TRAVELING WAVE SOLUTIONS OF SCHRODINGER MAP
EQUATION

FANGHUA LIN AND JUNCHENG WEI

ABSTRACT. We first construct traveling wave solutions for the Schrédinger
map in R?

om

¥ =m x (Am —m3é3) in R? x R

of the form m(z1,z2 — €t), where m has exactly two vortices at roughly
(12%70) € R? of degree £1. We use a perturbative approach which gives
a complete characterization of the asymptotic behavior of the solutions. With
a few modifications, the similar construction yields traveling wave solutions of
the Schrédinger map equations in higher dimensions.

1. INTRODUCTION

The aim of this paper is to construct traveling wave solutions for a class of
Landau-Lifshitz equations. We shall first concentrate on the two-dimensional trav-
eling wave solutions of the Schrédinger map equation

(1.1) %—T =m x (Am —m3&;) in R? x R
or equivalently the equation
0
(1.2) —m X 6—7: = Am — m3é3 + (|[Vm|*> + m3)m.

Here m : R? x R — S? so that |m(x,t)| = 1 and where &5 = (0,0,1) € R®.

The equation (1.1) (or equivalently (1.2)) is, in fact, the Landau-Lifshitz equa-
tion describing the planar ferromagnets, that is, ferromagnets with an easy-plane
anisotropy ([32], [36]). The unit normal to the easy-plane is assumed to be €5 in
the equations , see for example,[36]. Despite some serious efforts (see e.g. [14],
[15], [21], [20], [22] ,[9, 25, 37], [23, 24], [10, 11, 12, 13]) and the references therein),
some basic mathematical issues such as local and global well-posedness and global
in time asymptotics for the equation (1.1) remain unknown. If one is interested in
one-dimensional wave (plane-wave) solutions of (1.1), that is, m : R x R — §2 (or
S1), a lot were known as (1.1) becomes basically an integrable system (see [20] and
[8]). The problem in 2-D or higher dimensions are much more subtle. Even though
it is possible to obtain weak solutions of (1.1) (see [8]-[21], [34], [39]), one does not
know if such weak solutions are classical (smooth) or unique.

From the physical side of (1.1), one expects topological solitons, which are half
magnetic bubbles, exist in solutions of (1.1) (see [30] and [36]). Indeed, in [28]-][29],
we have established the corresponding static theory for such magnetic vortices.
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They are very much like vortices in the superconductor described by the Ginzburg-
Landau equation, see [6] and references therein.

Let us recall the essential features of vortex dynamics in a classical fluid (or a
superfluid modeled by the Gross-Pitaevskii equation, see [35]). A single vortex or
antivortex is always spontaneously pinned and hence can move only together with
the background fluid. However vortex motion relative to the fluid is possible in
the presence of other vortices and it displays characteristics similar to the 2-D Hall
motion of interacting electric charges in a uniform magnetic field. In particular, two
like vortices orbit around each other while a vortex-antivortex pair undergoes Kelvin
motion along parallel trajectories that are perpendicular to the line connecting the
vortex and the antivortex. This latter fact had been obtained in a special case
by Jones and Robert [31]. They also derived a three dimensional (3-D) solitary
wave that describe a vortex ring moving steadily along its symmetric axis. For
more precise mathematical proofs, we refer to [3], [5] and [4] for the case of Gross-
Pitaevskii equation.

The aim of this paper is to obtain similar result as those of [3] for the Landau-
Lifshitz equation (1.1). (In fact our proofs are completely different from [3]. This
also gives a new approach to [3].) We note that formal arguments as well as nu-
merical evidences were already presented in the work [36]. We should also note
that in the case of the initial date of (1.1) contains only one vortex (one magnetic
half-bubble), with its structure as described in the work of [28]-[29] very precisely,
the above discussions imply that the vortex will simply stay at its center of mass,
and a meaningful mathematical issue to examine would be its global stability. It
is, however, unknown to authors that whether such stability result is true or not,
see [23], [24],[25] for relevant discussions. On the other hand, it is relatively easy to
generalize the work of [33] to the equation (1.1) for the planar ferromagnets. One
may obtain the same Kirchhoff vortex dynamical law for these widely separated
and slowly moving magnetic half-bubbles, see [26] (as formally derived in [36] and
also [35] for the Gross-Pitaevskii equation) of solutions of (1.1).

In order to explain our main result, we consider two magnetic half-bubbles of
different orientations (i.e, a pair of vortex and antivortex) in an initial data for the
equation (1.1). When they travel (since we are looking traveling wave solutions)
in the same direction at the same speed, the “Lorentz force” will try to pull them
apart as the sign of charges are different. This force is proportional to the speed of
the motion (we shall fix a unit positive and negative charges at these two magnetic
vortices). Since the speed of the sound in the equation (1.1) is normalized to be 1
and, since we assume these magnetic vortices move rather slowly, we assume the
speed of motion of these vortices is €,0 < € << 1. Thus the size of the repelling
Lorentz-force between these two magnetic half-bubble is & C'e. This force must be
balanced out by the attraction force (since they carried different signs of charges).
The potential of this attraction force (later we will call it the renormalized energy
as that in [6] and [28]) is simply the log |p — g|, where p, ¢ are locations of vortices.
Thus the size of the attraction force world be ~ %, where d is the distance between
two vortices. From this discussion, we conclude that d ~ % (hence vortices are
widely separated and move rather slowly. It is therefore in the so-called particle
plus field regime of [35].)

Thus we are looking for a solution of the form m(zy,z2 — €t) (i.e, travel in the
xo—direction with the speed € > 0) of the equation (1.1). Then m must be a
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solution of

(1.3) —eg—;: =m X (Am — m3es).
After a proper scaling in the space, (1.3) becomes
b3}
(1.4) —6—;'::mx (Am—%ég),meﬂ@
or
(1.5) m X om _ Am — mas + (|Vm|? + m—g)m
' O1- €2 €2

Note that the distance between the two vortices of solutions of (1.4) or (1.5) is
of a unity size. The main result of the paper is the following

Theorem 1.1. For e sufficiently small there is a solution m € C>(R?,S?) of (1.4)
such that

(1.6) E.(m) = /R Lvmp + "2 )dr < oo

and that m has exactly two vortices at (*ae,0) € R2 of degree 1, where a, ~ %

For more precise description of m, we refer to the details in the proofs, in partic-
ular, the construction of approximate solutions in Section 2 and 3 below. Naturally
such solution m gives rise to a nontrivial (two-dimensional) traveling wave solution
of (1.1) with a pair of vortex and antivortex which undergoes the Kelvin Motion as
described above.

A similar result for the traveling vortex ring solutions are obtained in higher di-
mensions. More precisely, we consider the N—dimensional Schrédinger map equa-
tion
om

ot
and we look for traveling wave solutions of the type m(z , znx — ct) to (1.7). Then
m must be a solution of

(1.7 =m x (Am —msé;) in RV x R

om

(1.8) —cawN

=m X (Am — m3es).

Our second result concerns (1.8).

Theorem 1.2. Let N > 3 and ¢ = (N — 2)e|log %| Then for € sufficiently small
there is an azially symmetric solution m = m(|z'|,zx) € C°(RY,S?) of (1.8) such
that

1
(1.9 E.(m) = /RN §(|Vm|2 + %)dm < o0

and that m has ezactly one vortes at (|z'|,zn) = (ac,0) of degree +1, where a. ~ %.

