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Abstract

A two species interacting system motivated by the density functional theory for triblock copolymers
contains long range interaction that affects the two species differently. In a two species periodic assembly
of discs, the two species appear alternately on a lattice. The minimal two species periodic assembly is
the one with the least energy per lattice cell area. There is a parameter b in [0, 1] and the type of the
lattice associated with the minimal assembly varies depending on b. There are several threshold defined
by a number B = 0.1867... If b ∈ [0, B), the minimal assembly is associated with a rectangular lattice
whose ratio of the longer side and the shorter side is in [

√
3, 1); if b ∈ [B, 1− B], the minimal assembly

is associated with a square lattice; if b ∈ (1 − B, 1], the minimal assembly is associated with a rhombic
lattice with an acute angle in [π

3
, π
2

). Only when b = 1, this rhombic lattice is the hexagonal lattice.
None of the other values of b yields the hexagonal lattice, a sharp contrast to the situation for one species
interacting systems, where the hexagonal lattice is ubiquitously observed.

Key words. Two species interacting system, triblock copolymer, two species periodic assembly of discs,
rectangular lattice, square lattice, rhombic lattice, hexagonal lattice, duality property.
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1 Introduction

From honeycomb to chicken wire fence, from graphene to carbon nanotube, the hexagonal pattern is ubiqui-
tous in nature. The honeycomb conjecture states that the hexagonal tiling is the best way to divide a surface
into regions of equal area with the least total perimeter [9]. The Fekete problem minimizes an interaction
energy of points on a sphere and obtains a hexagonal arrangement of minimizing points (with some defects
due to a topological reason) [4].

Against this conventional wisdom, we present a problem where the hexagonal pattern is generally not
the most favored structure. Our study is motivated by Nakazawa and Ohta’s theory for triblock copolymer
morphology [11, 16]. In an ABC triblock copolymer a molecule is a subchain of type A monomers connected
to a subchain of type B monomers which in turn is connected to a subchain of type C monomers. Because
of the repulsion between the unlike monomers, the different type subchains tend to segregate. However since
subchains are chemically bonded in molecules, segregation cannot lead to a macroscopic phase separation;
only micro-domains rich in individual type monomers emerge, forming morphological phases. Bonding of
distinct monomer subchains provides an inhibition mechanism in block copolymers.

The mathematical study of the triblock copolmyer problem is still in the early stage. There are existence
theorems about stationary assemblies of core-shells [13], double bubbles [18], and discs [14], with the last
work being the most relevant to this paper. Here we treat two of the three monomer types of a triblock
copolymer as species and view the third type as the surrounding environment, dependent on the two species.
This way a triblock copolymer is a two species interacting system.
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The definition of our two species interacting system starts with a lattice Λ on the complex plane generated
by two nonzero complex numbers α1 and α2, with Im(α2/α1) > 0,

Λ = {j1α1 + j2α2 : j1, j2 ∈ Z, α1, α2 ∈ C}. (1.1)

Define by Dα the parallelogram cell

Dα = {t1α1 + t2α2 : t1, t2 ∈ (0, 1)} (1.2)

associated to the basis α = (α1, α2) of the lattice Λ. The lattice Λ defines an equivalence relation on C where
two complex numbers are equivalent if their difference is in Λ. The resulting space of equivalent classes is
denoted C/Λ. It can be represented by Dα where the opposite edges of Dα are identified.

There are two sets of parameters in our model. The first consists of two numbers ω1 and ω2 satisfying

0 < ω1, ω2 < 1, and ω1 + ω2 < 1. (1.3)

The second is a two by two symmetric matrix γ,

γ =

[
γ11 γ12

γ21 γ22

]
, γ12 = γ21. (1.4)

Furthermore, in this paper we assume that

γ11 > 0, γ22 > 0, γ12 ≥ 0, γ11γ22 − γ2
12 ≥ 0. (1.5)

Our model is a variational problem defined on pairs of Λ-periodic sets with prescribed average size. More
specifically a pair (Ω1,Ω2) of two subsets of C is admissible if the following conditions hold. Both Ω1 and
Ω2 are Λ-periodic, i.e.

Ωj + λ = Ωj , for all λ ∈ Λ, j = 1, 2; (1.6)

Ω1 and Ω2 are disjoint in the sense that
|Ω1 ∩ Ω2| = 0; (1.7)

the average size of Ω1 and Ω2 are fixed at ω1, ω2 ∈ (0, 1) respectively, i.e.

|Ωj ∩Dα|
|Dα|

= ωj , j = 1, 2. (1.8)

In (1.7) and (1.8), | · | denotes the two-dimensional Lebesgue measure. Note that |Dα| depends on the
lattice Λ but not on the particular basis α, so we alternatively write it as |Λ|,

|Λ| = |Dα|. (1.9)

Given an admissible pair (Ω1,Ω2), let Ω3 = C\(Ω1 ∪Ω2). Again Λ imposes an equivalent relation on Ωj
and the resulting space of equivalence classes is denoted Ωj/Λ, j = 1, 2, 3. Define a functional JΛ to be the
free energy of (Ω1,Ω2) on a cell given by

JΛ(Ω1,Ω2) =
1

2

3∑
j=1

PC/Λ(Ωj/Λ) +

2∑
j,k=1

γjk
2

∫
Dα

∇IΛ(Ωj)(ζ) · ∇IΛ(Ωk)(ζ) dζ. (1.10)

In (1.10), PC/Λ(Ωj/Λ), j = 1, 2, is the perimeter of Ωj/Λ in C/Λ. One can take a representation Dα of
C/Λ, with its opposite sides identified, and treat Ωj ∩Dα, also with points on opposite sides identified, as a
subset of Dα. Then PC/Λ(Ωj/Λ) is the perimeter of Ωj ∩Dα. If Ωj ∩Dα is bounded by C1 curves, then the
perimeter is just the total length of the curves. More generally, for a merely measurable Λ-periodic Ωj ,

PC/Λ(Ωj/Λ) = sup
g

{∫
Ωj∩Dα

div g(x) dx : g ∈ C1(C/Λ,R2), |g(x)| ≤ 1 ∀x ∈ C
}
. (1.11)
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Here g ∈ C1(C/Λ,R2) means that g is a continuously differential, Λ-periodic vector field on C; |g(x)| is the
geometric norm of the vector g(x) ∈ R2.

In
∑3
j=1 PC/Λ(Ωj/Λ) each boundary curve separating a Ωj/Λ from a Ωk/Λ, j, k = 1, 2, 3, j 6= k, is

counted exactly twice. The constant 1
2 in the front takes care of the double counting.

The function IΛ(Ωj) is the Λ-periodic solution of Poisson’s equation

−∆IΛ(Ωj)(ζ) = χΩj (ζ)− ωj in C,
∫
Dα

IΛ(Ωj)(ζ) dζ = 0, (1.12)

where χΩj is the characteristic function of Ωj . Despite the appearance, the functional JΛ depends on the
lattice Λ instead of the particular basis α.

A stationary point (Ω1,Ω2) of JΛ is a solution to the following equations of a free boundary problem:

κ13 + γ11IΛ(Ω1) + γ12IΛ(Ω2) = µ1 on ∂Ω1 ∩ ∂Ω3 (1.13)

κ23 + γ12IΛ(Ω1) + γ22IΛ(Ω2) = µ2 on ∂Ω2 ∩ ∂Ω3 (1.14)

κ12 + (γ11 − γ12)IΛ(Ω1) + (γ12 − γ22)IΛ(Ω2) = µ1 − µ2 on ∂Ω1 ∩ ∂Ω2 (1.15)

T13 + T23 + T12 = ~0 at ∂Ω1 ∩ ∂Ω2 ∩ ∂Ω3. (1.16)

In (1.13)-(1.15) κ13, κ23, and κ12 are the curvatures of the curves ∂Ω1 ∩ ∂Ω3, ∂Ω2 ∩ ∂Ω3, and ∂Ω1 ∩ ∂Ω2,
respectively. The unknown constants µ1 and µ2 are Lagrange multipliers associated with the constraints
(1.8) for Ω1 and Ω2 respectively. The three interfaces, ∂Ω1 ∩ ∂Ω3, ∂Ω2 ∩ ∂Ω3 and ∂Ω1 ∩ ∂Ω2, may meet at
a common point in D, which is termed a triple junction point. In (1.16), T13, T23 and T12 are respectively
the unit tangent vectors of these curves at triple junction points. This equation simply says that at a triple
junction point three curves meet at 2π

3 angle.
In this paper, we only consider a special type of (Ω1,Ω2), termed two species periodic assemblies of discs,

denoted by (Ωα,1,Ωα,2), with

Ωα,1 =
⋃
λ∈Λ

{
B(ξ, r1) ∪B(ξ′, r1) : ξ =

3

4
α1 +

1

4
α2 + λ, ξ′ =

1

4
α1 +

3

4
α2 + λ

}
, (1.17)

Ωα,2 =
⋃
λ∈Λ

{
B(ξ, r2) ∪B(ξ′, r2) : ξ =

1

4
α1 +

1

4
α2 + λ, ξ′ =

3

4
α1 +

3

4
α2 + λ

}
. (1.18)

In (1.17) and (1.18), B(ξ, rj), or B(ξ′, rj), is the closed disc centered at ξ of radius rj ; the rj ’s are given by

ωj =
2πr2

j

|Dα|
, j = 1, 2. (1.19)

Be aware that (Ωα,1,Ωα,2) defined this way depends on the basis α, not the lattice Λ generated by α. One
may have two different bases that generate the same lattice, but they define two distinct assemblies.

Shifting or rotating (Ωα,1,Ωα,2) does not change its energy, so our choice for the centers of the discs in
(1.17) and (1.18) is not the only one. Another aesthetically pleasing placement is to put the disc centers
on the lattice points and half lattice points; see Figure 1. Nevertheless we prefer not to have discs on the
boundary of the parallelogram cell Dα.

A two species periodic assembly (Ωα,1,Ωα,2) is not a stationary point of the energy fuctional JΛ. However
Ren and Wang have shown the existence of statoinary points that are unions of perturbed discs in a bounded
domain with the Neumann bounary condition [14]. Numerical evidence strongly suggests the existence of
stationary points similar to two species assemblies [20].

In this paper we determine, in terms of α, which (Ωα,1,Ωα,2) is the most energetically favored. For this
purpose, it is more appropriate to consider the energy per cell area instead of the energy on a cell. Namely
consider

J̃Λ(Ω1,Ω2) =
1

|Λ|
JΛ(Ω1,Ω2), (1.20)
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Figure 1: A two species periodic assembly of discs given by (1.17) and (1.18), and a shift of the assembly
with disc centers at the lattice points and the half lattice points.

take (Ω1,Ω2) to be a two species periodic assembly, and minimize energy per cell area among all such
assemblies with respect to α, i.e.

min
α

{
J̃Λ(Ωα,1,Ωα,2) : α = (α1, α2), α1, α2 ∈ C\{0}, Im

α2

α1
> 0, Λ is generated by α

}
. (1.21)

Several lattices will appear as the most favored structures. They are illustrated in Figure 2. A rectan-
gular lattice has a basis α whose parallelogram cell Dα is a rectangle. A square lattice has a square as a
parallelogram cell. A rhombic lattice has a rhombus cell, i.e. a parallelogram cell whose four sides have the
same length. Finally a hexagonal lattice has a parallelogram cell with four equal length sides and an angle
of π

3 between two sides. If we let

τ =
α2

α1
, (1.22)

then in terms of τ , Λ is rectangular if Re τ = 0, Λ is square if τ = i, Λ is rhombic if |τ | = 1, and Λ is

hexagonal if τ = 1
2 +

√
3

2 i. Note that these classes of lattices are not mutually exclusive. A hexagonal lattice
is a rhombic lattice; a square lattice is both a rectangular lattice and a rhombic lattice.

