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We give an introductory description of the two gluing methods: finite di-
mensional and infinite dimensional. In each case we use a model problem
to illustrate the ideas.

1. Part I: Finite-dimensional reduction method

1.1. Introduction: What is finite dimensional

Liapunov-Schmidt reduction method?

We briefly introduce the abstract set-up of the finite dimensional Lyapunov-

Schmidt reduction (although it is always used in a framework that occurs

often in bifurcation theory).

Let X,Y be Banach spaces and S(u) be a C1 nonlinear map from X to

Y . To find a solution to the nonlinear equation

S(u) = 0, (1.1)

a natural way is to find approximations first and then to look for genuine

solutions as (small) perturbations of approximations. Assume that Uλ are

the approximations, where λ ∈ Λ is the parameter (we think of Λ as the

configuration space). Writing u = Uλ + ϕ, then solving S(u) = 0 amounts

13
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to solving

L[ϕ] + E +N(ϕ) = 0, (1.2)

where

L[ϕ] = S′(Uλ)[ϕ], E = S(Uλ), and N(ϕ) = S(Uλ+ϕ)−S(Uλ)−S′(Uλ)[ϕ].

Here S′(Uλ) stands for the Fréchet derivative of S at Uλ, E denotes the

error of approximation, and N(ϕ) denotes the nonlinear term. In order to

solve (1.2), we try to invert the linear operator L so that we can rephrase

the problem as a fixed point problem. That is, when L has a uniformly

bounded inverse in a suitable space, one can rewrite the equation (1.2) as

ϕ = −L−1[E +N(ϕ)] = A(ϕ).

What is left is to use fixed point theorems such as contraction mapping

theorem.

The finite dimensional Lyapunov-Schmidt reduction deals with the

situation when the linear operator L is Fredholm and its eigenfunction

space associated to small eigenvalues has finite dimensional. Assuming that

{Z1, . . . ,Zn} is a basis of the eigenfunction space associated to small eigen-

values of L, we can divide the procedure of solving (1.2) into two steps:

[(i)] solving the projected problem for any λ ∈ Λ,L[ϕ] + E +N(ϕ) =
n∑

j=1

cjZj ,

⟨ϕ,Zj⟩ = 0, ∀ j = 1, . . . , n,

where cj may be constant or function depending on the form of ⟨ϕ,Zj⟩.

[(ii)] solving the reduced problem

cj(λ) = 0, ∀ j = 1, . . . , n,

by adjusting λ in the configuration space.

The original finite dimensional Liapunov-Schmidt reduction method was

first introduced in a seminal paper by Floer and Weinstein [27] in their con-

struction of single bump solutions to one dimensional nonlinear Schrodinger

equations (Oh [54] generalized to high dimensional case)

ϵ2∆u− V (x)u+ up = 0, u > 0, u ∈ H1(RN ). (1.3)

On the other hand, Bahri [3] and Bahri-Coron [4] developed the reduction

method for critical exponent problems. In the last fifteen years, there are



July 10, 2015 Lecture Note Series, IMS, NUS — Review Vol. 9in x 6in introductiontoreductionmethod-3-15

page 15

Introduction to gluing methods 15

renewed efforts in refining the finite dimensional reduction method by many

authors. When combined with variational methods, this reduction becomes

”localized energy method”. For subcritical exponent problems, we refer to

Ambrosetti-Malchiodi [1], Gui-Wei [28], Malchiodi [48], Li-Nirenberg [41],

Lin-Ni-Wei [42], Ao-Wei-Zeng [2], Wei-Yan [63] and the references therein.

The localized energy method in degenerate setting is done by Byeon-Tanaka

[6, ?]. For critical exponents, we refer to Bahri-Li-Rey [5], Del Pino-Felmer-

Musso [17], Del Pino-Kowalczyk-Musso [18], Li-Wei-Xu [40], Rey-Wei [56, ?]

and Wei-Yan [64] and the references therein. Many new features of the finite

dimensional reduction are found in the references mentioned.

