valued
functions.

(b) Also draw a direction field, sketch a few of the trajectories, and describe the behavior of
the solutions as 1 — ~c.

Ly 3 =2 $ oy 1 <
X = X 2.x' = X
4 1)t & ¥ 11
2 =3 2 -3
3. x' = R X @"2 4. x' = o] X
y 5
. 1 ~1 . ) 1 2
5.x' = R X @’2 6. X' = s X

In each of Problems 7 and 8, express the gencral solution of the given system of cquations in
terms of real-valued functions.

1 0 0 -3 0 2
7.x'=1|2 I =2 1x 8. x' = 1 =1 01]x
3 2 i -2 —1 0

In cach of Problems 9 and 10. find the solution of the given initial value problem. Describe the
behavior of the solution as 1 — oc.

o.v=[" )« x(0) = ! o.x=[" ) X(0) =
I =3 ’ 1 -1 -1 -2

In each of Problems 11 and 12:
(a) Find the eigenvalues of the given system.
(b) Choose an initial point (other than the origin) and draw the corresponding trajectory in
the xpx;-plane.
(c) For vour trajectory in part (b), draw the graphs of x| versus ¢ and of x; versus ¢,
(d) For vour trajectory in part (b), draw the corresponding graph in three-dimensional
1Y X2-space.

(2 o 4
. = , . 50T ¢
11, x :(; *i)x (?f?/ 12. X' = R X

In cach of Problems 13 through 20, the coefficient matrix contains a parameter «. In each of
these problems:

(a} Determine the cigenvalues in terms of .
(b) Find the critical value or values of @ where the qualitative nature of the phase portrait for
the system changes.

(c) Draw a phase portrait for a value of « slightly below, and for another value slightly above,
cach critical value.

o 1 0 -5
&5 3% = X $/, 14 X' = X
@?, 13. x o X @?/ X | N
g / /2 -5 | a{?/ 16 o % % X
15, x' = o 2 X & b, X' = o 5
<, 3
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-1 3 \
é@ 17. X' = <_1 _?) X é§°?/ 18 x' = <—6 0) X
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20 = 3 20 X = X
92 19. x <'1 _4) X @2 20, x <8 ~6> X

In each of Problems 21 and 22, solve the given system of equations by the met .
19 of Section 7.5. Assume that ¢ > 0.

S o B N EEE
LIX = 2_1x _.[x—l_zx

In each of Problems 23 and 24:

i (a) Find the eigenvalues of the given system.

(b) Choose an initial point (other than the origin) and draw the correspondir :
the x x;-plane. Also draw the trajectories in the x,x3- and Xox5-planes,

(c) For the initial point in part (b), draw the corresponding trajectory in xjx-x:- - ...

-5 10 -1
& B x=|-1 -i 0x G4 x=1-1 -1 0]x
0o 0 -} o 0 L

25, Consider the electric circuit shown in Figure 7.6.6. Suppose that & =
C=1Fand L =8H.

(a) Show that this circuit is described by the system of differential equatii - :

d {1\ (=3 =i\ (1
de\v)] T\ 9 mYANSA

where [ is the current through the inductor and V is the voltage drop acros: *-
Hint: See Problem 20 of Section 7.1.

(b} Find the general solution of Eqgs. (1) in terms of real-valued functions.
(c) Find I{t)y and V(1) if I(0) = 2 A and V) =3V.

(d) Determine the limiting values of /(z) and V(1) as t — sc. Do these -
depend on the initial conditions?

FIGURE 7.6.6 The circuit in Problem 25,

26. Theelectriccircuitshown in Figure 7.6.7 is described by thesystemof differer:.. . »
1
afry | L)1
dr\v /) ] 1 Ve
C T RC
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where [ is the current through the inductor and V is the voltage drop across the capacitor.
These differential equations were derived in Problem 19 of Section 7.1.

(a) Show that the eigenvalues of the coefficient matrix are real and different if L > 4R%C
show that they are complex conjugates if L < 4R2C.

