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6. Suppose that a tank containing a certain liquid has an outlet near the bottom. Let h(t)
be the height of the liquid surface above the outlet at time £, Torricelli’s? principle states

that the outflow velocity v at the outlet is equal to the velocity of a particle falling freely
(with no drag) from the height h.

(a) Show thatv = /2gh, where g is {he acceleration due t0 gravity.

(b) By equating the rate of outflow to the rate of change of liquid in the tank, show that
h(t) satisfies the equation

A(h)% = —aa/2gh, (i)

where A(h) is the area of the cross section of the tank at height 2 and a is the area of the
outlet. The constant o is a contraction coefficient that accounts for the observed fact that

the cross section of the (smooth) outflow stream is smaller than a. The value of « for watet
is about 0.6.

. _ : . (¢) Consider a water tank in the form of & right circular cylinder that is 3m high above
; the outlet. The radius of the tank is 1m, and the radius of the circular outlet is 0.1m.
If the tank is initially full of water, determine how long it takesto drain the tank down to
the level of the outlet.

7. Suppose that a sum Sp is invested at an annual rate of return r compounded continuously.
e ; : (2) Find the time T required for the original sum to double in value as a function of r.

p | : i (b) Determine Titr=7%.

(¢) Find the return rate that must be achieved if the {nitial investment is to double in
8 years.

( 8. iA young person with no initial capital invests k dollars per year at an annual rate of
return #. Assume that investments aré made continuously and that the return is
compounded continuously.

(a) Determine the sum S(f) accumulated at any time 1.
(b) IEr=175%, determine k so that $1 million will be available for retirement in 40 years.

(c) Uk= $2000/year, determine the retutn rate r that must be obtained to have $1 million
available in 40 yeats.

9. A certain college graduate borrows $8000 to buy a car. The lender charges interest at

an annual rate of 10%. Assuming that interest is compounded continuously and that

the borrower makes payments continuously at a constant annual rate k, determine the
payment rate k that is required to pay off the loan in 3 years. Also determine how much
interest is paid during the 3-year period.

1, A home buyer can afford to spend no more than $1500/month on mortgage payments.
Suppose that the interest rate is 6%, that interest is compounded continuously, and that
payments are also made continuously.

(a) Determine the maximum amount that this buyer can afford to borrow on a 20-year
mortgage; on a 30:-year mortgage.

(b) Determine the total intérest paid during the term of the mortgage in each of the cases
in part ().

—

‘Eyangelista Torricelli (1608-1647), successor to Galileo as court mathematician in Florence, published
: <ultin 1644, He is also known for constructing the first mercury barometer and for making important
sbutions to geometry.
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(a) Solve Eq. (1) and express u(f) in terms of t, k, Ty, T1, and .w, Observe that part of
your solution approaches zero as becomes large; this is called the transient part. The
remainder of the solution is called the steady state; denote it by S(1).

(b) Suppose that £ i measured in hours and that @ ='mr/12, corresponding to a period of
24 h for T(f). Further, let T, = 60°F, T = 15°F, and k = 0.2/h. Draw graphs of S(t) and
T(t) versusf on the same axes. From your graph estimate the amplitude R of the oscillatory
part of (). Also estimate the time lag © between corresponding maxima of T(r) and S{1).
(c) Letk,To, T, and w now be unspecified. Write the oscillatory part of S(¢) in the form
Recos{w(t — D] Use trigonometric identities to find expressions for Randt. LetThand
have the values given in part (b), and plot graphs of R and t versus k.

19. Consider a lake of constant volume V containing at time ¢ an amount Q(t) of pollutant,
evenly distributed throughout the lake with a concentration ¢(f), where e(t) = Q) /V.
Assume that water containing a concentration k of pollutant enters the lake at a rate r,
and that water leaves the lake at the same rate. Suppose that pollutants are also added |
directly to the lake ata constant rate P. Note that the given assumptions neglect a number
of factors that may, in some cases, be important—ior example, the water added or lost
by precipitation, absorption, and evaporation; the stratifying effect of temperature differ-
ences in a deep lake; the tendency of irregularities in the coastline to produce sheltered
bays; and the fact that pollutants are deposited unevenly throughout the lake but (usually)
at isolated points around its periphery. The results below must be interpreted in the light
of the neglect of such factors as these.