Solutions constructed in Theorem 1.2 are called traveling vortex rings. For more
precise asymptotic behavior of the solutions, we refer to Theorem 7.1 of the last
section.
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We end the introduction with some discussions. In the papers [3] and [4], Bethuel
and Saut (when N = 2), Bethuel, Orlandi and Smets (when N > 3) constructed
traveling wave solution for the Gross-Pitaevskii equation
ou
ot
Their method is variational. First they constructed a mountain-pass value for
the energy functional (in bounded domains) and used variational method and fine
estimates to prove the existence of traveling wave solutions to (1.10) with small
speed. Here we use a completely different (and more direct) approach to prove
Theorems 1.1-1.2. Our method gives more precise asymptotic behavior of solutions
as the speed approaches zero. This may yield more information on the spectrum,
uniqueness and dynamical properties of the traveling wave solutions. This method
can be easily adopted to give a different proof of the existence of traveling wave
solutions to (1.10).

(1.10) =Au+u— |[u]?u, in RY xR

2. OUTLINE OF THE PROOF

Before we go to the detailed proofs, we sketch our approach and some key points
involved in each steps.
Setting u = ™tt2  Then (1.3) becomes

14+ms3
. Ou 1—|ul? 24
2.1 —+A =
(2.1) Z€6x2+ u+1+|u|2u 5 [P

where we look for solutions u satisfying

Vu - Vu

(2.2) u(z) > 1 as|z| = +oc.

Here and throughout the paper, we use u to denote the conjugate of v and use
2z = 1 + iT> to denote a point in R2.

When € = 0, (2.1) admits solutions of vortex of degree +1,i.e. u = w™ := p(r)e?,
where p satisfies

vop 2p(p)? 1.1-p?
2.3 — — 1-—= =0.
(2.3) o -
Another solution w™ := p(r)e™* will be of vortex of degree —1.

Theorem 1.1 follows from the following theorem.

Theorem 2.1. For e sufficiently small, problem (2.1)-(2.2) has a traveling wave
solution u. with the following asymptotic behavior

(2.4) ue =wt(z —d.&))w (2 +d.€1) + b
where

1+ o0(1)
(2.5) de=—5—", [|¢cllLe(mz) = o(1)

2e
for any p > 2.

Theorem 2.1 is proved by a finite dimensional reduction method. The basic idea
is as follows: we look for solutions of (2.1) in the form

(2.6) u=w" (2 —dé)w (z+dé) + ¢

where ¢ is small in suitable norms, and d ~ % is suitably chosen. We achieve this

in two steps:
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Step 1: For d large and € small, we look for a ¢ = ¢, 4 and a Lagrange multiplier
¢ = c¢(d) such that
(2.7)

zeau + Au — Vu - Vo + 212 u = c(wh(z —déy)w™ (2 + dé)),

1+\u|2 1+\u|2

u=wT(z —dé)w (z +de1) + ¢,

Re([g2 2 (w(z — dé1)w(z + déy))) = 0.

This step is done through a priori estimates and contraction mapping theorem.
The key element in this step is the nondegeneracy of wt, which will be proven
in the appendix. This seems to be new and may be of independent interest.

Step 2: We solve the reduced equation for the Lagrange multiplier
(2.8) ce(d) = 0.

By choosing suitable d = d, &~ 3-, we find a zero of the function c.(d). This step is
done through a balancing condition of between the Lorentz force and the interaction
of vortices.

This finite dimensional reduction procedure has been used in many other prob-
lems. See [16], [19], [27] and the references therein. M.del Pino, Kowalczyk and
Musso [17] were the first to use this procedure to study Ginzburg-Landau equation
in a bounded domain. We adopt this approach to the Schrédinger map equation.

The organization of the paper is as follows: In Section 3, we introduce some basic
notations and estimates. We consider the set-up of the problem in Section 4 and
we solve the projected linear and nonlinear problem (2.7) in Section 5. In Section
6, the reduced problem (2.8) will be solved. In Section 7, we prove Theorem 1.2.
The nondegeneracy of wt is proved in appendix.

3. SOME PRELIMINARIES

In this section, we collect some important facts which will be used later. First
we introduce the solution operator and the symmetry space. Then we study the
nondegeneracy of degree one vortex. Using degree one vortex, we introduce the
approximate solutions. Finally we give a detailed estimate of the approximate
solution, including its composition and decaying properties.

3.1. Symmetries and Solution Operator. First, we write the equation (2.1) in
operator form. Let us define two solution operators

(3.1) Sofu] = Au — 1+2| g Vuvu + f(u),
(3.2) S[u] = So[u] + ieg—ai’

= L-uf?
where f(u) = Tz -
It is easy to see the operator S is invariant under the following two transforma-

tions

(3.3) u(z) = u(2), u(z) = u(-2).
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Thus we impose the following symmetry on the solution u

(3.4) Y= {u(z) = u(2), u(z) =u(-2)}.

This symmetry will play an important role in our analysis.

3.2. Nondegeneracy of degree one vortex. Next, we need to study the non-
degeneracy of the degree one vortex w™. For simplicity, from now on, we use
w = p(r)e?? to denote the degree +1 vortex. We also assume that o € (0,1) is a
fixed and small constant.

The following properties of p are proved in [28].

Lemma 3.1. (1) p(0) = 0,0 < p(r) <1,p >0 forr >0,
(2) p(r) =1-— co% +O(r=3/%2e7") as r — 400, where ¢y > 0.

Setting w = w; + tws, then we need to study the following linearized operator
of Sy around w:

Lo(¢) = Ag

4V{w, @) 8{w, @) (w1 Vwy + waVws)
T Trwp VT A+ [w?)?
UVw,V9) 4L+ |Vul*)(w,e)
T+ o T+ wp?
2 _ 2
2|Vuw| ¢+1 |w] 4.

1+ |w|? 1+ |w|?

4(’11)1 Vwi + ws VLUQ)
1+ [w]?

Vo

Vw

The nondegeneracy of w is contained in the following theorem, whose proof will
be delayed to the appendix.

Theorem 3.1. Suppose that

(3.5) Lo[¢] =0,
where ¢ = iwy, and Y = 11 + iy satisfies the following decaying estimates
(3.6) [91] + [2]| Vet | < C(L+[2]) 7, [iha] + |2]|Veha| < O+ [2]) 17,
for some 0 < o0 < 1. Then
ow Ow
¢ = Cla—m1 + 26—332

for certain real constants ¢y, ¢s.

3.3. Approximate Solution. Using the degree one vortex, we introduce the ap-
prozimate solutions.
Throughout the paper, we assume that the distance d satisfies

~

d 5 1
3.7 d= - here d € [—,100].
(3.7) _»  Where 6[100, ]
The approximate function is then defined by
(3.8) Vi(z) = wt(z — déy)w™ (z + dé}).
It is easy to see that Vy(z) € X.
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We also define the approximate co-kernel

= 0
) Z.= ]
(39) 1= Val?)
Then Z; € ¥. Furthermore, a simple computation shows that
(3.10) Va(z) = 1 as |z| = +o0.

In fact, for |z| >> d, we have
Vd ~ e’iadgl 71.19_‘.12-1
(22 — d? + 23 + 2iz2d)
V(e —d)? + 23/ (21 + d)? + 23
d? d
).

r 1+0(—+—
212 [l
Here 6; denotes the angle argument around § and ¢ = |z — §|. It is easy to see
that

(3.11) Vre =

Q

(=€), Ve = (= — . IV8| =

1 1
lz = ¢l |z —¢|
where we denote 2zt = (—z3, 7).

