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Abstract

We consider the following semilinear elliptic equation:

—Au = de?” in By,
{ ! (0.1)

u=20 on 0B,

where Bj is the unit ball in R?, d > 3,\ > 0 and p > 0. First, following Merle and
Peletier [13], we show that there exists a unique eigenvalue ), o such that (0.1) has a
solution (Ap o0, Wp) satisfying lim ;.o Wp(x) = oo. Secondly, we study a bifurcation
diagram of regular solutions to (0.1). It follows from the result of Dancer [4] that
(0.1) has an unbounded bifurcation branch of regular solutions which emanates from
(A\,u) = (0,0). Here, using the singular solution, we show that the bifurcation
branch has infinitely many turning points around A,  in case of 3 < d <9. We also

investigate the Morse index of the singular solution in case of d > 11.

1 Introduction
In this paper, we study the following semilinear elliptic equation:

—Au = e*’ in By,

(1.1)
u=20 on 0B,

where Bj is the unit ball in R%, d > 3,A > 0 and p > 0.

The purpose of this paper is to study the existence of a singular solution and a
bifurcation diagram of regular solutions to (1.1) for general power p > 0. By a singular
solution, we mean a positive regular solution to (1.1) in By \ {0} and tends to infinity at
the origin # = 0. For example, putting A\j o = 2(d — 2) and W;(z) = —2log |z|, we see
that (A1 o0, W1) is a singular solution to (1.1) in case of p = 1.

Several studies have been made on (1.1) in case of p = 1. See [1, 3, 5, 6, 9, 10, 15,
17, 16] and references therein. We recall some of them. Gel’fand [6] showed that when
d =3, (1.1) has infinitely many solutions at A = A\; . Then, Joseph and Lundgren [10]
gave a complete classification of solutions to (1.1). More precisely, they showed that (1.1)

has infinitely many solutions at A = Aj oo when 3 < d < 9 and has a unique solution for



0 < A < Ao and no solution for A > A oo when d > 10. See Jacobsen and Schmitt [9]
for the survey of this problem.

In this paper, we will treat general power p > 0 and show that (1.1) has a singular
solution in the case where p > 0 and d > 3. In addition, we shall show that (1.1) has
infinitely many regular solutions in the case where p > 0 and 3 <d < 9.

First, we focus our attention on the existence of a singular solution. As we mentioned
above, in case of p = 1, (1.1) has the explicit singular solution (A; o, W1). The singular
solution plays an important role in the bifurcation analysis of regular solutions to (1.1).
However, we encounter difficulties when we seek a singular solution if the power p does
not equal to 1. Therefore, it is worthwhile to investigate the existence of a singular

solution for general power p > 0. Concerning this, we obtain the following.

Theorem 1.1. Assume that d > 3 and p > 0. Then, there exists a unique eigenvalue

Ap.oo > 0 such that the equation (1.1) has a singular solution (Ap oo, W)p) satisfying

Wyte) = |~21ogal - (1= 1y tog(~ogleD)| "+ 0 (o) 5) 12
as |z| — 0.

Once we obtain the singular solution, we investigate the relation between the sin-
gular solution and regular ones. Dancer [4] showed that for any p > 0, there exists an
unbounded bifurcation branch C C R x L*°(B;) which emanates from (A, u) = (0,0). Let
A1 be the first eigenvalue of the operator —A in Bj with the Dirichlet boundary condition
and ¢ be the corresponding eigenfunction. By multiplying the equation in (1.1) by ¢4
and integrating the resulting equation, we see that if (A\,u) € C, we have 0 < A < ;.
This yields that sup {||u||ec | (A, u) € C} = co. Moreover, from the result of Korman [12,
Theorem 2.1] (see also Miyamoto [15, Proposition 6]), we see that the branch C can be
parameterized by ||u||~. Namely, the branch C can be expressed by the following:

C={(A(),ulz, 7)) |7 = llullze, 0 <~ < o0} (1.3)
Then, we obtain the following.

Theorem 1.2. Assume thatd > 3 and p > 0. Let (A, o0, Wp) be the singular solution to
equation (1.1) given by Theorem 1.1 and (A(7),u(x,7)) € C. Then, we have A(Y) — Ap oo
and

u(z,y) — Wpy(x) in CL_(B1\{0}) as v — oc.
From Theorem 1.2, we can obtain the following result.

Theorem 1.3. Assume that 3 <d <9 andp > 0. Let \j o > 0 be the eigenvalue given
by Theorem 1.1. Then, for any integer k, there exist at least k regular positive solutions

to (1.1) if X is sufficiently close to A\, oo. In particular, there exist infinitely many regular
solutions to (1.1) at A = A\p .



Finally, we estimate the Morse index of the singular solution W), in case of d > 11.
Here, we mean the Morse index by the number of the negative eigenvalues of the linearized
operator —A — prfﬁleW;’ with the domain H?(B;) N HE(By). It is well-known that the
Morse index plays an important role in the bifurcation analysis for nonlinear elliptic
equations (see e.g. [2], [8], [11] and references therein). In case of 9 > d > 3, we see that
the Morse index of the singular solution W), is infinite by combining the argument of Guo
and Wei [8, Proposition 2.1] with Proposition 4.1 below. However, concerning the case
of d > 11, we find that the situation becomes different from the above. More precisely,

we obtain the following result.