In the following we shall use the model problem (1.3) to give an intro-

ductory description of this method.

1.2. Model Problem: Schrodinger equation in dimension N

We start with the following model problem to illustrate the idea of finite

dimensional reduction method:{
ε2∆u− V (x)u+ up = 0 in RN

0 < u in RN , u(x) → 0, as |x| → ∞.
(1.4)

The basic assumption on the exponent is that 1 < p < ∞ if N ≤ 2,

and 1 < p < N+2
N−2 if N ≥ 3. (More general nonlinearity can be dealt with

similarly.) Without loss of generality we assume that the function V (x) is

a positive function satisfying

0 < α ≤ V (x) ≤ β < +∞. (1.5)

The basic building block that we consider is{
∆w − w + wp = 0 in RN

0 < w in RN , w(x) → 0, as |x| → ∞ (1.6)

We look for a solution w = w(|x|), a radially symmetric solution. w(r)

satisfies the ordinary differential equation{
w′′ + N−1

r w′ − w + wp = 0 r ∈ (0,∞)

w′(0) = 0, 0 < w in (0,∞) w(|x|) → 0, as |x| → ∞ (1.7)

We collect the following basic properties of w, whose proof can be found

in the appendix of the book [62].

Proposition 1.1: (a) There exist a solution w(r) to (1.7);

(b) w(r) satisfies the decay estimate w(r) = A0r
−N−1

2 er(1 +O( 1r ));

(c) w(r) is nondegenerate, i.e., the only bounded solution to



July 10, 2015 Lecture Note Series, IMS, NUS — Review Vol. 9in x 6in introductiontoreductionmethod-3-15

page 16

16 M. DEL PINO and J. WEI

L(ϕ) = ∆ϕ+ pw(x)p−1ϕ− ϕ = 0, ϕ ∈ L∞(RN ) (1.8)

is a linear combination of the functions ∂w
∂xj

(x), j = 1, . . . , N .

We want to solve the problem{
ε2∆ũ− V (x)ũ+ ũp = 0 in RN

0 < ũ in RN ũ(x) → 0, as |x| → ∞ (1.9)

We fix a point ξ ∈ RN . Observe that Uε,ξ(y) := V (ξ)
1

p−1w
(√

V (ξ)y−ξ
ε

)
,

is a solution of the rescaled equation

ε2∆u− V (ξ)u+ up = 0.

We will look for a solution of (1.9) such uε(x) ≈ Uε,ξ(y) for some ξ ∈ RN .

We define wλ = λ
1

p−1w(
√
λx).

Let us observe that if ũ satisfies (1.9), then u(x) = ũ(εz) satisfies the

problem {
∆u− V (εz)u+ up = 0 in RN

0 < u in RN u(x) → 0, as |x| → ∞ (1.10)

Let ξ′ = ξ
ε . We want a solution of (1.10) with the form u(z) = wλ(z− ξ′)+

ϕ̃(z), with λ = V (ξ) and ϕ̃ being small compared with wλ(z − ξ′).

1.3. Equation in terms of ϕ.

Let ϕ(x) = ϕ̃(x− ξ′). Then ϕ satisfies the equation

∆x[wλ(x) + ϕ(x)]− V (ξ + εx)[wλ(x) + ϕ(x)] + [wλ(x) + ϕ(x)]p = 0.

We can write this equation as

∆ϕ− V (ξ)ϕ+ pwp−1
λ (x)ϕ− E +B(ϕ) +N(ϕ) = 0 (1.11)

where E = (V (ξ + εx) − V (ξ))wλ(x), B(ϕ) = (V (ξ) − V (ξ + εx))ϕ and

N(ϕ) = (wλ + ϕ)p − wp
λ − pwp−1

λ ϕ.