(b) Suppose that R=1Q , C = 1 Fand L =1 H. Find the general solution of the
system (i) in this case.

(c) Find I() and V(1) HI(0)=2Aand V({0) =1V

(d) For the circuit of part (b) determine the limiting values of /(f) and V(1) ast — 00. Do
these limiting values depend on the initial conditions?

s

9!

-~
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FIGURE 7.6.7 The circuit in Problem 26.

. In this problem we indicate how to show that u(t) and v(t), as given by Egs. (17), are

linearly independent. Let s, = & + iprand 7y = A — iy be a pair of conjugate eigenvalues of
the coefficient matrix A of Eq. (1);let £ = a + iband £ = a — ib be the corresponding
eigenvectors. Recall that it was stated in Section 7.3 that two different eigenvalues have
linearly independent eigenvectors, so if r # 71,then £ and £ W are linearly independent.

(a) First we show that a and b are linearly independent. Consider the equation
¢ia+ b =0. Express a and b in terms of £ and £, and then show that
(€1 = ic)g M + (¢, + ic)E M = 0,
(b) Showthate, — ic; = Oand ¢) +ic; = 0andthenthate; =0andc, =0. Consequently,
aand b are linearly independent.

(¢) To show that u(f) and v() are linearly independent, consider the equation
crully) + cav(ty) = 0, where 1; is an arbitrary point. Rewrite this equation in terms of a
and b, and then proceed as in part (b) to show that ¢; = 0 and ¢, = 0. Hence u(¢) and v(t)
are linearly independent at the arbitrary point ty. Therefore, they are linearly independent
at every point and on every interval,

- A mass m on a spring with constant k satisfies the differential equation (see Section 3.7)

mu” + ku =0,

where (1) is the displacement at time ¢ of the mass from its equilibrium position.
(a) Letx; = 1, x; = 1/, and show that the resulting system is

, 0 1
= X
X —~k/m 0

(b) Find the eigenvalues of the matrix for the system in part (a).

(c) Sketch several trajectories of the system. Choose one of your trajectories, and sketch
the corresponding graphs of x; versus  and x, versus 7. Sketch both graphs on one set of
axes.

(d) What is the relation between the eigenvalues of the coefficient matrix and the natural
frequency of the spring—mass system?
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The columns of W(r) are the same as the solutions in Eq. (27) of Section 7.5. Thus
the diagonalization procedure does not offer any computational advantage over the
method of Section 7.5, since in either case it is necessary to calculate the eigenvalues
and cigenvectors of the coefficient matrix in the system of differential equations.

Consider again the system of differential equations
x' = Ax, (45)

where A is given by Eq. (33). Using the transformation x = Ty, where T is given by Eq. (35),
you can reduce the system (45) to the diagonal system

30
/: ’:D', 46
y (0 *1>> y (46)

Obtain a fundamental matrix for the system (46), and then transform it to obtain a fundamen-
tal matrix for the original system (45).
By multiplying D repeatedly with itself, we find that

9 0 . (27 0
D2:<O 1>’ D:<0 _1>, (47

Therefore, it follows from Eq. (23) that exp(Dt) is a diagonal matrix with the entries ¢* and
e~" on the diagonal; that is,
3 0
D _ ¢ 48
¢ ( 0 e”) ' (48)

Finally. we obtain the required fundamental matrix () by multiplying T and exp(D?):

1 ] P 0 el C"IV
= = . 49
v (2 —2) ( 0 e") (263’ —26"’) (49)

Observe that this fundamental matrix is the same as the one found in Example 1.

In each of Problems 1 through 10:

(a) Find a fundamental matrix for the given system of equations.
{b) Also find the fundamental matrix ®(¢) satisfying ®(0) = L

3 =2 -3
l.x":( )x 2.x’=<
2 =2 .
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11.

12.

13,
14.

15.

16.

17.

18.