Theorem 1.4. Assume that d > 11 and p > 0. Let W), be the singular solution to (1.1)

obtained in Theorem 1.1. Then, the Morse index of the singular solution W), is finite.

We prove Theorems 1.1 in the spirit of Merle and Peletier [13]. We first transform
the equation (1.1) to a suitable one. From the result of Gidas, Ni and Nirenberg [7], we
find that a positive solution to (1.1) is radially symmetric. Therefore, the equation (1.1)

can be transformed into the following ordinary differential equation:

d—1 P
Upp + S —Up + Ae" =0 0<r<l1, (1.4)
u(r) =0 r=1.

We put s = v/Ar and 4(s) = u(r). Then, we see that U satisfies
Uss + 205 + e =0 0<s<VA, L5)

u(s) =0 5=\

We construct a local solution to the equation in (1.5) which has a singularity at the
origin s = 0. To this end, we employ the Emden-Fowler transformation. Namely, we put

t = —log s and u(t) = u(s). This yields that u satisfies the following:

Ty — (d — 2)Ty + exp[—2t + 7] = 0 LB ¢ < oo,

a(t) =0 t = —log 0

We give an approximate form of a singular solution near ¢ = co. Then, we make an
error estimate for the approximation. The proof of Theorem 1.2 is also based on that
of Merle and Peletier [13]. We note that Dancer [4] already proved that there exists
infinitely many regular positive solutions to (1.1) by by calculating the Morse index.
Here, following Guo and Wei [8] and Miyamoto [14, 15], we shall show Theorem 1.3 by
counting a intersection number of the singular solution and regular solutions. As a result,
we can obtain a precise bifurcation diagram of solutions to (1.1). Let us explain this in
detail. Let I be an interval in R. For a function v(s) on I, we define a number of zeros

of v by
Zi[o()] = #{s € I | v(s) = 0}.



We put Wp(s) = W,(r), where s = v/Ar and W,, is the singular solution given by Theorem
1.1. Let (A(7),u(s,)) be a regular solution to (1.5) with @(0) = 7. Then, we have

Zr u(-,y) — /V[?p()] — 00 as vy — oo.
See Lemma 4.2 below in detail. From this, we can show that the bifurcation branch C
given by (1.3) has infinitely many turning points, which yields Theorem 1.3.

This paper is organized as follows: In Section 2, we construct the singular solution to
(1.1) in case of d > 3. In Section 3, we investigate the asymptotic behavior of the regular
solutions (A(7),u(r,7y)) as v goes to infinity. In Section 4, we count the intersection
number and give a proof of Theorem 1.3. In Section 5, we show that the Morse index of

the singular solution is finite in case of d > 11.

2 Existence of a singular solution

To prove Theorem 1.1, we first consider (1.6) and restrict ourselves to the case where

t > 0 is sufficiently large. We seek a solution to (1.6) of the form

1
u(t) = (e(t) + k)7 +n(t), (2.1)
where )
1 —2)2p
(t) =2t — Aplogt, Ap=1——, k = log M (2.2)
p p
Then, the function 7 solves the following;:
2(d -2 _
m—@-2m+ew-2+w - Db pe @)

for sufficiently large ¢ > 0, where

_ K —Ap
(d Q)Ap;f + k) 1 (p+ k)~ oy (2.4)

fit) = o

+—-11-- + K)P
p ( p) (p+r)7 (1)
Then, we show the following;:

Theorem 2.1. Let d > 3 and p > 0. There exist Too > 0 and a solution 1Ny €
C ([T, 00), R) to the equation (2.3) satisfying lim;_.oo 0.0 (t) = 0.

We show Theorem 2.1 by using the contraction mapping principle. To this end, we

transform (2.3). First, we have
exp [~2¢ + )]
= exp [—2t + {((p +R)P A+ n}p]
= exp |2+ (p+ 1)+ (p+R) { (14 (o + n)‘in)p ~1}]

- (d_;)Q;t‘AP exp [(«P + ) {(1 +lp+ ”)_%”)p N IH ’

(2.5)



Furthermore, we obtain
_1 \P
+m {(1+@+r)n) =1} =plo+m)n+(p+matn) (26

where
1

gi(tn) = {1+ (e +m) 7} = 1= plo+r)rn. (2.7)

This yields that

expl(o+ ) { (1+ (o + ) 7n) = 1}]
= exp[p(y + k) + (o + K)gu(t,m)] (2.8)
= exp[p(y + £)n] + explp(p + £) 1] {exp[(p + K)g1(t,n)] — 1} .

By (2.5), (2.6), and (2.8), we have

1
d—2)2r
expl=2t +7) = =22 g+ )

. _p%” 1= explp(o + #) 7] {expl(io + ®)gi (t,m)] — 1}

Therefore, (2.3) can be written by the following:

Mgt — (d —2)ny +2(d — 2)n

1
d—2)2» 2(d—2
(d=2)2%, 4, , 2d=2)
p

1
(d—2)2v,_,

+2(d = 2y = S (o 4w

Ap

= fi(t) = (b +r)"

- _p% £~ explp(p + £)4#17] {expl( + K)gn (¢, m)] — 1}

22 e+ )]~ 1=l + ) )

= J1(t) + f2(8) + f3(t,n) + fat;n) + f5(t;m),

where
R
- p (2.9)
_ (d —p2)2p t_Ap (1 _ (Qt)Ap<g0 + K)—Ap) ,
fa(t,n) =2(d — 2)n — (d_;ﬂpt‘f‘p x p(p + K)Arn (2.10)
=2(d—2) {1 - (2t) " (p+r)"}n,
fult) =~ =22 explp(io m ) el + (e~ 1}, (210)

