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ABSTRACT. We study the Bose-Einstein condensates (BEC) in two or three dimensions
with attractive interactions, described by L? constraint Gross-Pitaevskii energy functional.
First, we give the precise description of the chemical potential of the condensate p and
the attractive interaction a. Next, for a class of degenerate trapping potential with non-
isolated critical points, we obtain the existence and the local uniqueness of the excited
states by accurately analyzing the location of the concentrated points and the Lagrange
multiplier. Our results on degenerate trapping potential with non-isolated critical points
are new for ground states of BEC and singularly perturbed nonlinear Schrédinger equa-
tions.
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1. INTRODUCTION

The idea of Bose-Einstein condensates (BEC) originated in 1924-1925, when Einstein predicted
that, below a critical temperature, part of the bosons would occupy the same quantum state to
form a condensate. Over the last two decades, remarkable experiments on BEC in dilute gases
of alkali atoms [2, 4, 14] have revealed various interesting quantum phenomena. These new
experimental advances make many mathematicians study again the following of Gross-Pitaevskii
(GP) equations proposed by Gross [18] and Pitaevskii [31] in the 1960s:

iOpp(w,t) = —Ap(x,t) + V()Y (2, t) — alv(z, t)*P(2,t), xRV, (1.1)
with the constraint

/ e D2 de = 1,
]RN

where N = 2,3, V(z) > 0 is a real-valued potential and a € R is treated as an arbitrary
dimensionless parameter. For better understanding of the long history and further results on
Bose-Einstein condensates, we refer to [11, 27-29] and the references therein.

If we want to find a solution for (1.1) of the form (z,t) = u(x)e " where u represents
the chemical potential of the condensate and u(z) is a function independent of time, then the
unknown pair (u,u) satisfies the following nonlinear eigenvalue equation

— Au+V(z)u=au® + pu, inRY, (1.2)
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and the following constraint

/RN u? =1. (1.3)

The energy functional corresponding to (1.2) is given by

() :/RN(|VU|2+V(:E)U2) —Z/RN ut, (1.4)

A ground state solution of (1.2) is a minimizer of the following minimization problem:

I, = imf{;/RN(]VM2 +V(m)u2)—Z/RN ut: uwe HY(RY), /RN u? = 1}. (1.5)

Any eigenfunction of (1.2) whose energy is larger than that of the ground state is usually called
the excited states in the physics literatures in [3].
Let us first recall the existence result for the ground state. Denote by Q(x) the unique positive
solution of —Au+u =u?, v € H'(RY) with N =2,3. Let a, = / Q?. We have
N

R
Theorem A.(c.f.[3]) Suppose V(x) >0 (x € RY) satisfies

lim V(z) = +oo.
|z|—+o0
If (i) a < ax and N =2; or (ii) a <0 and N = 3, then (1.2)~(1.3) has a ground state. On the
other hand, (1.2)—(1.3) has no ground state if (i’) a > as and N = 2; or (ii’) a > 0 and N = 3.

In the last few years, lots of efforts have been made to the study of asymptotic behaviors of the
minimizers of (1.5) as a /" a, when N = 2. See for example [23-25] and the references therein,
where the main tools used are the energy comparison. The main results on the asymptotic
behaviors of the minimizer u, of (1.5) with N = 2 as a " a, are that u, concentrates at a
minimum point xg of V(x). That is, u, — 0 uniformly in RY \ By(zg) for any 6 > 0, while
MaXye B, (zo) Ua(T) — +00. However, if N = 3, as a /0, the minimizer u, of (1.5) approaches to
a minimizer of ug of Iy. Therefore, it is not obvious that (1.2)—(1.3) has solutions u, concentrating
at some points if NV = 3.

The aim of this paper is to investigate the excited states for (1.2)—(1.3), especially those which
exhibit the concentration phenomena. For this purpose, we need to consider (1.2) from different
point of views as follows.

We first consider the following problem without constraint:

—~Aw+ A+ V(z)w =w?, inRY; 16)
1.6
w € HYRN),

where A > 0 is a large parameter. It is well known that for large A > 0, we can construct various
positive solutions concentrating at some stable critical points of V(z). In particular, we can
construct positive k-peak solutions for (1.6) in the sense that

k

wr(@) = V(Y Q(VAGE = 21) + (@), (L.7)

i=1
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1
with / [IVwy* +wi] = 0()\_%). Let uy = —*——. Then / uj =1, and
RN A f]RN wi) RN
—Auy + (A + V(z))uy = ayu3, inRY;
uy € HY(RY),
with
ay = / wi = kAlf%( Q* + 0(1)) = kAT (a* + 0(1)).
RN RN

Note that ay > 0, and as A — +o00, ay — kay if N = 2, while a) — 0 if N = 3. Therefore, we
obtain a concentrated solution with k peaks for (1.2)—(1.3) with 4 = —\ and suitable ay. Now
the crucial question is for any a close to ka, if N = 2, or for any a > 0 small if N = 3, whether
we can choose a suitable large A\, > 0, such that (1.2)—(1.3) holds with

Y (1.9)

2 \1/2
(], k)

The above discussions show that the existence of concentrated solutions for (1.2)—(1.3) is closely
related to the existence of peaked solutions for the nonlinear Schrodinger equations (1.6). In this
paper, we will mainly investigate concentrated solutions u, of (1.2)—(1.3) in the sense that

H = _)\ay Ug =

k
max u(z) — +oo, while ug(z) — 0 uniformly in RY \ U By(b;), for any 6 > 0,
z€Bg(b;) i1

as a — ag, where k is a positive integer and by, - - - , by, are some points in RY. Here, we will study
the following basic issues concerning the concentration of the solutions for (1.2)—(1.3):

(I) The possible values for ag and p,, and the exact location of the concentrated points, if u,
concentrates.

(II) The existence of the concentrated solutions.
(III) The local uniqueness of the concentrated solutions.
Our first result of this paper is the following.
Theorem 1.1. Suppose ug, is a solution of (1.2)—(1.3) concentrated at some points as a — ag.
Then it holds
ap > 0 and pg, — —00, as a — ay.
Moreover, if N = 2, then ag = ka, for some integer k > 0, and u, satisfies

o) = F (i QV=Ha(w = 7)) +wal®)), (1.10)
i=1

1 1
with/ — —|Vwa? + &?] = o( — —
R2 [ /»[/a | a| a:| ( . ,LL.CL
V—la|Taj — Tai| = 00 as a = ag, i # j.
Throughout this paper, we call u, a k-peak solution of (1.2)—(1.3) if u, satisfies (1.10). Al-
though the nonlinear Schrodinger equations (1.6) have been extensively studied in the last three

decades (see for example [1, 5, 10, 16, 32] and the references therein), not much is known for
the exact location of the concentrated point, nor for the local uniqueness of the solutions, if the

) and some points Tq,; € R?, i = 1,---,k, satisfying
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critical points of V' (z) is not isolated. In the paper, we assume that V' (x) obtains its local mini-
mum or local maximum at I'; (i = 1,--- ,k) and I'; is a closed N — 1 dimensional hyper-surface
satisfying T'; (\I'; = 0 for i # j. More precisely, we assume that the following conditions hold.

(V). There exist § > 0 and some C? compact hypersurfaces T'; (i = 1,--- | k) without boundary,

satisfying

ov(z) 0%V (x)
3111' - 81/12

Viz) =V £0, foranyx €Ty andi=1,--- k,

where V; € R, v; is the unit outward normal of I'; at x € I';. Moreover, V € C4(U§:1 W(S,i) and
V(z) = O(e®l) for some a € (0,2). Here we denote Wy; := {z € RY dist(z,T;) < 0}.

Note that condition (V') implies that V' (z) obtains its local minimum or local maximum on
the hypersurface I'; for ¢ = 1,--- k. It is also easy to see that if § > 0 is small, the set
Iy = {x Vi(z) = t} (| Ws.; consists of two compact hypersurfaces in RYY without boundary for
teVi,Vi+0] (orte|[V;—0,V]) provided § > 0 is small. Moreover, the outward unit normal
vector v ;(x) and the j-th principal tangential unit vector 7 ; j(z) (j=1,--- ,N—1) of I';; at =
are Lip-continuous in W ;.