3.4. Error Estimates. We plug in the approximate function (3.8) into the solution
operator S and obtain the error
. OV,
(3.12) Eg := S[Vy] = So[Vi] + ie=—.
(9.1'2

Our purpose in this subsection is to estimate this error E;.

By our construction and the properties of p, we have
(3.13) Vy = el =0-de) (1 4 O (e~ min(lz—derl.|z+der))y)
We divide R? into two regions: R2 = {z; > 0}, R% = {z; < 0}. By our symmetry
assumption, we just need to consider the region ]Ri.

In the region R2 , we consider two cases. First, if |z + dey| > % + m, then
we have

Vi = w(z—dé)e -1 (1+ O(e=¥/?17-d41l/2y)
Vil = p(lz = déf)(1 + O(e=9/2- == del/2y),
Secondly, if |z + dé1| < 4 + @, we rescale the variable as follows
z =dé; +y.
Then we obtain the following estimates
1—|Val? 1—p? —d/2—|y|/2\\ . —i0_ az
—V B w(1 + Ofe /2—y|/ e ’l—de17
Y = oo )
w )
A = [(Aw—-=2i VO 4o — —————— + O(e~ %2 lul/2 —if-az,
Va ( w—2iVw - VO_g4z, |y+2dé’1|2+ (e )]e 1
2‘7(1 2'11_) —i0 ~
————=VVy-VVy = W-az
T+ V2 eV 120
x |Vw - Vw — 2iwVw - VO_gz, — w>VO_gz, - VO_gz,

+ O(e 42172y,
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Combining the estimates above, we have for z € R? ,

(3.14)
Cib_as, | 2007 = 1) PPl w _aj2-
SalVil = 10_gqz Vo _ 2 (0] da/2—y|/2 A
olVal = e | =g Ve Vi & e aag e T O )
On the other hand, we can estimate the derivative term % as follows
ieg_rz — ie@iyz lw(y)e—ie—d€1 + O(e—d/2—9|/2)]

ie la_w _ iwae——da] e i0-az 4 0(6e*d/2*|y|/2)

6:1/2 61/2
where
0 y1+2d 1
3.15 gy, = — " = O(2) = Oe).

In summary, we have obtained for z € R% , 2 = dé; +y

.0V
S[V4] = SolV, —
[Va] = Sof d]+l€8w2
(3.16)
o 2002 1), p? -1 w . Ow 00_g4z e
— o t0—az | 2\F T 7) VO = i T —da d/2—|yl/2y]|
e 1 1 iVw-V _d61+p2 1y 2da +zeay2—|—ew 02 +0(e )

A similar (and almost identical) estimate also holds in the region z € R2 .

4. SET-UP OF THE PROBLEM

Now we introduce the set-up of the reduction procedure.
We look for solutions of (2.1)-(2.2) in the form

(41) u(y) = n(Va + iVap) + (1 —n)Vae™
where 7 is a function such that
(4.2) (Iz — déi]) +7i(|z + dé1 )

n=1
and 7j(s) = 1 for s <1 and 7(s) = 0 for s > 2. This nonlinear decomposition (4.1)
was introduced first in [17] for Ginzburg-Landau equation.
The symmetry imposed on u (see (3.4)) can be transmitted to the symmetry on

(2
(4.3) P(2) = —¥(2), P(2) =(-2).
This symmetry will be important in solving the linear problems. It excludes all but

one kernel.
We may write ¢ = ¥; + i with 11,1 real-valued. Setting

(4.4) v=Va+¢, ¢=niVap+ (1—n)Va(e” —1).
In the inner region {z € B;(dée1) U By(—de)}, we have
(4.5) u=Vg+¢

and the equation for ¢ becomes
(4.6) La[¢] + Na[¢] = Eq
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where

(4.7) ] ) -

Lalg] = A¢—%VVdV(ﬁ—#&PVVJVVM-WV%-VW%— F (Ve
(48)  Nalg] = f(Va+ @) - f(Va) - f%W+maﬂwwmyH%%

(4'9) Eq = —S[Vd].

In the outer region {z € (B2(dé;) U B2(—dé1))¢}, we have u = Vze'¥. By simple
computations we obtain

S[Vdei‘/’] 1-— |Vd|2 + |Vd|2(672¢ — 1)
_ = A 2 .
inew ’¢ + Vd(l + |Vd|2e—2¢2) VVd V’lvb
1 2|Val*Va(e *> — 1) . [Va2(1 — e~ 2¥2)
— VVy-VVy—1i2
Va U+ [VaP) (1 + [VaPe202) 4 4 T A VaPe20) (T + [VaP)
_Z(Ld'? 1)V - Vo
14 |Vg|2e—2¥2
oY By
+Z€6—IL’2 + m
We can also write it as
(4.10) Lo[¢)] + M1 [y] + No[y] =
where
. 2(1 — |Vy|?) 43V 1y AV 24,
L = A - " ’VV;-V — = VVy VVy— i
0[] Y+ T [V 1V + L+ [VaP)? d d Z(1+|Vd|2)2
- 1 . _
My = —V%D-VVdO(¢2)+0(IIVd|2 — 1]+ [12))| Ve - V| +i0(Je™¥2 — 1 + ¢o])
. a¢
No[y] = 266—332
. Eq4
E;, = ———.
d iVy

Recall that ¢ = 91 + i1)>. Then setting z = dé; + y, we have for z € R},

. Ay + O( ~WhIvy
(4.11) Lolvl = (sz - e ;2 +0|(e |’~‘)W2>

a+vaP)?

O(e_ly”V"p ’ VW + |¢'2|2 (1+|1y|)2 + |¢'2| 1+1\y\ |V¢|)>
O(e™ M|V - Vbl + [a] [V - V| + [¢a]?),

—— (%y
(4.13) No[¢] = oy

O(e| Gy

win =

Let us remark that the explicit form of all the linear and nonlinear terms will be
very useful for later analysis.

A direct application of (3.14) and (3.16) yields the following decay estimates for
the error Ey:
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Lemma 4.1. It holds that for z € (Bz(dé1) U B2(déy))°

061_‘7 N 061_‘7
1+ |z—de1)? " (1+|z+d&|)?’

(4.14) |Re(Eq)| <

Cel—° N Cel—°
(1+ |z —déi))*e 1+ |z +dé|)rte’

where o € (0,1) is a constant.