5



f5(t777) = _M

Thus, we seek a solution to the following equation:

t= {explp(y + K)*n] — 1 — p(p + &) *rn} . (2.12)

e — (d = 2)me + 2(d — 2)n = f1(t) + fa(t) + fs(t,m) + fat,n) + f5(t, )
We estimate the inhomogeneous terms f;(t)(1 <i < 5). We obtain the following.
Lemma 2.1. (i) fi(t) = O(t=471), fo(t) = Ot~ 1logt) ast — oo,
(i) If n satisfies n(t) < et=4» for sufficiently small € > 0, we have
fa(t,n) = Ot M logt),  fa(t)=0@""7h),  |fs(t)] < Xt
for sufficiently large t > 0

Proof. By (2.4) and (2.9), we obtain (i). It follows from (2.2) that
|1 = (2t) " (p + r)*| S — (2.13)
for sufficiently large ¢t > 0. Thus, by (2.10), we have
[fa(tm) = [2(d = 2) {1 = (2)" (o +r) | S ¢4 ogt.

From (2.7), we have
_2
g1t )] < Lo+ ] Fn. (2.14)
This yields that

(e +m)gi(t,n)| St

It follows that
lexp[(p + m)gi(t, )] = 1| S [(p + w)gr(t,m)| ST (2.15)
From (2.11), we have f4(t) = O(t~4»~!). Similarly, we see that
lexplp(p + K)7n) — 1= p(p + w) 7| S (¢ + K)* A S &2
Thus, we obtain |f5(t)| < e%t~4» from (2.12). O
We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. We set
F(t,n) = f1(t) + f2(t) + f3(t.m) + fa(t,n) + f5(L, ).
In order to prove Theorem 2.1, it is enough to solve the following final value problem:

) (2.16)
e (t)n(t) — 0 as t — +o0.



for some T" > 0. We note that

<0 if3<d<9,
(d—2)2=8(d—2)=(d—2)(d—10){ =0 if d = 10,
>0 if d > 11.

We consider the case where 3 < d < 9 only because we can prove similarly in the other
cases. Let pp = /—(d — 2)(d — 10). Then, the final value problem (2.16) is transformed

into the following integral equation:

in which
d—2

HMM:QZAme”T“ﬁmma—mpwmma

Fix T' > 0 large enough and let X be a space of continuous function on (7', 00) equipped

with the following norm:
€11 = sup {[¢[*[¢(@)] [ ¢ > T}
We fix arbitrary € > 0 and set
S={¢eX||¢l<e}. (2.17)

First, we shall show that 7 maps from X to itself. It follows from Lemma 2.1 that
|F(t,n)| < et~ for sufficiently large ¢ > 0. This yields that

o0 oo
T 5 6d§2t/ e T el Mo < sZt‘APedEQt/ T do S
t t

for n € 3. It follows that T'[n] € ¥. Thus, we have proved the claim.

Next, we shall show that 7 is a contraction mapping. For 11,1 € 3, we have

(0,m) — fi(o,m2)|do.

Tl ~ i) < tZ/
From the definition, we obtain

\fa(t,m) — fa(t,m2)| St ogtm —ma| St Hogt|n — na]. (2.18)

Thus, we see that
| f(t,m) — fa(t,m2)| < et™ 7 [lny — na. (2.19)



Next, we estimate the term |f5(¢,11) — f5(¢,n2)|. It follows that

|f5(t,m) — f5(t,m2)]

St
J— t*Ap

St

exp[p(i + &) ] — exp[p( + &) *P1m2] — p(@ + ) (m1 — 72)

exp[p(y + &) 7o) {exp[p(p + k) (n2 — m)] — 1} — ple + K) (01 — n2)

exp[p(p + £) 2] {explp(y + k) (2 — )] — 1 — p(o + ) (1 — m2) } ’

+t= 4 lexp[p(p + &) na] — 1p(p + K)7 |m — 2]

St (e + r) (= m2) P+ 7 p(p + )i lm — e

Set™ | — .

Therefore, for sufficiently large ¢ > 0, we have

[f5(t,m) = f5(t,m2)] < et |l — mal. (2.20)

Finally, we estimate the term |f4(¢,n1) — fa(t,n2)|. We can compute that

| fa(t,m) — fa(t,m)| S | explpp?rm] — exp[pp™na|| explgi (t, n2)] — 1

+ ¢~ exp[pp?rns]| explgi (t, m)] — explgi (¢, m2)]] (2.21)
T+

By the Taylor expansion together with (2.15), we have

I St 2 explpp?rs] {exp[pp? (n2 — m)] — 1}
< 42 explpe] | (02 — m)|
St 2t — o

St 2 I — nal.

(2.22)

Similarly, by (2.14), we obtain

From (2.7),

IT <t exp[pp™na]| explgi (t, m)] — explgi (t, n2)]|
<t exp[pe™Pna] explgi (t, n2)]| explgr (£,m) — g1(t,m2)] — 1] (2.23)
St gi(t,m) — g1t m2)).

we obtain

lg1(t,m) — g1(t,m2)]

_1 p _1 p _1
{1 ptor ) = {1 pe w0} [+ 0 b -

(2.24)

_1
S e+ [P — e

St

I — m2-



It follows from (2.21)—(2.24) that

[fa(t,m) = fa(t,m2)] < et |l — mal. (2.25)

By (2.18), (2.20) and (2.25), we see that
_ 1
Tlm(t) = Tl (8)| < Cet™|lm — ma|| < 5t~ |l — e (2.26)

Thus, we find that 7 is a contraction mapping. This completes the proof. O
We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. It follows from Theorem 2.1 that there exist a constant To, > 0
and a solution 7 (t) to the equation (2.3) for t € (Ts, +00) satisfying [t|47|ne(t)] < €.