(a) If at time [ = 0 the concentration of pollutant is co, find an expression for the
concentration ¢(f) at any time. What is the limiting concentration as  — oo?

(b) If the addition of pollutants to the lake is terminated (k =0and P =0 fort > 0),
determine the time interval T that must elapse before the concentration of pollutants is
reduced to 50% of its original value; to 10% of its original value.

(c) Table23.2 contains data® for several of the Great Lakes. Using these data, determine

from part (b) the time T that is needed to reduce the contamination of each of these lakes
to 10% of the original value.

TABLE 2.3.2 Volume and Flow Data for the Great

.. Lakes

i Lake V (km® x 10%) r (km3/year)
Superior 122 65.2
Michigan 4.9 158
Erie 0.46 175
Ontario 1.6 209

ball with mass 0.15 kg is thrown upward with initial velocity 20 m/s from the roof of a
building 30 m high. Neglect air resistance.

(a) Find the maximum height above the ground that the'ball reaches,

(b) Assuming that the ball misses the building on the way down, find the time that it hits
the ground.

(c) Plot the graphs of velocity and position versus time.

—

6This problem is based on R. H. Rainey, “Natural Displacement of Pollution from the Great Lakes,
Science 155 (1967), pp. 1242-1243; the information in the table was taken from that source.
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22. (a) Verify that both y;(f) =1 - ¢ and y2(t) = —1*/4 are solutions of the initial value
problem
—t+ 2+ 4
y="T0TTW 0y =,
2
Where are these solutions valid?

(b) Explain why the existence of two solutions of the given problem does not contradict
the uniqueness part of Theorem 2.4.2. .

(¢) Show that y = cr + ¢?, where ¢ is an arbitrary constant, satisfies the differential
equation in part (a) for t > —2¢. If ¢ = —1, the initial condition is also satisfied, and
the solution y = y, () is obtained. Show that there is no choice of ¢ that gives the second
solution y = y,(#).

23. (a) Show that'¢(¢) = ¢ is a solution of ¥ =2y =0 and that y = ¢¢(¢) is also a solution
of this equation for any value of the constant c,

(b) Show that ¢(£) = 1/t is a solution of ¥ +y*=0for t > 0 but that Yy = c¢(t) is not
a solution of this equation unless ¢ = 0 or ¢ = 1. Note that the equation of part (b) is
nonlinear, while that of part (a) is linear.

24. Show that if y = ¢(¢) is a solution of Y +p®)y =0, then y = (1) is also a solution for
any value of the constant c, '

. Lety = y1(t) be a solution of
Y +p®y =0, (i)

and let y = y,(¢) be a solution of

Y +p@®)y =g@. (ii)
Show that y = y;(£) + y,(2) is also a solution of Eq. (ii).

26. (a) Show that the solution (7) of the general linear equation (1) can be written in the
form

Yy =cyi() + ya (D), @)

where ¢ is an arbitrary constant.
(b) Show that y, is a solution of the differential equation

Y +pt)y=0, (if)

corresponding to g(f) = 0.
(c) Show that y, is a solution of the full linear equation (1). We see later (for example,
in Section 3.5) that solutions of higher order linear equations have a pattern similar to

Eq. (i).

Bernoulli Equations, Sometimes it is possible to solve a nonlinear equation by making a
change of the dependent variable that converts it into a linear equation. The most important
such equation has the form

Y +p®)y =q@)y",

and is called a Bernoulli equation after Jakob Bernoulli. Problems 27 through 31 deal with
equations of this type.

27. (a) Solve Bernoulli’s equation when n = 0; whenn = 1.

(b) Show thatif n # 0,1, then the substitution v = ¥~ reduces Bernoulli’s equation to a
linear equation. This method of solution was found by Leibniz in 1696.
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1n each of Problems 28 through 31, the given equation is a Bernoulli equation. In each case
splve it by using the substitution mentioned in Problem 27 (b).
‘Fy’ +2p—y=0, >0

29. y=ry—ky*, r>0 and k > 0. This equation is important in population dynamics and is
@discussed in detail in Section 2.5.

y = ey —o0y’e>0 and o > 0. This equation occurs in the study of the stability of fluid
flow.

31. dy/dt = (Tcost + T)y — y?,where I" and T are constants. "This equation also occurs in the
study of the stability of fluid flow.