Using the local Pohozaev identities, we can easily prove that a k-peak solution of (1.2)—(1.3)
must concentrate at some critical points of V' (x), and we can also refer to [19]. If V(z) satisfies (V)

and the concentrated points belong to I' := Ule I';, it is natural to ask where the concentrated
points locate on I'. And the following result gives the further answer of this question.

Theorem 1.2. Under the condition (V'), if uq is a k-peak solution of (1.2)-(1.3), concentrating
at {by,--- by} with b; € ' and b; # bj if i # j, as a — ka, and N =2, or a \y0 and N = 3,
then

(D

where 7; ; 1s the j-th principal tangential unit vector of I' at b;.

AV)(b;) =0, withi=1,--- ;kand j=1,--- ,N — 1. (1.11)

Ti,j

It is proved in [23] that if V'(x) has finite minimal points with the same minimal value, then the
the minimizers of (1.5) concentrate at the “flattest” minimal points of V(z) along a subsequence
a; which approaches a, from left as [ — oo. On the other hand, for V(z) = (|z| — 1), in [24], it
is proved that the minimizers of (1.5) concentrate at some point in {z : |x| = 1}, while for

73

Vi) = (s + 33

it is proved in [21] that the minimizers of (1.5) concentrate at either (—a,0), or (a,0) up to
a subsequence. Note that in all those cases, the concentration point is a minimum point of the
function AV on the relevant set. We should mention that the role of AV in the case of degenerate
minimum points was first found in [30] for a related but similar singularly perturbed nonlinear
Schrodinger equation.

Theorem 1.2 shows that not every {by,---,b;} with b; € I' can generate a k-peak solution
for (1.2)-(1.3). To study the converse of Theorem 1.2, we need the following non-degenerate
condition on the critical point of V(z). We say that z¢ € I'; is non-degenerate on I'; if the
following condition holds:

0V (z0)
8Vi2

2 1 2
oy )5—1) , with a > b >0,

a?

B2AV (z0)

# 0 and d6t<( 07107 )1§l,j§N—1) 7 0.
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Theorem 1.3. Assume that (V') holds. If b; € I' is non-degenerate critical point of V(x) on I’
fori=1,--- k satisfying (1.11) and b; # bj if i # j, then there exists a small constant § > 0,
such that (1.2)~(1.3) has a k-peak solution u, concentrating at by,--- by as a — kay if N = 2,
provided

k k
(i). a € [kas —60,ka.), if > AV(b;) >0, (ii). a € (kaw, kax + 6], if Y AV(b;) <0,
i=1 =1
or asa € (0,0] if N =3.

The existence result in Theorem 1.3 is new even when k = 1 because it reveals that (1.2)—(1.3)
still has single peak solutions for a > a, if V(z) has a local maximum point or local maximum set.
Let us point out that if V'(x) does not achieve its global minimum on I', any solution concentrating
at a point on I' is not a ground state. Also, if £ > 1, then the solutions in Theorem 1.3 are not
ground states. So Theorem 1.3 gives us the existence of excited states for BEC problem as
a — ka, if N =2, or a \(0 if N = 3. To our best knowledge, this is the first result concerning
the existence of excited states for (1.2)—(1.3). Furthermore, we can prove that for any integer
k > 0 and some a near ka* in N = 2, or a near 0 in N = 3, (1.2)—(1.3) has an excited state
solution which has k-peaks concentrated at one point (see Theorem 4.6 in Section 4).

Another main result of this paper is the following local uniqueness result.

Theorem 1.4. Suppose (V') holds. Let ugl)(:c) and uf? (x) be two k-peak solutions of (1.2)—(1.3)
concentrating at by,--- by with b; € ', and b; # b; if i # j. If b; is non-degenerate, i = 1,--- |k,

k
D> AV(b) #0, in N =2, and
=1

O?AV (b;) OAV (b;)
di 1, KiN—1), =1,k
( 07;,07; )lgl,jngl + ovy; zag(m,l i, N 1) fori
is non-singular, where k;; is the j-th principal curvature of I' at b; for j = 1,--- N — 1, then

there exists a small positive number 6, such that ufll)(x) = ug,?)(m) for all a with 0 < |a—kay| <6

if N=2,0or0<a<6if N=3.

As far as we know, local uniqueness results for peak (or bubbling) solutions are available only
for the case where the solutions blow up at xg, which is an isolated critical point of the potential
V(z). If zg is a non-degenerate critical point of V(x), that is, (D?V) is non-singular at o,
one can prove the local uniqueness of the peak solution concentrating at xg either by counting
the local degree of the corresponding reduced finite dimensional problem as in [6, 8, 17|, or
by using Pohozaev type identities as in [7, 15, 19, 22, 26]. One of the advantage in using the
Pohazaev identities to prove the local uniqueness is that it can deal with the degenerate case.
See [7, 15, 26]. Let us pointing out that in [7, 15, 26], though the critical point x is degenerate,
the rate of degeneracy along each direction is the same. On the other hand, an example given in
[19] shows that local uniqueness may not be true at a degenerate critical point xo of V'(x). Thus,
it is a very subtle problem to discuss the local uniqueness of peak solutions concentrating at a
degenerate critical point. Under the condition (V'), the function V(z) is non-degenerate along
the normal direction v; of I';. But along each tangential direction of I';, V' (z) is degenerate. Such
non-uniform degeneracy makes the estimates more sophisticated.
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Here we point out that the existence and local uniqueness of excited states to (1.2)—(1.3) are

also true for the following type of potential V' (x):

m

V(z) = H |z — a;[Pi, for all z € RY with p; > 0 and N = 2,3. (1.12)

i=1
Also our arguments in this paper show that it is much more effective to use the Pohozaev iden-
tities to study the asymptotic behaviors for all kinds of concentrated solutions, not just for the
minimizer. For example, using various Pohozaev identities, we can easily derive the relation
between a and the Lagrange multiplier p, (see the proof of Proposition 3.5).

This paper is organized as follows. In section 2, we will prove Theorem 1.1, while in section 3,
we estimate the Lagrange multiplier p, in terms of a. The results for the location of the peaks
and for the existence of peak solutions are proved in section 4, and the local uniqueness of peak
solutions are investigated in section 5.

For simplicity in using the notations, in this paper, we always assume that b; € I';, j = 1,--- , k.
The results for other cases can be proved without any changes.

2. A NON-EXISTENCE RESULT AND THE PROOF OF THEOREM 1.1

First, we study the following problem:
— Au=Vi(z)u, u>0, inRY, (2.1)
where the function V;(z) satisfies Vi > 1 in Bg(0) \ B:(0) for some fixed ¢t > 0 and large R > 0.

Proposition 2.1. Problem (2.1) has no solution.

Proof. Suppose that (2.1) has a solution u. Consider the following problem

— Av = . (2.2)
By a standard comparison argument, (2.2) has a radial solution v(r), which has infinitely many
zeros points 0 < r; <rg < --- <71 < ---. Denote Q = B, ., (0) \ By, (0). Let kg > 0 be such

that t < r,. We now assume that R >> r,. We take k > ko, such that v > 0 in Q, then, we

have
/Qk (—vAu + uAv) = /Qk <V1(a;)uv - vu) > 0. (2.3)

Noting that v(rg) = v(rg+1) = 0, we obtain from (2.3) that

0
/ w0, (2.4)
oy, aV
where v is the outward unit normal of 02;. But on 0, % < 0. Thus, we obtain a contradiction
from (2.4). O

Proof of Theorem 1.1. First, we prove that u, - —oco. We argue by contradiction. Suppose
that |pa| < M. Since [py u2 = 1, Moser iteration implies that u, is uniformly bounded. That is,
ug does not blow up.