For such a solution 7, we put
oo (1) = () + K)7 + s 1)
Then we see that Uq(t) satisfies
Uy — (d — 2)uy + exp[—2t +uP] =0 (2.27)

for t € (Teo, +00). We shall show that T (¢) has a zero for some Ty € (—o0, 00). Suppose
the contradiction that % (t) is positive for all t € (—oo,00). Then, we see that Uy is
monotone increasing. Indeed, if not, there exists a local minimum point ¢, € (—oo, 00). It
follows that (d*tno/dt?)(ts) > 0 and (dliao/dt)(ti) = 0. Then, from the equation (2.27),
we obtain

d* oo dlio

0< W(t*) —(d-2)

o (ti) = —exp[—2t, + ub (t4)] <0,

which is a contradiction. Since T, is positive and monotone increasing, there exists a
constant C' > 0 such that U (t) — C as t — —oo. This together with (2.27) yields that

YU (7 . _
0= lim {d (t) — (d— 2)ddt(t)} = lim —exp[—2t+ 1k (t)] = —o0,

t——00 dt? t——00

which is absurd. Therefore, we see that T, has a zero for some T € (—o0,00). Then,

Uso Satisfies

Ut + (d — Q)Ht = —672t+ﬂp, t e (T(), OO),
u(t) =0, t =Ty,
u(t) > 0, t € (Tp, 00).

If we choose Ay oo > 0 50 that —log A 0o = 270, that is, A\p o = €210, we find that T (s)
is a solution to (1.6) with A = A, oo. This completes the proof. O



3 Asymptotic behavior of a regular solution

In this section, we give a proof of Theorem 1.2. We denote by u(s,~) a positive solution

to (1.5) with @w(0) = ||u||gee = 7. If there is no confusion, we just denote by u(s). We set

u(p,y),  p=VP"texp(hP) s. (3.1)

1-p

u(s,y) =7+
Then, we see that u(p,y) satisfies

~ ~ -p. \P

Upp + 45HiI, + pexp [—vp +7 (1 + %U) } =0, 0 <p< /AP texp(?),

4(0) = 0,

u(p) <0, 0 <p< /P ltexp(y?P).
(3.2)

Concerning the solutions to (3.2), the following lemma holds:

Lemma 3.1. Let u(p,vy) be a solution to (3.2). Then, we have u(-,vy) — U(-) in
Cl

ie([0,00)) as v — oo, where U(p) is a solution to the following equation:

Upp"—%Up"—peXp[U]:O, 0<p< oo,
Ulp) =0, p=0, (3.3)
Up) <0, 0<p<oc.

Remark 3.1. We note that Dancer [}] already gave the proof of Lemma 3.1 in more

general situations. Here, using an ODE approach, we shall give an alternative proof.

Proof of Lemma 3.1. First, for each pg > 0, we shall show that u(p,~) is uniformly
bounded for p € [0, po). Since v = ||u|| e~ and u(p,~y) is positive, (3.1) yields that

—py* <ulp,7) <0. (3.4)

By (3.4), we have

This yields that
7PN
exp [’yp + AP <1 + pu) } <exp[—*++*] = 1.

It follows from the first equation in (3.2) that

d—1

Upp + Uy > —p.

This yields that



Integrating the above inequality, we have p?~1i,(p) > —pp?/d. Thus, we obtain u,(p) >
—pp/d for p € [0, p). Integrating the inequality yields that

p
p) = )~ & ["rar =~ 2
Therefore, for p € [0, pg), we have
P o _ ~
——ph < < 0. .
5g"0 = u(p) <0 (3.5)

This together with the equation in (3.2) gives the uniform boundedness of u, and u,,
for p € [0, pp). Then, by the Ascoli-Arzela theorem, there exists a function U such that
u(p,7y) converges to U in C}

loc

([0,p0)) as v goes to infinity. Moreover, by the Taylor
expansion, there exists 6 € (0,1) such that

exp [—vp +97 (1 + Vppﬂ(p, 7))1 = exp[U]’

exp

_ p-1 NPT

U+ % (1 + 97pu> 'y_pu2] - exp[U]‘
1 -p \P72

exp P=2 (1 + Ry P2
2p p

Therefore, by (3.5), we have

< exp[d]

1| expl - explU])].