The reason that a rhombic lattice with a π
3 angle is termed a hexagonal lattice comes from its Voronoi

cells. At each lattice point, the Voronoi cell of this lattice point consists of points in C that are closer to this
lattice point than any other lattice points. For the rhombic lattice with a π

3 angle, the Voronoi cell at each
lattice point is a regular hexagon. With Voronoi cells at all lattice points, the hexagonal lattice gives rise to
a honeycomb pattern.

The main result of this paper asserts that for a two species periodic assembly of discs to minimize the
energy per cell area, its associated parallelogram cell is either a rectangle (including a square) whose ratio
of the longer side and the shorter side lies between 1 and

√
3, or a rhombus (including one with a π

3 acute
angle) whose acute angle is between π

3 and π
2 . Any two species periodic assembly of discs that minimizes

the energy per cell area is called a minimal assembly and its associated lattice is called a minimal lattice.
The most critical parameter in this problem is b given in terms of ωj and γjk by

b =
2γ12ω1ω2

γ11ω2
1 + γ22ω2

2

. (1.23)

Conditions (1.3), (1.4), and (1.5) on ωj and γjk imply that

b ∈ [0, 1]. (1.24)
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To ensure the disjoint condition (1.7) for potential minimal assemblies we assume that ω1 and ω2 are
sufficiently small. Namely let ω0 > 0 be small enough so that if

ωj < ω0, j = 1, 2, (1.25)

and (Ωα,1,Ωα,2) is a two species periodic assembly of discs whose basis (α1, α2) satisfies

Re τ = 0 and |τ | ∈ [1,
√

3], (1.26)

or
|τ | = 1 and arg τ ∈

[π
3
,
π

2

]
, (1.27)

then (Ωα,1,Ωα,2) is disjoint in the sense of (1.7). The line segment (1.26) and the arc (1.27) are illustrated
in the first plot of Figure 3. Now we state our theorem.

Theorem 1.1. Let the parameters ωj, j = 1, 2, and γjk, j, k = 1, 2, satisfy the conditions (1.3), (1.4),
(1.5), and (1.25). The minimization problem (1.21) always admits a minimum. Let α∗ = (α∗,1, α∗,2) be
a minimum of (1.21), Λ∗ be the lattice determined by α∗. Then there exists B = 0.1867... such that the
following statements hold.

1. If b = 0, then Λ∗ is a rectangular lattice whose ratio of the longer side and the shorter side is
√

3.

2. If b ∈ (0, B), then Λ∗ is a rectangular lattice whose ratio of the longer side and the shorter side is in
(1,
√

3). As b increases from 0 to B, this ratio decreases from
√

3 to 1.

3. If b ∈ [B, 1−B], then Λ∗ is a square lattice.

4. If b ∈ (1−B, 1), then Λ∗ is a non-square, non-hexagonal rhombic lattice with an acute angle in (π3 ,
π
2 ).

As b increases from 1−B to 1, this angle decreases from π
2 to π

3 .

5. If b = 1, then Λ∗ is a hexagonal lattice.

The threshold B is defined precisely in (4.40) by two infinite series, from which one finds its numerical
value.

Only in the case b = 1, J̃Λ(Ωα,1,Ωα,2) is minimized by a hexagonal lattice. In all other cases minimal
lattices are not hexagonal. As a matter of fact, our assumption on γ in this paper is a bit different from the
conditions for γ in a triblock copolymer. In a triblock copolymer, instead of (1.5), γ needs to be positive
definite. In [14], where Ren and Wang found assemblies of perturbed discs as stationary points, γ12 is
positive. In terms of b, γ being positive definite and γ12 > 0 mean that b ∈ (0, 1).

In this paper we include both the b = 0 case and the b = 1 case for good reasons. The case b = 1
corresponds to γ11γ22 − γ2

12 = 0, i.e. γ has a non-trivial kernel, and (−ω1, ω2) is in the kernel of γ. This
case is actually very special. It is equivalent to a problem studied by Chen and Oshita in [5], a simpler one
species analogy of the two species problem studied here. The motivation of that problem comes from the
study of diblock copolymers where a molecule is a subchain of type A monomers connected to a subchain
of type B monomers. With one type treated as a species and the other as the surrounding environment, a
diblock copolymer is a one species interacting system.

The recent years have seen active work on the diblock copolymer problem; see [15, 17, 1, 6, 10, 8] and
the references therein. Based on a density functional theory of Ohta and Kawasaki [12], the free energy of a
diblock copolymer system on a Λ-periodic domain is

EΛ(Ω) = PC/Λ(Ω/Λ) +
γd
2

∫
Dα

|∇IΛ(Ω)(ζ)|2 dζ. (1.28)

Here, analogous to the two species problem, Ω is a Λ-periodic subset of C under the average area constraint
|Ω∩Dα|
|Dα| = ω where ω ∈ (0, 1) is one of the two given parameters. The other parameter is the number γd > 0.
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Now take Ω to be ΩdΛ, the union of discs centered at α1+α2

2 + λ, λ ∈ Λ, of radius
√

ω|Dα|
π , and minimize the

energy per cell area with respect to Λ:

min
Λ

1

|Λ|
EΛ(ΩdΛ) (1.29)

This time, unlike in the two species problem, ΩdΛ depends on the lattice Λ, not the basis (α1, α2). Chen and
Oshita showed that (1.29) is minimized by a hexagonal lattice.

In [19] Sandier and Serfaty studied the Ginzburg-Landau problem with magnetic field and arrived at a
reduced energy. Minimization of this energy turns out to be the same as the minimization problem (1.29).

In our two species problem (1.21), the condition b = 1 actually makes the two species indistinguishable as
far as interaction is concerned. It means that the two species function as one species, hence the equivalence
to the one species problem (1.29). The case b = 0 is dual to the b = 1 case, a point explained below. It is
therefore natural to include both cases.

Our work starts with Lemma 2.1, which states that for us to solve (1.21) it suffices to minimize the
energy among two species periodic assemblies of unit cell area. Then in Lemma 2.4 it is shown that the
latter problem is equivalent to maximizing a function,

fb(z) = b log
∣∣ Im (z)η(z)∣∣+ (1− b) log

∣∣ Im (z + 1

2

)
η
(z + 1

2

)∣∣, (1.30)

with respect to z in the set {z ∈ C : Im z > 0, |z| ≥ 1, 0 ≤ Re z ≤ 1}. Here

η(z) = e
π
3 zi

∞∏
n=1

(
1− e2πnzi

)4
(1.31)

is the fourth power of the Dedekind eta function.
If b = 1, then fb = f1 and we are looking at the problem studied by Chen and Oshita [5], and Sandier

and Serfaty [19]. In this case, f1 is maximized in a smaller set, {z ∈ C : |z| ≥ 1, 0 ≤ Re z ≤ 1/2}. Using

a maximum principle argument, Chen and Oshita showed that f1 is maximized at z = 1
2 +

√
3

2 i, which
corresponds to the hexagonal lattice. Sandier and Serfaty used a relation between the Dedekind eta function
and the Epstein zeta function, and a property of the Jacobi theta function to arrive at the same conclusion.

Neither method seems to be applicable to the two species system with b 6= 1. Instead we rely on a duality
principle, Lemma 3.5, which shows that maximizing fb is equivalent to maximizing f1−b. This allows us to
only consider b ∈ [0, 1/2], and there we are able to show that fb(z) attains the maximum on the imaginary
axis above i, i.e. Re z = 0 and Im z ≥ 1.

So we turn to maximize fb(yi) with respect to y ≥ 1. The most technical part of this work, Lemma
4.4, shows that when b = 0, f0(yi) is maximized at y =

√
3; when b ∈ (0, B), fb(yi) is maximized at some

y = qb ∈ (1,
√

3); when b ∈ [B, 1], fb(yi) is maximized at y = 1. The theorem then follows readily. The
key step in the proof of Lemma 4.4 is to establish a monotonicity property for the ratio of the derivatives
of f0(yi) and f1(yi) with respective to y ∈ (1,

√
3). This piece of argument is placed in the appendix so a

reader who is more interested in the overall strategy of this work may skip it at the first reading.

2 Derivation of fb

The size and the shape of a two species periodic assembly play different roles in its energy. To separate the
two factors write the basis of a given two species periodic assembly as tα = (tα1, tα2) where t ∈ (0,∞) and
the parallelogram generated by α = (α1, α2) has the unit area, i.e. |Dα| = 1. This way the assembly is now
denoted by (Ωtα,1,Ωtα,2), with t measuring the size of the assembly (note |Dtα| = t2), and Dα describing
the shape of the assembly. The lattice generated by α is denoted Λ and the lattice generated by tα is tΛ.

Lemma 2.1. Fix α1, α2 ∈ C\{0}, Im(α2/α1) > 0, and |Dα| = 1. Among all 2 species periodic assemblies
Ωtα, t ∈ (0,∞), the energy per cell area is minimized by the one with t = tα, where

tα =
( 2

√
2πω1 + 2

√
2πω2∑2

j,k=1 γjk
∫
Dα
∇IΛ(Ωα,j)(ζ) · ∇IΛ(Ωα,k)(ζ) dζ

)1/3

. (2.1)
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Figure 2: Two species periodic assemblies of discs with their associated lattices. First row from left to right:
a rectangular lattice and a square lattice. Second row from left to right: a rhombic lattice and a hexagonal
lattice.
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The energy per cell area of this assembly is

J̃tαΛ((Ωtαα,1,Ωtαα,2) = 3
(√

2πω1 +
√

2πω2

)2/3( 2∑
j,k=1

γjk
2

∫
Dα

∇IΛ(Ωα,j)(ζ) · ∇IΛ(Ωα,k)(ζ) dζ
)1/3

. (2.2)

Consequently minimization of (1.21) is reduced to minimizing

F(α) =

2∑
j,k=1

γjk
2

∫
Dα

∇IΛ(Ωα,j)(ζ) · ∇IΛ(Ωα,k)(ζ) dζ, |Dα| = 1, (2.3)

with respect to α of unit cell area.

Proof. Between the two lattices, the functions ItΛ(Ωtα,j) and IΛ(Ωα,j) are related by

ItΛ(Ωtα,j)(χ) = t2IΛ(Ωα,j)(ζ), tζ = χ, ζ, χ ∈ C (2.4)

because of the equation (1.12). Then

JtΛ(Ωtα,1,Ωtα,2) = t
(

2
√

2πω1 + 2
√

2πω2

)
+

2∑
j,k=1

γjk
2

∫
Dtα

∇ItΛ(Ωtα,j)(χ) · ∇ItΛ(Ωtα,k)(χ) dχ

= t
(

2
√

2πω1 + 2
√

2πω2

)
+ t4

2∑
j,k=1

γjk
2

∫
Dα

∇IΛ(Ωα,j)(ζ) · ∇IΛ(Ωα,k)(ζ) dζ.

The energy per cell area is

J̃tΛ(Ωtα,1,Ωtα,2) =
(1

t

)2

JtΛ(Ωtα)

=
1

t

(
2
√

2πω1 + 2
√

2πω2

)
+ t2

2∑
j,k=1

γjk
2

∫
Dα

∇IΛ(Ωα,j)(ζ) · ∇IΛ(Ωα,k)(ζ) dζ.