Discontinuous Coefficients, Linear differential equations sometimes occur in which one or
both of the functions p and g have jump discontinuities. If fo is such a point of discontinuity,
then it is necessary to solve the equation separately for ¢ < fo and t > tp. Afterward, the two
solutions are matched so that y is continuous at fo; this is accomplished by a proper choice of
the arbitrary constants. The following two problems illustrate this situation. Note in each case
that it is impossible also to make y' continuous at fo.

32. Solve the initial value problem

y +2y =80, y(0) =0,

o 1, 0<t=l,
EEES 0, t > 1.

where

33. Solve the initial value problem

y+p®y=0 yO =1

B 2, 0<t<l,
PR=1, t> 1.

where

2.5 Autonomous Equations and Population Dynamics

An important class of first order equations consists of those in which the independent
variable does not appear explicitly. Such equations are called autonomous and have
the form

dy/dt =f®). (1) i

We will discuss these equations in the context of the growth or decline of the popula- =
tion of a given species, an important issue in fields ranging from medicine to ecology &
to global economics. A number of other applications are mentioned in some of the = :
problems. Recall that in Sections 1.1 and 1.2 we considered the special case of Eq. (1)
in which f(y) = ay + b. i

Equation (1) is separable, so the discussion in Section2.2 is applicable to it, but the
main purpose of this section is to show how geometrical methods can be used to obtain &
important qualitative information directly from the differential equation without
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PROBLEMS

Oe

(a) (b)
FIGURE 2,58 Logistic growth with a threshold: dy/dt = —r(1 — y/T)(1 — y/K)y.
(@) The phase line. (b) Plots of y versus ¢.

A model of this general sort apparently describes the population of the passe
ger pigeon,!® which was present in the United States in vast numbers until late in t]
nineteenth century. It was heavily hunted for food and for sport, and consequently :
numbers were drastically reduced by the 1880s. Unfortunately, the passenger piges
could apparently breed successfully only when present in a large concentration, cc
responding to a relatively high threshold T'. Although a reasonably large number
individual birds remained alive in the late 1880s, there were not enough in any o
place to permit successful breeding, and the population rapidly declined to extir
tion. The last survivor died in 1914, The precipitous decline in the passenger pige:
population from huge numbers fo extinction in a few decades was one of the ea:
factors contributing to a concern for conservation in this country,

Problems 1 through 6 involve equations of the form dy/dt = f(y). In each problem sketch
graph of f(y) versus y, determine the critical (equilibrium) points, and classify each one
asymptotically stable or unstable. Draw the phase line, and sketch several graphs of solutis
in the ty-plane.
1. dy/dt = ay + by?, a>0, b>0, y=>0
2. dy/dt = ay + by?, a>0, b>0, —o0 <y <o
dy/dt =yy -1 -2), =0

Ldy/dt=e -1, —00 < Yy < 0
S.dyjdt=¢e7? -1, —00 < Yg < 00
6. dy/dt = —2(arctany)/(1 + %), —00 < Yo < 00

7. Semistable Equilibrivm Solutions. Sometimes a constant equilibrium solution has
property that solutions lying on one side of the equilibrium solution tend to approac

38ee, for example, Oliver L. Austin, Jr., Birds of the World (New York: Golden Press, 1983), pp. 143-
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whereas solutions lying on the other side depart from it (see Figure 2.5.9). In this case the

equilibrium solution is said to be semistable.
5 (a) Consider the equation
dy/dt = k(1 — y)?, @)
F‘ where k is a positive constant, Show that y=11is the only critical point, with the i)
{E_';i : corresponding equilibrium solution ¢ (¢) = 1.
2 (b) Sketch f(y) versus y. Show that y is increasing as a function of ¢ for y < 1 and also

for y > 1. The phase line has upward-pointing arrows both below and above y = 1. Thus

solutions below the equilibrium solution approach it,and those above it grow farther away.
Therefore, ¢p(t) = 1 is semistable,

() Solve Eq. (i) subject to the initial condition y(0) =y and confirm the conclusions
reached in part (b).

\

o) =k

¥
1)

(a) ¢ (b) L

FIGURE 2,59 In both cases the equilibrium solution ¢(¢) = k is semistable.
(@) dy/dt < 0;(b) dy/dt > 0.

