—t

21.

26.
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20. Assume that the system described by the equation mu” 4 yu' + ku = Qs critically damped

and that the initial conditions are 1(0) = uy, ' (0) = vy. If vy = 0,showthatu — 0 ast — co
but that « is never zero. If Uy 18 positive, determine a condition on vy that will ensurc that
the mass passes through its equilibrium position after it is released.

Logarithmic Decrement. (a) For the damped oscillation described by Eq. (26), show
that the time between successive maxima is T, = 2/

(b) Show that the ratio of the displacements at two successive maxima is given by
explyTy/2m). Observe that this ratio does not depend on which pair of maxima
1s chosen, The natural logarithm of this ratio is called the logarithmic decrement and is
denoted by A.

(c) ShowthatA = my/mu. Since m, 1. and A are quantities that can be measured casily for
amechanical system, this result provides a convenient and practical method for determin-
ing the damping constant of the system, which is more difficult to measure directly. In par-
ticular. for the motion of & vibrating mass in a viscous fluid, the damping constant depends
on the viscosity of the fluid; for simple geometric shapes the form of this dependence is
known, and the preceding relation allows the experimental determination of the viscosity,
Thisis one of the most accurate ways of determining the viscosity of a gas at high pressure,

Referring to Problem 21 .find the logarithmic decrement of the system in Problem 10.

. For the system in Problem 17, suppose that A = 3 and Iy = 0.3 5. Referring to Problem

21, determine the vaiue of the damping coefficient y.

. The position of a certain spring-mass system satisfies the initial value problem

%u” + ku =0, u0 =2, ') =
If the period and amplitude of the resulting motion are observed to be 7 and 3, respectively,
determine the values of k and .,
Consider the initial value problem

'+ v 4w =), w0y =2, w0 =0.

We wish to explore how long a time interval is required for the solution to become “neg-
ligible” and how this interval depends on the damping coefficient y. To be more precise,
let us seek the time 1 such that ()] < 0.01 for all t > r. Note that critical damping for
this problem occurs for y =2

(a) Lety =0.25 and determine T, Or at least estimate it fairly accurately from a plot of
the solution.

(b) Repeat part (a) for several other values of y in the interval 0 < ¥ < 1.5 Note that 1
steadily decreases as v increases for ¥ in this range.

(¢} Create a graph of 7 versus v by plotting the pairs of values found in patts (a) and (b).
Is the graph a smooth curve?

(d) Repeat part (b) for values of ¥ between 1.5 and 2. Show that r continues to decrcase
until y reaches a certain critical value y, after which t increases. Find vo and the
corresponding minimum value of t to two decimal places.

(¢) Another way to proceed is to write the solution of the initial value problem 1n
the form (26). Neglect the cosine factor and consider only the exponential factor and the
amplitude R. Then find an expression for t as a function of y. Compare the approximate
results obtained in this way with the values determined in parts (a), (b), and (d).

Consider the initial value problem

mu” + yu' 4 ku = 0. w(0) = up, w'(0) = .

Assume that y? = dlon.
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27.

(a) Solve the initial value problem.

(b) Write the solution in the form u() = Rexp(—yt/2m)cos(juir — §). Determine R ==
terms of m, v, k, tp. and vg.

(¢) Investigate the dependence of R on the damping coefficient y for fixed values of (=:
other parameters.

A cubic block of side { and mass density p per unit volume is floating in a fluid of mass de- -
sity py per unit volume. where o, > p. If the block is slightly depressed and then release-
it oscillates in the vertical direction. Assuming that the viscous damping of the fluid az.z
air can be neglected, derive the differential equation of motion and determine the peric:
of the motion.

Hint: Use Archimedes’'" principle: an object that is completely or partially submerge-
in a fluid is acted on by an upward (buoyant) force equal to the weight of the displace:
fluid.

. The position of a certain undamped spring-mass system satisfies the initial value proble=

u' 4+ 2u =0, w(@ =0, (=2

{a) Find the solution of this initial value problem.

(b) Plot it versus 1 and 1’ versus ¢ on the same axes.

(¢) Plot i’ versus u; that is, plot «(r) and w'(1) parametrically with 1 as the paramete”
This plot is known as a phase plot, and the wu/-plane is called the phase plane. Obser:
that a closed curve in the phase plane corresponds o a periodic solution w(f). What is 17::
direction of motion on the phase plot as ¢ increases’

. The position of a certain spring-mass system satisfics the mitial value problem

Wb 2 =0, w@ =0, w0 =2

(a) Find the solution of this initial value problem.