With respect to t, the last quantity is minimized at t = tα given in (2.1), and the minimum value is given in
(2.2).

Later one needs to minimize the right side of (2.2) with respect to α, |Dα| = 1. This is equivalent to
minimze F(α) with respect to α, |Dα| = 1. Once a minimum, say α∗, is found, then compute tα∗ from (2.1)
and make the assembly Ωtα∗α∗ with the basis tα∗α∗. This assembly minimizes (1.21).

Now that the minimization problem (1.21) is reduced to minimizing F , we proceed to simplify F(α) to a
more amenable form. To this end, one expresses the solution of (1.12) in terms of the Green’s function GΛ

of the −∆ operator as

IΛ(Ωj)(ζ) =

∫
Ωj∩Dα

GΛ(ζ − χ) dχ. (2.5)

Here GΛ is the Λ-periodic solution of

−∆GΛ(ζ) =
∑
λ∈Λ

δλ(ζ)− 1

|Λ|
,

∫
Dα

GΛ(ζ) dζ = 0. (2.6)

In (2.6) δλ is the delta measure at λ, and Dα is a parallelogram cell of Λ. It is known that

GΛ(ζ) =
|ζ|2

4|Λ|
− 1

2π
log
∣∣∣ e( ζ2ᾱ1

4i|Λ|α1
− ζ

2α1
+

α2

12α1

)(
1− e(

ζ

α1
)
)

∞∏
n=1

((
1− e(nτ +

ζ

α1
)
)(

1− e(nτ − ζ

α1
)
))∣∣∣ (2.7)
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A simple proof of this fact can be found in [5]. Throughout this paper one writes

e(z) = e2πiz (2.8)

and
τ =

α2

α1
. (2.9)

Sometimes one singles out the singularity of GΛ at 0 and decompose GΛ into

GΛ(ζ) = − 1

2π
log

2π|ζ|√
|Λ|

+
|ζ|2

4|Λ|
+HΛ(ζ) (2.10)

where

HΛ(ζ) = − 1

2π
log
∣∣∣ e( ζ2ᾱ1

4i|Λ|α1
− ζ

2α1
+

α2

12α1

)√|Λ|
2πζ

(
1− e(

ζ

α1
)
)

∞∏
n=1

((
1− e(nτ +

ζ

α1
)
)(

1− e(nτ − ζ

α1
)
))∣∣∣ (2.11)

is a harmonic function on (C\Λ) ∪ {0}.
The integral term in (1.10) can be written in several different ways:∫

DΛ

∇IΛ(Ωj)(ζ) · ∇IΛ(Ωk)(ζ) dζ =

∫
Ωk

IΛ(Ωj)(ζ) dζ =

∫
Ωj

IΛ(Ωk)(χ) dχ

=

∫
Ωk

∫
Ωj

GΛ(ζ − χ) dχdζ. (2.12)

Lemma 2.2. Minimizing F(α) with respect to α of unit cell area is equivalent to minimizing

F̃(α) = HΛ(0) +GΛ

(α1 + α2

2

)
+ b
(
GΛ

(α1

2

)
+GΛ

(α2

2

))
, |Dα| = 1 (2.13)

where Λ is the lattice generated by α and

b =
2γ12r

2
1r

2
2

γ11r4
1 + γ22r4

2

=
2γ12ω1ω2

γ11ω2
1 + γ22ω2

2

. (2.14)

Proof. Given a disc B(ξj , rj) one finds

IΛ(B(ξj , rj))(ζ) =

{
− |ζ−ξj |

2

4 +
r2
j

4 −
r2
j

2 log rj , if |ζ − ξj | ∈ [0, rj ],

− r
2
j

2 log |ζ − ξj |, if |ζ − ξj | > rj ,

−
r2
j

2
log

2π√
|Λ|

+
1

4|Λ|

(
πr2
j |ζ − ξj |2 +

πr4
j

2

)
+ πr2

jHΛ(ζ − ξj) (2.15)

by (2.10) and the mean value property of the harmonic function HΛ. Then∫
B(ξj ,rj)

∫
B(ξj ,rj)

GΛ(ζ − χ) dχdζ =

∫
B(ξj ,rj)

IΛ(B(ξj , rj))(ζ) dζ (2.16)

= π2r4
jHΛ(0) +

πr4
j

8
−
πr4
j

2
log

2πrj√
|Λ|

+
π2r6

j

4|Λ|
.
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When j 6= k, ∫
B(ξk,rk)

∫
B(ξj ,rj)

GΛ(ζ − χ) dχdζ =

∫
B(ξk,rk)

IΛ(B(ξj , rj))(ζ) dζ (2.17)

= π2r2
j r

2
kGΛ(ξj − ξk) +

π2(r2
j r

4
k + r4

j r
2
k)

8|Λ|
.

Since only the role played by the lattice basis α is of interest, let

cjj =
πr4
j

8
−
πr4
j

2
log

2πrj√
|Λ|

+
π2r6

j

4|Λ|
, cjk =

π2(r2
j r

4
k + r4

j r
2
k)

8|Λ|
, j 6= k (2.18)

which are independent of α when |Λ| = 1. Then∫
B(ξj ,rj)

∫
B(ξj ,rj)

GΛ(ζ − χ) dχdζ = π2r4
jHΛ(0) + cjj (2.19)∫

B(ξk,rk)

∫
B(ξj ,rj)

GΛ(ζ − χ) dχdζ = π2r2
j r

2
kGΛ(ξj − ξk) + cjk. (2.20)

Similarly, ∫
B(ξ′j ,rj)

∫
B(ξ′j ,rj)

GΛ(ζ − χ) dχdζ = π2r4
jHΛ(0) + cjj (2.21)∫

B(ξ′k,rk)

∫
B(ξ′j ,rj)

GΛ(ζ − χ) dχdζ = π2r2
j r

2
kGΛ(ξ′j − ξ′k) + cjk, j 6= k (2.22)∫

B(ξk,rk)

∫
B(ξ′j ,rj)

GΛ(ζ − χ) dχdζ = π2r2
j r

2
kGΛ(ξj − ξ′k) + c′jk, j, k = 1, 2 (2.23)

where

c′jk =
π2(r2

j r
4
k + r4

j r
2
k)

8|Λ|
, j, k = 1, 2. (2.24)

Note that in (2.23) and (2.24) j may be equal to k.
To complete the computation, note that∫
Ωα,1

∫
Ωα,1

GΛ(ζ − χ) dχdζ =

∫
B(ξ1,r1)∪B(ξ′1,r1)

∫
B(ξ1,r1)∪B(ξ′1,r1)

GΛ(ζ − χ) dχdζ

=

∫
B(ξ1,r1)

∫
B(ξ1,r1)

GΛ(ζ − χ) dχdζ +

∫
B(ξ′1,r1)

∫
B(ξ′1,r1)

GΛ(ζ − χ) dχdζ

+

∫
B(ξ1,r1)

∫
B(ξ′1,r1)

GΛ(ζ − χ) dχdζ +

∫
B(ξ′1,r1)

∫
B(ξ1,r1)

GΛ(ζ − χ) dχdζ

= 2(π2r4
1HΛ(0) + c11) + 2(π2r4

1GΛ(ξ1 − ξ′1) + c′11)∫
Ωα,2

∫
Ωα,2

GΛ(ζ − χ) dχdζ = 2(π2r4
2HΛ(0) + c22) + 2(π2r4

2GΛ(ξ2 − ξ′2) + c′22)∫
Ωα,1

∫
Ωα,2

GΛ(ζ − χ) dχdζ = π2r2
1r

2
2GΛ(ξ1 − ξ2) + c12 + π2r2

1r
2
2GΛ(ξ′1 − ξ′2) + c12

+ 2(π2r2
1r

2
2G(ξ1 − ξ′2) + c′12).
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Therefore

F(α) =
∑

j,k=1,2

γjk
2

∫
Ωα,j

∫
Ωα,k

GΛ(ζ − χ) dχdζ

= γ11

(
π2r4

1HΛ(0) + +π2r4
1GΛ(

α1 + α2

2
) + c11 + c′11

)
+ γ22

(
π2r4

2HΛ(0) + +π2r4
2GΛ(

α1 − α2

2
) + c22 + c′22

)
+ 2γ12

(
π2r2

1r
2
2

(
GΛ(

α1

2
) +GΛ(

α2

2
)
)

+ c12 + c′12

)
= (γ11π

2r4
1 + γ22π

2r4
2)
(
HΛ(0) +GΛ(

α1 + α2

2
)
)

+ 2γ12π
2r2

1r
2
2

(
GΛ(

α1

2
) +GΛ(

α2

2
)
)

+ γ11(c11 + c′11) + γ22(c22 + c′22) + 2γ12(c12 + c′12)

= (γ11π
2r4

1 + γ22π
2r4

2)
[
HΛ(0) +GΛ(

α1 + α2

2
) +

2γ12r
2
1r

2
2

γ11r4
1 + γ22r4

2

(
GΛ(

α1

2
) +GΛ(

α2

2
)
)]

+ γ11(c11 + c′11) + γ22(c22 + c′22) + 2γ12(c12 + c′12).

Here GΛ(α1+α2

2 ) = GΛ(α1−α2

2 ) follows from the Λ-periodicity of GΛ.

Calculations based on (2.11) show

HΛ(0) = − 1

2π
log
∣∣∣√Im τ e(

τ

12
)

∞∏
n=1

(1− e(nτ))2
∣∣∣ (2.25)

GΛ(
α1

2
+
α2

2
) = − 1

2π
log
∣∣∣ e(− τ

24
)

∞∏
n=1

(
1 + e

(
(n− 1

2
)τ)
)2∣∣∣ (2.26)

GΛ(
α1

2
) = − 1

2π
log
∣∣∣2 e(

τ

12
)

∞∏
n=1

(1 + e(nτ))2
∣∣∣ (2.27)

GΛ(
α2

2
) = − 1

2π
log
∣∣∣ e(− τ

24
)

∞∏
n=1

(
1− e

(
(n− 1

2
)τ
))2∣∣∣. (2.28)

To derive (2.25) we have used 1
|α1| =

√
Im τ , which follows from 1 = |DΛ| = Im(ᾱ1α2).

Regarding the four infinite products in (2.25) through (2.28), one has the following formulas.

Lemma 2.3.

∞∏
n=1

(1− e(nτ))

∞∏
n=1

(
1 + e

(
(n− 1

2
)τ)
)

=

∞∏
n=1

(
1− e(n

τ + 1

2
)
)

∞∏
n=1

(
1 + e

(
(n− 1

2
)τ)
) ∞∏
n=1

(1 + e(nτ))

∞∏
n=1

(
1− e

(
(n− 1

2
)τ)
)

= 1.

Proof. To prove the first formula, rewrite and rearrange the terms as follows.

∞∏
n=1

(1− e(nτ))

∞∏
n=1

(
1 + e

(
(n− 1

2
)τ)
)

=

∞∏
n=1

(
1− e(2n

τ + 1

2
)
) ∞∏
n=1

(
1− e((2n− 1)

τ + 1

2
)
)

=

∞∏
n=1

(
1− e(n

τ + 1

2
)
)
.
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For the second formula, consider

∞∏
n=1

(1− e(nτ))

∞∏
n=1

(
1 + e

(
(n− 1

2
)τ)
) ∞∏
n=1

(1 + e(nτ))

∞∏
n=1

(
1− e

(
(n− 1

2
)τ)
)

=

∞∏
n=1

(1− e(2nτ))

∞∏
n=1

(
1− e

(
(2n− 1)τ)

)
=

∞∏
n=1

(1− e(nτ)).