Problems 8 through 13 involve equations of the form dy/dt = f(y). In each problem sketch
the graph of f(y) versus y, determine the critical (equilibrium) points, and classify each one
asymptotically stable, unstable, or semistable (see Problem 7). Draw the phase line, and sketch
several graphs of solutions in the ty-plane.

8. dy/dt = —k(y — 1)?, k>0, —oo<ys<oo

9. dy/dt = y*(y* — 1), ~00 < Yo < 00
10. dy/dr = y(1 — y?), —00 < Yy < 00
11. dy/dt = ay — b /y, a>0, b>0, y>0
12, dy/dr = y*(4 - yb), —00 < Yy < 00
13. dy/dr = y*(1 — y)?, —00 < Yy < 00

14. Consider the equation dy/dt = f(y) and suppose that y1 is a critical point—that is,
f(y1) = 0. Show that the constant equilibrium solution ¢ (¢) = y; is asymptotically stable
if f'(y1) < 0 and unstable if f(y;) > 0.
Suppose that a certain population obeys the logistic equation dy/dt = ry[1 — /K)l.
() Ifyy = K/3,find the time t at which the initial population has doubled. Find the value
of r corresponding to r = 0.025 per year.
(b) If yo/K = e, find the time T at which y(T)/K = B,where 0 < a, 8 < 1. Observe that

T —»ocoasa— 0oras B — 1, Find the value of T for r = 0.025 per year, @ = 0.1, and
B=0.9.
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16. Another equation that has been used to model population growth is the Gompertz"
equation

dy/dt = ryIn(K/y),

where r and K are positive constants.

(a) Sketch the graph of f(y) versus y, find the critical points, and determine whether each
is asymptotically stable or unstable.
(b) For0 <y = K, determine where the graph of y versus ! is concave up and where it is
concave down,

(c) Foreachyin 0 <y < K,show that dy/dt as given by the Gompertz equation is never

less than dy/dt as given by the logistic equation.

7 .
(a) Solve the Gompertz equation

dy/dt = ryIn(K/y),

subject to the initial condition y(0) = yo.

Hint: You may wish to letu = In(y/K).

(b) For the data given in Example { in the text (r = 0.71 per year, K = 80.5 x 10° kg,
- yo/K = 0.25), use the Gompertz model to find the predicted value of y(2).

(¢) For the same data as in part (b), use the Gompertz model to find the time 7 at which
y(r) = 0.75K.

18. A pond formsas water collects in a conical depression of radius a and depth k. Suppose that
water flows in at a constant rate k and is lost through evaporation at a rate proportional
to the surface area.

(a) Show that the volume V(#) of water in the pond at time ¢ satisfies the differential
equation

dv/dt =k~ an(Ga/mh)P VP,

where a is the coefficient of evaporation.
(b) Find the equilibrium depth of water in the pond. Is the equilibrium asymptotically
stable?

(c) Finda condition that must be satisfied if the pond is not to overflow.

19. Consider a cylindrical water tank of constant cross section A. Water is pumped into the
tank at a constant rate I and leaks out through 2 small hole of area a in the bottom
of the tank. From Torricelli’s principle in hydrodynamics (see Problem 6 in Section 2.3)
it follows that the rate at which water flows through the hole is aa+/2gh, where b is the
current depth of water in the tank, g isthe acceleration due to gravity, and o is a contraction
coefficient that satisfies 05 <a <10

(a) Show that the depth of water in the tank at any time satisfies the equation
dhjdt = (k — aa/2gh) /A,

(b) Determine the equilibrium depth h, of water, and show that it is asymptotically stable.
Observe that h, does not depend on A.

14Benjamin Gompertz (1779-1865) was an English actuary. He developed his model for population growth, !
published in 1825, in the course of constructing mortality tables for his insurance company. |
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PROBLEMS

i
———————
1

ach of Problems 1 through 8, find the general golution of the given differential equation.