1 1 1 1 -1 4
X = 2 1 —-1]x 10, x' =3 2 -1 {x
-8 -5 =3 2 1 -1

Solve the initial value problem

=2 ) 0=
T2 xO=1_

by using the fundamental matrix ®(¢) found in Problem 3.

Solve the initial value problem

= E
Tl xOr=1

by using the fundamental matrix ®(r) found in Problem 6.

Show that & (1) = ¥(1)¥ ' (1), where ®(r) and W(¢) are as defined in this sectio™
The fundamental matrix ®(7) for the system (3) was found in Example 2. 5~ »
G (HP(s) = P(r + ) by multiplying ®(¢) and & (s).

Let @(r) denote the fundamental matrix satisfying @ = A®, ®(0) = I Inthe ev »
denoted this matrix by exp(As). In this problem we show that @ does indee: -
principal algebraic properties associated with the exponential function.

(a) Show that ®(r)d(s) = ®(r + 5); that is, show that exp(Ar) exp(As) = exp A
Hint: Show that if 5 is fixed and ¢ is variable, then both ®(1)®(s) and ¢ + 5+ 2177
initial value problem Z' = AZ, Z(0) = ®(s).

(b) Show that ®(r)®(—r) = I; that is, exp(Ar) explA(—1)] = L. Then show that
D(—1) =o',

(c) Show that ®(r —s) = &) D' (s).

Show that if A is a diagonal matrix with diagonal elements a;,a,,...,a,, ther : - &
also a diagonal matrix with diagonal elements exp(a;t}, exp(azt), ..., exp(a,l
Consider an oscillator satisfying the initial value problem

W+ wtu =0, w(®) =uy, W) =y
(a) Letxy =u,x; =1/, and transform Eqgs. (1) into the form

x = Ax, x(0) = x".

(b) By using the series (23), show that

sin wt
expAr =Icoswr + A .

w

(c) Find the solution of the initial value problem (ii).

The method of successive approximations (see Section 2.8) can also be applie:
of equations. For example, consider the initial value problem

X = Ax, x(0) = x°, k

where A is a constant matrix and x” is a prescribed vector.
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A

PROBLEMS In each of Problems 1 through 4:

(a) Draw a direction field and sketch a few trajectories.
(b) Describe how the solutions behave as 1 — oc.

(¢) Find the general solution of the system of equations.

6‘2 1. )d:(i :Dx 9?‘2 2. x":(i -2>x

—4

_3 i -3 S

6‘2 30X = ? X 0?{2/ 4, x' = ‘lx
S -4 2

In each of Problems 5 and 6, find the general solution of the given systemof eZ.: . 7%
b 1 1 0 1 !
S.x'=]2 I —1]x 6. x' =11 0 1]x

0 -1 1 1 1 0

In each of Problems 7 through 10:
(a) Find the solution of the given initial value problem.

(b) Draw the trajectory of the solution in the x;x,-plane, and also draw thc = ¥
Versus /,
1 -4 3
, x(() =
4 —7) oo <2>
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In each of Problems 11 and 12:
(a) Find the solution of the given initial value problem.

(b) Draw the corresponding trajectory in x,x, xs-space, and also draw the grap:

00 -1
L1l x=|-4 1 0fx, xO={ 2
36 2 ~30 ‘
—§ 1 1 2 o
& 2x=] 1 -3 1|x xO=| 3
(NS PR - :

In each of Problems 13 and 14, solve the given system of cquations by the mei- -

19 of Section 7.5. Assume that ¢ > 0, d

3 —4 1 -4
13, 1x' = 14, 1x' = 3
X <1 —1) X X <4 —7> X
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15. Show that all solutions of the system

, <a b>
X = X
c d

approach zero as t — oo if and only if a +d < 0 and ad — be > 0. Compare this resuit
with that of Problem 37 in Scction 3.4.