Suppose that p, — +oo. We let Vi(x) = pg — V(x) + au?. Since u, concentrates at some
points, we may assume that au? > —1 in RY \ B;(0) for some ¢t > 0. Therefore, for any fixed
R > 0, we always have

Vi(z) = pg — V(z) +au? > 1, z € Bg(0)\ B;(0).
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By Proposition 2.1, we obtain a contradiction. Therefore, we have proved that u, — —oo. Let
Ao = —liq. Let x4 be the maximum point of u,. From the equation (1.2), we find

aul(vq) > (Ao + V(7a))ta(ra) > 0.
This gives a > 0.
Suppose now N = 2. Let u,(z) = \/%ua( “_). Then

Ve
1
~ A+ (1+ EV(\/%»% —aul, inR? (2.5)
and
/ ul=1. (2.6)
R2

From (2.5) and (2.6), using Moser iteration, we can prove that |u,| < C for some constant
independent of a. Let ¥, be a maximum point of #,. Then

1 Tq o

L

which gives a > u;2(Z,) > cop > 0. Using the standard blow-up argument, in view of (2.6), we
can prove that there exists an integer k£ > 0, such that

aud (Zq) > (1 +

k
Ta =Y Qao(T — Tas) + @a(2), (2.7)
for some Z,; € R? with -
|Zai — Tayj| — 400, if i # j, /]R2 (Vo |* + 2] = o(1),
and @, is the unique positive solution of
—Au+u=apu®, ue HY(R?), u(0)=maxu(z).

z€eR?
Noting that Qq, = ——Q, we obtain from (2.6) and (2.7) that ag = ka,.
0o~ Vao

O
3. SOME ESTIMATES FOR GENERAL POTENTIALS
In this section, we shall estimate p, in terms of a.
Let € = \/_17”& and u(z) — \/%u(:c), then (1.2) can be changed to the following problem:
—Au+ (1+V(2))u=u? ue H'R"Y). (3.1)

For any a € RT, we define ||ul|, := / (| Vul® +u?).
RN
From (1.10), we find that a k-peak solution of (3.1) has the following form

N
2

k
Uq(z) = Z Qe,va,i (%) + va(w), With [|vella = 0(e2),
=1
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where Q.. () := Q(—VH&QV“*‘”) ) Then, it holds

€

—e2Av, + (1 + &%V (z 3ZQ€ zai( )va = N (va) + la(z), (3.2)
where
k
N, 'Ua = (ZQ&:U,” +Ua> - <ZQa,za,i ) _BZQE x(” Uau (3-3)
i=1
and
k 3 k
lo(7) = _522 (V( ) — )Qs xaz (ZQE zm ) - ZQg,xm(x)
i=1 i=1
k
We can move z,; a bit(still denoted by x,;), so that the error term v, € m FEoz,;, where
i=1
0Qc 2, () .
Eiz,, =qu(z e HY(RN) : (g, =20 :0,j:1,--’,N}. 3.4
nus o= {ute) € IRY) : (u, Ty (3.4

Let L, be the bounded linear operator from H'(RY) to itself, defined by

(Lau,v), = / ( 2VuVo + (14 *V(z))uv — 3 Z Q2. > (3.5)
RN

Then, it is standard to prove the following lemma.

Lemma 3.1. There exist constants p > 0 and small @ > 0, such that for all a with 0 < |a—ka.| <
0imnN=2or0<a<@inN =23, it holds

k
|Laul|la > pllulla, for allu e ﬂ Eoz, ;- (3.6)
i=1
Lemma 3.2. A k-peak solution i, for (3. 1) concentrating at by,--- , by has the following form
ZQE xaz +'Ua( ) (37)
k
with v, € ﬂ Ea,za,i and
i=1
k
lealla = O] (V(@as) - \az+2+\2vv Ta)|e ¥ P 4+ 54, (3.8)
=1 =1
Proof. By standard calculations, we find
Il Ha—O(}Z (Tasi) — ]ez+2+|2vv Tai)|e %+3+5%+4), (3.9)
=1

and
IN (va) lla = o(1)|valla- (3.10)
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Then from (3.2), (3.6), (3.9) and (3.10), we get (3.7) and (3.8).
UJ

Let 04(x) = va(ex + 24,). Then, 0, satisfies [|04]la = O(£?). Using the Moser iteration, we can
prove g/ ec(mny = o(1). From this and the comparison theorem, we can prove the following
estimates for 4, (z) away from the concentrated points by, - - - , by.

Proposition 3.3. Suppose that i,(x) is a k-peak solution of (3.1) concentrated at by,--- ,bg.
Then for any fized R > 1, there exist some 8 > 0 and C > 0, such that

k k
i ()] + [Via(2)| < CY e lomeille for 2 € RN\ | ) Bre(wa4). (3.11)
=1 =1

Lemma 3.4. It holds

(4—N) Q4:4/ Q?, for N =2,3. (3.12)
RN

RN

Proof. 1t is direct by the following Pohozaev identities:

[k [ @r= [ ot w-n [ veren [ @=5 [ ot e

O
Proposition 3.5. Let N =2 and a — ka., it holds
1 E
(kax — a)u? = 3 Z; AV (b;) /]Rz 12°Q%(z) + o(1). (3.14)

Proof. Let u, be a solution of (1.2)—(1.3), multiplying (x — x4, Vu,) on both sides of (1.2) and
integrating on Bg(z,,;), we find

/ [(2V(2) + (VV (2), & — Ta;))ul — 2uqus — auy| = / W (x)do, (3.15)
Bi(xa,s) 0Bg(Ta,i)
where
uq 2 2 2 0 4
W(x):= -2 5 (T = Tay, Va) + (& — Ta, V) [|[Vua|” + V(2)ug — paus — §u“]

Also, from (3.7), (3.8) and (1.10), we can write uq(z) as follows:

wale) = YA L Qe 0) + (). (316)

=1

where Qqz, (%) == Q(\/m(ﬁ - $az)) and |[valla = O((\/}Mﬁ)‘
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/ (QV(x) +(VV(x),z — xaz>)u2
Bg(za,:)

:_Ma+‘/i
a

+2V;

Bd(xa 7.)

1

Also, we have
AV(JJQ,Z‘)
Then from (3.17) and (3.18), we

— A
a(_Ua + V;)

Uy +O(

get

/Bd(% ) (<VV(:U),$ — 2a) +2(V(z) — Vz)) ~9

)
I

= AV (b;) + O(|za,i — bi|) = AV (b;) +

/ (2V(2) + (VV (@), 2 — zas))is2
By(Za,i)

1

=—A
a(_ﬂa + Vz)

V(bi)/ x\zQQ(x)+2Vi/ 2+ of
R2 Bd(xa,i)

So summing (3.15) from ¢ = 1 to ¢ = k and using (3.19), we find

2 —I—a/ u =
fa R2 ZZ Ma+V

On the other hand, we can obtain

[a=3Cmt o ] @t
z)v2 +O(/sz§)}+o<—ﬂla)

=1

+O/Q

k
2“*2 ~pa+ VD + O (leall2) = 25 S (~pta+ Vi) + o -
=1

Hereweusethefactthat/ Q pi(@vg=0fori=1,--

Then (3.20) and (3.21) imply
— kay) =
ta(a — ka 5

which gives (3.14).

k

1
Y

=1

V) [ ePQ )

a?

Viaw) [ laPQPe) + 2% 4o - ).

o(1).

®) [ 12PQ%a) + o~ )

Proposition 3.6. Let N =3 and a 0, it holds

V_Ma_ka*+z

(13- Vel

+ ’ZVV Tai)

a,Tq (x)

1

Ha

)
Ha

, k by orthogonality.

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)
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Proof. From (1.2) and (1.3), we have

= /R (wal@))’ = /R 3 (i VI Qe () ) (3.23)

i=1

which gives

k k k
Qs 1 1 1
=) ——+0 V(i) = Vi)| 77—z + VV(2ei)|—5 + =% )
=2 o OV ) - Wl + | X WV il + =)
Then we can find (3.22). O

4. LOCATING THE PEAKS AND THE EXISTENCE OF PEAK SOLUTIONS

First, we locate the peaks for a k-peak solution. Let @, be a k-peak solution of (3.1), then for
any small fixed d > 0, we find

oV (x),. \2
52/ Ug,
By(zas) 0%j (i)

R AN\
OBg(Ta.:) ov a$j 0B4(za,:) (4.1)

1
L / (14 €2V (2)) ()7 (2)do — = / a7 ()
0Bg(q,:) 2 0Bg(%a,i)

:O(e_%), with some v > 0,

= — 922

where i = 1,--- ,k, j=1,--- N and v(z) = (Dl(:c),~-- ,DN(x)) is the outward unit normal of
0Bg(2q,). And then (4.1) implies the first necessary condition for the concentrated points b;:

VV(b)=0, fori=1,--- k.