.y“+2y’—3y=0 2. y”+3y’+2y=0
%6y”—y’—y=0 ' 4, 29" =3y +y =0
5 )y" +5Y =0 6. 4y" ~9y=0

7. y”—9y’+9y=0 8. y”—2y’—2y=0

In each of Problems g through 16, find the solution of the given initial value problem. Sketck 1
the graph of the solution and describe its behavior as ¢ increases. '
9.y +y =2y =0 yo =1, yO=1

10, y" 4y +3y = 0, yO=2 y () =-1

11, 6y" —5y +y=0, y(0) =4 Yy =0

12. y' +3y' =0, y(0) = -2, y'(©) =3

13, y' +5y' + 3y =0, y0) =1 y () =0

2y” Ly —ty=0, yO=0 yO) =1

(5)y +8y 9y =0 yy=1, ym=0

16, 4y —y=0, y-B= 1, y=2=-1

17. Find a difterential equation whose general solution is y = e + ce .

18, Find a differential equation whose general solutionis y = ce '+ cre™
65?/ 19. Find the solution of the initial value problem

y-y=0, YO = 5, yO = -3

Plot the solution for 0=<t<?2 and determine its minimum value.
20, Find the solution of the initial value problem

2y =3y +Y = 0, yO=2 Y (0) =3

Then determine the maximurm value of the solution and also find the point where the
solution is Ze10.

@Sol\'e the initial value problem yl—y -2y= 0, y(0) = o, ¥y (0) =2. Then find o so that E

the solution approaches zero as t — 00 E

72. Solve the initial value problem 4y" —y =0, y(0) =2, y'(0) = p Then find g so that the

solution approaches 2650 as f — 00 ]

In each of Problems 23 and 24, determine the values of o, if any, for which all solutions tend 1
zeroast — 00 also determine the values of &, if any, for which all (nonzero) solutions becoms E
unbounded ast — o :
23. y" — (- 1y +ale— 1y =0
24, ¥+ G- o)y —2a - Ny=0
é?, 15, Consider the initial vaiue problem

2 4+ W= 0, yOo=1 y(©0) =8

where 8 > 0.

(a) Solve the initial value problem. :
(b) Plot the solution when = 1. Find the coordinates (fo, yo) of the minimum point ¢ 3
the solution in this case.

(¢) Find the smallest value of B for which the solution has 10 minimum point.
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g:, Consider the initial value problem (see Example 5)
Y'+5y'+6y=0, y0 =2 y©O =8
where 8 > 0.

(a) Solve the initial value problem.

(b) Determine the coordinates #, and y,, of the maximum point of the solution as func-
tions of B.

(c) Determine the smallest value of 8 for which v, > 4.
(d) Determine the behavior of t,, and y,, as § — 0.

27. Consider the equation ay” + by’ + cy = d, where a, b, ¢, and d are constants.
(a) Find all equilibrium, or constant, solutions of this differential equation.
(b) Let y, denote an equilibrium solution, and let Y = y — y,. Thus Y is the deviation of
a solution y from an equilibrium solution. Find the differential equation satisfied by Y.
28. Consider the equation ay” + by’ + cy = 0, where a, b, and ¢ are constants with a > 0. Find
conditions on a, b, and ¢ such that the roots of the characteristic equation are:
(a) real, different, and negative.
(b) real with opposite signs,
(c) real,different, and positive.

as of Linear Homogeneous Equations; the Wronskian

In the preceding section we showed how to solve some differential equations of the
form

ay” + by +cy =0,

where a, b, and ¢ are constants, Now we build on those results to provide a clearer
picture of the structure of the solutions of all second order linear homogeneous
equations. In turn, this understanding will assist us in finding the solutions of other
problems that we will encounter later.

To discuss general properties of linear differential equations, it is helpful to intro-
duce a differential operator notation. Let p and g be continuous functions on an
open interval I—that is, for oo < f < 8. The cases for ¢ = —00, or 8 = 0o, or both,
are included. Then, for any function ¢ that is twice differentiable on I, we define the
differential operator L by the equation

Li¢] = ¢" + p¢’ + q¢. €]
Note that L[¢] is a function on I. The value of L[¢] at a point ¢ is
Ligl(1) = ¢" (1) + p()4' (1) + g(0)p @).
For example, if p(f) = t2,q(t) = 1 + ¢, and ¢(¢) = sin3t, then

L{p1(t) = (sin3t)” + *(sin3t)’ + (1 + ) sin 3¢
= —9sin 3¢ + 32 cos 3¢ + (1 -+ £) sin 3¢.
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#ithout solving the differential equation. Further, since under the conditions of The-
srem 3.2,7 the Wronskian W is either always zero or never zero, you can determine
#&ich case actually occurs by evaluating W at any single convenient value of 7.