(4.15) |Im(E)| <

Proof: Since

5o SoVa &t
¢ iVy Va'

the estimates for the first term follows from (3.14). We just need to estimate the
second term.
Let us compute for z € R2

i Va i Op(z—der)e*am ~*—am
oo — oo + O(ee™ #7901 4 o= /mHdal)
’LVd ZVd
9p(|z—déi])
oz, . 0(04s, —0_qe 5 5
- ¢ 2D e ( dér de1) +O(ee—\z—d61| +€e—|z+del\)
oz — déi)) 9

T —d 1 +d

= O(ee~ #9014 ge~l2Hdanl) 4 e - .
( ) (x1 —d)? +23  (z1+d)?+23

(4.14) then follows.
Let us notice that for z € R , |z — dé| < d,

(4.16)
r1—d T +d 1 1— 1
& — <lCe7—75—< < 7 .
Yo+ mrdp s = avp—daa) 5 Trp-dap
On the other hand, for z € R ,|z — dé1| > d, we then have
(4.17)
1 —d 1 +d € et=e

‘o merar+a =Carr—dy SCave—dap
Thus (4.15) is proved.
Finally, we will need the following lemma on decay estimates of a linear probler?l
in R2.
Lemma 4.2. Let h satisfy
(4.18) Ah+ f(2) =0,h(2) = =h(z),|h| < C

where [ satisfies

c
(419) |f(2)| S W,O <o<l1.
Then
(4.20) |h(2)| < ¢

A+



TRAVELING WAVE SOLUTIONS 11

Proof: By Poisson’s formula,

1 1z -yl
(4.21) h(z) = —/ log fy)dy.
2m {y2>0} |Z - yl

Because of (4.19), h(z) — 0 as z = +o0.
We construct suitable super-solutions on {z3 > 0}. Then the result will follow
from Maximum Principle. In fact, let

ho(2) = ']
where 7 = |z| and the parameters are chosen so that
(4.22) B+y=—-0,0<0o<y<L
Then simple computations show that
Aho Pz (8% +2B7)r > +v(y - Va3 )
—CrPz(r 2 4+ 2;%) < —CrP 1zt
—Crftr—2 < —-C(1+ |z|)ﬂ+'r—2‘

IN IA

where we have used (4.22).

5. PROJECTED LINEAR AND NONLINEAR PROBLEM

In this section, we solve a projected linear and nonlinear problem.

First, we introduce some weighted Sobolev norms. Let us fix two small positive
numbers 0 < v < 1,0 < ¢ < 1. Recall that ¢ = iVyp,v = 91 + itp2. Denote
rj = |2 — P;j| where P, = dé1, P, = —déy, and define

2 2
(5.1) 9l = DMl <)+ D 195llcrr<s)

ji=1 j=1
2
+ D |l illze 52 + ||T§+”V¢1||L°°<n>2)]
=1
2
+Z 73t hallLoe(ry>2) + 1757 V| oo r, >2)]
=1

2 2
(5.2) [1hllex =D NiVahllooo(ry <3y + D UrF T hull oo (ry>2) + 7T hall oo ry 52)]-
j=1 j=1

We remark that the choices of these norms are motivated by the expressions of
(4.12)-(4.13).

Let 7 be defined as in (4.2) and R > 0 be a fixed large positive number. We
define
0V |z —dé]| _ |z + déi|
In this section, our aim is to solve the following projected problems:
{ S[Vd + gé] = CZd

Re([p29Zq) = 0.

(5.3) Zg :

(5.4)
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5.1. Projected Linear Problem. First, we need to consider the following linear
problem

-EO W) = h in Rz;
(5.5) Re(fp20Z4) =0
¢ = iVah, 1 satisfies the symmetry (4.3).

We have the following a priori estimates.

Lemma 5.1. There ezists a constant C, depending on v, only such that for all €
sufficiently small, d ~ %, and any solution of (5.5), it holds

(5.6) 1]« < C||h][sx-

Proof: We prove it by contradiction. Suppose that there exists a sequence of
€ = €, — 0, functions 9™, h,, which satisfy (5.5) with

(5.7) 19" 1« = 1, [|An[lx = o(1).
By the symmetry assumption (4.3), we have ¢ (z1, —z2) = —¢1(21,%2), V1 (—21,22) =

1 (21, 22), Y2 (21, —22) = Yo (@1, T2), Yo (—21,22) = Ya(21,22). We may just need
to consider the region

Y= {ZL‘1 >0}.

Then we have
(5.8) Re( [ énZa) = 2Re(/ $nZa) = 0.
R2 p)

We derive inner estimates first. Let z € ¥,z = dé +y and ¢, (y) = én(2). Then
as n — +00,

(5.9) Va=wb(y)e -1 (1 4+ 0(e~?)) = —wt (y) + o(1).
Since [|¢)™||, = 1, we may take a limit so that ¢, — ¢ in R? ., where ¢ satisfies
(5.10) Lo[do] = 0

where Ly is defined by (3.5). Observe that ¢o satisfies the decay estimate (3.6)
because of our assumption on ™.
By Theorem 3.1, we have

p ow + Ow
o=Cg—-t+ca—.
Oy Oy»
Observe that ¢ inherits the symmetries of ¢ and hence ¢o = ¢o(Z). (The other
symmetry is not preserved under the transformation z = dé; + y.) But certainly
g—;‘; does not enjoy the above symmetry. Hence ¢y = clg—;‘i.
On the other hand, taking a limit of the orthogonality condition Re( [5, ¢Z4), we

obtain Re( fRz 605—;‘1) = 0. This implies that ¢; = 0 and hence we have

(5.11) ¢n =0 in R
which implies that for any fixed R > 0,
(5.12)

(P11l zoe (r;<r) + P2l L0 (r; <r)) + [IVB1llLo0(r; <) + IV P2l Lo (r; < r)) = 0(1).

2
=1

J
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Next we shall derive outer estimates: let 7j be a cut-off function such that 7j(s) = 1
for s <1 and 7j(s) =0 for s > 2. We consider the new function

~ _ |z — dé; |z + dé;

§=ux(z), where x(z) = 1 - 7(E =2 2L 4l

Using the explicit forms of Lo in (4.11), the first equation becomes
(5.13) Apy = O(e™")| V| + O(VxVe) + 041 AX) + hax.

On the region R% \(By(d€}) U B4(—dé1)), we have ¥y = 0 on O(R3 \(By(dey) U
B4(—dey))). Moreover we have

Vx - V| = o(1)(|2 — déi * + |z + dé )~ "F

and hence

(5.14) |G| < C(lAllux + 0o(1)) (|2 = d&1? + |z + déy[2)~F*
Now we consider the following barrier function

(5.15) B(2) := |z — dé&|Pz] + |2 + déy [Pz

where f+v=—-0,0<0 <y<1.
Similar to the computations in Lemma 4.2, we obtain that

(5.16) AB < —C(|z — d&1|* + |z + d&1|>)~ ="
By comparison principle on the set R2 \(B4(dé1) U B4(—dé})), we get that
(5.17) [91] < CB(||hlles +0(1)), ¥ 2 € RE\(Ba(dér) U Ba(—dér))
and for any o < 1. Elliptic estimates then give
2
(5.18) DIVl oy 5y < ClAllx + 0(1))-

j=1
To estimate 12, we perform the same cut-off and now the second equation be-

comes

(5.19)
AT AL
-

(1+Val?)
Since for z € R% \(By(dé,)UB4(—dé)), % > 1, by standard elliptic estimates
we have

(5.20)

[¥2llLee(ry>a) < ClWall Lo (ry=a)) X + 1[I [Rllwe) (1 + |2 — déy| + |2 = dér]) ™17

(5.21) [Veo| < C(l[W2llpoo(ry=r)) (1 + 811 IAlls) (1 + |2 = déi| + |2 = d&r]) 77

Combining both inner and outer estimates in (5.11) and (5.17)-(5.21), we obtain
that [|¢||« = o(1), which is a contradiction.

)V¢1+O(67|y|)V¢2++O(VXV¢2)+O(A¢2) = hax .

ha+0
PO

O
We consider now the following projected linear problem
Lo(y) = h—}—cZ.ZT‘Z in R?,
(5.22) Re(fpe $2%) = 0
1 satisfies the symmetry (4.3).