—p p
exp [—’y” +97 <1 + Vpﬁ(ﬁw)> ] - exp[U]’—> 0 asy— oo

This yields that U satisfies (3.3). This completes the proof. O

Next, we put t = —log s. We define y(t, ) by

o~ (t)
P

(s, y) = @MP(t) + (k+y(t7)). (3.6)

We see that y(t,~) satisfies the following:
-1
yie — {(d = 2) + 2450 o1} ye — 2(d — 2) + pp*” exp[—2t + (1 + %(fc +1))7]
= fﬁ(tv y)
(3.7)

for sufficiently large ¢ > 0, where

fo(t,y) = Ao (01)* — ou — Ap(Ap + 1) 2 (00)* (K +y) + App  ou(k +y)
d—9A (3.8)
F(d- DA gl ) + T2
For the function y(¢,7), we make the following spatial translation:

P 11
T:_logp:t_l_(p ) logy

5 5 Y =yta), eln) =) (3.9)

11



Let U be the solution to (3.3). We put U, (1) = U(p) and

V(1) = Ua(r) — 27 — log Q(dp_ 2) (3.10)
Then, Y satisfies
Y —(d—2)Y; +2(d —2) {exp[Y] — 1} =0, —00 < T < 00,
i, o {Y(T) + 27 + log @} =0, (3.11)
Y(T)+27+log@<0, —00 < T < 00.

Then, the following lemma holds:

Lemma 3.2. Let y and Y be the functions defined by (3.10) and (3.9), respectively.
Then, we have y(1,7) — Y (1) in C}

loc((—O0,00)) asy — Q.

Proof. 1t follows from (3.1) and (3.6) that

u(p,y) = —py? + py? (s, )

—A,
20 )} (3.12)

= (=" + Q7)) + 471G T (7) (5 + (T, )

By (2.2), (3.9) and the Taylor expansion, we have

="+ {wl/p(t) +

— P+ ()

p 1 v
= —P 4 4P~ {2T+’yp+(p—1)log7—Aplog <T+2+p2 log'y>}p

27 A A P —1 g
:_ryp+v”{7+1—71’10g7"’—7§10g<7+72+p2 logv)}

P P
1
2r A 7 1 (p—1)logy\\”
— _AP P .- _ Ik B © et et = R
="+ {1—1—71) o log <7p—|—2+ 2P (3.13)
1 1 - 1)1
=— (21— A,log 7+L+(p Jlogy
p 2 9P 29P
2

1o
p—1 T » 1 7  (p—1)logy P
140 ———1 -+ =+ —
+2p27p< " (’V” w8 <2+7p+ 2P )

1 7 (p=1logv\\?
X <2T+Ap10g <2+'}/p+27p
for some 6 € (0,1). This yields that

2 A
AP PGP () ;T + ?p log2 asy— oo (3.14)

for each 7 € (—o00,00). Similarly, we obtain

P 2r A 1 7  (p—1)log~y A
VP15 AP(T):{1+W—F;log<2+’W+27p — 1 as y — 00.
(3.15)

12



(3.12)—(3.15) imply that

lim u(p,v) =27+ Aplog2 + k + lim y(7,7). (3.16)
y—00

y—00

It follows from Lemma 3.1 that limy_.o u(p,y) = U(p) = U«(7). Thus, by (2.2), (3.10)
and (3.16), we see that

lim y(7,v) = =27 — Aplog2 — k + U,(7)
y—00

2(d—2
:—2T—Ap10g2—/£—|—Y(7‘)+27‘+10g(p)

(d—2)27

=Y(r) — Kk +log =Y (7).

This completes the proof. O

Lemma 3.3. Let Y be a solution to (3.11). Then, Y satisfies (Y,Y;) — (0,0) as 7 —

—0Q.

Proof. We set Z1(1) = Y(7) and Za(7) = Y;-(7). Then, the pair of functions (Z1, Z2)

satisfies

iz — 7,
dr ’ (3.17)
922 = (d - 2)Z5 — 2(d — 2) [exp[Z1] — 1] .

We define an energy E by

BE(r) = (Z;)2 +2(d —2) [exp[Z1] — 1 — Z1].

From the equation (3.17), we have %(7) = (d—2)(Z3)? > 0. Moreover, (0, 0) is an equib-
lium point of (3.17) and a minimum of the energy E. This yields that (Z1(7), Z2(7)) —
(0,0) as 7 — —o0. O

We set
21 (tv 7) = y(t’ ’7)7 22(t7 ’7) = yt(ta 7)a (3'18)

where y(t, ) is the function defined by (3.6). Then, (21(¢,7), 22(¢,7)) satisfies

d log A
e — for t € (—19820) o),

L2 = (d—2- 24,07 )2 +2(d —2) + folt,z1)  fort € (550 o0). (3.19)
—ppAr exp[—2t + (1 + %l(n +21(1)))"]

From Lemma 3.3, we see that for any ¢ > 0, there exists 7. € (—o00,0) such that
|(Z1(7:), Z2(1))| < €/2, where (Z1,Z2) is a solution to (3.17). We fix 7. € (—00,0)
and put

P (p—1logy

S T

13



Then, by Lemma 3.2, we have

|(21(te,7), 22(te, 7)) < € (3.20)

for sufficiently large v > 0. We shall show the following.

Lemma 3.4. Let (z1(t,7), 22(t,7)) be the function defined by (3.18). For arbitrary ¢ > 0,

we set

2
r. - {(sl,@) € B2 | 2(d—2) fesplen] — 1~ 61} + 2 < }

There exists T, which does no depend on ~y and t. but on € such that (z1(t,7), z2(t,7y)) €
Do fort € (Te,te).

Proof. We define an energy by
Z%
El(t) = 72 + 2(d — 2) {exp[zl] —-1- 21} .