-2 Example 5 we verified that y; (1) = /2 and y, () = ¢! are solutions of the equation
e 208" +3ty' —y =0, t >0, 29
wzaify that the Wronskian of y; and y2 is given by Eq. (23).

From the example just cited we know that W1, y2) () = =(3/2)t7*2. To use Eq. (23), we

=g

must write the differential equation (29) in the standard form with the coefficient of y" equal
o 1. Thus we obtain

/' 3
y +

—y — —y=0,
2t 2t2y

<z p(t) = 3/2t. Hence

W, y2) (1) = cexp {—/ % dt] = cexp <—§ lnt>

=ct™2, (30)
Equation (30) gives the Wronskian of any pair of solutions of Eq. (29). For the particular
solutions given in this example, we must choose ¢ = -3/2. '

Summary. We can summarize the discussion in this section as follows: to find the
general solution of the differential equation
Y+p®y +qy=0, a<t<S§,

we must first find two functions y; and y, that satisfy the differential equation in
« <t < f.Then we must make sure that there is a point in the interval where the
Wronskian W of y; and v2 is nonzero. Under these circumstances y1 and y; form a
fundamental set of solutions, and the general solution is

Y =cyi(t) + ey (1),

where ¢; and ¢, are arbitrary constants. If initial conditions are prescribed at a point
Ine <t < B, then ¢y and ¢, can be chosen so as to satisfy these conditions.

7>,L

In each of Problems 1 through 6, find the Wronskian of the given pair of functions,
1. e¥, ¢-32 2. cost, sint
R 4, x, xe*

‘sint, e'cos! 6. cos?8, 1+cos28

In each of Problems 7 through 12, determine the longest interval in which the given initial

value problem is certain to have a unique twice-differentiable solution. Do not attempt to find
the solution,

T rsy=y =1, yay=2
8. (¢t —1)y" =3ty + 4y = sin¢, y=2)=2, y(=2)=1
9. HE—4y +3y +dy =2,  y3) =0, y@) =-1

10. y" + (cos )y’ + 3(ln [ty =0, y2)=3, y2)=1

N
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1. (-3 +xy + Wby =0, y =0, y=1

12, (x =2 + y 4+ x - 2)(tan L)y = 0, y(3) =1, y(3) =2
solutions of the differential equaticn |

4 ¢yt~ is also a solution of this equats -

13. Verify that y1(t) = 2 and y2(t) = =1 are two
2y =2y =0fort > 0.Then show thaty = &*
for any ¢; and ¢z,

14, Verify that y1(f) = 1 and y2 (@) = (/2 are solutions of the ditferential equation i
'+ (y")> =0fort > 0.Then show thaty = c1 + ¢, t1/% isnot, in general,a solution of 5= 3
equation, Explain why this result does not contradict Theorem 3.2.2. &

15. Show that if y = ¢(®) is a solution of the di terential equation y” + pt)y +q)y = &=
where g(t) is not always Z€ro, then y = c¢ (), where ¢ is any constant other than 1,is nci&
solution. Explain why this result does not contradict the remark following Theorem 322 8

16, Cany = sin(f2) be a solution on an interval containing t =0 of an equation
Y 4 p@)y + gy = () with continuous coefficients? Explain your answet.

@If the Wronskian W of f and g is 3e¥, and if f(©) = e find g(®).

” [t the Wronskian W of f and g is ¢, and if f (1) = 1, find g(1).
andif u=2f —g.v=f+28 find the Wronskze

19, It W(f,g) is the Wronskian of f and g,
W (u,v) of u and v in terms of W(f,8)- . i
20, If the Wronskian of f and g is tcost— sint, and if u=J+ gv=f—8& find 1 ¢
Wronskian of u and v.
71, Assume that y; and y, aread fundamental set of solutions of y' +p@)y +q®y = 0andi
y3 = ary1 + doyp andys = byy1 + bayz, where ay, a2,b1, and b, are any constants. Show 155 £

W (ys,ya) = (@1b2 = aab)YW (y1,¥2)-

Are y; and yg also a fundamental set of solutions? Why or why not?

1n each of Problems 22 and 23, find the fundamental set of solutions specified by Thcoﬁj-._

325 for the given differential equation and initial point.