(b) Plot i versus r and &' versus f on the same axes.

(c) Plot i versus u in the phase plane (see Problem 28). Identify several correspondir.
points on the curves in parts (b) and (c). What is the dircction of motion on the phase p.-
as r increases?

. In the absence of damping, the motion of a spring-mass system satisfies the initial val=:

problem _
mu” + ku = 0. () =a, () =0b.

(a) Show that the kinetic energy initially imparted to the mass is mb?/2 and that 17
potential energy initially stored in the spring is ka®;/2.so that initially the total energy =
the system is (ka* = mb?)/2.

(b) Solve the given initial value problem.

(¢) Using the solution in part (b), determine the total energy in the system at any time
Your result should confirm the principle of conservation of energy for this system.

105 rchimedes (287-212 BC) was the foremost of the ancient Greek mathematicians. He lived in Syracus:
on the island of Sicily. His most notable discoveries were in geometry, but he also made important cont=-
butions to hydrostatics and other branches of mechanics. Fis method of exhaustion is a precursor of 12
integral caleulus developed by Newton and Leibniz almost two millennia later. He died at the hands o: .
Roman soldier during the Second Punic War.

L Ao b
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15. Find the solution of the initial value problem

W' u=Fr), uw(0) =0, ') =0,

e where

; Fyt, O<t<n,

i F(ty= S FyQmr—1), <t <2m,
0, 21 < ¢,

Hint: “Treat each time interval separately, and match the solutions in the differe-
intervals by requiring u and ' to be continuous functions of ¢,

16. A series circuit has a capacitor of 0.25 x 10~ F, a resistor of 5 x 10° Q.and an inductor
1 H. The initial charge on the capacitor is zero. If a 12-volt battery is connected to the ¢
cuit and the circuitis closed at r = 0, determine the charge on the capacitor at 1 = 0.00:
att = 0.01's,and at any time 1. Also determine the limiting charge ast — oo,

9’?"?/ 17. Consider a vibrating system described by the initial value problem

W'+ w4 2u = 2cos wr, u(0)y =0, ') =2

(a) Determine the steady state part of the solution of this problem.

(b) Find the amplitude A of the steady state solution in terms of w.

(¢) Plot A versus w.

(d) Find the maximum value of A and the frequency w for which it oceurs.

é"z 18. Consider the forced but undamped system described by the initial value problem
U +u = 3coswi, u0) =0, w0 =0

(a) Find the solution u(t) for o # 1.
(b) Plot the solution u(r) versus ¢ for w = 0.7, w = 0.8, and w = 0.9, Describe how tr.:
response u(f) changes as w varies in this interval. What happens as o takes on ve.-
ues closer and closer to 17 Note that the natural frequency of the unforced systex
is Wy = 1.

0?"2 19. Consider the vibrating system described by the initial value problem

1 +u = 3coswr, w@ =1, O =1

(a) Find the solution for w # 1.

(b) Plot the solution u(r) versus ¢ for w = 0.7, = 0.8, and w = 0.9. Compare the resul:s

with those of Problem 18; that is, describe the effect of the nonzero initial conditions.
0"?/ 20. For the initial value problem in Problem 18, plot «" versus u for w = 0.7, w = 0.8, ar:

w = 0.9. Such a plot is called a phase plot. Use a ¢ interval that is long enough so that th:

phase plot appears as a closed curve. Mark your curve with arrows to show the directicr
in which it is traversed as ¢ increases.

Problems 21 through 23 deal with the initial value problem
u’ 4+ 01251 + du = F(1), w@)y =2, ) =0

In each of these problems:

(a) Plot the given forcing function F (1) versus ¢, and also plot the solution «(r) versus ¢ on the
same set of axes. Use a ¢ interval that is long enough so the initial transients are substantialls
eliminated. Observe the relation between the amplitude and phase of the forcing term anc
the amplitude and phase of the response. Note that wq = Vkim =2.

(b) Draw the phase plot of the solution; that is, plot u’ versus u.