By (3.19), we have

dE

W(t) = 2929t + 2(d — 2) {exp[z1] — 1} 22

=(d—2—- 2Ap<p*1cpt)z§
1
— pgpAp exp[—2t + p(1 + %(/@ + 21)P]z2 + fo(t, 21)22

+ 2(d — 2) explz1]22.
Similarly as in (2.5), by the Taylor expansion, we obtain
o1
pe™'? exp[—2t + (1 + o (m )Y
1 A, —A ~
= (d — 2)2r Pt~ "7 exp|z1] exp [91 (¢, 21)]
= 2(d — 2) exp[z1]
— (2(a = 2 expl] - (d = 220t~ expla]exp[g (¢, 1)])

where .

g1(t,z1) = (1 + %(Ii +21))P — p(t) — Kk — 21.

Therefore, we have

dE
= (6) = (d =2 = 24,0723 + ot 1)z
(3.21)

+ (2(a - 2) explz] — (4= 2209t explaa] exp[ga (¢, 21)] ) 22

Since I'; is a neighborhood of (0,0), we can take ¢ > 0 so small such that I's. C
{(z1,22) | |z1]| + |z2| < 1}. We choose T. > 0 so that

<

13
VI, 2

14

(3.22)



where the constant Cy > 0 which does not depend on ¢ and is defined by (3.26) below.
We shall show that (z1(t),22(t)) € T'ae for t € (T%,t.) by contradiction. Suppose the
contrary that (z1(t),22(t)) € T'oc for t € (1%, t:] and (z1(T%), 22(T%)) ¢ T'ac. Then, by
(3.21), we have

Ei(te) — Eq(T)

te
= / (d—2—2A,0  py)z3ds + | fo(s, 21)22ds (3.23)

T:

+ / ) (Q(d —2)explz1] — (d — 2)2%¢AP(5)5_A7’ exp[z1] exp[g1 (s, zl)]) Zods.

Since |21 (¢)|+ |22(t)] < 1, we see from (3.8) that there exists a constant C; > 0 satisfying
|f6(s,z1)| < Ci/|s|. Furthermore, from (2.2), we have

[2(d — 2) explza] - (d — 2)27 9™ (s)5™ explea] explg (s, =)

- (90(3))/4,, 0 expl(s )

— 2(d — 2) explz1] ;

4, Tog s (3.24)

- ( _ S)AP exp[gi (s, 21)

2
Aplog s Ap
2

— 2(d — 2) explz1]

< cli- el alf+ci - 1 explfi(s, 21))

Similarly as in the proof of Lemma 2.1, there exists a constant C' > 0 such that

log s ~ C
SC f ) ’91(3,21)‘§§

for sufficiently large s > 0. This yields together with (3.24) that

|Q

’2(d — 2)expla1] — (d — 2)25 o (s)s~ 4 explz1] explgi (s, zl)]’ <

V)
[

for some constant C' > 0. Therefore, by the Young inequality, we have

/ts (2(d —2)explz1] — (d — 2)2%90’41’37‘4? exp|z1] explgi (s, zl)]) zods

te

fo(s, z1)z2ds
T:

te
< / 23226{8 (3.25)

—+

S4

2C% [ 1 —2) [t
< ¢ / —3d5+(d )/ |20|%ds
d—2 1. 3 2 Jr

P +d_2/tal 1d
Z S.
= (d-2)VT- 2 Jp 7

We set

4C?
d—2"

C, = (3.26)
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Then, it follows from (3.22) and (3.25) that

/ts (2(d —2)explz1] — (d — 2)2%90’4?3_‘4?’ exp|z1] explg1 (s, zl)]) zods

te
+ fi(s,21)22ds (3.27)
T:
Co d—2 [t e d—2 [t
< —+ — ds < -+ —— ds.
>~ \/Tg+ 9 - ’22| S S 2+ 9 - ‘ZQ’ S

Moreover, we take 7. > 0 so that [24,¢ *(t)p:(t)] < (d —2)/2 for t > T.. Then, we
have
te d—2 te
/ (d—2—2A,p 1) 25ds > 5 | 20| 2ds. (3.28)
€ TE

It follows from (3.23), (3.27) and (3.28) that
d—2 [t e d-2 [T €
Ei(t) — BEy(T) > £=2 2ds— = -2~ 2ds > — <.
1(te) 1(Tz) > > ) |z|5ds 5 2/, |z2|“ds > 5
This together with (3.20) and (z1(7%), 22(7%)) ¢ I'sc implies that

3
2% < B(T%) < B(t.) + % = 25,

which is a contradiction. Therefore, our assertion holds. ]
We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Let {y,}72; C R4 be a sequence satisfying lim, ..o v, = o0.
Let (z1(t,vn), 22(t, 7)) be the function defined by (3.18). By Lemma 3.4, we find that
(z1(t,vn), 22(t,vn)) is uniformly bounded in the interval (7%, ¢.). This together with (3.7)
implies that yu (¢, v,,) is also uniformly bounded in the interval (7%, t.). Differentiating the
equation (3.7) implies that yu (¢, v) is also uniformly bounded in (7%, ¢.). This yields that
(z1(t,vn), 22(t,vn)) and (z14(t,vn), 22t (t, 7)) are equicontinuous. Thus, it follows from
the Ascoli-Arzela theorem that there exists a subsequence {(z1(t, V), z2(t, 7))} (we still
denote by the same letter) and a pair of functions (z.1(t), z«2(t)) in (CY(1%,t.))? as n
tends to infinity, Since ¢.(> 1) is arbitrary, we find that (21 (¢, V), 22(t, 7)) converges to
(24,1(t), 24 2(t)) in (CH(T:,00))? as n goes to infinity. We note 0 < A(y,) < A1, where A\
is the first eigenvalue of the operator —A in By with the Dirichlet boundary condition.
Thus, there exists Ax > 0 such that A(y,) — A« as n tends to infinity. By the result of