The second formula follows after one divides out
∏∞
n=1(1− e(nτ)).

These identities will allow us to further simplify F̃(α). Let

H = {z ∈ C : Im z > 0} (2.29)

be the upper half of the complex plane. Define

fb(z) = b log
∣∣ Im (z)η(z)∣∣+ (1− b) log

∣∣ Im (z + 1

2

)
η
(z + 1

2

)∣∣, z ∈ H, (2.30)

where

η(z) = e
(z

6

) ∞∏
n=1

(
1− e(nz)

)4
. (2.31)

One often writes fb as
fb(z) = bf1(z) + (1− b)f0(z), (2.32)

where

f1(z) = log | Im(z)η(z)|, f0(z) = log | Im(
z + 1

2
)η(

z + 1

2
)|. (2.33)

Lemma 2.4. Minimizing F̃(α) with respect to α of unit cell area is equivalent to maximizing fb(z) with
respect to z in H.

Proof. By the first formula in Lemma 2.3,

HΛ(0) +GΛ(
α1 + α2

2
) = − 1

2π
log
∣∣∣√Im τ e(

τ

24
)

∞∏
n=1

(
1− e(n

τ + 1

2
)
)2∣∣∣

= − 1

4π
log | Im(

τ + 1

2
)η(

τ + 1

2
)
∣∣∣− 1

4π
log 2. (2.34)

Using both formulas in Lemma 2.3, one deduces

GΛ(
α1

2
) +GΛ(

α2

2
) = − 1

2π
log
∣∣∣2 e(

τ

24
)

∞∏
n=1

(1 + e(nτ))2
∞∏
n=1

(
1− e((n− 1

2
)τ)
)2∣∣∣

= − 1

2π
log
∣∣∣2 e(

τ

24
)

∞∏
n=1

(1− e(nτ))2
/ ∞∏
n=1

(
1− e(n

τ + 1

2
)
)2∣∣∣

= − 1

4π

(
log | Im(τ)η(τ)| − log

∣∣∣ Im(
τ + 1

2
)η(

τ + 1

2
)
∣∣∣)− 1

4π
log 2. (2.35)

By (2.34) and (2.35), F̃(Λ) of (2.13) is reduced to

F̃(Λ) = − 1

4π

(
b log | Im(τ)η(τ)|+ (1− b) log

∣∣∣ Im(
τ + 1

2
)η(

τ + 1

2
)
∣∣∣)− 1 + b

4π
log 2, (2.36)

from which the lemma follows.
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3 Duality property of fb

The function η in the definition of fb satisfies two functional equations.

Lemma 3.1. For all z ∈ H,

η(z + 1) = e
2πi
6 η(z), (3.1)

η
(
− 1

z

)
= −z2η(z). (3.2)

Proof. The function η in (2.31) is the fourth power of the Dedekind eta function which is

ηD(z) = e
( z

24

) ∞∏
n=1

(
1− e2πinz

)
so

η(z) = η4
D(z), z ∈ H.

For the Dedekind eta function, it is known [3, Chapter 2] that

ηD(z + 1) = e
2πi
24 ηD(z) (3.3)

ηD

(
− 1

z

)
=
√
−iz ηD(z) (3.4)

where
√
· stands for the principal branch of squaure root.

These functional equations lead to invariance properties.

Lemma 3.2. 1. | Im(z)η(z)|, and consequently f1(z), are invariant under the transforms

z → z + 1, and z → −1

z
.

2. | Im
(
z+1

2

)
η
(
z+1

2

)
|, and consequently f0(z), are invariant under the transforms

z → z + 2, and z → −1

z
.

Proof. The invariance of | Im
(
z
)
η
(
z
)
| under z → z+1 and the invariance of | Im

(
z+1

2

)
η
(
z+1

2

)
| under z → z+2

follow from (3.1). By (3.2) it is easy to see that

| Im(−1

z
)η(−1

z
)| = | Im(z)η(z)|, (3.5)

so | Im
(
z
)
η
(
z
)
| is invariant under z → − 1

z .

The invariance of | Im
(
z
)
η
(
z
)
| under z → z + 1 implies its invariance uder z → z + k for any integer k.

Now one deduces ∣∣ Im ( (− 1
z ) + 1

2

)
η
( (− 1

z ) + 1

2

)∣∣ =
∣∣ Im (z − 1

2z

)
η
(z − 1

2z

)∣∣
=
∣∣ Im (−z − 1

2z

)
η
(−z − 1

2z

)∣∣
=
∣∣ Im ( 2z

z + 1

)
η
( 2z

z + 1

)∣∣
=
∣∣ Im ( −2

z + 1

)
η
( −2

z + 1

)∣∣
=
∣∣ Im (z + 1

2

)
η
(z + 1

2

)∣∣ (3.6)

by applying the invariance of | Im
(
z
)
η
(
z
)
| under z → z − 1, z → − 1

z , z → z − 2, and z → − 1
z successively.

This proves the invariance of | Im
(
z+1

2

)
η
(
z+1

2

)
| under z → − 1

z .
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There is another invariance that is not a linear fractional transform: the reflection about the imaginary
axis.

Lemma 3.3. Both | Im
(
z
)
η
(
z
)
| and | Im

(
z+1

2

)
η
(
z+1

2

)
|, and consequently f1(z) and f0(z), are invariant

under z → −z̄.

Proof. These follow easily from the infinite product definition (2.31) of η.

The transforms z → z + 1 and z → − 1
z generate the modular group Γ,

Γ =

{
z → az + b

cz + d
: a, b, c, d ∈ Z, ad− bc = 1

}
.

And Γ has
FΓ = {z ∈ H : |z| > 1, −1/2 < Re z < 1/2} (3.7)

as a fundamental region. It means that every orbit under this group has one element in FΓH, the closure of
FΓ in H, and no two points in FΓ belong to the same orbit [3].

The transforms z → z + 2 and z → − 1
z generate a subgroup Γ′ of Γ,

Γ′ =
{
z → az + b

cz + d
∈ Γ : a ≡ d ≡ 1 mod 2 and b ≡ c ≡ 0 mod 2,

or a ≡ d ≡ 0 mod 2 and b ≡ c ≡ 1 mod 2
}
. (3.8)

It is known in number theory that this group has

FΓ′ = {z ∈ H : |z| > 1, −1 < Re z < 1} (3.9)

as a fundamental region [7].
Denote by G the group of diffeomorphisms of H generated by

z → z + 2, z → −1

z
, z → −z̄.

Note that Γ′ is a subgroup of G but Γ is not a subgroup of G.
With the group G, maximizing fb need not be carried out in H, but in a smaller set. Let

W = {z ∈ H : 0 < Re z < 1, |z| > 1} (3.10)

and
WH = {z ∈ H : 0 ≤ Re z ≤ 1, |z| ≥ 1}; (3.11)

see Figure 3. Note that WH is the closure of W in H so 1 6∈WH.

Lemma 3.4. 1. | Im
(
z
)
η
(
z
)
| and f1(z) are invariant under the group Γ and the transform z → −z̄.

2. | Im
(
z+1

2

)
η
(
z+1

2

)
|, f0(z), and fb(z), for b ∈ R, are invariant under the groups Γ′ and G.

3. As the group G acts on H, each orbit of G has at least one element in WH.

Proof. Part 1 and part 2 follow from Lemmas 3.2 and 3.3. Part 3 follows from FΓ′ being the fundamental
region of Γ′ and the transform z → −z̄ ∈ G.

By Lemma 3.4, maximizing fb in H is reduced to maximizing fb in WH. When b = 1, since f1 is invariant
under Γ, it suffices to maximize f1 in a smaller set

UH = {z ∈ H : 0 ≤ Re z ≤ 1/2, |z| ≥ 1} (3.12)
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Figure 3: The left plot shows the set W . In WH, fb attain the maximum at a point either on the thick line
segment or on the thick arc. In the right plot, with b ∈ (0, B), fb increases in the directions of the arrows.
The dot on the imaginary axis is qbi.

which is the closure of

U =
{
z ∈ C : |z| > 1, 0 < Re z <

1

2

}
. (3.13)

This fact was used critically in [5], but it is not valid if b 6= 1. The approach of this paper works for all
b ∈ [0, 1], giving a different proof for the b = 1 case as well.

One of the most important properties of fb is the following duality relation between fb and f1−b.

Lemma 3.5. Under the transform z → w = z−1
z+1 of H,

f1(z) = f0(w) and f0(z) = f1(w), z ∈ H and w =
z − 1

z + 1
∈ H.

Consequently, for all b ∈ R,

fb(w) = f1−b(z), z ∈ H and w =
z − 1

z + 1
∈ H.

More generally, if h : z′ → w′ = z′−1
z′+1 and g1 : z → z′, g2 : w′ → w are transforms in G, then

fb(w) = f1−b(z), z ∈ H and w = g2 ◦ h ◦ g1(z) ∈ H.

Proof. The transform z → w′ = z
z+1 is in Γ, so

f1(z) = f1(w′)

by the invariance of f1 under Γ. On the other hand substitution shows

f0(z) = f0(
w′

−w′ + 1
) = log | Im(

1

−2w′ + 2
)η(

1

−2w′ + 2
)| = f1(

1

−2w′ + 2
).

Now apply another transform w′ → w = 2w′ − 1 which is not in Γ to find

f1(z) = f1(
w + 1

2
) = f0(w)

and

f0(z) = f1(
1

−w + 1
) = f1(w)

where the last equation follows from the invariance of f1 under w → 1
−w+1 ∈ Γ.

The composition of the two transforms is z → w′ = z
z+1 → w = 2w′ − 1 = z−1

z+1 .
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Although b is supposed to be in [0, 1] throughout this paper, some properties of fb, like Lemma 3.5, hold
for b ∈ R. If this is the case we state so explicitly.

Let us write z = x+ yi henceforth, and set

Xb(z) =
∂fb(z)

∂x
= bX1(z) + (1− b)X0(z), Yb(z) =

∂fb(z)

∂y
= bY1(z) + (1− b)Y0(z),

where

X1(z) =
∂

∂x
log | Im(z)η(z)|, Y1(z) =

∂

∂y
log | Im(z)η(z)| (3.14)

X0(z) =
∂

∂x
log | Im(

z + 1

2
)η(

z + 1

2
)|, Y0(z) =

∂

∂y
log | Im(

z + 1

2
)η(

z + 1

2
)|. (3.15)

These functions can be written as the following series.

X1(z) =

∞∑
n=1

8πn sin 2πnx

e2πny + e−2πny − 2 cos 2πnx
(3.16)

Y1(z) =
1

y
− π

3
+

∞∑
n=1

−8πne−2πny + 8πn cos 2πnx

e2πny + e−2πny − 2 cos 2πnx
(3.17)

X0(z) =

∞∑
n=1

4πn sinπn(x+ 1)

eπny + e−πny − 2 cosπn(x+ 1)
(3.18)

Y0(z) =
1

y
− π

6
+

∞∑
n=1

−4πne−πny + 4πn cosπn(x+ 1)

eπny + e−πny − 2 cosπn(x+ 1)
. (3.19)

We end this section with two formulas that relate fb on the upper half of the unit circle to f1−b on the
upper half of the imaginary axis.