We state the following existence result for the projected linear problem.
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Proposition 5.1. There exists a constant C, depending on v,c only such that for
all € sufficiently small, the following holds: if |||+« < 400, then there exists a
unique solution 1 = T¢(h) to (5.22). Furthermore it holds that

(5.23) ITe(R)[l« < CllAlles

Proof: The proof is similar to that of [Prop. 4.1,[17]]. Instead of solving (5.22) in
R?, we solve it in a bounded domain first:

Lo(y) = h+c in B (0),
av,
(5.24) Re([p,, ¢%5q)
¢ =iVau, zp satlsﬁes the symmetry (4.3)
¢ =0 on 0By(0)
where M > 10d. By the same proof of a priori estimates, we also obtain the
following estimates for any solution ¥y of (5.24):

(5.25) l¥azllx < Cllh]sx-

By working with the Sobolev space H{(Ba(0)), the existence will follow by
Fredholm alternatives. Now letting M — +o00, we obtain a solution to (5.22) with
the required properties.

O

5.2. Projected Nonlinear Problem. Finally, we consider the full nonlinear pro-
jected problem

Lo[y] + Ni[y] + No[y] = Eq + ey Za
(5.26) Re( fus $74) = 0
1) satisfies the symmetry (4.3)

Using the operator T defined by Proposition (5.1), we can write (5.26) as

(5.27) ¥ =Teo (=Ni[¢] = Na[¢] + Eq)
which is equivalent to
(5.28) P = G[Y]

where G, is the nonlinear operator at the right hand side of (5.27).
Using Lemma 4.1, we see that

(5-29) 1Edllex < Ce' .

Let
(5.30) b eB={yll. < Ce7);
then we have, using the explicit form of N[¢] at (4.12):
(5.31) 1N [][|r < Ce.

On the other hand, we note that
N[ [l = (175777 Nog [l oo (ry 52y + 175777 Noo[@]l| ooy >2)
where Ny = Ny 1 + iNa 5. Now ig ~ ‘M = %2 4 ;0 ang

8:1}2 3.’51
.0 -
gl < 120 S22

03 1
67:2”** < | Leo(r>2) + I T ||L°°(r1>2) < Cllpll«
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Therefore, we obtain

(5.32) IGe[#]ll« < CUNLlex + IN2[P]llx + [ Ealth]lln) < Ce' =7
Similarly, we can also show that
(5.33) IGe[¥'] = Gl MMl <o)l — " ||+

for all ', 9" € B.
By contraction mapping theorem, we conclude

Proposition 5.2. There exists a constant C, depending on v, only such that for
all € sufficiently small, d large, the following holds: there exists a unique solution

Ve to (5.26) and 1. satisfies
(5.34) [¢elle < Ce' 7.
Furthermore, . q s continuous in d.
6. REDUCED PROBLEM AND THE PROOF OF THEOREM 2.1

We now solve the reduced problem. From Proposition 5.2, we deduce the exis-
tence of a solution (¢, ¢) = (¢e,q,ce(d)) to

(6.1) S[Vd + (ﬁe,d] =3 [¢e,d] + Ny [¢e,d] + S[Vd] = Ce(d)Zd.
Multiplying (6.1) by Wzd and integrating, we obtain
1 S 1 =
R ————7475) = R ————7Z4S[V,
el [ pp et = Rl e i)
1 = _
— 7L 7 .
_*_:R‘e(‘/V]R2 (1 + |Vd|2)2 d d[¢€,d]) + Re(/R2 (1 + |Vd|2)2 de[¢é,d])
Using Proposition 5.2 and the expression in (4.8), we deduce that
6.2) Re( / ZaNalped]) = ole).
R2

On the other hand, integration by parts, we have

Re(/R2 WZHA [@e.,a]) = Re(/]Rz W‘ﬁe—,dl«z 2.

Let us observe that

9 av, )
(6.3) 550Vl = Lal5 7] = La[Z4) = O(e)
and thus by Proposition 5.2
1 .
4 = GeaLalZd]) = o(e).
(64 Re( | | i bealalZid) = ofo

It remains to estimate

1 —
Re( | 57 Ve 225V

1 =

1 = . 1 =0V,
=2Re/ —————7Z4So[V, +2€Re’t/ — g
oo Trvap 7SV +26Re00 | G wapye 740,
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On R, recall that z = dé; +y. Then V; = w(y)e -1 (14 O(e~%/2~1¥//2)) and

fad 6Vd au) —i0 - —d/2— . ae_de _ _
7, = 2 i0_qzy (1 /2—y|/2 Z7—dér —if_az (] d/2—y|/2
i = =g U1+ 0l ) — iS58 s (140 )
6Vd 611] —i0_q4z 7d/2*‘ ¢ . 60_dé‘ —13 z — —
Zd T ifoas (] YlI/2Y) _ oy =981 o—i0_az (] d/2—|y|/2
99 63/26 1(1+0(e )) —iw s e 1(1+0(e ))
where
00 gt _ OB_ar _ 1, _
We note that for w = p(r)e’
g_:i = (p cosf — zg sin #)e® g;l; (p sinf + zB cos §)et?

Thus

. 1 OVy= / 1 ow Ow
-R - 7)) = R - WMy L
e“/ A+ VaP ) oyp 2 o o TH )2 35 05 T
pp 1
-~ foriE T

On the other hand, using the estimate (3.14), we have

1 -
—Re(/R2+ WSO[Vd]Zd)
1 w ity
= Re(/R WSO[Vd]@—le 6 ) + O( )

2 _ _ 2 L
Re(/ ( L l2(|w| l)in -VO_4z — Sl Ul d e (p cosh + zg sinf)) +

1+ |w?)?| |w]2+1 1+ |w|? |z + déi|?

Observe that in R
> 1,9

€2
(6.6) Vg, ~ o VW VO_az, & oo

¥ —[p sm0+z£cost9]

Hence

1 -
—Re(/ WSO[Vd]Zd)

Q

Re(/ (|w|27—1) [p S1n0+z—0050][p cos0+z—81n9])
r2 (wl* +1)%d
L @=Dpp

d R2 (pZ + 1) r

N p -1 o, 7
T d / (p2 +1)3 ) = ad’
Combining all estimates together, we obtain the following equation
(6.7) co(d) = ol g7 = 1+ 0(e)
where o(e) is continuous function of d (which is a consequence of continuity of ¢ 4
in d) and ¢ # 0. By simple mean-value theorem, we can find a zero of ¢.(d) in the

interval d € [152, LE] where § is very small.

Q

o(e).
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From (6.1), we see that ue = V. + ¢ 4. is a solution to (2.1). Since ||¢e,q.||+ =
O(€'=7), we see that
(6.8)

. Cel—a
ed. (2)| = MiVarbe at+(1—n)Va(e™¥o? =1)| < C|Vy, |[We,a.| < - —.
6 ()] = IiVacbeat (mVa(e=1)| < OWa W | € T =g T o a8
Now choosing o such that po > 2, this completes the proof of Theorem 2.1. a

Finally Theorem 1.1 follows from Theorem 2.1.
Completion of Proof of Theorem 1.1. To complete the proof of Theorem 1.1,
we just need to show that E.[m¢] < +oc, where m¢ is determined by u. = 7”11:727:2
In fact,

2 (1= Ju?)?
6.9 EmS) = [ — 2 (|Vu|? + =17y
(69) m) = [ (vl + )

By our definition, for z € (By(d.€1) U By(—d.€1)), u. = Vye'¥. Hence (1 —
|u€|2)2 < C(e—%lz—deé‘ﬂ +6_%\z+deé'1| + |,¢2|2) Since |,¢2| < (1+|z—déé‘1\-ﬂz+déé‘1|)1+”’
we deduce that [5.(1 — [ue[?)? < 4o00. Similarly we can prove that [o,|Vu|? <
~+00. O

7. TRAVELING VORTEX RINGS SOLUTIONS

Using the same ideas in the proofs of Theorem 2.1, we can also construct traveling
vortex ring solutions for the Schrédinger map equation.