Dancer [4], we see that A\, > 0. From these, we see that (2. 1, 2«2, A«) satisfies

dz _ log A«
o= for t € (=257, 00),
dzg

22 = (d—2-24p0 o)z +2(d — 2) + fo(t, 21)
—ppv exp[—2t + (1 + (PTTI(H + 21(¢)))? for t € (—1°g2’\* ,00)

We shall show that
ze1(t) = 0 as t — oo. (3.29)
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Let us admit (3.29) for a moment and continue to prove. We set

PN Rl )
n=t) = er(t) + —

1
(k4 2:(1)) = (o(t) + £)7.
Then, we see that 7, satisfies (2.3). Moreover, it follows that
1 _AP t —Ap t
n(t) = b (1) + £ p (1)

p
171 o] %—2ﬁ—1 2
(B e ) e )
_SO_A”(t)Z 11 o~ N2 (ko= ()2
—E - o (5 1) (e 007 0)

(K + 2() — 97 (1) — &

for some 6, € (0,1). This together with (3.29) implies that 7, € ¥, where the function
space X is defined by (2.17). From Theorem 2.1, there exists a unique solution 7, to
(2.3) in X. Therefore, we have 7, (t) = 7o (t). This yields that A\, = A, .

Thus, all we have to do is to prove (3.29). Suppose the contrary that there exists § > 0
and {t;} C Ry such that |z, 1(tx)] > 6 for all £ € N and limj_, ty, = oo. Then, there
exists ko € N such that t;, > T.. Then, we see that |21 (tx,,y)| > 6/2 for sufficiently large
v > 0. We choose ¢ = 6/4. Tt follows from (3.20) that (21 (7 + % + % log~y,7), z2(7e +
% + p%llog'y,'y)) € I'.. By Lemma 3.4, we see that (21(¢,7),22(¢,7)) € e = T2
for t € (T, 7- + 7—; + %log'y). We can take v > 0 sufficiently large so that tg, €
(T, 7 + % + % log ), which is a contradiction. This completes the proof. O

4 Infinitely many regular solutions in case of 3 <d <9

In this section, following Guo and Wei [8] and Miyamoto [14, 15], we shall give a proof
of Theorem 1.3. More precisely, we count a intersection number of the singular solution
and regular ones. Let I be an interval in R. For a function v(s) on I, we define a number

of zeros of v by
Zilo()] = #{s € T | o(s) = 0}.

Then the following result is known.
Proposition 4.1. Let U(p) be a solution to (3.3). We define a function V' by
V(p) = —2log p + log 2(d;2) (4.1)
Then, in case of 3 < d <9, we have
Zioey [U(p) = V(p)] = .
See Nagasaki and Suzuki [17] or Miyamoto [15] for a proof of Proposition 4.1.

Remark 4.1. We can easily check that V defined by (4.1) is a singular solution to the
equation in (3.3).
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We set

(K + Yoo(t)), (4.2)
where t = —log s and
A 1 1 A
Yoo(t) = pp? ((tp +r)P = w) + PP oo — K.
Here, 7o is the solution to (2.3) given by Theorem 2.1. Then, it follows from Theorem

2.1 that lim; o Yoo(t) = 0. Thus, we see that Wp is a singular solution to (1.5) with
A = Apoo- Using Proposition 4.1, we shall show the following:

Lemma 4.2. Let u(s,~) be a reqular solution to (1.5) with u(0) = ~. Then, we have
Zr, [a6 ) = Wy()] =00 asy— o0, (4.3)
where I, = [0, min{/Ap oo, v/AY)}).
Proof. We put
U(p,7) = —p + P Wy(s),  p= /P Texp(yP)s, (4.4)
where Wp is defined by (4.2). We claim that
W(py) = Vo) in CL([0,00)) sy — oc. (45)
It follows from (4.2) and (4.4) that
Tu(p,7) = —p7P + Py W(s) = —py? + pr?ler (8) + 47 (1) ( + o (1)),

We fix p > 0. Then, it follows that

P -1)1
t:—logs:—logp—ké—i—@gogvﬁoo as y — 00.
This implies that
Yoo(t) — 0 as y — oo. (4.6)

Similarly as in (3.14), (3.15) together with (4.6), we obtain

- 1 1 1
Ui(p, ) = —p7" + PP Lpr (1) + 47 Lo (1) (K + Yoo (t))

2(d—2
—>—2logp+log(p):V(p) as y — oo.
Therefore, (4.5) holds.
It follows from (3.1) and (4.4) that
Z, [is.7) = Wo(s)| = Zu, [ii(p,7) = ia(p,)] (4.7)

where J, = [0, \/’yp—l exp(yP) min{\/Ap o, \/A(7)}). Combining Lemma 3.1, Proposition
4.1 and (4.5), we find that

Jin Zy, [, v) — (o, V)] = Zjo,oo) [U(p) = V(p)] = oo, (4.8)

From (4.7) and (4.8), we obtain the desired result. O
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Once we obtain Lemma 4.2, we can prove Theorem 1.3 by employing the same ar-
gument as Miyamoto [15, Lemma 5]. However, for the sake of reader’s convenience, we

shall give a proof.