We first consider the linear problem for λ = V (ξ),{
L(ϕ) = ∆ϕ− V (ξ + εx)ϕ+ pwλ(x)ϕ = g −

∑N
i=1 ci

∂w
∂xi∫

RN ϕ
∂wλ

∂xi
= 0, i = 1, . . . , N

(1.12)

The c′is are defined such that∫
RN

(L(ϕ)− g)
∂wλ

∂xi
dx = 0, i = 1, . . . , N (1.13)
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which is equivalent to∫
RN

(L(
∂wλ

∂xi
)ϕ− g

∂wλ

∂xi
)dx = 0, i = 1, . . . , N (1.14)

Denoting

L0(ϕ) = ∆ϕ− V (ξ)ϕ+ pwλ(x)ϕ

and using the fact that

L0(
∂wλ

∂xi
) = 0

we see that (1.14) can be further simplified as follows∫
RN

((V (ξ)− V (ξ + ϵx))
∂wλ

∂xi
ϕ− g

∂wλ

∂xi
)dx = 0, i = 1, . . . , N (1.15)

Since ∫
RN

∂wλ

∂xi

∂wλ

∂xj
=

∫
RN

(
∂w

∂x1
)2δij

we find that

ci =

∫
RN ((V (ξ)− V (ξ + ϵx))∂wλ

∂xi
ϕ− g ∂wλ

∂xi
)dx∫

RN (∂wλ

∂x1
)2

, i = 1, . . . , N (1.16)

In the following we shall solve the following:

Problem: Given g ∈ L∞(RN ) we want to find ϕ ∈ L∞(RN ) solution to the

problem (1.12)-(1.16).

1.4. A priori estimates of a linear problem

Let us assume that V ∈ C1(RN ), ∥V ∥C1 <∞. We assume in addition that

|ξ| ≤M0 and 0 < α ≤ V . Then we have

Proposition 1.2: There exists ε0, C0 > 0 such that ∀0 < ε ≤ ε0, ∀|ξ| ≤
M0, ∀g ∈ L∞(RN ) ∩ C(RN ), there exist a unique solution ϕ ∈ L∞(RN ) to

(1.12), ϕ = T [g] satisfies

∥ϕ∥C1 ≤ C0∥g∥∞

Proof:

We divide the proof into two steps.

Step 1-a priori estimates: We first obtain a priori estimates of the

problem (1.12) on bounded domains BR(0): There exist R0, ε0, C0 such
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that ∀ε < ε0, R > R0, |ξ| ≤ M0 such that ∀ϕ, g ∈ L∞ solving L(ϕ) =

g −
∑

i ci
∂wλ

∂xi
in BR,

∫
BR

ϕ∂wλ

∂xi
= 0 and ϕ = 0 on ∂BR, we have

∥ϕ∥C1(BR) ≤ C0∥g∥∞

We prove first ∥ϕ∥∞ ≤ C0∥g∥∞. Assuming the opposite, then there exist

sequences ϕn, gn, ε→ 0, Rn → ∞, |ξn| ≤M0 such that

L(ϕn) = gn −
∑
i

cni
∂wλ

∂xi
.

The first fact is that cni → 0 as n → ∞. This fact follows just after

multiplying the equation against ∂wλ

∂xi
and integrating by parts, as we did

in (1.16).

We observe that if ∆ϕ = g in B2 then there exist C such that

∥∇ϕ∥L∞(B1) ≤ C[∥g∥L∞(B2) + ∥ϕ∥L∞(B2)]

where B1 and B2 are concentric balls. This implies that ∥∇ϕn∥L∞(B) ≤
C a given bounded set B, ∀n ≥ n0. Hence passing to a subsequence we

obtain ϕn → ϕ uniformly on compact sets, and ϕ ∈ L∞(RN ). Observe that

∥ϕn∥∞ = 1, and this implies that ∥ϕ∥∞ ≤ 1. We can also assume that up

to a subsequence ξn → ξ0.