Lemma 3.6. Let the upper half of the unit circle be parametrized by u+i
√

1− u2, u ∈ (−1, 1). Then
√

1−u2

1−u i
parametrizes the upper half of the imaginary axies, and

Xb(u+ i
√

1− u2) =

√
1− u2

1− u
Y1−b

(√1− u2

1− u
i
)

(3.20)

Yb(u+ i
√

1− u2) =
−u

1− u
Y1−b

(√1− u2

1− u
i
)

(3.21)

hold for u ∈ (−1, 1).

Proof. Consider the transform in Lemma 3.5, z → w = z−1
z+1 . With z = x+ yi and w = u+ vi,

u =
x2 + y2 − 1

(x+ 1)2 + y2
, v =

2y

(x+ 1)2 + y2
. (3.22)

Conversely,

x =
1− u2 − v2

(1− u)2 + v2
, y =

2v

(1− u)2 + v2
. (3.23)

Differentiate fb(w) = f1−b(z) with respect to u and v to find

Xb(w) = X1−b(z)
∂x

∂u
+ Y1−b(z)

∂y

∂u

Yb(w) = X1−b(z)
∂x

∂v
+ Y1−b(z)

∂y

∂v
.
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When w is on the unit circle, z is on the imaginary axis. Since f1−b is invariant under the reflection about
the imaginary axis, X1−b(z) = 0 on the imaginary axis. Also

∂y

∂u

∣∣∣
|w|=1

=

√
1− u2

1− u
,
∂y

∂v

∣∣∣
|w|=1

=
−u

1− u
(3.24)

from which the lemma follows.

4 fb on imaginary axis

The behavior of fb on the imaginary axis is studied in this section. Let us record some of the derivatives of
f1 and f0 on the imaginary axis for use in this section and later. Let

r = e−πy. (4.1)

Then by (3.17) and (3.19),

Y1(yi) =
1

y
− π

3
+
∞∑
n=1

8πnr2n

1− r2n
(4.2)

∂Y1(yi)

∂y
= − 1

y2
−
∞∑
n=1

16π2n2r2n

(1− r2n)2
(4.3)

∂2Y1(yi)

∂y2
=

2

y3
+

∞∑
n=1

32π3n3(r2n + r4n)

(1− r2n)3
(4.4)

∂3Y1(yi)

∂y3
= − 6

y4
−
∞∑
n=1

64π4n4(r2n + 4r4n + r6n)

(1− r2n)4
(4.5)

Y0(yi) =
1

y
− π

6
+

∞∑
n=1

4πn(−r)n

1− (−r)n
(4.6)

∂Y0(yi)

∂y
= − 1

y2
−
∞∑
n=1

4π2n2(−r)n

(1− (−r)n)2
(4.7)

∂2Y0(yi)

∂y2
=

2

y3
+

∞∑
n=1

4π3n3
(

(−r)n + r2n
)

(1− (−r)n)3
(4.8)

∂3Y0(yi)

∂y3
= − 6

y4
−
∞∑
n=1

4π4n4
(

(−r)n + 4r2n + (−r)3n
)

(1− (−r)n)4
. (4.9)

Lemma 4.1. For all b ∈ R,
fb(yi) = fb

( i
y

)
, y > 0.

Consequently,

Yb(yi) =
(
− 1

y2

)
Yb

( i
y

)
, y > 0.

In particular
Yb(i) = 0.

Proof. Apply the invariance of fb(z) under z → − 1
z with z = yi, y > 0. Then differentiate with respect to y

and set y = 1.
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Lemma 4.2. The function y → f1(yi), y > 0, has one critical point at y = 1. Moreover

Y1(yi) > 0 if y ∈ (0, 1)

Y1(yi) < 0 if y ∈ (1,∞)

Proof. Lemma 4.1 asserts that y = 1 is a critical point of y → f1(yi), y > 0, i.e. Y1(i) = 0. Define

A(z) = arg(zη(z)) = arg(z) + arg(η(z)) (4.10)

Note
Re(log(zη(z))) = log |zη(z)|, Im(log(zη(z))) = A(z). (4.11)

Hence A is a harmonic function. We consider A(z) in U and and its closure UH given in (3.13) and (3.12)
respectively.

On the imaginary axis, for y > 0, since η(yi) is real and positive,

A(yi) = arg(yi) + arg(η(yi)) =
π

2
+ 0 =

π

2
, (4.12)

On the line x = 1
2 , arg(η(z)) = π

6 since e2πn( 1
2 +yi)i is real, and

A(
1

2
+ yi) = arctan(2y) +

π

6
. (4.13)

In particular

A(
1

2
+ yi) >

π

2
if y >

√
3

2
. (4.14)

As y →∞ in z = x+ yi,

lim
y→∞

A(x+ yi) =
π

2
+
πx

3
uniformly with respect to x ∈

[
0,

1

2

]
. (4.15)

Now consider A on the unit circle. By the functional equation (3.2) one has, in polar coordinates z = reiθ,

log(r|η(reiθ)|) = log(
1

r
|η(−1

r
e−iθ)|).

By the definition of η, one sees that |η(−ζ̄)| = |η(ζ)| for all ζ ∈ H. Therefore

log(r|η(reiθ)|) = log(
1

r
|η(

1

r
eiθ)|).

Differentiating the last equation with respect to r and setting r = 1 afterwards, one derives

∂

∂r

∣∣∣
r=1

log(r|η(reiθ)|) = 0.

One of the Cauchy-Riemann equations in polar coordinates for log(zη(z)) is

∂

∂r
Re(log(zη(z))) =

1

r

∂

∂θ
Im(log(zη(z))).

By (4.11)
∂

∂θ
A(eiθ) = 0,

namely A is constant on the unit circle. Since η(i) is real and positive, A(i) = π
2 . Hence

A(z) =
π

2
if |z| = 1 and

π

3
≤ arg z ≤ π

2
. (4.16)
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By (4.12), (4.14), (4.15), (4.16), and the maximum principle,

A(z) >
π

2
, z ∈ U ; (4.17)

by the Hopf lemma,
∂

∂x

∣∣∣
x=0,y>1

A(z) > 0. (4.18)

By a Cauchy-Riemann equation

Y1(yi) = − ∂

∂x

∣∣∣
x=0,y>1

A(z) < 0, y ∈ (1,∞). (4.19)

For y ∈ (0, 1), by Lemma 4.1,

Y1(yi) =
(
− 1

y2

)
Y1

( i
y

)
> 0, y ∈ (0, 1). (4.20)

This completes the proof.

Lemma 4.3. The function y → f0(yi), y > 0, has three critical points at
√

3
3 , 1, and

√
3. Moreover

Y0(yi) > 0 if y ∈ (0,
√

3/3)

Y0(yi) < 0 if y ∈ (
√

3/3, 1)

Y0(yi) > 0 if y ∈ (1,
√

3)

Y0(yi) < 0 if y ∈ (
√

3,∞).

Proof. The transfrom z → z−1
2z−1 ∈ Γ maps 1

2 + yi to 1
2 + i

4y , so

log |yη(
1

2
+ yi)| = log | 1

4y
η(

1

2
+

i

4y
)|

Differentiation with respect to y shows that

Y1

(1

2
+ yi

)
= − 1

4y2
Y1

(1

2
+

i

4y

)
. (4.21)

One consequence of (4.21) is that

Y0(i) =
1

2
Y1

(1

2
+
i

2

)
= 0; (4.22)

namely that 1 is a critical point of y → f0(yi).
The combined transform of z → w = − 1

z ∈ Γ and w → −w̄ maps the line 1
2 + yi to 2

4y2+1 + 4y
4y2+1 i, the

unit circle centered at 1. The invariance of f1 under this transform yields

f1

(1

2
+ yi

)
= f1

( 2

4y2 + 1
+

4yi

4y2 + 1

)
Differentiation with respect to y shows that

Y1

(1

2
+ yi

)
= X1(

2

4y2 + 1
+

4yi

4y2 + 1
)
∂

∂y

( 2

4y2 + 1

)
+ Y1(

2

4y2 + 1
+

4yi

4y2 + 1
)
∂

∂y

( 4y

4y2 + 1

)
.

By (3.16)

X1

(1

2
+ vi

)
= 0, v > 0.
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Hence, with y =
√

3
2 , one deduces

Y0(
√

3 i) =
1

2
Y1(

1

2
+

√
3

2
i) = 0, (4.23)

i.e.
√

3 is a critical point of y → f0(yi). By (4.21),
√

3
3 is also a critical point of y → f0(yi).

Now show that
Y0(yi) < 0, if y ∈ (

√
3,∞). (4.24)

This fact was established by Chen and Oshita in [5]. Here we give a more direct alternative proof.

Consider the expression for ∂Y0(yi)
∂y in (4.7). Note that the series

∞∑
n=1

n2(−r)n

(1− (−r)n)2
(4.25)

is alternating. The only nontrivial property to verify is that the absolute values of the terms decrease, and
this follows from the following estimate.

n2rn

(1− (−r)n)2
− (n+ 1)2rn+1

(1− (−r)n+1)2
=

(n+ 1)2rn+1

(1− (−r)n)2

( n2

(n+ 1)2r
− (1− (−r)n)2

(1− (−r)n+1)2

)
≥ (n+ 1)2rn+1

(1− (−r)n)2

(e√3π

4
− (1 + e−

√
3π)2

(1− e−2
√

3)2

)
=

(n+ 1)2rn+1

(1− (−r)n)2
× 56.68... > 0. (4.26)

This allows us to estimate ∂Y0(yi)
∂y as follows

∂Y0(yi)

∂y
< − 1

y2
+

4π2e−πy

(1 + e−πy)2

< − 1

y2
+ 4π2e−πy

=
1

y2

(
− 1 + 4πy2e−πy

)
≤ 1

y2

(
− 1 + 4π(

√
3)2e−π

√
3
)

≤ 1

y2
× (−0.8388...) < 0. (4.27)

Here to reach the fourth line, one notes that

(−1 + 4πy2e−πy)′ = 4πe−πyy(2− πy) < 0, if y >
√

3.

Since Y0(
√

3 i) = 0, (4.27) implies (4.24).
By (4.24) and Lemma 4.1, one deduces

Y0(yi) > 0, if y ∈ (0,

√
3

3
). (4.28)

Next consider Y0(yi) for y ∈ (1,
√

3). By (4.8)

∂2Y0(yi)

∂y2
=

2

y3
+

∞∑
n=1

4π3n3((−r)n + r2n)

(1− (−r)n)3
, r = e−πy. (4.29)
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It turns out that the series
∞∑
n=1

n3(−r)n

(1− (−r)n)3
(4.30)

which is part of (4.29) is alternating. To see that the absolute values of the terms in (4.30) decrease, note

n3rn

(1− (−r)n)3
− (n+ 1)3rn+1

(1− (−r)n+1)3
=

(n+ 1)3rn+1

(1− (−r)n)3

[ n3

(n+ 1)3r
− (1− (−r)n)3

(1− (−r)n+1)3

]
and it suffices to show that the quantity in the brackets is positive. For y > 1,

n3

(n+ 1)3r
− (1− (−r)n)3

(1− (−r)n+1)3
>
eπ

8
− (1 + e−π)3

(1− e−2π)3
= 2.8925...− 1.1417... > 0.