Proof of Theorem 1.2: Since x,; — b; € I';, we find that there is a t, € [V;,V; + 6] if T; is a
local minimum set of V(z), or t, € [V; — 0,V;] if T'; is a local maximum set of V(z), such that
Za,i € I't, i Let 7,; be the unit tangential vector of I'y, ; at x4;. Then

G(2q,) =0, where G(z) = (VV (2),7a;)-

Also we have the following expansion:
1
G(.CU) :<VG($(M'), xr — -Ta,i> + §<<V2G($a,i)ax — xm},x — xa7i> + O(‘x — xa,i|2)7 for €T € Bd(a:a,i).

Then it follows from (4.1) and the above expansion that
| @@, @
Bd(ma,i)

=— 2/ G(2)Qe, ;(¥)vg — / G(x)? +0(e7?)
Ba(a,i) 7 Bg(2a,i) (4.2)

=0(E¥ VG (@a)| + 3 2 valla + £l VG (@a)] - all?) +O(e7F)
=0(N19).
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Also, in view of G(z4,;) = 0, it is easy to show

1
RN G( ) sz(”(x) = ﬁ€N+2AG<ma,i) /]RN ’x‘QQZ + O(€N+4). (43)

Then (4.2) and (4.3) give (AG)(zq,;)) = O(e). Thus by the condition (V), we obtain (1.11). O

Now, we consider the existence of peak solutions for (1.6) with A > 0 a large parameter. Let

n= % and w(x) — v w(z), then (1.6) can be changed to following problem:

—n*Aw+ (1 +7*V(z))w=w’, we HY(RM). (4.4)

In the following, we denote (u,v), = [pn (1?VuVv + wv) and [|ul, = <u u> Now for n > 0
small, we construct a k-peak solution u, of (4.4) concentrating at by, - - -, by. Here we can prove
the following result in a standard way.

Proposition 4.1. There is an 19 > 0, such that for any n € (0,m0], and z; close to b;, there
exists vy, € Fy) . with 2 = (21, , 21), such that

/RN (1*Vw, Vi + (1 + 0V (z))wyp = / %, for all € Fy .,

where wy(x Z Qn.z (x) + vy o (x), and

_ 1Ny . 0Quz(T)\ o =1 ...
sz_{u(a:)eH(R ).<u, 1 >n—0,j—1, N, i=1,--- k.
Moreover, it holds
k k
[onelln = O(D_ |V () = Viln= 2+ 3 [VV (i) 243 4 2+,
=1 i=1

To obtain a true solution for (4.4), we need to choose z, such that

w ow ow
QA 1 2 Y% 39%n\ _ T 1N
/Bdm,i)( Woa, T TV @)ung =y axj> 0, Vi=1-,k j=1--,

It is easy to check that the above identities are equivalent to

oV _
/ ﬂwgzo(e 3), Vi=1,---,k j=1,---,N. (4.5)
Bd(u’l?a,i) 8$]
For z; close to b;, z; € I'y; for some ¢t close to V; and z = (z1,- -, 2). In the following, we use
v; to denote the unit normal vector of I'y; at z;, while we use 7; ; (j=1,---,N —1), to denote

the principal directions of I';; at x4;. Then, at z;, it holds
D;, V(z) =0, for j=1,--- N =1, and |[VV(2)| = |D,,V(zi)|-
We first prove the following results.

Lemma 4.2. Under the condition (V'), / DyiV(x)u% = O(e_%) is equivalent to
Bd(za,i)

D,V (=) = O(r?). (4.6)
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Proof. First, we have

| PV @00

=2 [ DV@)Qy(x)vy / D,V (x)v?
RN

N
=0(IDy,V (z) 0= - og.:lly + 1% llvgzlly + log.212) = O(nN*2).
On the other hand, we have

[ PV @)@, 0) = 0¥ DV () + 0 )
RN

Then we get (4.6) by combining (4.7) and (4.8).

Lemma 4.3. Under the condition (V'), / D, V(x)u, = O(ef%) is equivalent to

Bd(xa z)

(D AV)( (Z‘Vzl )+ ).

Proof. Let G(z) = (VV(z),7;). Then, similar to the estimate (4.2), we have

|, 6@@.@==2] @@~ [ G

]RN RN

2
n

_O( Z‘V ) V\ N+3_H7N+4>

On the other hand, in view of G(z;) = 0, it is easy to show

1
G(2)Q; ., (z) = §UN+2AG(z¢)B+0(nN+4),
RN

B | P

Thus, (4.9) follows from (4.10) and (4.11).

where

Theorem 4.4. For A > 0 large, (1.6) has a solution uy, satisfying
k

=> VAQ(VA(m — zr4)) + wa,
i=1

where x); — b;, and fRN(|Vw)\]2 + wi) — 0 as A\ = +o0.

13

(4.10)

(4.11)

(4.12)

Proof. As pointed out earlier, we need to solve (4.5). By Lemmas 4.2 and 4.3, the equation (4.5)

is equivalent to

k
D, V(=) = O(n?),  (DnAV)(z) = ( Z ~ Vi) 77+17)
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Let z; € I'; be the point such that z; — z; = a,v; for some «; € R. Then, we have D,V (z;) = 0.
As a result,

Dy, V(z) = D,,V(z) — D,,V(%) = D2, V(%){z — Zi,vi) + O(|zi — Z|?).

By the non-degenerate assumption, we find that D,V (z) = O(n?) is equivalent to (z; — z;, v;) =
O(n? + |z — #|?). This means that D,,V(z;) = O(n?) can be written as

’ZZ' — 2i| = 0(7]2). (413)
Let 7; ; be the j-th tangential unit vector of I'; at Z;. Now by the condition (V'), we have
(DTi,jAV)(Z'L) = (D, JAV)<21> + O(|zi — z|) = (D7, ,AV) (%) + 0(52>7

Ti j
and
(DT”AV)( ) (Dﬂ',jAv)(E ) (DTHOAV)(b ) <(VTDTi,j,OAV)(xO) — b > + O ’ - bl’ )
where V7, is the tangential gradient on I'; at b; € I';, and 7; j 0 is the j-th tangential unit vector
of T'; at b;. Therefore, (D,,AV)(z;) = O(( Zle \V(z) — Vi|)n + 772> can be rewritten as
<(VTDTZ"J"0AV)(:UO)7 2 — bz> = 0(772 + |§Z — b1|2) (4.14)
So we can solve (4.13) and (4.14) to obtain z; = x,; with z,; — b; as n — 0. O

Proof of Theorem 1.3. Let w) is a k-peak solution as in Theorem 4.4, and we define

w)
Uy = ———.
(L.3)
RN
Then / u3 =1, and
RN
— Auy + V(z)uy = a,\u?/{ —Auy, nRY, (4.15)

with ay :/ w3.
RN
For N = 2, similar to (3.14), under the condition (V'), we can prove that

(ka*—/ wA>/\2 ZAV /\xy Q%(x) +o(1).

This shows that if Z AV (b;) # 0, / wi = kay. Take A\g > 0 large and let by = / wio. Then,
i=1 R?

bo < kay, if ZAV > 0 and by > ka, if ZAV < 0.
=1 =1

By the mean value theorem, for any a between by and ka,, there exists A, > 0 large, such that

the solution w, of (1.6) with A = A\, satisfies w3 = a. Thus, for such a, we obtain a k-peak
R2
solution for (1.2), where p, = —A\,.
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For N = 3, similar to (3.22), we can prove

2\ w?\:kza*—i—o(l), as a \ 0.
RS

Take Ag > 0 large and let by = / w?\O. Then, by the mean value theorem, for any a between
R3
0 and by, there exists A\, > 0 large, such that the solution u, of (1.6) with A = A, satisfies
/ w?\ = a. Thus, for such a, we obtain a k-peak solution for (1.2), where p, = —\,.
R3
a

Before we end this section, we discuss briefly the existence of clustering k-peak solutions for
(1.2)—(1.3). The function AV (z)|zer, has a minimum point and a maximum point. Let us
assume that AV(z)|zer, has an isolated maximum point b; € I';. That is, we assume that

AV (z) < AV(b;) for all z € T;((Bs(bi) \ {b:}). We now use Z§:1 Qn,
solution of (4.4), where z,, ; satisfies z, ; — b;, j = 1,--- , k, W — 400, I # j,asn — 0.
We have the following existence result for (4.4).