' +y —2y =0, to=0

23,y + 4y +3y = 0, to=1
Tn each of Problems 24 through 27, verify that the functions y; and y, are solutions of the gives |
differential equation. Do they constitute a fundamental set of solutions?
y' 4y = 0; yi) = cos2t, y.()= sin2t
25,y =2y +y = 0, yi(H) = e, wn)= te!
! 26. xty" —x(x +2)y + & +2)y=0, x> 0, y1(%) =X, ya(x) = xe'
27, (1 —xcotx)y” — xy +y=0, D<x<m, yi(x) =%, ya(x) = sinx

18. Consider the equation y" — y —2y=0.
(a) Show that y1(t) = e~ and y2(f) = ¢ form a fundamental set of solutions.

i:.'
26, ya(f) = y1(D) + 2y2(1), and ys(t) = 2y1() — 2y3(0). Are y3 (1), y:&

(b) Let y3() =
{utions of the given differential equation?

f
i and ys(f) also s0
R (¢) Determine whether each of the following pairs forms a fundamental set of solutics=

i@,y O 20,7301 1@,y [ya(®),ys(O1.
In each of Problems 29 through 32,find the Wronskian of two solutions of the given different
equation without solving the equation.
69) 2y’ — 1t +2)y + -+ = 0
é’ 22y 4 xy + =)y =0, Bessel’s equation
12, (1=xy" — 2xy' + ol + 1)y =0, Legendre’s equation

30, (cost)y” + (sint)y’ =ty = 0
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lf : @Show that if p is differentiable and p(#) > 0, then the Wronskian W (#) of two solutions of

o OYY + gy = 0is W(t) = ¢/p(t), where ¢ is a constant.

34. If the differential equation fy” 4+ 2y’ +te'y = 0 has y; and y; as a fundamental set of
solutions and if W (y1, y2)(1) = 2, find the value of W(y1,y2) ().

35.)1f the differential equation 2y" — 2y’ + (3 + t)y = 0 has y; and y, as a fundamental set of
solutions and if W(y1,y,)(2) = 3, find the value of W,y @).

36. If the Wronskian of any two solutions of y” + p(0)y' +¢q()y = 0is constant, what does this
imply about the coefficients p and ¢?

37. If f, g, and h are differentiable functions, show that W(fg,fh) = PWig,h).

In Problems 38 through 40, assume that p and ¢ are continuous and that the functions y; and

y, are solutions of the differential equation y” + p()y" + q(t)y = 0 on an open interval .

38. Prove that if y; and y, are zero at the same point in /, then they cannot be a fundamental
set of solutions on that interval,

19, Prove that if y, and y, have maxima or minima at the same point in /, then they cannot
be a fundamental set of solutions on that interval.

40, Prove that if y; and y, have a common point of inflection 1 in I, then they cannot be a
fundamental set of solutions on I unless both p and ¢ are zero at fo.

41. Exact Equations. The equation
Py’ + QW) + R(x)y =0
is said to be exact if it can be written in the form
[P@)yT + [F )y =0,

where f(x) is to be determined in terms of P(x), O(x), and R(x). The latter equation can
be integrated once immediately, resulting in a first order linear equation for y that can be
solved as in Section 2.1. By equating the coefficients of the preceding equations and then
eliminating f(x), show that a necessary condition for exactness is

P'(x) — Q'(x) + R(x) = 0.

Tt can be shown that this is also a sufficient condition.

In each of Problems 42 through 45, use the result of Problem 41 to determine whether the
given equation is exact. If it is, then solve the equation.
42,y +xy +y=0 43, y" 4+ 3x%y +xy =0

44, xy" — (cosx)y' + (sinx)y =0, x>0 45, 2%y +xy —y=0, x>0

46. The Adjoint Equation. Ifasecond orderlinear homogeneous equation is not exact, it can
be made exact by multiplying by an appropriate integrating factor 1 (x). Thus we require
that 12 (x) be such that

LEPE)Y + p0) Q@)Y + rRE)y =0

can be written in the form

[@PEYY + [F)y) =0. ]

By equating coefficients in these two equations and eliminating f(x), show that the ‘i
function ;4 must satisfy

Pu + QP — Q' + (P" = Q' + R =0