Since ϕ satisfies the equation ∆ϕ − V (ξ0)ϕ + pwp−1
λ0

(x)ϕ = 0, where

λ0 = V (ξ0), we have that ϕ ∈ Span
{

∂wλ0

∂x1
, . . . ,

∂wλ0

∂xN

}
. Taking limits in

the orthogonality condition (1.12) we obtain that
∫
RN ϕ(wλ0)∂xi = 0, i =

1, . . . , N . This implies that ϕ = 0 and hence ∥ϕn∥L∞(BM (0)) → 0, ∀M <∞.

Maximum principle yields that ∥ϕn∥L∞(BRn\BM0
→ 0, since |ϕn| = o(1) on

∂BRn \ BM0 and ∥gn∥∞ → 0. Therefore we arrive at ∥ϕn∥∞ → 0, which

is a contradiction. This implies that ∥ϕ∥L∞(BR) ≤ C0∥g∥L∞(BR) uniformly

on large R. The C1 estimate follows from elliptic local boundary estimates

for elliptic operators.

Step 2-Existence: Recall that g ∈ L∞. We want to solve (1.12). We claim

that solving (1.12) is equivalent to finding

ϕ ∈ X = {ψ ∈ H1
0 (BR) :

∫
ψ
∂wλ

∂xi
= 0, i = 1, . . . , N}

such that∫
∇ϕ∇ψ +

∫
V (ξ + εx)ϕψ − pwp−1ϕψ +

∫
gψ = 0, ∀ψ ∈ X.
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Take general Ψ ∈ H1
0 . We can decompose into Ψ = ψ −

∑
i αi

∂wλ

∂xi
, with

αi =

∫
Ψ

∂wλ
∂xi∫

(
∂wλ
∂xi

)2
. We have

−
∫

∆(
∑
i

αi
∂wλ

∂xi
)∇ϕ+

∫
V (ξ)(

∑
i

αi(
∂wλ

∂xi
)ϕ− pwp−1(

∑
i

αi
∂wλ

∂xi
)ϕ = 0

which implies that ∫
∇ϕ∇Ψ+

∫
V (ξ)ϕΨ− pwp−1ϕΨ

−
∫
(V (ξ)− V (ξ + εx))(Ψ−

∑
i

αi
∂wλ

∂xi
) +

∫
g(Ψ−

∑
i

αi
∂wλ

∂xi
)

=

∫
[(V (ξ + εx)− V (ξ))ϕ+ g](Ψ−

∑
i

αi
∂wλ

∂xi
)

Let ΠX(Ψ) =
∑

i αi
∂wλ

∂xi
. Then the above integral equals∫

ΠX([(V (ξ + εx)− V (ξ))ϕ+ g]ϕ)Ψ

This implies that

−∆ϕ+ V (ξ)ϕ− pwp−1ϕ+ΠX([(V (ξ + εx)− V (ξ))ϕ+ g]ϕ) = 0.

The problem is formulated weakly as∫
∇ϕ∇ψ +

∫
(V (ξ + εx)− pwp−1)ϕψ +

∫
gψ = 0, ϕ ∈ X, ∀ψ ∈ X

which can be written as ϕ = A[ϕ] + g̃, where A is a compact operator. The

a priori estimate implies that the only solution when g = 0 of this equation

is ϕ = 0. We conclude existence by Fredholm alternative. Finally we let

R → +∞ and obtain the existence in the whole space, thanks to the a

priori estimate in Step 1.

Next we consider the assembly of multiple spikes. We look for a solution

of (1.10) which near xj = ξ′j = ξj/ε, j = 1, . . . , k looks like v(x) ≈ wλj (x−
ξ′j), λj = V (ξj), where wλ = λ1/(p−1)w(

√
λy).