z,,; A4S an approximate

Proposition 4.5. Assume that (V) holds, and ‘928‘;2‘5)
{1,---,k}. If by € T; is an isolated maximum point of AV (z)|zer, on Iy, then for any inte-
ger k > 0, there exists an 19 > 0, such that for any n € (0,no], problem (4.4) has a solution u,,
satisfying

# 0 for any T € I'; with some i €

k
up(x) = Z Qn.a,; +wn,

j=1
where Ing — bi, g =1,k w — +o0, | 7& Js and/ (772\an\2 +w72)) = 0(77%) as
RN
n— 0.
Proof. Define
1 1
I(u) = / (P1Vul’ + (1 + 72V (2))e?) —/ u
2 RN 4 RN
We have the following energy expansion:
k
I(Z Qn@rm’)
j=1
N NN PV (@) N+4 ¢ - 4.16
=kEn" + By Y = S FpN Y AV (@) (4.16)
j=1 i j=1
N g n t N+5 ,  N+23
=Yt +oe T () T 0N V),
|Tn,m — T 5

i>m
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where ag > 0, E = }1/ Q* >0, F>0andr,; = |z,; — Zp;|, T,; € [ is the point such that

RN
‘x%]' — Lfmj‘ = d(xn,j,l“i). In fact,
k k k
1) Qua,,) =E> Vi(zgn" + FnNHY " AV(ay,)
j=1 j=1 j=1
4.17
N 7\zn,mfzn,j| n % Nis ( )
- Z(a0+0(1))77 e " (m) + 0™ ™).
j>m 77,7” "77.7
Also, we have
OV (Zp 5
V(g ) =1+ alﬁfw)nz” + O(rf;,j) and AV (z, ;) = AV (Zy,;) + O(ry;)- (4.18)
Z?]

So, (4.16) follows from (4.17) and (4.18).
To obtain a solution u,, of the form 2521 Qna,,; + wn, we can first carry out the reduction
argument as in Proposition 4.1 to obtain w;,, satisfying

k
7(1+‘7)‘9¢n,m*wn,j|
lwglly = VPO D IVV (@ )n+n*+ > e 2n ) (4.19)
i=1 i#m
for some o > 0. Define

K(zg, - ank) = I(szn,j + wn)-
Then, it follows from (4.19) that we can obtain the same expansion (4.16) for K (zy 1, ,Zpk).
Now we set
M = {(r, Z):re (—5172,6772), Z € Bs(b;) N Fi}.
92V (z)
o2
that K(xy1,---,2y,%) has a critical point, which is a maximum point of K in

If T'; is a local maximum set of V(x) and < 0 for any T € I';, then it is easy to prove

577,]6 = {($n,17' o ,l’mk) s g € M7 |ZL‘77J - l’n,m| > 97]|1H7]|, m # ]}7
where 6 > 0 is some constant.

If T'; is a local minimum set of V(z) and Pv(z)

> 0 for any z € I';, then

ov?
0?V (z
2V 2 pipav(s)
ov;
has a saddle point (0,b;) in M. We can use a topological argument as in [12, 13] to prove that
K(xy,1, -+ , o) has a critical point in S, 1. dJ

Similar to the proofs of Theorem 1.3, from Proposition 4.5, we have the following result:

Theorem 4.6. Assume that (V') holds, and O°V(z) # 0 for anyx € Ty and somei € {1,--- ,k}. If

31/1?
b; € T; is an isolated mazimum point of AV (x)|ger, on T, then for any integer k > 0, (1.2)—(1.3)
has a solution satisfying

w= (50 Qe —05) + (o).

Jj=1
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with |
. .T7'—£L'7l .
Ma—>—OO, IGJ_)bi)j:lv"'ak? a\j/_iluaa —>+OO?l?éj7
1 1
cmd/ [ — —|Vwa|* +w?] = o(( ™) as a — ka, if N =2, ora\,0 if N =3.
RN Ha ~Ha

5. LOCAL UNIQUENESS

From Lemma 3.2, a k-peak solution 4, can be written as

k
aa(l') = Z Qs,xa,i =+ Ua($)’
=1

k
with |zq,; — bi| = o(1), e = \/_1—%, Vg € ﬂ Faz,,; and
i=1

k k
valle = O( D[V (as) = Vile 372 4+ 37 [V ()| ¥ 2 4 £ 374).
i=1 i=1

17

(5.1)

(5.2)

Also we know z,; € I'y, ; for some ¢, — V;. Similar to the last section, we use v, ; to denote the
unit normal vector of I'y, ; at x4, while we use 7,; ; to denote the principal direction of I';, ; at

Za,i- Then, at x4, it holds
Dr,, V(zai) =0, |VV(2a3)| = |Dv,.V(2ai)l-
We first prove the following result.

Ta,i,j

Lemma 5.1. Under the condition (V'), we have
Dy, V(2a;i) = O(e?), fori=1,--- k.
Proof. We use (4.1) to obtain

/ D, V(2)i = O(c %),
Bg(a,:)

Then by (5.1)—(5.3) and (5.5), we get

/ DVa,iV(x)Qg,wai
Bd(ma,i) ’

=_ 2/ Dy, V(2)Qczq,Va — / D,V (z)v? + O(e*%)
By(a,i) Bg(wa)

N
2 .

N _
:O(|D V(zai)le |’UaHa+52+1HvaHa+ Hva”z) —I—O(e E)

k
:O( Z ‘V(fa,i) B W‘eg_w + |‘Dl/a,iv(xa,i)|€%+3 + 6%4_4).
i=1

On the other hand, by Taylor’s expansion, we have

B 2
/ Dya’iV(m‘) §7xai = EN [(1 + ‘/;EQ)Q*DVG iV(.’B%i) + %ADVG iV(xm) + 0(54)]’
Bd(xa,i) ' ' '

where B is the constant in (4.12). And then (5.4) follows from (5.6) and (5.7).

(5.3)
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O
Let z,; € I'; be the point such that x,; — Z4; = Ba,iVa, for some f,; € Rand i =1,--- k.
Then we can prove
Lemma 5.2. Under the condition (V'), we have
ZTas — b, = L¢€2 + 0(64)
_ B 9AV (b;) 192V (b;)\ 1 (5.8)
Zayi — Za,i = "% 81/5 i) ( 8u(i )> e%0ai + O(eh),
where B is the constant in (4.12) and L; is a vector depending on b; and i =1,--- k.
Proof. Tt follows from (5.6) and (5.7) that
9 Be?
(a*+0(5 ))Dl/a,iv(xa’i) =+ TADlla iv(xa,i)
k (5.9)
:O(€4+€QZ‘V(Q;&J V’ 8 +522|xaz xaz‘
Since g (2 # 0, the outward unit normal vector v, ;(x) and the tangential unit vector 7, ;(z)
of 'y, ; at x4, are Lip-continuous in Wj;, then from (5.9), we find
_ B O?V (b;)\~1 _
Taji — Laji = — (AD,,ZV(bl» ( (2 Z)> 52 + 0(84 + 52‘33@71' — bz‘) (510)
s ov;
Then (5.2) and (5.10) implies
i N N N
[valla = O( D 120 = Zale 2 4+ e54) = 0(5 1), (5.11)
i=1

Recall G(z) = (VV(z),74;,j). Then G(z,;) = 0. Similar to (4.2) and (5.6), we have

| cwe.,
Bd (ma,i)

=— 2/ G(2)Qezy Va — / G(x)v? + O(e‘g)
By(za,i) Bi(xa,:)

(5.12)

=2/ (@) Qe va + O(ltall?) + O(c )
Bd(ma,i)

T 2/ <VG(xayi)7 T — xa7i>Q5a$a,iva + O(€N+6)'
Bd(xa 7,)

On the other hand, in view of VV(z) =0, z € T';, we find

VG l’al <V2 xa,i),Ta,i7j> = <V2V(i‘a7i),7ﬁa,i,j> + O(!xa,i — ja,iD = O(|xa7i — f(M‘D, (5.13)
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where Z,; € I'; is the point such that z,; — Z4; = Ba,iVa,: for some B,; € R, and 7,;; is the
tangential vector of I'; at Z,,; € I';. Therefore, from (5.10), (5.11) and (5.13), we know

T — Tqi

/Bd(za,,-><vg(xa’i)’$ - ma’im( c >Ua (5.14)