16. Consider again the electric circuit in Problem 26 of Section 7.6. This circuit is described
by the system of differential equations

1

afty |0 T |(!

ar\v) | 1 1<V'
“C "RC

(a) Show that the eigenvalues are real and equal if L = 4R*C.
(b) Suppose that R=1Q, C=1 E. and L = 4 H. Suppose also that 1(0) = 1 A and

V(0y =2 V. Find I(r) and V{1).
Y| ,
X = Ax = (l 3> X (i)

17. Consider again the system
that we discussed in Example 2. We found there that A has a double eigenvaluery =r; = 2
with a single independent eigenvector £V = (1, ~1)7, or any nonzero multiple thereof.
Thus one solution of the system (i) is X' (t) = ge¥ and a second independent solution
has the form

(1) = £1e¥ + ne”',

where & and 5 satisfy

A-2DE=0, (A-2Dn=¢& (if)

In the text we solved the first equation for £ and then the second equation for y. Here we
ask you to proceed in the reverse order.

(a) Show that 7 satisfies (A — 212 = 0.

{b) Show that(A — 21)? = 0. Thus the generalized eigenvector 7 can be chosen arbitrarily,
except that it must be independent of £,

(¢) Let n=(0, —1)7. Then determine § from the second of Egs. (ii) and observe that
g=(,~-h7 = £, This choice of 7 reproduces the solution found in Example 2.

(d) Letn=(1, 0)7 and determine the corresponding eigenvector §.

(e) Lety = (ky,ks)T, where ky and k, are arbitrary numbers. Then determine & How is
it related to the eigenvector g7

Eigenvalues of Multiplicity 3. If the matrix A has an eigenvalue of algebraic multiplicity 3,
then there may be either one. two, or three corresponding linearly independent eigenvectors.
The general solution of the system X' = Ax is different, depending on the number of eigenvec-
tors associated with the triple cigenvalue. As noted in the text, there is no difficulty if there
are three eigenvectors, since then (here are three independent solutions of the form x = &¢”.
The following two problems illustrate the solution procedure for a triple eigenvalue with one
or two eigenvectors, respectively.
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18. Consider the system

1 1 1
X' = Ax = 2 1 —1]x
-3 2 4

(a) Show thatr =2 is an eigenvalue of algebraic multiplicity 3 of the ¢ = ~.c
A and that there Is only one corresponding eigenvector, namely,

0
£ = 1
-1
(b) Using the information in part (a), write down one solution xV(r7 -+ -
There is no other scution of the purely exponential form x = e,
(c) To find a scconid solution, assume that x = &fe¥ + pe?’. Show that §llx
cquations
A-2LE=0, (A-2Dp=2¢&.

Since & has already been found in part (a), solve the second equation 7 *
multiple of &V that appears in 7, since it leads only to a multiple of the =~
Then write down a sccond solution x@ (¢) of the system (i).

(d) To find a thir ' solution, assume that x = £(1°/2)e¥ + yre? + ¢e¥. Srzv s
satisfy the equatic ns

(2DE=0.  (A-2Dy=§ (A-2Dr=n

The first two equations are the same as in part (c), so solve the third equ:
neglecting the multiple of €1 that appears. Then write down a third sol--
system (1).

(¢) Write down a fundamental matrix W(r) for the system (i).

(f) Form a matrix T with the cigenvector &V in the first column an’
eigenvectors i and ¢ in the second and third columns. Then find T~} and * - -~
J=T7AT. The + trix J is the Jordan form of A.

19. Consider the sy

5 =3 =2
X =Ax = 8§ =5 —41x
-4 3 3
(a) Show that » =1 is a triple cigenvalue of the coefficient matrix A a- -
only two lincarly i ' pendent eiaenvectors, which we may take as
1 0
T £ = 2
2 =3

Write down two L rly independent solutions x4 () and x@ () of Eq. 1
(b) Tofindathird . ution,assume that x = &fe’ + pe'; then show that £ =~ - -

A-DE=0,

(A —-I)yp=¢.