388

Chapter 7. Systems of First Order Linear Eq i ‘

1.3

we could have chosen x® as before and x™ by using ¢; = Land ¢y = —2ir = -
In this wav we obtain

1
=1 0, x¥=[-2
-1 1
as the cigenvectors associated with the eigenvalue A = —1. These eigent -2

orthogonal to each other as well as to the eigenvector xV that correspe - x
eigenvalue & = 2.

emmimivue ez i

PROBLEMS

In each of Problems 1 through 6, either solve the given system of equations, or e’s:
there is no solution.

l. AL — X3 = 0 2. Xy -+ 2&2 - X3 = 1

3\'» — A\ = X3 = 1 2X1 -+ A2+ X3 = 1

—N Ay 2y =2 Xp— X+ 2x3 =]

3. X 2.\'2 - X3 = 2 4. Xy + 2.\'2 — x3=0

20 X x3= 1 2x; =+ x x3=0

N = v =20 =1 Xy~ X2+ 2x3 =0
5 s - X3 = 0 6 X + 2,\’2 - X3 = -2
A+t xy =0 —2x; =4y, +2v = 4
42y =0 2x) +dyy = 2x; = —4

Ineach of Problems 7 through 11, determine whether the members of the given sz
are lincarly independent. If they are linearly dependent, find a linear relation :—
The vectors are written as row vectors to save space but may be considercd as col. 7w s

that is. the transposes of the given vectors may be used instead of the vectors the = « .
TV =(1,0,  x®P =011, xP=001)
Sox = (2.1,0), x® = (0,1.0), ¥ = (1,2,

9. x = (1.2,2,3), x¥ =(-1,0,3,1), X = (<2, -1, 1,0, XV =

I

10, x - =(1.2,-1.0), ¥ =(2,3,1, -1, X =(-1,0,2.2), X =
Lo x" =1¢1.2,-2), x®P = (3,1,0), XY= (2, -1,1), X = (4,3, -2

12. Suppose that cach of the vectors xV, . x" has n components, where n < -

X .....x" are linearly dependent.
In cach of Problems 13 and 14, determine whether the members of the givenset oo . ooua
linearly independent for —oo < t < 0o, If they are linearly dependent, find the lirz .- =
amony them. As in Problems 7 through 11, the vectors are wrilten as row vectors t- .. s

13, x i) = (e, 2¢7), XD = (e e, X3y = (3e,0)

14, x° vy = (2sint.sint), x@(f) = (sint,2sin )
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15.

Let

o 1
xV() = ( s x“%/Wr:(
te ¢

Show that x"(r) and x*/(r) are linearly dependent at cach point in the interval 0 < ¢ < 1.
Nevertheless, show that xV(7) and x¥(r) are linearly independent on 0 < r < 1.

In cach of Problems 16 through 25, find all eigenvalues and cigenvectors of the given matrix.

16.

22.

5 1 R
N 7.
<3 1) (4 7I>

1 0 o 2 2
2 -2 23 o4
32 1 —2 -4 1
11/9  =2/9 8/9 3 N 4
~2/9 2/9  10/9 25. ]2 N 2

8/9 10/9 579

r
BN
[o8]

Problems 26 through 30 deal with the problem of solving Ax = b when det A = 0.

26,

(a) Suppose that A is a real-valued 1 x n matrix. Show that (AX,y) = (x,A"'y) for any
vectors x and y.

Hint: You may find it simpler to consider first the case #1 = 2; then extend the result to an
arbitrary value of n.

(b) I A is not necessarily real, show that (Ax.y) = (x..\"y) for any vectors x and y.

(c¢) If A is Hermitian, show that (AX,y) = (x,Ay) for uny vectors x and .

. Suppose that, for a given matrix A, there is a nonzere vector x such that Ax = 0. Show

that there is also a nonzero vector y such that Ay = ().

28. Suppose that det A = 0 and that Ax = b has solutions. Show that (b, y) = 0, where yis any

solution of A"y = 0. Verify that this statement is true for the set of equations in Example 2.
Hint: Use the result of Problem 26(b).

. Suppose that det A = 0 and that x = x¥ isa solution of Ax = b, Show that if § is a solution

of A§ = 0 and « is any constant, then x = x'" + & is also a solution of Ax = b.

J. Suppose that det A = 0 and that y is a solution of Ay = 4. Show that if (b,y) = Oforevery

such y, then Ax = b has solutions. Note that this is the converse of Problem 28; the form
of the solution is given by Problem 29.

Hini: What does the relation A*y = 0 say ubout the rovs of A? Again, it may be helpful
to consider the case n = 2 first,
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To prove this theorem, note that the existence and uniqueness of the
b x™ mentioned in Theorem 7.4.4 are ensured by Theorem 7.1.C
hard to see that the Wronskian of these solutions is equalto 1 whent = -
xM L x" are a fundamental set of solutions.

Once one fundamental set of solutions has been found, other sets car -. .
ated by forming (independent) linear combinations of the first set. For - -
purposes, the set given by Theorem 7.4.4 is usually the simplest,

Finally, it may happen (just as for second order linear equations) tha: .
whose coefficients are all real may give rise to solutions that are comple
In this case, the following theorem is analogous to Theorem 3.2.6 and ens-
obtain real-valued solutions instead.

x!