An upper bound for (4.30) is available if one chooses two terms from the series:

∞∑
n=1

n3(−r)n

(1− (−r)n)3
<

−r
(1 + r)3

+
8r2

(1− r2)3
. (4.31)

Then (4.29) becomes

∂2Y0(yi)

∂y2
<

2

y3
− 4π3r

(1 + r)3
+

32π3r2

(1− r2)3
+ 4π3

∞∑
n=1

n3r2n

(1− (−r)n)3

<
2

y3
− 4π3r

(1 + r)3
+

32π3r2

(1− r2)3
+

4π3

(1− r)3

∞∑
n=1

n3r2n

=
2

y3
− 4π3r

(1 + r)3
+

32π3r2

(1− r2)3
+

4π3r2(1 + 4r2 + r4)

(1− r)3(1− r2)4

<
2

y3
−
[ 4π3

(1 + e−π)3

]
r +

[ 32π3

(1− e−2π)3
+

4π3(1 + 4e−2π + e−4π)

(1− e−π)3(1− e−2π)4

]
s2

=
2

y3
−A1r +A2r

2

= r κ(y), (4.32)

where we have used the summation formula

∞∑
n=1

n3tn = t
(
t
[
t
( 1

1− t

)
t

]
t

)
t

=
t(1 + 4t+ t2)

(1− t)4
, |t| < 1 (4.33)

to reach the third line, A1 and A2 are given by

A1 =
4π3

(1 + e−π)3
= 109.24..., A2 =

32π3

(1− e−2π)3
+

4π3(1 + 4e−2π + e−4π)

(1− e−π)3(1− e−2π)4
= 1, 141.50... (4.34)

and κ is

κ(y) =
2

y3r
−A1 +A2r =

2eπy

y3
−A1 +A2e

−πy. (4.35)

Regarding κ, one finds

κ′′(y) = eπy
(
2π2y−3 − 12πy−4 + 24πy−5

)
+ π2A2e

−πy

= 2eπyy−5
(
(πy − 3)2 + 3

)
+ π2A2e

−πy > 0,
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and
κ(1) = −13.63... < 0, κ(

√
3) = −15.47... < 0.

Hence
k(y) < 0, y ∈ [1,

√
3], (4.36)

and by (4.32)
∂2Y0(yi)

∂y2
< 0, y ∈ [1,

√
3]. (4.37)

Since Y0(1) = Y0(
√

3) = 0 by (4.22) and (4.23), (4.37) implies

Y0(yi) > 0, if y ∈ (1,
√

3). (4.38)

By (4.21), (4.38) implies

Y0(yi) < 0, if y ∈
(√3

3
, 1
)
. (4.39)

The lemma follows from (4.28), (4.39), (4.38), and (4.24).

For b between (0, 1), the next lemma shows that the shape of fb is similar to f0 if b is small and similar
to f1 if b is large. The borderline is B given by

B =

∂Y0(i)
∂y

∂Y0(i)
∂y − ∂Y1(i)

∂y

=
0.2982...

0.2982...− (−1.298...)
= 0.1867... (4.40)

The numerical values in (4.40) are computed from the series (4.3) and (4.7). One interpretation of B is that
if b = B, the second derivative of y → fB(yi) vanishes at y = 1, i.e.

∂YB(i)

∂y
= 0. (4.41)

Lemma 4.4. The following properties hold for y → fb(bi), y ∈ (0,∞).

1. When b ∈ [0, B), the function y → fb(yi), y > 0, has exactly three critical points at 1
qb
, 1, and qb,

where qb ∈ (1,
√

3]. Moreover

(a) Yb(yi) > 0 if y ∈ (0, 1
qb

),

(b) Yb(yi) < 0 if y ∈ ( 1
qb
, 1),

(c) Yb(yi) > 0 if y ∈ (1, qb),

(d) Yb(yi) < 0 if y ∈ (qb,∞).

As b increases from 0 to B, qb decreases from
√

3 towards 1.

2. When b ∈ [B, 1], the function y → fb(0, y), y > 0, has only one critical point at 1, and

(a) Yb(yi) > 0 if y ∈ (0, 1),

(b) Yb(yi) < 0 if y ∈ (1,∞).

Proof. The shapes of f1 and f0 are already established in Lemmas 4.2 and 4.3. These lemmas imply that
y = 1 is a critical point of y → fb(yi), y > 0, i.e.

Yb(i) = 0, for all b ∈ [0, 1], (4.42)

and moreover,
Yb(yi) < 0, if b ∈ (0, 1] and y ≥

√
3. (4.43)
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To study Yb(yi) for y ∈ (1,
√

3) and b ∈ (0, 1), write Yb = bY1 + (1− b)Y0 as

Yb(yi) = bY1(yi)
(

1 +
(1− b

b

)Y0(yi)

Y1(yi)

)
. (4.44)

Recall Y1(yi) < 0 for y > 1 from Lemma 4.2. Regarding the quotient Y0(yi)
Y1(yi) , since Y0(i) = Y1(i) = 0, Y0(i)

Y1(i) is

understood as the limit

Y0(i)

Y1(i)
= lim
y→1

Y0(yi)

Y1(yi)
=

∂Y0(i)
∂y

∂Y1(i)
∂y

=
0.2982...

−1.298...
= −0.2297... < 0 (4.45)

evaluated by L’Hospital’s rule. Since Y0(
√

3 i) = 0 by Lemma 4.3,

Y0(
√

3 i)

Y1(
√

3 i)
= 0. (4.46)

Lemmas 4.2 and 4.3 also assert that Y1(yi) < 0 and Y0(yi) > 0 if y ∈ (1,
√

3), so

Y0(yi)

Y1(yi)
< 0, y ∈ (1,

√
3). (4.47)

However the most important property of this quotient is its monotonicity on (1,
√

3), namely

∂

∂y

(Y0(yi)

Y1(yi)

)
> 0, y ∈ (1,

√
3). (4.48)

The proof of (4.48) is long and brute force. We leave it in the appendix. The first time reader may wish to
skip this part.

Return to (4.44). Since Y1(yi) < 0 on (1,∞) and 1−b
b ∈ (0,∞) when b ∈ (0, 1), (4.48) implies that Yb(yi)

can have at most one zero in (1,
√

3) at which Yb(yi) changes sign. Because of (4.46),

1 +
(1− b

b

)Y0(
√

3 i)

Y1(
√

3 i)
= 1 + 0 > 0, b ∈ (0, 1). (4.49)

Hence Yb(yi) admits a zero in (1,
√

3) if and only if

1 +
(1− b

b

)Y0(i)

Y1(i)
< 0. (4.50)

The condition (4.50) is equivalent to
b < B (4.51)

by (4.45). We denote this zero in (1,
√

3) of Yb(yi) by qb when b ∈ (0, B). It is also clear from (4.44) and
(4.48) that as b increases from 0 to B, qb decreases monotonically from

√
3 towards 1. This proves parts

1(c), 1(d), and 2(b) of the lemma. The remaining parts follow from Lemma 4.1.

5 fb on upper half plane

We start with a study of the singular point z = 1. Recall the set W from (3.10).

Lemma 5.1.
lim sup
W3z→1

Xb(z) = 0.
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Proof. Note that if z = x+ yi ∈W , then, when y < 1,

0 < 1− x < 1−
√

1− y2. (5.1)

So W 3 z → 1 is equivalent to that z ∈W and y → 0.
We first show that

lim sup
W3z→1

X1(z) ≤ 0. (5.2)

Namely, for every ε > 0 there exists δ > 0 such that if z = x+ yi ∈W and y < δ, then Xb(z) < ε.
Recall

X1(z) =

∞∑
n=1

8πn sin 2πnx

e2πny + e−2πny − 2 cos 2πnx

from (3.16). Separate this infinite sum into two parts according to whether ny2 < 1
2 or ny2 ≥ 1

2 . Write

an(z) =
8πn sin 2πnx

e2πny + e−2πny − 2 cos 2πnx
(5.3)

A(z) =
∑

n<1/(2y2)

an(z) (5.4)

Ã(z) =
∑

n≥1/(2y2)

an(z) (5.5)

so that
X1(z) = A(z) + Ã(z). (5.6)

Consider the case n < 1
2y2 . Since 1−

√
1− y2 < y2 when y ∈ (0, 1) , (5.1) implies

0 < 1− x < y2. (5.7)

Then 0 < 2πn(1 − x) < 2πny2 < π and sin 2πnx = − sin 2πn(1 − x) < 0. Hence, every term an(z) in A(z)
is negative, and consequently

A(z) < 0. (5.8)

When n ≥ 1
2y2 ,

|an(z)| ≤ 8πn

e2πny − 2
≤ 1

eπny
. (5.9)

To see the last inequality, note

8πn

e2πny − 2
≤ 8πn

e2πny − 2

(
2ny2

)
=

16π(ny)2

e2πny − 1
.

There exists t0 > 0 such that for all t > t0, 16πt2

e2πt−1 ≤
1
eπt . Since n ≥ 1

2y2 , ny ≥ 1
2y . By choosing y < 1

2t0
, we

have ny > t0 and the last inequality of (5.9) follows. Then

|Ã(z)| ≤
∑

n≥1/(2y2)

1

eπny
≤ e

−πy
[

1
2y2

]
1− e−πy

→ 0 as y → 0 (5.10)

where
[

1
2y2

]
is the integer part of 1

2y2 . The claim (5.2) now follows from (5.8) and (5.10).

Next we claim that
lim sup
W3z→1

X0(z) ≤ 0. (5.11)
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This is proved by a similar argument whose details are omitted. By (5.2) and (5.11) we obtain that

lim sup
W3z→1

Xb(z) ≤ 0. (5.12)

From the series (3.16) and (3.18),
Xb(1 + yi) = 0. y > 0 (5.13)

This turns (5.12) to
lim sup
W3z→1

Xb(z) = 0, (5.14)

proving the lemma.

Recall that for b ∈ [0, B), the largest of the three critical points of the function y → fb(yi), y > 0, is
denoted qb. This qb is a maximum and 1 < qb ≤

√
3. By convention if b ∈ [B, 1], we set qb = 1 which is the

unique critical point (a maximum) of y → fb(yi), y > 0.
If b ∈ [B, 1], then 1− b ∈ [0, 1−B] and q1−b is defined as above. The transform z = x+ yi→ w = u+ vi

in (3.22) sends the point z = q1−bi to w =
q2
1−b−1+2q1−bi

q2
1−b+1

. Define

pb =
q2
1−b − 1

q2
1−b + 1

. (5.15)

Then
q2
1−b − 1 + 2q1−bi

q2
1−b + 1

= pb + i
√

1− p2
b . (5.16)

Lemma 5.2. Let b ∈ [0, 1−B] and W be given in (3.10). Then Xb(z) < 0 for all z ∈W .

Proof. From (3.16) and (3.18) one deduces

Xb(yi) = 0 and Xb(1 + yi) = 0, y > 0. (5.17)

Also
lim
y→∞

Xb(z) = 0 uniformly with respect to x ∈ R. (5.18)

On the unit circle, we know from (3.20)

Xb(x+ i
√

1− x2) =

√
1− x2

1− x
Y1−b

(√1− x2

1− x
i
)
, x ∈ (−1, 1). (5.19)

When b ∈ [0, 1−B], 1− b ∈ [B, 1]. By Lemma 4.4.2,

Y1−b

(√1− x2

1− x
i
)
< 0, if x ∈ (0, 1).