—0(e2 P VG(2a)|[valla) = O(|Tai — TasleN ) = O(eNTT).
Then by (5.12) and (5.14), we find

/ G(2)Q2,,, = O(M). (5.15)
Bd(ma ’L)
On the other hand, by the Taylor’s expansion, we can prove

9 BSN+2 H',j€N+4

/ G(2)Q4,, = [T+ Vie)[(Dr,  ,AV)(wai) + —5— +O(e"F),  (5.16)
Bd(xa ’L)

where

N N
2.2 12
iz, Q.
9= % et L
So (5.15) and (5.16) give
H; ;
N W= 5.17
(D Ta”AV)(fEa,Z) 123 +O( ) ( )

We denote by 7, ; the 4t principal tangential vector of I'; at Zgai. Then by (5.10), we get
(DTa,i,jAv)(xa7i) =(Dx, zJAV)(xa i) + <Aij7 Zayi — Ta Z> + O(’xa,i - ja,i|2) (5.18)
=Dz, ;AV)(Za;) + Bwa + O(eh),
where A; ; is a vector depending on b; and B; ; is a constant depending on b;. Moreover,
(Dz, ., AV)(Za;5) = (D7, Dr, ,(AV)(bi), Zai — bi) + O(|Zai — bil*). (5.19)
Therefore, from (5.17)—(5.19), we find

H;
(D7, Dy, [(AV)(bi), Tai — bi) = (123 17)E2+ O0(*) + O(|Zay — bil?). (5.20)
Since Dz 7. (AV)(b;) is non-singular, we can complete the proofs of (5.8) from (5.10) and (5.20).
|
Let

5 . JIka—ali[gi| "B, for N =2,
“ ) alkay) T, for N =3,

where 81 = Z AV (b;) and B is the constant in (4.12).

Pr0p051t10n 5.3. Under the condition (V'), for N = 2,3, it holds
— a6 =1+ 7162+ 0(6,), (5.21)
and -
Tai—bi = Lio2 + O(8), fori=1,--- k. (5.22)

where 1 and the vector L; are constants.
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Proof. First, (3.22) shows that (5.21) holds for the case N = 3.
For N = 2, from (5.8), we get x4, — b; = _Lii + O(“%) for some vector L;. Also from (3.8),

we know ||vglla = O (). we can calculate (3.18)—(3.21) more precise, which will gives us

Agugz—QkZ;ﬂa+é+o(—é), (5.23)
and
LHS of (3.15) = —— AV(bj)/ 22Q3 () + 2 + O~ L), (5.24)
Al R2 Ha Ha
where b and b are some constants. Then from (3.15), (3.21), (5.23) and (5.24), we get (5.21).
Finally, we can find (5.22) by (5.8) and (5.21). O

By a change of variable, problem (1.2)—(1.3) can be changed into the following problem

— 82Au + (—uaég + (53V(:U))u =u?, ue H'(RY), (5.25)
and
/ u® = ad?. (5.26)
RN
Then similar to Lemma 3.2, the k-peak solution of (5.25)-(5.26) concentrating at by, -- , by can

k N
be written as Y Qs, z,., + a(x), With |z4; — bs| = 0(1), [|Talls, = 0(3¢ ), and
=1

k -
- 0 .
%E[ ]Ea,za,i = {UeHl(RN):<v,Q§“’$”> =0, Z-:L...’k’jzl’...,]\r}
a

o0x;
i=1 J

where Q(ga,%i = Q( v 1+(71+‘25‘%(x_x“’i)), ||v||?5a = /RN (53|Vu|2 + U2) and 7, is the constant in
(5.21). Then we can write the equation (5.25) as follows:
Lo(Va) = Na(ta) + la(),
where N, L, are defined by (3.3) and (3.5). And
_ ko ko 3
o= (102 = 14+ 82V (2)) S Qoo + ( 3 Q(;a,xw.) N . (5.27)
i=1 i=1 ‘
Lemma 5.4. It holds
_ S+4
[Talls, = O(62 ). (5.28)

Proof. The proofs are similar to that of Lemma 3.2. The difference is
_ k N9 k N3 Ny Ny
lalls, = O((X [V(wai) = Vil)az = + D |V aillsz *+o2 ) =002 ). (5.29)
i=1 i=1

Here the definition of [, is given in (5.27). Finally, (5.29) and (3.6) imply (5.28). O
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Let ui” and u$ be two k-peak solutions of (5.25)—(5.26) concentrating at k points by, - - - , by,
which can be written as

k
ZQ <l)+v (z), for 1 =1,2, and v ﬂ 0 (5.30)
(1)
Now we set &, (z) = L o (Izz)r @) Then () satisfies ||§a || foomyy = 1. And from (5.25), we
L (RV)

find that &, satisfies
_52A§a(5‘3) + Co(2)&a = ga(®),

where

2 2 (1 : )\2 1), (2 52( 51)—u§2)) 2
cum—&ymwwww—(XM&>+%M9L%(>‘“n u?.
U

=1

2
Ua )HLOO(RN)

Also, similar to (3.11), for any fixed R > 1, there exist some 6 > 0 and C > 0, such that

k k
(@) + [Véa(@)| < C e flommaill® for € RN\ | | Bps, (a,)- (5.31)
=1 i=1
a:r+x(1)

Now let &,:(z) = fa(m

) fori=1,---,k, we have

_ Co(baz + 37213) _ 9a(0az + :cl(llz))

— Ay ilw) + g = >3
e N A e e A o

Lemma 5.5. For x € By;-1(0), it holds

Co(6az + 21)) ) P
e e g ) (1)
o~ 3@ 0+ el b +ai)). (5:33)

and

9a(dq a:+:17( )) B

2 - 3 & 4 2 ) (1)
TH )2 Q(z) E /RN Q" (2)€a(x) + 0(5a + ) P (e + %,J)- (5.34)

=1

Proof. First, (5.33) can be deduced by (5.21) and (5.22) directly. Now we prove (5.34).
From (5.25) and (5.26), for [ = 1,2, we find

3t =32 [ (VPP +v@?) - [ )"
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which gives
ady(ps) — i)

ul = 48| oo @)

25 [ ) a2 [ (T ) e+ V) + e
RN RN

- [l ) (2 + WP,
RN

(P )3 [l [l u@ulule,,
RN RN

here we use the following identity:

1
(1) @2Ne —
ua + ua ga - / (ua )
/RN( ) Hugl) - U((1,2)||L00(RN) ( RN

Then from (5.21), (5.22), (5.28) and (5.35), we know

Ru) —pd) 1

o) " Rl S

=
[\
|
——
4
—~
:/—\
S
S—
[\
N———
I
o

2
- u,(z )HLOO(]RN)
So we can find (5.34) by (5.36).
Then from Lemma 5.5, we have the following result:

Lemma 5.6. From |¢,;| < 1, we suppose that &, ;(x) — &(x) in CL,
following system:

k
—86()+ (1-3Q@)&() = Q@)Y | Q@a(@). fori=1.- k.
* =1

To prove &; = 0, we write
N ~
£ail@) = Y Yty + Eaila), in H'(RY),

j=0

where 1;(j = 0,1,---, N) are the functions in (A.3) and &, ;(z) € E with
E={ue H'®RY),(u,¢;) =0, for j=0,1,--- ,N}.
It is standard to prove the following result:
Lemma 5.7. For any u € E, there exists ¥ > 0 such that
L) = Alul,

where L is defined by

E(u) = —Aux) + u(x) — 3Q*(@)u(x) + — Q) [ @ @),
Proposition 5.8. Let &, () be as in (5.37), then

I€aill = OY), fori=1,-- k.