Theorem 7.4.5 Consider the system (3)

A 8. 2R R

x' = P(1)x,
where each element of P is a real-valued continuous function. If x = u() —

a complex-valued solution of Eq. (3), then its real partu(s) and its imagir -
v(t) are also solutions of this cquation.

To prove this result, we substitute u(z) + iv(s) for x in Eq. (3). thereby o= -

X —POX=u'(t) -~ P(hu() + i V() = P(yvin)] = 0.

. We have used the assumption that P(¢) is real-valued to separate Eq.  ~
g its real and imaginary parts. Since a complex number is zero if and -
real and imaginary parts are both zero, we conclude that w'(r) — P(nyuir = -
vi(t) = P()v(r) = 0. Therefore, u{f) and v(r) are solutions of Eq. (3).

‘To summarize the results of this section:

TR

1. Any set of n linearly independent solutions of the system x' = P(r)x con:
fundamental set of solutions.

Under the conditions given in this section. such fundamental sets always exist.

3. Every solution of the system X' = P()x can be represented as a linear combina:. -
fundamental set of solutions.

Y
’ PROBLEMS I. Prove the generalization of Tl

L ey

weorem 7.4.1, as expressed in the sentence the

—mmmanme Eq. (8). for an arbitrary value of the integer k.
2. In this problem we outline a proot of Theorem 743 in the case v = 2. Let x - ..
be solutions of Eq. (3) fora < 1 =< #,and let W be the Wronskian of x'' and x -
. (a) Show that
: 7 idxg“ zix%z)“ /‘ Xt v |
ﬂ _ ‘ dr dt ‘ +
= | @ |
dt fdxy dx;
| NiE (2) ‘ < ’
2 *2 dr d
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{b) Using Eq. (3), show that

dW
— = : w.
0 (pn + p2)

(¢) Find W(r) by solving the differential equation obtained in part (b). Use this expression
to obtain the conclusion stated in Theorem 7.4.3.

(d) Prove Theorem 7.4.3 for an arbitrary value of n by generalizing the procedure of parts
(a), (b), and (c).

3. Show that the Wronskians of two fundamental sets of solutions of the system (3) can differ
at most by a multiplicative constant.
Hint: Use Eq. (15).

4. Ifx; = yand x; =y, then the second order equation

Yo+puy +qly=0 (1)
corresponds to the system

Xy =,

Xy = —g(t)xy — p(H)xa. (ii)

Show thatif x" and x® are a fundamental set of solutions of Eqs. (it), and if y and y@
are a fundamental set of solutions of Eq. (i), then W[y'D,y@] = ¢ W[x" x?], where cis a
nonzero constant.

Hint: y (1) and y@ (1) must be linear combinations of x1; (1) and xp2(f).

i

. Show that the general solution of X' = P(r)x + g(¢) is the sum of any particular solution x*#)
of this equation and the general solution x/ of the corresponding homogeneous equation.

)
6. Consider the vectors x'V(f) = (i) and x? (1) = <2[>.

(a) Compute the Wronskian of x*) and x@,

(b) In what intervals are x'¥ and x® linearly independent?

(¢) What conclusion can be drawn about the coefficients in the system of homogeneous
differential equations satisfied by x and x»?

(d) Find this system of equations and verify the conclusions of part (¢).

2 ¢
. e .
7. Consider the vectors x'V(t) = <; ) and x@ (1) = < />, and answer the same questions as
: e
in Problem 6. ! :

The following two problems indicate an alternative derivation of Theorem 7.4.2.

8. Let x™"....,x" be solutions of x' = P(f)x on the interval « < r < A. Assume that P is
continuous, and let t; be an arbitrary point in the given interval. Show that x®,, .. x™
are linearly dependent for @ < ¢ < gif (and only if) xV (#), . . ., x""' (1) are linearly depen-
dent. In other words x'”, ..., x are linearly dependent on the interval (a, g) if they are
linearly dependent at any point in it.

Hint: There are constants ci,...,c, that satisfy ¢:xP(f) + -+ ¢, x" (1) = 0. Let
2(t) = c;xV (1) + -+ + ¢, x" (1), and use the uniqueness theorem to show that z(t) = 0
foreachtrine <t < 8.

9. LetxM, ., x" be linearly independent solutions of x' = P(s)x. where P is continuous on

4
i
4
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form (27). provided that therc are n lincarly independent eigenvectors, but in general

‘ : all the solutions are complex-valued.