Same as before, we look for a solution of the Schrédinger map equation of the
form m(z',zn — ct), where (z',zy) € RN, N > 3. Then m must satisfy

(7.1) —cgr—mN =m x (Am — émgé’;;)

Setting u = mf_;gg” and
(7.2) c= (N —2)|loge|,
then (7.1) becomes

2 _

(7.3) i(N —2)é?| 10ge|a[:jv + 2 Au + 1 JT— IZ:QU =¢ 1 f?quu Vu
where we look for solutions u satisfying
(7.4) u(z) > 1 as|z| = +oo.

Let us rescale
(7.5) (r',zn) = (ex1,€xs), 2 = 21 + iTs.
Thus (7.3) becomes

N-20u 1-[uf 24

Vu-Vu

ou
. (N — 2)e|l —+A — =
(7.6) i )e| 0g€|8m2 +Au+ R P |u|2u T4 [u?

and (7.4) becomes
(7.7) O 0,52) =0, u(z) > 1 as |z] - +oo.
6.(131

Problem (7.6) becomes a two-dimensional problem with Neumann boundary con-
dition g—;(o,@) = 0. So we can use the method in previous sections. Comparing
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with equation (2.1), there are two main different terms: the constant ¢ becomes
—e|loge|, and there is an extra derivative term % g—z“l
mainly focus on how to deal with these two terms.

Now we state our results on vortex rings.

. In the following we shall

Theorem 7.1. For e sufficiently small, problem (7.6)-(7.7) has a traveling wave
solution u.

(7.8) ue = wh(z — d.&)w (2 + d.ér)e™s + ¢,
where

1+4+o0(1
(79) a.= 2 e = 010

Here @ (1, xN) = @« (r,zN) which is the unique L™ —solution of

9 805, 4(N—
{ A’"’ zn Pr + Nq«' 200, — =2y =0,

or' (=12 4a3) (" +1)2+2%)
%(O,x]\/) =0, . >0 as|(r,zn)| = +o0.

r

(7.10)

Remark: In the original variable (r', zx), the solution we constructed has a vortex
ring at the pont (1,0). This result has been obtained by Bethuel, Orlandi and Smets
[4] in the context of Gross-Pitaevskii equation. The function wt(z — deé€1)w™ (2 +
d.€1)e'¥< converges to the function w., as defined in [4].

The proof of Theorem 7.1 follows from main steps of the proof of Theorem 2.1.
Below we sketch the main points.

7.1. Approximate Functions. For each fixed d := ;‘—i with d € [ﬁ, 100], we
define an approximate function

(7.11) Va(z) := wh (2 — dé&y)w™ (z + déy)e?.

Observe that unlike two-dimensional case, we have to include a new phase func-
tion 4. This is mainly due to the extra derivative term % g—;‘l

Let x(2) =1for z € B%(dé’l) and x =0 for z € (B%(dé'l))c.

The phase function g4 will be decomposed into two parts: singular part and
regular part. Let p4(z) = ¢s(2) + pr(z), where the singular part

N -2 |Z — d€1|2
12 = 1
(7.12) ps(2) 4d T2 108 |z + dé1|? x(2)
and the regular part ¢, (z) satisfies
N—20p, _ N—-2 9
(113)  Apr(a)+ 2= 22 = (A D2 B, — 6az, + 0u(2))

Note that the function ¢; is continuous but Vi, is not. The singularity of ¢,
comes from its derivatives.
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By simple computations, we see that for z € B% (der),

O, —0-ies + ()
4(N = 2)z2(z1 — d)
(G = 7+ 23) (01 + 42+ 23)
(V-2 wd-a3- )

o (@ - a4 (o + )
— 0(d?) = 0(&).

For z € (Bld_o(dé’l))c, it is easy to see that we also get O(e?). In fact for z €
(B% (dé1))¢, ¢s = 0 and

A+

+

N-2 9
T a—xl](gdé} - 0—d€1 + Sos(z))
—4(N — 2).’172

(@1 = d)? + 23)((21 + d)* + 23)

A+

Going back to the original variable (r', 2x) and letting ¢(r , zn) = ¢, (2) we see
that

. (N—2)0p C
7.14 A + 7 - < .
(7:14) 182 ? r 67"_( L+ (r')2+2% )3
P 1 . . 1 -
Thus we can choose ¢, such that ¢ = O(—1+(r’)2+lzN\2)' This term ¢, is C* in

the original variable (r', zy).
We observe also that by our definition, the function

(715) ()5 = edé‘l - 0—d€1 + Ps + Pr
satisfies
N -2 9¢
1 A —X =0.
(7.16) @+ P 0

From the decomposition of ¢4, we see that the singular term contains z, log |z —
de;| which becomes dominant when we calculate the speed.

7.2. Symmetry Class. We construct solutions to (7.6) under the following addi-
tional symmetry

(7.17) u=u(zy,x2),u(r1,r2) = u(x1, —T2).

This symmetry condition is the same as before, and is important, as in the proof
of Theorem 2.1.

We denote, as before
(7.18)

N -2 1— |ul? 21
Sofu] := Au+ Ou 1 -

1 Oz 14 |u|2u_ 1+ |ul?

Vu-Vu, Su]:=So[u]+i(N—2)¢| loge|§7u
2

Then S[u] is invariant under (7.17). Because of the symmetry (7.17), we work
directly in the half space R% = {(z1,22)|z1 > 0}.
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7.3. Error Estimates. Let

p=p(lz —déi|)p(|z + déi]), ¢ =04z, — 0_az, + pa-
So Vi = pei®. Note that for z; > 0, we have
(7.19) p(|z + déy|) = 1+ O(e= 2 21==dal)

Since the error between 1 and p(|z + dé1]) is exponentially small, we may ignore
p(]z + déi1|) in the computations below.
Let us start to compute the errors:

(7.20) AV, =

N=28¢ ] ..
A — |V@*p + 2iV5 -V —ip 6—"0)] el
I 8.%'1

Here we have used the fact (7.16). We continue to compute other terms:

VVyg-VVg =

VA = p°IV@|* +2ipVp- W] e*?

We then obtain that
N-20Vy 1|V 2V

So[Vi] = AV, 1= Waly, 2V
o Va] o TR R T TP

VVa-VVy

(7.21)

— ¢i® (N-2) 3p  p(p* - 1)
1 ox1 [)2 +1

1—
1+

(VeI = |Vo|*)+2i

Setting z = dé} + y, we then have
(N -2)
2d

(7.22) Vs = — log dVys + O(elogly|), Vr = O(e).
Thus
VG V6P = O(IVg, - V6]) + [V, [? + O(e]V0])
V5-V$ = Olellogelp) + O(ep logly).
The estimate for the term ie| log e|% is same as before.
7.4. Norms. Let

. vy = By
7.23 Eq = So[V, N — 2)|el — = —.
(7.23) s = SolVa) +i(N - Dlelogel %, Ba =
Based on the form of the errors, we need to use suitable norms. Let us fix two
positive numbers p > N + 10,0 < ¢ < 1. Recall that ¢ = iV, = 1 + irhs.