(5.35)

(5.36)

(RN). Then &(x) satisfies

(5.37)

(5.38)
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Proof. First, Lemma 5.7 gives

[aill < CIL(E)] (5-39)
On the other hand, from (5.32)—(5.37), we can prove
L(Eaz) = O(58) + O(ZQ az+ ) (5.40)
So from (5.28), (5.39) and (5.40), we prove (5.38).
O
Lemma 5.9. For N = 2,3, we have the following estimate on &, :
2 — OV, D) o, (2)
52 2/ iy BV H TV =+ o
=2(p? — V)02 / uléq + / (u® +u?) (u) —uP)*e (5.41)
RN RN

k
N _z
+(1-3) > /B ( (1))(U§1) +ul) (WD) + (@WP)?) & + 0(6 51)-
=1 d $a,i

Proof. Since u and ul? are two k-peak solutions of (5.25)—(5.26), then similar to (3.15), we
have following local Pohozaev identities:

/ 52(2V (z) + (VV (), z — o)
Bd(xijﬁ) ’

= [ R+ 2
Ba(2'))

a,i

—_
~—
~
~—
—~
—~
—
=
~—
[\

(5.42)

where

Then (5.42) implies

/ (1) 52 (2V(x) + <vv(x)a T — mgl,z)»(uél) + U¢(12))€a
Bd(xa,i)

252(1“((11) - /ut(l2)) (1) 2 (2) 2 (1) (2)
(1) 2 /B;d( (1)) (ua ) _QM(L 6(1 /Bd(x((ll,z)(ua +ua )éa (543)

lul — 48| oo @)

2‘/ o ul) + ul2) (D) + (u?)?)éa + Jai,
)

where Jy; := —q 52 / (W(l)(ac) —-w® (z))do.
llua 9Bqy(x (1))

*ua ”LOO(RN)
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Next, we calculate the term J, ;.

oul) o0&,
Jai =~ 20, /aB ) [, (=~ () Ve + a0 &~ () vulD)]
d ma,i v 4

+ 253/ (x — x((llz), i) [V(ufll) +u®)) . Ve, + (V(z) - ,ugl))(ugl) +ul?

Summing (5.43) from i = 1 to ¢ = k and using (3.11), (5.31), we find

2 x_x(l) w1 ,@
Z/Bd(z 5@ 2V ) <VV( ) >)( a T Ug )‘fa

N

(2= 5) [ ) +u@) (P + WP,

202 (s — ) 2 _x
) / (u)* + 0(<7%).
Jua’ — ua || oo rrvy /RY

Then from (5.35) and (5.44), we deduce (5.41).

Let 74, be as in (5.37), using |, < 1, we find

Ya,ij = <§|rlv|9’02]> — O(”f_a,in) =0(1), j=0,1,--- ,N.

Lemma 5.10. For N = 2,3, it holds
Ya,i,0 = 0(1)7 fO?" i = 17 e 7k'

Proof. First, we have

jzl (1) 2)
da

Then from (5.22), (5.28), (5.30) and (5.47), we know

/ (1) 2V (z) + (VV (), x_m( )>)( M 4 @e,
Bg(z'")

u® Gz + 1)) = Q) + O

=1 o, VD =V (V@) 2=, ok

a,i

+4V; (s + ulP)&a + O (53H).
Bd(ﬂv,(ll,,?)

LIVQ(@)]) + v Gz + ().

(5.44)

(5.45)

(5.46)

(5.47)

(5.48)
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Also, from (5.22), (5.37) and (5.38), we find
Joay [V~ V0%,
N
=52 [ IVl = V] Q@) (3 i) + O™
j=0

B
== SAV(bi)ai0d, 7+ 0(0),

where B is the constant in (4.12). Similar to the estimate of (5.49), we can find
B
/ (VV (@), — 20, e = — DAV (Bi)rasodl +? + O(V+3),
Bu(a)) " Ceta 2

So from (5.49) and (5.50), we get

B
LHS of (5.41) = —?LAV(bZ»)% 00NTE L O(6NF5) 4 462
2 sy a a a Bd(x(l))

a,i

Next we know

Also from (5.47), we get

[ ) e,
Bd(ﬂﬁle,l)-)

N
=2%a,i.00 / QQ+-VQ) +O0(ja) = @155 + 82 [[0fls.)
RN
=(2 = N)awyai,000 + O +?),
which, together with (5.52), gives

B
LHS Of (5.41) = 2(2 — N) (a* + 0(1))’7%1‘,05(]1\[ — %AV(bi)’ya,i’o(s(le—’—él + 0(5(]1\“—5).

Also by (5.21), (5.22) and (5.28), we find
@ _ 0 ¢ — O(sN+4
(1o — g )/RNU(z €a=0(3,"").
On the other hand, by (5.28), (5.30), (5.31), (5.37), (5.38), (5.47) and (5.48), we find

[ )+ )l = o2,

=02 0(6, 22 — 2@ ) + O(|jvlV) — P13 ) = O(55FF).

25

(5.49)

(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

(5.55)
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Then (5.41), (5.53)—(5.55) and Lemma A.1 imply

] =

(42— V) (. + 0(1)) ~ 3B5%(

which gives (5.46).
Proposition 5.11. It holds
Yaij=o0(1), i=1,---,k j=0,1,---,N.

Proof. Step 1: To prove v, n = O(,) fori =1,--- k.
Using (4.1), we deduce

oV (x) B _a
/Bd(xm) Wi Ba(@)éa = O(e7),

a,i

where v ; is the outward unit vector of 8Bd(xgl’2) at x, Ba(z) = Z ull ().
=1

On the other hand, by (5.22), we have

Bu(w) = (2+062>ZQ 0@ +0( 3 @),

a7al

~
—

Also, from (5.21), we find

ovl)) ovil) eval) P 2
aVa,i - al/a’i 81/&1 - O(‘xa,i - ‘) = O(éa),

and
PViwg)) _ V) PV —o(Jut)
0Va,i0Tqi 81/&187'%@7] Bya,laTa,Z,] N '

From (3.11), (4.1) and (5.58), we get

oV (z)
/Bmilb v, D)%

AV(bﬁ))Mi,o = O0(89), fori=1,

OV(SL‘(I?) 3‘/(55(1)) (1) N
. a,i a,i . 492
a /RN Ova i Ba(@)ta+ /RN <V Wa i - x‘“> a(@)a +0(3,7)

02V (z\Y)
= — 8(2(I7Z)a*7a,i,N5(]zV+1 + O(éév+2)-
1%

a,t

Then (5.57) and (5.59) imply v4:,n = O(d4).

Step 2: To prove v, =o(1) fori=1,--- ,kand j=1,--- ,N — 1.
Similar to (5.57), we have

/ oV (y) a(y)ga:O(e_%), fori=1,---,k, j=1,---,N—1.
B(x<1)

O0Taij

(5.56)

(5.57)

(5.58)

(5.59)
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Using suitable rotation, we assume that 7,1 = (1,0,---,0),---, T n—1 = (0,---,0,1,0) and
Vai = (0,---,0,1). Under the condition (V'), we know

OVay+op)) _ GROVL) 82 i Y PVl
aTa,z,] B =1 39187’(1,1,3 o 2 m—11—1 aymaylaTa,i,j Ymil

(5.61)

By (1.11), (5.8), (5.28), (5.37), (5.58) and the symmetry of ¢;(x), we find, for j =1,--- ,N — 1,

ii OV ) / Ba(0ay + o)) aitymy
a. a a. a\%a a,i/SatdmYl
m=1 [=1 aymaylaTa’Z’j B ;1(0)
N N 3y ( (D)
0°Vi(x, ) / _
=2 A Q(V1 + Vi2y)aiymuyr + O(63) (5.62)
7;; OYym Y1074, B;-1(0) ( )
AV (x()))
=Baio—pg " +0(02) = O(|z,) —bil) +0(57) = 0(52).
a7z7]

N N N ) 0
B, (6 AV
Z Z Z aysaylaymaTa V6 /B (0) ( ay + Ta,i )§a7zysy1ym

=11=1
N N N 4 (1) N_1
a V(xai) /

B 7 Q ai, sy1Ym + o(1

;mZu; 0Ys0410ymO7ai; J5,,_1(0) (y>(;’7 0)2q(V)Ysyiym + o(1)

N—-1 1 (1 ) N , (1)

0V (z, oV (1))

:2 ’Ya,i, / Q y _— y2 +O 1 563

> e fy L Qe e i3 B oyt o) 66

=—-3 &t aig ) toll
e aTaﬂ'#]aTaﬁj 1 ( )
N-1
82AV(bZ-)
:—3B< a,i,)+01
po OTaig0Taij 1 (1)

By (B.2), we estimate

2viM)y  avt)
il — et (@ )y, Lj=1,--- N -1
OY0Ta,j OVqi Rig(200)05,  Li=1,-, .
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M)
Since %@“{1) =0, from (5.8), we find
9vrr (1) 1) 1)
OVIwe) _ _ (Vi) Vi, )>I€‘l($(1))5l'
OY107a,i,5 Ovas Ovag /O
v (al)
=_ Tf(xfﬂ,? - affi)) Vairi(xl ))% +o(dq) (5.64)
D2V (b, _
. 81/(2)(95213 T0)) - Vairis1(bi)i; + 0(52)
B 9AV(h)

6211 1(b;) 015 + o(62).