“IBLEMS In each of Problems 1 through 6:

(a) Find the general solut,on of the given system of equations and describe the behavior of
the solution as t — oc.

(b) Draw a direction field .und plot a few trajectories of the system,

. (3 2 Y
@Q 1.x' = (2 _2> X &l 2. x = (3 _4) X
2 -1 ] 1
¢ e ,ff,; (—
& 3 x <3 _2> X &0 4 x <4 ~2> X
: 5 3
Q'Q, S5.x = 2 : X & 6.x = : Sl
1 -2 v S

In each of Problems 7 and :
(a) Find the general solution of the given system of equations.

(b) Draw a direction field and a few of the trajectories. In each of these problems, the coef-
ficient matrix has a zero civenvalue. As a result, the pattern of trajectories is different from
those in the examples in the text.

- (4 -3 . (3 6
& Tx:(8 _6)x @/Z 8.x=<_] v2>x

[n each of Problems 9 through 14, find the general solution of the given system of equations.

o & I 0y 2 2+
. X = ¢ X = X
X _ ! X X -1 1

; 1 | 2 3 2 4

i o x' =11 2 11x 2.x =12 0 2 [x
: 2 1 1 1 2 3

! Lo Lo-1 4

i 13, x' = 2 I —=1]x 4. x' =13 2 —=1]x
g -8 =5 =3 2 1 1

2 each of Problems 15 through 18, solve the given initial value problem. Describe the behavior
~1 the solution as 1 — oo,

cv=(0 TN o : ox=(2 ! (o=
_\?‘.M3 1"\. x(() = 4 lxx—ﬁ5 4x,x,“3

0 0 -1 7
- (= 2 0 O0lx, x(@) =135
-1 2 4 5

he szcond order Euler equation (Section 5.4).
wvector. show that £ and r must satisfv

P . — .

nEoZvin ollaEl :g'_'-;
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Referring to Problem 19, solve the given system of equations in each of Problems . :u
23. Assume that ¢ > ().

2 -1 5 =1
O. (X = X . (' =
20. tx <? _2> X 21, tx (3 l) X

e [ 3 s e (3 2
Lo X = 8 6 X I, IX ) ) X

In each of Problems 24 through 27, ine eigenvalues and eigenvectors of a matrix A . -
Consider the corresponding system x' = Ax.

13

(a) Sketch a phase portrait of the svstem.
(b) Sketch the trajectory passing through the initial point (2, 3).

(¢) For the trajectory in part (b), sketch the graphs of x; versus f and of Xy VETi.  od
same sct of axes.

-1 - [
o M _ . Y — 2 .
24. F = 1, E = < 2> ) 2 2, 5 <2>

25. Fi

)
o
Il il
| —
—
oy
iy =
= it
H ——
— !
i RC—-
1 =
v
e ‘ I
I H
IS IS
e s
B B
| Il
SIS
\_/ \_/

1 . 1
27.n =1, s(”:(;z>; r =2, 8‘“’:<—2>

28. Consider a 2 x 2 system x' = Ax. If we assume that ry s ry, the generz. .o 1
x =0V D¢ provided that £ and & ® are linearly independent. - - -
lem we establish the linear independence of € and £® by assuming that the. - .4
dependent and then <howin th : this leads to a contradiction.

(a) Note that £ satisfies the matrix equation (A — rDEY = 0; similar> - . 1
(A~ g =,

(b) Show that (A — a1 =, — )@,

(¢) Suppose that &V and &' arc linearly dependent. Then GED gD =0

one of ¢; and ¢, (xuv ¢;) is not zero. Show that A =D v ey =0 o
that (A — 2D (¢ + @) = ¢ (r; — 1)€Y, Hence ¢; =0, which is a ccrvos. ¢
Therefore, £V and £ @ are lineartv independent.

(d) Modify the ariument of part (¢) if we assume that ¢, # 0

(¢) Carry out asimil.r argument for the case in which the order n is equal tc - -
the procedure cuu be  sicnood Lo oan arbitrary value of n.

29. Consider the equation
ay” + by +cy =0,

where a, b, and ¢ are constunts with @ # 0. In Chapter 3 it was shown that ©-. -
solution dependcd v the roots oof the characteristic equation

ar* +br + ¢ =0,

(a) Transform Eq. (i) into a system of first order equations by lettingxy = y.z: = =

. , . X
the system of equ-tions ¥ — Ax vntisfied by x = ( I).

R