This shows
Xb(x+ i

√
1− x2) < 0, if x ∈ (0, 1). (5.20)

The lemma follows from (5.17), (5.18), (5.20), and Lemma 5.1 by the maximum principle.

We are now ready to prove the main theorem.
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Proof of Theorem 1.1.

Claim 1. Let b ∈ [0, 1 − B]. Then fb(z) on the upper half plane is maximized at qbi and the points in the
orbit of qbi under the group G.

The second plot of Figure 3 demonstrates our argument. By Lemma 3.4.3 it suffices to consider fb in
WH. In W Lemma 5.2 asserts that fb is strictly decreasing in the horizontal direction, so it can only attain
a maximum in WH on the part of the unit circle in the first quadrant, i.e. {w ∈ C : |w| = 1, 0 < Rew <
1, Imw > 0}, or on the part of the imaginary axis above i, i.e. {z ∈ C : Re z = 0, Im z ≥ 1}.

First rule out the unit circle. By Lemma 3.5

fb(w) = f1−b(z), z ∈ H, w =
z − 1

z + 1
∈ H. (5.21)

Take z = yi to be on the imaginary axis. Then

w =
y2 − 1

y2 + 1
+

2y

y2 + 1
i

is on the unit circle. As z moves from i to ∞ upward along the imaginary axis, w moves from i to 1
clockwise along the unit circle. When b ∈ [0, 1−B], 1− b ∈ [B, 1]. Since y → f1−b(yi) is strictly decreasing
for y ∈ (1,∞) by Lemma 4.4.2, fb(w) is strictly decreasing when w moves from i to 1 clockwise along the
unit circle. Then fb cannot attain a maximum on {z ∈ C : |w| = 1, 0 < Rew < 1, Imw > 0}.

Therefore in WH, fb can only achieve a maximum on {z ∈ C : Re z = 0, Im z ≥ 1}. By Lemma 4.4.1, it
does so at qbi. This proves Claim 1.

By Lemma 4.4.1 and the convention that qb = 1 if b ∈ [B, 1], three possibilities exist for qb when
b ∈ [0, 1 − B]. When b = 0, qb =

√
3, which proves part 1 of the theorem. When b ∈ (0, B), qb ∈ (1,

√
3),

which proves part 2 of the theorem. When b ∈ [B, 1−B], qb = 1, which proves part 3 of the theorem.

Now consider the case B ∈ (1−B, 1].

Claim 2. If b ∈ (1−B, 1], then fb on the upper half plane is maximized at pb + i
√

1− p2
b and the points in

its orbit under the group G.

By Lemma 3.5, the duality property, we have

fb(w) = f1−b(z), z ∈ H and w =
z − 1

z + 1
∈ H

If w∗ maximizes fb, then z∗ = w∗+1
−w∗+1 maximizes f1−b. Since b ∈ (1 − B, 1], 1 − b ∈ [0, B). By Claim 1,

z∗ = q1−bi or a point in the orbit of q1−bi under G. Under the transform w = z−1
z+1 , z∗ = q1−bi corresponds to

w∗ =
q1−bi− 1

q1−bi+ 1
=
q2
1−b − 1 + 2q1−bi

q2
1−b + 1

= pb + i
√

1− p2
b (5.22)

by (5.16). This proves Claim 2.

When b ∈ (1 − B, 1), q1−b ∈ (1,
√

3) by Lemma 4.4.1. Then by (5.16), pb + i
√

1− p2
b identified as a

maximum of fb in Claim 2 is in {z ∈ C : |z| = 1, π
3 < arg z < π

2 }. This proves part 4 of the theorem.

Finally when b = 1, q0 =
√

3 and

p1 + i
√

1− p2
1 =

1 +
√

3i

2
(5.23)

by (5.16). This proves part 5 of the theorem.
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Appendix

Proof of (4.48). Here we prove the monotonicity of the function y → Y0(yi)
Y1(yi) , y ∈ (1,

√
3), by showing

∂

∂y

(Y0(yi)

Y1(yi)

)
> 0, y ∈ (1,

√
3). (A.1)

Our proof uses the following L’Hospital like criterion for monotonicity. See [2] for more information on this
trick.

Claim.

∂

∂y

(Y0(yi)

Y1(yi)

)
> 0 on (1,

√
3) if y →

∂Y0(yi)
∂y

∂Y1(yi)
∂y

is strictly increasing on (1,
√

3). (A.2)

Let y ∈ (1,
√

3). There exist y1 ∈ (1, y) and y2 ∈ (1, y) such that

∂

∂y

(Y0(yi)

Y1(yi)

)
=

∂Y0(yi)
∂y Y1(yi)− Y0(yi)∂Y1(yi)

∂y

Y 2
1 (yi)

=

∂Y1(yi)
∂y

Y1(yi)

( ∂Y0(yi)
∂y

∂Y1(yi)
∂y

− Y0(yi)

Y1(yi)

)

=

∂Y1(yi)
∂y

Y1(yi)− Y1(i)

( ∂Y0(yi)
∂y

∂Y1(yi)
∂y

− Y0(yi)− Y0(i)

Y1(yi)− Y1(i)

)

=

∂Y1(yi)
∂y

∂Y1(y1i)
∂y (y − 1)

( ∂Y0(yi)
∂y

∂Y1(yi)
∂y

−
∂Y0(y2i)

∂y

∂Y1(y2i)
∂y

)
since Y1(i) = Y0(i) = 0. Because ∂Y1(yi)

∂y does not change sign in (1,
√

3),

∂Y1(yi)
∂y

∂Y1(y1i)
∂y (y − 1)

> 0. (A.3)

Moreover, since

y →
∂Y0(yi)
∂y

∂Y1(yi)
∂y

is strictly increasing,
∂Y0(yi)
∂y

∂Y1(yi)
∂y

−
∂Y0(y2i)

∂y

∂Y1(y2i)
∂y

> 0. (A.4)

The claim then follows from (A.3) and (A.4).

We proceed to show that

∂

∂y

( ∂Y0(yi)
∂y

∂Y1(yi)
∂y

)
=

∂2Y0(yi)
∂y2

∂Y1(yi)
∂y − ∂Y0(yi)

∂y
∂2Y1(yi)
∂y2(

∂Y1(yi)
∂y

)2 > 0, y ∈ (1,
√

3). (A.5)

Define

T (y) =
∂2Y0(yi)

∂y2

∂Y1(yi)

∂y
− ∂Y0(yi)

∂y

∂2Y1(yi)

∂y2
. (A.6)
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By (4.3), ∂Y1(yi)
∂y < 0 on (0,∞). Therefore to prove (A.5), it suffices to show

T (y) > 0, y ∈ (1,
√

3). (A.7)

We divide (1,
√

3) into two intervals: (1, β) and [β,
√

3) where β ∈ (1,
√

3) is to be determined. First
consider T (y) on (1, β). Lemma 4.1 asserts that for j = 0, 1,

Yj(yi) =
(
− 1

y2

)
Yj

( i
y

)
.

Differentiation shows that

∂Yj(yi)

∂y
= 2y−3Yj

( i
y

)
+ y−4

∂Yj
(
i
y

)
∂y

(A.8)

∂2Yj(yi)

∂y2
= −6y−4Yj

( i
y

)
− 6y−5

∂Yj
(
i
y

)
∂y

− y−6
∂2Yj

(
i
y

)
∂y2

. (A.9)

Taking y = 1 in (A.9) and using Yj(i) = 0, one obtains

∂2Yj(i)

∂y2
= −3

∂Yj(i)

∂y
, j = 1, 0. (A.10)

In particular (A.10) implies that
T (1) = 0. (A.11)

Next consider the derivative of T ,

T ′(y) =
∂3Y0(yi)

∂y3

∂Y1(yi)

∂y
− ∂Y0(yi)

∂y

∂3Y1(yi)

∂y3
. (A.12)

It is clear from (4.3) and (4.5) that

∂Y1(yi)

∂y
< 0,

∂3Y1(yi)

∂y3
< 0, y > 0. (A.13)

Similar to the argument following (4.30), one finds the series in (4.7) to be alternating when y > 1.
Therefore,

∂Y0(yi)

∂y
> − 1

y2
+

4π2e−πy

(1 + e−πy)2
− 16π2e−2πy

(1− e−2πy)2
(A.14)

We will later choose β ∈ (1,
√

3) so that when y = β, the right side of (A.14) is positive; namely choose β to
make

− 1

β2
+

4π2e−πβ

(1 + e−πβ)2
− 16π2e−2πβ

(1− e−2πβ)2
> 0. (A.15)

Since
∂2Y0(yi)

∂y2
< 0, y ∈ (1,

√
3) (A.16)

by (4.37), the condition (A.15) implies that

∂Y0(yi)

∂y
> 0, y ∈ (1, β). (A.17)

Regarding ∂3Y0(yi)
∂y3 , write it as

∂3Y0(yi)

∂y3
= − 6

y4
− 4π4

∞∑
n=1

n4(−r)n

(1− (−r)n)4
− 16π4

∞∑
n=1

n4r2n

(1− (−r)n)4
− 4π4

∞∑
n=1

n4(−r)3n

(1− (−r)n)4
(A.18)
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where
r = e−πy. (A.19)

as before. Clearly, the second series in (A.18) is positive for all y > 0. One can also show as before that
when y > 1, the first and the third series in (A.18) are both alternating. Pick three leading terms from the
first series and one term from each of the second and the third series to form an upper bound:

1

4π4

∂3Y0(yi)

∂y3
< − 6

4π4y4
+

r

(1 + r)4
− 16r2

(1− r2)4
+

81r3

(1 + r3)4
− 4r2

(1 + r)4
+

r3

(1 + r)4

< − 6

4π4y4
+

r

(1 + r)4
− 16r2

(1− r2)4
+ 82r3 − 4r2

(1 + r)4

= − 6

4π4y4
+

r

(1− r2)4

(
1− 24r + 104r2 − 28r3 − 311r4 − 4r5 + 497r6 − 328r8 + 82r10

)
< − 6

4π4y4
+

r

(1− r2)4

(
1− 24r + 104r2

)
≤ − 6

4π4y4
+

1

(1− e−2π)4
r
(
1− 24r + 104r2

)
. (A.20)

Denote the last line by

σ(y) = − 6

4π4y4
+

1

(1− e−2π)4

(
e−πy − 24e−2πy + 104e−3πy

)
(A.21)

Compute

σ′(y) =
24

4π4y5
+

πe−πy

(1− e−2π)4

(
− 1 + 48e−πy − 312e−2πy

)
(A.22)

and consider the quantity in the parentheses,

φ(y) = −1 + 48e−πy − 312e−2πy. (A.23)

Since φ′(y) = πe−πy(−48 + 624e−πy) < 0 if y > 1,

φ(y) > φ(β), if y ∈ (1, β). (A.24)

If one can make φ(β) > 0, namely if

−1 + 48e−πβ − 312e−2πβ > 0, (A.25)

then
φ(y) > 0, y ∈ (1, β). (A.26)

Consequently, by (A.22)
σ′(y) > 0, y ∈ (1, β) (A.27)

and
σ(y) < σ(β), y ∈ (1, β). (A.28)

This shows that
∂3Y0(yi)

∂y3
≤ 4π4σ(β), y ∈ (1, β). (A.29)

If one can choose β so that σ(β) < 0, namely

− 6

4π4β4
+

1

(1− e−2π)4

(
e−πβ − 24e−2πβ + 104e−3πβ

)
< 0, (A.30)
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then
∂3Y0(yi)