Proof of Theorem 1.3. Let u(s,7) be a solution to (1.5) with u(0) = v and /Wp(s) be
the singular solution defined by (4.2). We put v(s,v) = u(s,7y) — Wp(s). Then, v(s, )

satisfies the following ordinary differential equation:
~ 4=l Giwr g 3
Uss + ——0s + € P —er =, 0<s<A(Y),
s

where A(y) = min{, /Ap.oos V/A(7)}. Then, if ¥(s,~) has a zero at s, we have
U(s0,7) =0,  Vs(s0,7) #0 (4.9)

from the uniqueness of a solution. Moreover, for each v > 0, ¥(s,~y) has at most finitely
many zeros in (O,X(v)). Indeed, if it is not, there exist a sequence of {s,} C [O,/)\\(v)]
and s, > 0 such that lim, ..o s, = s«. Then, we see that v(s.,v) = Us(s«,7y) = 0, which
is a contradiction. In addition, it follows from (4.9) and the implicit function theorem
that each zeros depends continuously on 7. Therefore, we find that the number of zeros
of U(s,7) does not change unless another zero enters from the boundary of the interval
[0, A(7)]. We note that 5(0,~) = @(0,7) — /Wp(O) = —00. From this, we find that zero of
(s, ~) enter the interval [0, A\(7)] from s = A(y) only.

In order to prove Theorem 1.3, it is enough to show that the function A\(vy) oscillates
infinitely many times around ), o, as v — oo. Suppose that there exists 9 > 0 such that
A(Y) > Apoo for all v > 79. Then, we have X(y) = \/m for all v > 9. Then we see
that U(\/Apoo) = U/ Apcos¥) — Wp(\/Apoo) = U(1/Apoc,y) > 0. This implies that the
number of zeros cannot increase. This contradicts with (4.3). Next, suppose that there
exists 1 > 0 such that A(y) < Ay for all v > ;. By the same argument as above, we
can derive a contradiction. These imply that the function A(y) oscillates infinitely many

times around Ap . ]

5 Finiteness of the Morse index in case of d > 11

In this section, we investigate the Morse index of the singular solution in case of d > 11.
It is enough to restrict ourselves to radially symmetric functions. Let W), be the singular

solution to (1.5). The following lemma is a key for the proof of Theorem 1.4.

Lemma 5.1. Assume that d > 11 and p > 0. Then, there exists py > 0 such that

(d—2)°

T op—1 WP
prp (s)e p(s) o

for 0 < s < p. (5.1)
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Proof. We set W, (t) = Wp(s) and ¢ = —logs. From the proof of Theorems 1.1 and 1.2,

the singular solution W,(t) can be written as follows:

Wo(t) = (1) + £

(k =+ y«(1)),

where limy_, o y«(t) = 0. Then, for any € > 0, there exists t; = t1(¢) > 0 such that

WrEt) <2t — Aylogt+r+e, WP

S < @) (l+e)  fort >t

This yields that

d— 2)2r

71(t)6W£(t) < p(2t)Ap(1 + 5)62t_‘4p logt+rte _ p2Ap(1 + 8)6%(766
p

W,

=2(d — 2)(1 + ¢)ee?.

We note that 2(d — 2) < (d — 2)2?/4 if d > 11. Therefore, we can take ¢ > 0 sufficiently

small so that

— _ 92
prp_1<t)€pr(t) < (d—2) o2t
4
Thus, we see that (5.1) holds for 0 < s < p; with p; = ™. O

We are now in a position to prove Theorem 1.4.

Proof of Theorem 1.4. It is enough to show that the number of negative eigenvalues of
the operator Lo, on H} rad (By/a7) is finite, where Log = —A —pWﬁ_l(s)eWI?. We define
smooth functions x; and x2 on [0,1/A.) by

1 (0 <5< p1/2)7

s) = 0 s 0<s A
X1(s) 0 (o <e <, <xi(s) <1 (0<s< V)

and x2(s) =1 — x1(s). For each 6 e H} rad (By/37)s we have
2

~ VA dg TEp—1, WP(s) 2 \ d-1
(Loo®, ) = wa—1 ; 2| TPWy e g7 p 5™ ds

VA d(z ? = WP(s)
=wd1/0 —| = p(x1(s) + x2(s))WE e (9] g)2 & s ds

ds
P1
> Wd—1 /
0

\/X* d$
+ wa—1 / ds
0 S

- (5.2)
e

= - pWI?fleW;’(s)’az $d—1 4
S

— px2(s) WPV g2 | 5L,
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where wg_1 is the volume of the unit ball in R¢~!. By (5.1) and the Hardy inequality,

we obtain
~2 ~2
/pl dé —p/WpfleW;’)(s)@P s tds > /m ] I 2)* 16 ¥ s 1ds > 0
0 ds P ~Jo ds 452 -
This together with (5.2) yields that
SN a1 agl? o
<L¢, (Z)> > Wi—1 / dfq: - pxg(s)WIIf*l@Wg(s) ’(p‘Q Sdilds. (53)
0

We note that the potential pxg(s)wjf ~1eWE() is bounded. Therefore, we find that

V. g2 U
inf wd_l/ ‘ _PX2(8)W5_16WP(5)’¢|2 s 15 b s oo,
(z)EH(%,rad(Bm)v Hd)”LQ:l 0 ds

This together with (5.3) implies that the number of the negative eigenvalues of the
operator L., is finite. This completes the proof. O
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