Denote r = |z — dé}|, and define
(7.24) [|Pllws = lliVah||Lr(r<3) + [||7“2+0h1||L°°(r>2) + ||7’1+0h2||L°°(r>2)]

(7.25) 1l = ll¢llw2»(r<z) +

7 1| oo (r>2) + ||r1+av¢1||Lm(r>2)]

+

4 g | e 2y + ||T2+Uv¢2||Lw(r>2)] )

We remark that the main difference between this norm and the norms in the

two-dimensional case is that we use L? _(or W>P) in the inner part. This is mainl
loc loc y
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due to the fact that the error term contains terms like elog|z — dé;| which is not
L*°-bounded.

Using the norms defined above, we can have the following error estimates, similar
to Lemma 4.1.
Lemma 7.1. It holds that for z € (Ba(de1))°¢

_ Celfo'

2 ) <—
(7 6) |R€( d)l = (1+|Z—d€1|)3
. 06170'
2 I <
(7 7) | m(Ed)| = (1 ¥ |Z—d€1|)1+{7
(7.28) Ea || 2o (f)2—dey|<3}) < Celloge|
where o € (0,1) is a constant. As a consequence, there holds
(7.29) B [|4e < Ce'—.
7.5. Projected Linear and Nonlinear Problems. Let
. N—-2)0
Lofy] = ap+ XD
1 01
2(1 - |Vaf?) 4iVa s - A\VaPyn
———=VV;-V ————VV - VVy — s
T 7 R (e A D A e A
and
6Vd . |Z—d€1| ~ |Z+d€1|
. Zg:i= —
(7.30) ai= SEEEE) 4 )

where 7j is defined at (4.2) before.
As the first step of finite dimensional reduction, we need to consider the following
projected linear problem

-Z/O(w) :_h’ in Ria
(7.31) Re( fRQ+ $Zq) =0
¢ = iVgh, 1 satisfies the symmetry (4.3)

We have the following a priori estimates, similar to lemma 5.1.

Lemma 7.2. There ezists a constant C, depending on vy, only such that for all €
sufficiently small, d ~ %, and any solution of (7.31), it holds

(7.32) [¢1l« < CliAflxx.

Proof: The proof is exactly as in Lemma 5.1 except two main different points.
The first point is the inner part estimates. We use instead the LP-estimates in the
inner part {|z—dé| < 1}. By choosing p > N large we obtain the embedding W,”
into C>% for any a € (0,1). For the outer part estimates, we use the following new

loc
barrier function

(7.33) B(z) := Bi(2) + Ba(z)
where
(7.34) Bi(2) = |z — dé'1|'83:g + |z + dé’1|ﬁm;7, By(z) =C1(1+ |z|2)*%

where 8+ v = —0,0 < 0 <~y < 1, and C] is a large number depending on o, 3,7
only.
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Similar to the computations in Lemma 4.2, we obtain that

(7.35) AB, < —C(|z — d&\|* + |z + dé&y )= "5
(N-2) 1
7.36 AB B, < -CC———F+
(7:30 I e P ORE
On the other hand,
N —-2)0B g
3  NZ2OBr 0Ty ey — d) + |z + dn P (a1 — d)]
I 63:1 I
Thus for |z — dé1| < ¢,d, where ¢, is small, we have
N -2)0B o+2
(7.38) ( ) 0B, < C’c,,(|z—dé’1|2+|z+dé’1|2)_%
Iy 61‘1
For |z — dey| > ¢,d,
(N —2) 8Bs 1
7.39 =
( ) A a.fL'l - (]. -+ |Z|2)1+§
By choosing C large, we have
N —2) 0B o42
(7.40) AB + ( )98 < —C(lz —dé&y|? + |z + d&|?) =

6%1
The rest of the proof follows the same line of those in Lemma 5.1. We omit the
details.
|
Similar to the proof of Proposition 5.2, by contraction mapping theorem, we
conclude

Proposition 7.1. There exists a constant C, depending on ,c only such that for
all € sufficiently small, d large, the following holds: there exists a unique solution

(qse,d; Ce (d)) to

(7.41) S[Va+ ¢e,d] = ce(d)Za
and ¢, q satisfies
(7.42) l|$e.all« < Ce' 7.

Furthermore, ¢, q is continuous in d.

7.6. Reduced Problem and the Proof of Theorem 7.1. Similar to the proof
of Theorem 2.1, we are left to estimate the following integral

1 —
Re(/R‘i WZdS[Vd])

1 = . 1 =0Vy
=R = Z4So[V., N — 2)e|l R — ).
e(/Ri 1+ [Va[?)? aSo[Va] + ( )e| log e[Re(i /]pa2+ 1+ [Va]?)? d@.”cg)

On R? , recall that z = dé; + y. Then

1 -
7.43 —Re( | s ZaSolV.
(49 U T )
1 [ N-205 -1 o OB 20(1— )
= — 2V, VO+|Vps|?) s—+——F5—=Vp-V
/Rﬁr (1+p?)? (d+y16y1 P +1 2V Vo] ¢|))3y1+ 1+ 7YY

00

s ayl

+0(e)
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Let us notice that

N -2
Vo, =~ =D logavy, + Ofclog ).

Hence

1 N-=2,0p,
S S gt ) P R |
/Rﬁ_ (1+p2)2d+y (6211) (©

[ e A R
= N; 2 logd e %%dy + O(e)
= % logd + O(e).
On the other hand, by the estimates in Section 6, we have
(7.44) Re(i /RQ+ W%Z) = % +o(1).

Thus we obtain
(N —2)x
8d

where ¢g # 0. Therefore, we obtain a solution to c.(d) = 0 with the following
asymptotic behavior:

(7.45) ce(d) = co log d — @q log €| + O(e)]

1+o0(1)
(7.46) de ~ Y

This proves Theorem 7.1.

8. APPENDIX: NONDEGENERACY

In this appendix, we shall prove the nondegeneracy result—Theorem 3.1. The
proof mainly follows that of [18, Theorem 1] which proved the nondegeneracy of
degree one vortex for the Ginzburg-Landau equation.

Let ¢ satisfy (3.5) and ¢ = iwi satisfy (3.6). We now consider the quadratic
form:

B Vo2 8w, o)V, Ve)  2Vulld)
B9 =4 T+wP? A+ PP (PP
(1= PP | 12Vww,¢)? | 42— ) w, ¢)?
(®.1) IR R I S e el

Using (3.6), a simple computation shows that

(8.2) B(¢,¢) = 0.