∂y3
< 0, y ∈ (1, β). (A.31)

Following (A.13), (A.17), and (A.31), one has that

T ′(y) > 0, y ∈ (1, β). (A.32)

By (A.11), (A.32) implies that
T (y) > 0, y ∈ (1, β) (A.33)

provided (A.15), (A.25), and (A.30) hold.
Next consider T (y) for y ∈ [β,∞). Introduce

d(y) = Y0(yi)− Y1(yi) =
π

6
−
∞∑
k=1

4π(2k − 1)r2k−1

1 + r2k−1
(A.34)

d′(y) =

∞∑
k=1

4π2(2k − 1)2r2k−1

(1 + r2k−1)2
(A.35)

d′′(y) =

∞∑
k=1

4π3(2k − 1)3(−r2k−1 + r2(2k−1))

(1 + r2k−1)3
. (A.36)

Then by (4.3), (4.4), (A.35), and (A.36),

T (y) = d′′(y)
∂Y1(yi)

∂y
− d′(y)

∂2Y1(yi)

∂y2

=

∞∑
k=1

4π2(2k − 1)2r2k−1

y2(1 + r2k−1)2

(π(2k − 1)(1− r2k−1)

1 + r2k−1
− 2

y

)
+

∞∑
k=1

∞∑
n=1

16π5(2k − 1)2(2n)2r2n+2k−1

(1 + r2k−1)2(1− r2n)2

( (2k − 1)(1− r2k−1)

1 + r2k−1
− 2n(1 + r2n)

1− r2n

)
(A.37)

=

∞∑
k=1

ck +

∞∑
k=1

∞∑
n=1

dkn (A.38)

where ck and dkn are defined by the terms in (A.37).
Regarding ck, because, with y > 1,

π(2k − 1)(1− r2k−1)

1 + r2k−1
− 2

y
≥ π(1− r)

1 + r
− 2 >

π(1− e−π)

1 + e−π
− 2 > 0,

one has
ck > 0 for all k. (A.39)

The terms dkn has the following property

dkn > 0 if k > n, dkn < 0 if k ≤ n. (A.40)

To see (A.40), define

ρj(r) =
j(1 + (−r)j)

1− (−r)j
(A.41)

so that the quantity in the second parenthesis pair of (A.37) is ρ2k−1(r)− ρ2n(r). The claim (A.40) follows
if ρj(r) is increasing with respect to j. To this end consider

ρj+1(r)− ρj(r) =
1− (2j + 1)(r + 1)(−r)j + r2j+1

(1− (−r)j+1)(1− (−r)j)
. (A.42)
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This is clearly positive when j is odd since 0 < r < 1. When j is even, denote the numerator in (A.42) by

µj(r) = 1− (2j + 1)(r + 1)rj + r2j+1.

Then
µ′j(r) = (2j + 1)rj−1

(
− j − (j + 1)r + rj+1

)
.

As 0 < r < 1,
−j − (j + 1)r + rj+1 < −j − (j + 1)r + r = −j − jr < 0.

Hence µ′j(r) < 0 for r ∈ (0, 1). Moreover

µj(r) > 1− 2(2j + 1)rj ,

so
µj(e

−π) > 1− 2(2j + 1)e−πj > 0

for all j ≥ 1. Therefore µj(r) > 0 since r ∈ (0, e−π) and (A.40) is proved.
By (A.40) drop the positive dkn’s to bound the double sum in (A.34) from below by

∞∑
l=1

∞∑
n=1

dkn >

∞∑
k=1

dkk +

∞∑
k=1

∞∑
n=k+1

dkn. (A.43)

First consider
∑∞
k=1 dkk:

dkk =
16π5(2k − 1)2(2k)2r4k−1

(1 + r2k−1)2(1− r2k)2

( (2k − 1)(1− r2k−1)

1 + r2k−1
− 2k(1 + r2k)

1− r2k

)
. (A.44)

For y > 1,

(1 + r2k−1)(1− r2k) = 1 + r2k−1(1− r − r2k)

≥ 1 + r2k−1(1− r − r2)

> 1 + r2k−1(1− e−π − e−2π)

= 1 + r2k−1 × 0.9549... > 1.

Also, when y > 1, both (4k−2)r2k−1

1+r2k−1 and 4kr2k

1−r2k are decreasing with respect to k. Hence

(2k − 1)(1− r2k−1)

1 + r2k−1
− 2k(1 + r2k)

1− r2k
= −1− (4k − 2)r2k−1

1 + r2k−1
− 4kr2k

1− r2k

≥ −1− 2r

1 + r
− 4r2

1− r2

> −1− 2e−π

1 + e−π
− 4e−2π

1− e−2π

= −
(1 + e−π

1− e−π
)
.

One estimates

∞∑
k=1

dkk > −16π5
(1 + e−π

1− e−π
) ∞∑
k=1

(2k − 1)2(2k)2r4k−1

= −64π5
(1 + e−π

1− e−π
)r3(1 + 31r4 + 55r8 + 9r12)

(1− r4)5
(A.45)
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with the help of the summation formula

∞∑
k=1

(2k)2(2k − 1)2r4k−1 =
r2

16

(
r
(
r−1
(
r
( 1

1− r4

)
r

)
r

)
r

)
r

=
4r3(1 + 31r4 + 55r8 + 9r12)

(1− r4)5
. (A.46)

Next consider the double sum on the right of (A.43). Dropping the first term in the second parenthesis
pair of (A.37) one obtains

∞∑
k=1

∞∑
n=k+1

dkn >

∞∑
k=1

∞∑
n=k+1

16π5(2k − 1)2(2n)2r2n+2k−1

(1 + r2k−1)2(1− r2n)2

(
− 2n(1 + r2n)

1− r2n

)
. (A.47)

For n ≥ k + 1,

(1 + r2k−1)(1− r2n) = 1 + r2k−1(1− r2n−2k+1 − r2n)

> 1 + r2k+2 ≥ 1 + r2n.

Consequently

1 + r2n

(1 + r2k−1)2(1− r2n)3
<

1

(1 + r2k−1)(1− r2n)2

=
1

1 + r2k−1
(
(1− r2n)2 + r2n−2k+1(−2 + r2n)

)
≤ 1

1 + r2k−1
(
(1− r2)2 − 2r3

) < 1.

Return to (A.47) to deduce

∞∑
k=1

∞∑
n=k+1

dkn > −
∞∑
k=1

∞∑
n=k+1

16π5(2k − 1)2(2n)3r2n+2k−1

≥ −
∞∑
k=1

∞∑
n=2

128π5(2k − 1)2n3r2n+2k−1

= −
∞∑
k=1

128π5(2k − 1)2r2k
(r3(8− 5r2 + 4r4 − r6)

(1− r2)4

)
≥ −

∞∑
k=1

128π5(2k − 1)2r2k+3
( 8

(1− e−2π)4

)
= − 1024π5

(1− e−2π)4

(r5(1 + 6r2 + r4)

(1− r2)3

)
. (A.48)

We have used the summation formulas

∞∑
n=2

n3r2n−1 =
1

8

(
r
(
r
( 1

1− r2

)
r

)
r

)
r
− r =

r3(8− 5r2 + 4r4 − r6)

(1− r2)4
(A.49)

∞∑
k=1

(2k − 1)2r2k+3 = r5
(
r
( r

1− r2

)
r

)
r

=
r5(1 + 6r2 + r4)

(1− r2)3
(A.50)

to reach the third line and the last line respectively.
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By (A.38), (A.39), (A.43) (A.45) and (A.48), taking two terms from
∑∞
k=1 ck and using 1 < y <

√
3, we

find

T (y) ≥ 4π2r

y2(1 + r)2

(π(1− r)
1 + r

− 2

y

)
+

36π2r3

y2(1 + r3)2

(3π(1− r3)

1 + r3
− 2

y

)
− 64π5

(1 + e−π

1− e−π
)r3(1 + 31r4 + 55r8 + 9r12)

(1− r4)5
− 1024π5

(1− e−2π)4

(r5(1 + 6r2 + r4)

(1− r2)3

)
>

4π2r

y2(1 + r)2

(π(1− r)
1 + r

− 2

y

)
+

36π2r3

3(1 + e−3π)2

(3π(1− e−3π)

1 + e−3π
− 2
)

− 64π5
(1 + e−π

1− e−π
)r3(1 + 31e−4π + 55e−8π + 9e−12π)

(1− e−4π)5

− 1024π5

(1− e−2π)4

(r3e−2π(1 + 6e−2π + e−4π)

(1− e−2π)3

)
=

4π2r

y2(1 + r)2

(π(1− r)
1 + r

− 2

y

)
+Ar3 (A.51)

where

A =
36π2

3(1 + e−3π)2

(3π(1− e−3π)

1 + e−3π
− 2
)

− 64π5
(1 + e−π

1− e−π
) (1 + 31e−4π + 55e−8π + 9e−12π)

(1− e−4π)5

− 1024π5

(1− e−2π)4

(e−2π(1 + 6e−2π + e−4π)

(1− e−2π)3

)
= −21, 077.61... (A.52)

Continuing from (A.51), one has

T (y) >
π2r2

(1 + r)3

((4π

y2
− 8

y3

)
r−1 −

(4π

y2
+

8

y3

)
+
Ar(1 + r)3

π2

)
. (A.53)

Bound the last term by
Ar(1 + r)3

π2
≥ Ae−πβ(1 + e−πβ)3

π2
(A.54)

and define

ν(y) =
(4π

y2
− 8

y3

)
eπy −

(4π

y2
+

8

y3

)
+
Ae−πβ(1 + e−πβ)3

π2
(A.55)

so that

T (y) >
π2r2

(1 + r)3
ν(y). (A.56)

Regarding ν(y), one finds

ν′(y) = eπyy−3
(

4π2
(√

y − 2

2
√
y

)2

+
8

y

)
+

8π

y
+

24

y4
> 0. (A.57)

Then (A.56) implies

T (y) >
π2r2

(1 + r)3
ν(β) (A.58)

where

ν(β) =
(4π

β2
− 8

β3

)
eπβ −

(4π

β2
+

8

β3

)
+
Ae−πβ(1 + e−πβ)3

π2
. (A.59)
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Therefore if we can find β so that ν(β) > 0, namely(4π

β2
− 8

β3

)
eπβ −

(4π

β2
+

8

β3

)
+
Ae−πβ(1 + e−πβ)3

π2
> 0. (A.60)

then
T (y) > 0, y ∈ [β,

√
3] (A.61)

In summary, to invoke (A.33) and (A.61) one must choose β so that (A.15), (A.25), (A.30), (A.60) all
hold. Our choice is

β = 1.08 (A.62)

at last. One readily checks the four conditions.

− 1

β2
+

4π2e−πβ

(1 + e−πβ)2
− 16π2e−2πβ

(1− e−2πβ)2

∣∣∣
β=1.08

= 0.2058... > 0; (A.63)

− 1 + 48e−πβ − 312e−2πβ
∣∣∣
β=1.08

= 0.2608... > 0; (A.64)

− 6

4π4β4
+

1

(1− e−2π)4

(
e−πβ − 24e−2πβ + 104e−3πβ

) ∣∣∣
β=1.08

= −0.0007930... < 0; (A.65)(4π

β2
− 8

β3

)
eπβ −

(4π

β2
+

8

β3

)
+
Ae−πβ(1 + e−πβ)3

π2

∣∣∣
β=1.08

= 35.20... > 0. (A.66)

The proof of (4.48) is complete.
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