20,* 814
Therefore from (5.28), (5.37), (5.58) and (5.64), we get

al 82‘/(33((11,3) )\ &
a a. Ba(day + T, ){a,z’yl
8y187'a id JBs1(0) ’

B 0AV
o D) a0 [ Balbay Dy + o)
O Vi B;-1(0) (5.65)
B 8AV(b ) 2, ) 9
B OAV (b;
=- 28;)52’%,1'(51‘)%“ +0(02).
Combining (5.61)—(5.65), we obtain
oV (y)
Ba a
/Bdwil?) OTai.j e
’ _ (5.66)
_ BOAV(D) vy N PAVEG)  \ovas, snes
=5, 0, ki j(bi)Vasj — 5( - 7110755 ’Ya,z,j>5a +0(d, ).
From (5.60) and (5.66), we find
OAV (b;) O?AV (b
i a,i Ya,i = o(1),
Ty, e 0ieis T (Z amam Tadt) = o(U)
which implies 744 = o(1) fori =1,--- ,kand j=1,--- ,N — L.
O

Proof of Theorem 1.4: First, for large fixed R, (5.33) and (5.34) give

le—a(')]

k k
@) <0 e, 2 e RN\ Brs, (21).
=1

=1

Calz) >

[\.')M—t



EXCITED STATES ON BEC PROBLEM 29

Using the comparison principle, we get
k
. 1
Sala) = o(1), in R\ | Brs, (1.)).

=1

On the other hand, it follows from (5.38), (5.46) and (5.56) that
k
Ea(@) = 0(1), in | ] Bps,(z()).

i=1
This is in contradiction with [[§a||feo@yy = 1. So ugl)(m) = u((f)(a:) for a — ka, in N = 2 or
a\,0in N = 3. (|

APPENDIX
A. THE KERNEL OF A LINEAR OPERATOR

Lemma A.1. Let & := (&1, -+, &) be a bounded solution of following system:

2

k
— A&(@) + (1-3Q@)& (@) = — Q@) (Y /R QU@a@), fori=1,- .k (A1)
* =1

Then for N = 2,3, it holds

N
§i(z) = Z%’,ﬂ/}j, (A.2)
j=0
where v; j are some constants,
Q .
¢0:Q+$VQ7 w]:%a fOT]:L?N (A3)

J
Moreover, vio =0 for alli,l =1, --- k.

Proof. Noting that Q(z) is a radial function, using the technique of the separation of variables,
we can prove

N
() =Y v + &
j=1
where 7; ; is some constant, and &; ¢ is a radial function, satisfying

k
—A&io(x) + (1 -3Q%*(x))&io(x) = —%Q(UC)(Z /RN Qs(m)&(x)).
* =1
We set L(u) := —Au(z) + (1 — 3Q*(z))u(z). Then

Lypy = —2Q.

Since L has no non-trivial bounded radially symmetric kernel, it holds

&0 = 7i,0%0-
Using (3.12), we find that ~; o satisfies
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4—-N
~2Q()0 = -1 Q@) = [ Q'=-1Q Zmo,

which gives v; 0 = y,0 for all 4,1 =1,--- | k.

B. CALCULATIONS INVOLVING CURVATURES

Now let I' € C2 be a closed hypersurface in RY. Fory € T, let v(y) and T'(y) denote respectively
the outward unit normal to I' at ¥ and the tangent hyperplane to I' at y. The curvatures of I" at
a fixed point yg € I' are determined as follows. By a rotation of coordinates, we can assume that

yo = 0 and v(0) is the zy-direction, and x;-direction is the j-th principal direction.

In some neighborhood N' = N (0) of 0, we have
I'= {:E TN = 4,0(3:')},

where 2/ = (21, ,ZN_1),

1Nl
Zw+0|m|)
=1

where £, is the j-th principal curvature of I' at 0. The Hessian matrix [D%¢(0)] is given by

[D?p(0)] = diag[k1,- -, kN—1].
Suppose that W is a smooth function, such that W(z) = a for all x € T.
Lemma B.1. We have

O*W (z)
00Xy, 0z l2=0

ow (x)
B ox N

KiOmi, fO’f‘m,l:].,"' N —1,

=0

where K1, ,KN_1, are the principal curvatures of T at 0.

Proof. First, we have W (2/, ¢(2')) = 0. And then we find
oW (2, ¢(2)) N OW (2, p(2")) dp(z)
0T, oxnN 0xm
Letting 2/ = 0 in (B.3), we obtain (B.1).
Differentiating (B.3) with respect to z; for [ =1,--- | N — 1, we get

OW (@', pla) | W (') dp(a) | OW (', 0(a) OPp(a)
001y 0TmOT N ox; oxrn 0T mxy

N <82W(x’,<p($’)) N O*W (2, p(2')) Ogo(x’)) dp(a')

Oz NOx; OxNOT N ox; Oz

Let 2’ =0 in (B.4), then we get (B.2).

=0, form=1,--- ,N—1.



EXCITED STATES ON BEC PROBLEM 31

C. AN EXAMPLE

In this section, we use the above results to the following potential V'(x). Let

N
Zj 2
S R M R
7j=1
where a; > 0, a; # a; for j # 1. Let ['; is defined by Fj(xz) = 0 with ¢ = 1,2. Take
F?2+1, in Wy,

V(z) =< F2+1, in Wa,
else, in RN\ J2, W;.

and
W; = {x eRY; || < 60}, with some small fixed o > 0 and i =1, 2.

Lemma C.1. All critical points AV on I'y are (£a1,0,---,0),---,(0,---,0,£an).
Proof. First, we find

N N
x? 4 82
VV(x) = 2F - (Y- 5>
(x) VF, AV = 2FAF +2|VF)| > - > 5+ > i
=11 =1t =1 !
To find a critical point AV on I'; we need to study the following equation
V(AV) = AVF,
for some unknown constant A. That is,
N
81‘[ 1 163% 2/\1'1’
STIN™ D% _ AT LN
Flad @
S| 8 8
Thus, either z; = 0, or A = 42—2 4+ . If A= 42 — + ok then z; = 0 for all j # [. This
- Y% aj P
shows that all critical points AV on I' are (+ay,0,---,0),---,(0,---,0,+an). O
Without loss of generality, we consider the point by = (0,---,0,an). In this case, 7; is the z;
direction, j =1,--- , N — 1, and v is the z direction.

Lemma C.2. If a; # a; for |l # j. Thus, by is non-degenerate on I'y.

Oz :g 0, 0N _alelalQ+a§’V>0
On I'y, it holds
B N 8a? (N 1%2 ( N-1 le))
= a = a — af
This gives
(MV(bl)) — diag (E(i_i) A(;_L))
Oxjz; /1<l j<n—1 a?\a? %/ T} \ak_, d¥//’
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which is non-singular since a; # a; for [ # j. Thus, by is also non-degenerate on I';. a

Lemma C.3. The matrix
(82AV(b1) n OAV (by)

di e R
Oz )1sm‘§N—1 e AT Y (C.1)

1s non singular if one of the following conditions holds
(1) ay <a, l=1,--- ,N—1.
(2) any >a;, l=1,--- ,N —1 and all the a; are close to a constant.

Proof. Near by = (0,---,0,an), I' is given by

NllQ 13~ Ngcl 3
LT g o

Thus, kj = -4, [=1,---,N —1. So we have

8%‘;(\:)1) ( Z a aN>'

IN = anN

a%vm))

Imw; ) 1<) j<N-1
is negative. Thus, (C.1) is also a negative matrix. On the other hand, if b; is a minimum point
of AV on I'y and all the a; are close to a constant, that is ay > a;, [ =1,--- ,N — 1, then (C.1)
is negative. Il

If ¢ is a maximum point of AV on I', thatisay < a;,{ =1,--- , N—1, then (

Finally, for by = (0,---,0,4ay) € 'y, we have the similar results.

Data Availability Statement: Data sharing is not applicable to this article as no new data
were created or analyzed in this study.
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