Let us first assume that ¢ is a smooth and compactly supported function with
support away from r = 0. (In fact, we may replace ¢ by ¢n, where n(r) = 1 for

+0(e)
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d<r< % and n =0 for r < % orr > %) We decompose ¢ into the form

(8:3) $=¢"+) ¢+ ¢,
Jj=1 =1
where
(8.4) ¢° = e“[80(r) +ig3(r)],
(8.5) ¢; = €”[¢j1 (r) sin j6 + ig}, (r) cos 58],
(8.6) ¢? = e [qb?l (r)cosjo + i(;S?Q (r) sin j6).
Then we get
(8.7) B(¢,¢) = B(¢°,6") +Y_B(¢},¢}) + _ B(¢;
j=1 j=1

Since ¢ = iwy, we introduce the bilinear form for 1)

B(y,v) = Biwy,iwy).
Then we can obtain, writing 1 = 11 + 41y for real ¥; and 2,

2 2(1 —
B = [ lmiver+ [ L)%

r2 72(1 4 p?)3
4p? P
(59) + [l + 0 = D
Indeed, using
Re(wiViovy) = ppRe(227) - £ Re(i 20 5)

and integrating by parts, we first get

/Rz <1|+V f«éﬁ?)? B /R (1+pr2 VUl + / (ng,,” I
o7 (@) 18+ [
- /R (1 +2p arrp vt / ((1 ﬁl;‘y * rz(lpjpz)z> i
+/Rz [(125/:2) e fl;)z -Gz - ”%f] s

4p2 8¢2
(89) * o e

where (2.3) is used in the last equality. Next we have similarly that

_/ 8{w, pY{(Vw, Vo) :/ é( rpdp )/¢2
e AP Jer \T+7) ¥

B p2pl2 p4 )

/Rzg(<l+p>3+ 2(1+p2)3)“’2

8p* O1hy
(8.10) - ot
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By direct calculation, we easily know that

o - [ ey = - L (e ) v
A

o1 [ IR i (e )
o [ G = [

Adding (8.9)-(8.14) together and using (2.3), we finally get (8.8).
On the other hand, defining ¢° and ¢§ such that ¢° = iwy® and ¢¢ = iwy! for
j €N, £=1,2, and using (8.1), we get

o o

B¢, ) = B4, 9%) + Y By, ) + Y B3, ¢5).

j=1 =1

Let us set

Y0 =i (r) +ig3(r),

'%1 = ]1'1 (r)cos j6 + l¢112 (r) sin 56,
P? =% (r) sin O + i)y (r) cos j6.
Consider the bilinear forms, for j € N* and £ =1, 2,
e’} 2 [e's} 2
8.15 B (¢, =/L'2+/ P Bly.,
( ) ](90 90) 0 (1+p2)2|90| o (1+p2)2 JSO ¥

where the function ¢: [0,00) — R? and

2 L4+1g:1=p°
(8.16) Bl — i J o (_1) 2j 1102 A -
! r? (_1)Z+12.7. 1;_;,2_ j2 + —(1+i2)2 (rzplz + (7'2 - l)pz)

With these definitions it is easy to check that the following fact holds:
B(y§, ¢5) = 785 (5, %),

where ¢f(r) = (f;,95,)-
We first analyze the mode one case.

Proposition 8.1. For any R?> — valued smooth function o, with compact support
away from the origin we have

2

Yoo = [ =T o — 2
(5.17) Blo.) = [ il — Melar,

where A1(r) is a 2 X 2 symmetric matriz of smooth functions in (0,00) with the

property that all the solutions of the system ¢’ = Ay (r)p satisfying fol %MP <

oo are just given by constant multiples of o = (%, —%I).
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Proof. First we expand, by integrating by parts,

o sz / 2 < sz 112 / 2
| mw — Ay (r)pl” = | m(hﬂ 2410 -+ Afp- )

:/OOLKO'F_F/OO (LAl)I_}_LIzP
o G+l (\TeeEt) T et

Thus (8.17) is equivalent to
(8.18) (ifl )I + rp? A2 — rp’ B!
' (T+p)2 ) T+ T ()
where B} is given by (8.16) for j, £ = 1.
Suppose

PP

Let us denote o = (01,09) := (L,—2). Since B} (o, o) = 0, the matrix A;

T P
should satisfy
@0 = Aipo-
This yields the relations
a(r):ai_c@, b(r):aé—cal.
o1 g2

Now, substituting these relations into (8.18), direct inspection leads to the fact that
(8.18) holds if and only if

Irp2 C I: sz 02 2_}_2 _ic O—_i_|_0-_é +2p2(1_p2)
(14 p?)? (1+ p2)2 o1 o9 (1+p22 \o1 ' o2 T+ 23

Recall 01 = %, 09 = —%, and we can get
2 12,.2 " ! 4pp' 2(1 — 2
g19)  d=- (CEED) (DL M) Hms)
rpp' pPop l+p r(1+p?)
Let us observe that if u satisfies the equation
(8.20) (p(r)u)’ +p(r)z(r)u’ + q(r)u = 0,
then ¢ = pu'/u satisfies
/ 02
d=———2c—q
Set
. rpp’ q:_2(1—p2) PO .
PP+ pPr? r(1+p%)’ proop 1+p?
Then
c=pu'/u

satisfies Equation (8.19) on (0, 00) if u is a solution to (8.20) with the above p, g,
z. Calculation tells us

(8.21) u' — (1 2(1 = p?)(r?p* — p* — 7‘4p'4)) L 20 = A+ )
- ro r2pp'(L+p2)(p? +12p?) r3pp (1 + p?)
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As r — oo, we easily have

L, 20 =p)02p = pt = rtp?) 1 2(1—p)
r p

7

ro r2pp (14 p?)(p? +1%p")
2(1=p*) (P> +p%r*) 2(1-p)
rpp'(1+ p%) riph

Since (1 — p)/p’ = a (o > 0 is a constant), this equation resembles

2x
v — 200 — —u=0.
r

Obviously, any positive constant and e!/ 2 are respectively a super-solution and a
sub-solution. Therefore, a positive solution of the above equation exists. Similarly

asr — 0, (8.21) tends to

1 4
u' + ~u' — Zu=0.
r r
A solution to this equation is u(r) = T2+2T_2. Summarizing, we conclude that

Equation (8.19) has a globally defined solution ¢(r) = pu'/u, r € (0,00). The
matrix A;(r) as desired has thus been built.

o = (4, %) is already demanded to satisfy ¢’ = A;p. Let ¢1(r) be another
linearly independent solution. Since, from its definition p(0") = 1/2, we get ¢(r) =
—L +0(L) asr — 0. So the following property for A;(r) is automatically checked:

-2 _1 1
Au(r) = (_g _g) +o(2)
as 7 — 0. Then Liouville’s formula for the Wronskian gives us that
W (g0, 01) = Celin(atbdr 7.94'
It follows that |1| > & for all small r > 0. The conclusion is that the unique

solutions of ¢’ = A;(r)¢p for which fol %WJP < oo are scalar multiples ¢g. The
proof is complete. O
Similarly we get

Proposition 8.2. For any R?> — valued smooth function o, with compact support
away from the origin we have

2 © _rp? ! 2
Bioo) = [ qamale’ — Aelelar,
where As(r) is a 2 X 2 symmetric matriz of smooth functions in (0,00) with the
property that all the solutions of the system ¢' = As(r)p satisfying fol %MP <
oo are just given by constant multiples of gy = (%, %).

Proof of Theorem 8.1. For j > 2, we note that

. —_ 2 .
(Bl _ BZ)QO cp = J— 1 J + 1 , (_1)€+121+2’2 > (.7 - 1)2 |<,0|2
i r? \ (D)2 j+1 = 2

’
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which implies

[e’e] 2
8.22 Bt > '—12/ 2
(8-22) (o) > (G —1) .+ ) ol
For j = 0, we use the following fact from [28, Lemma 5.3]
(8.23) r2p? 4+ (r? =1)p* >0
and obtain
Y * pz 2
8.24 B > e
(5.24) Soo)2 [ el

In conclusion, we have obtained that for functions ¢ which is smooth and com-
pactly away from r = 0 and ¢ = jwv), it holds
(8.25)

2
B(, ) Z / 1_|_ |<P1 —A(r 801|d7'+7TZZJ 1) /0 WVP;F

=1 j=0

Inequality (8.25) also holds for any smooth function ¢ satisfying (3.6). The proof
is by a cut-off function. The rest of the proof is similar to that of [18, Theorem 1].
O
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