Let ξ1, ξ2, . . . ξk ∈ RN be such that |ξ′j − ξ′l| ≫ 1, if j ̸= l. We look for

a solution v(x) ≈
∑k

j=1 wλj (x− ξ′j), λj = V (ξj). We assume V ∈ C2(RN )

and ∥V ∥C2 < ∞, 0 < α ≤ V . We use the notation Wj = wλj (x − ξ′j),

λj = V (ξj) and W =
∑k

j=1Wj .
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Setting v =W + ϕ, then ϕ solves the problem

∆ϕ− V (εx)ϕ+ pW p−1ϕ+ E +N(ϕ) = 0 (1.17)

where

E = ∆W − VW +W p, N(ϕ) = (W + ϕ)p −W p − pW p−1ϕ.

Observe that ∆W =
∑

j ∆Wj =
∑

j λjWj −W p
j . So we can write

E =
∑
j

(λj − V (εx))Wj + (
∑
j

Wj)
p −

∑
j

W p
j .

Our next objective is to solve the approximate linearized projected prob-

lem.

1.5. Linearized (projected) problem

We use the following notation Zi
j =

∂Wj

∂xi
. The linearized projected problem

is the following

∆ϕ− V (εx)ϕ+ pW p−1ϕ+ g =
∑
i,j

cijZ
i
j , (1.18)

with the orthogonality condition
∫
ϕZi

j = 0, ∀i, j. The Zi
j ’s are “nearly

orthogonal” if the centers ξ′j are far away one to each other. The cij ’s are,

by definition, the solution of the linear system∫
RN

(∆ϕ− V (εx)ϕ+ pW p−1ϕ+ g)Zi0
j0

=
∑
i,j

cij

∫
RN

Zi
jZ

i0
j0
,

for i0 = 1, . . . , N , j0 = 1, . . . , k. The cij ’s are indeed uniquely determined

provided that |ξ′l − ξ′j | > R0 ≫ 1, because the matrix with coefficients

αi,j,i0,j0 =
∫
Zi
jZ

i0
j0

is “nearly diagonal”, which means

αi,j,i0,j0 =

{
1
N

∫
|∇Wj |2 if (i, j) = (i0, j0),

o(1) if not

Moreover by a similar argument leading to (1.15) we have

|ci0j0 | ≤ C
∑
i,j

∫
|ϕ|[|λj−V |+p|W p−1−W p−1

j |]|Zi
j |+
∫

|g||Zi
j | ≤ C(∥ϕ∥∞+∥g∥∞)

with C is uniform for large R0. Furthermore if we rescale x = ξ′+y, we get

|(λj − V (εx))Zi
j | ≤ |(V (ξj)− V (ξj + εy))||

∂wλj

∂yi
| ≤ Cεe−

√
α
2 |y|,
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because |∂wλj

∂yi
| ≤ Ce−|y|

√
λj |y|−(N−1)/2. Observe also that

|(W p−1 −W p−1
j )Zi

j | = |((1−
∑
l ̸=j

Wl

Wj
)p−1 − 1)|W p−1

j Zi
j .

We estimate the interactions at each spike in two regions.

Observe that if |x− ξ′j | < δ0 minj1 ̸=j2 |ξ′j1 − ξ′j2 |, then

Wl(x)

Wj(x)
≈ e−

√
λl|x−ξ′l|

e−
√

λj |x−ξ′j |
<

e−
√
λl|x−ξ′l|

e−
√

λjδ0 minj1 ̸=j2
|ξ′j1−ξ′j2

|

If δ0 ≪ 1 but fixed, we conclude

that e−
√
λl|ξ′j−ξ′l|+δ0(

√
λl−

√
λj)minj1 ̸=j2

|ξ′j1−ξ′j2
| < e−ρminj1 ̸=j2

|ξ′j1−ξ′j2
| ≪ 1.

Thus we conclude that if |x− ξ′j | < δ0 minj1 ̸=j2 |ξ′j1 − xi′j2 | then

|(W p−1 −W p−1
j )Zi

j | ≤ e−ρminj1 ̸=j2
|ξ′j1−ξ′j2

|e−
α
2 |x−ξ′j |.

On the other hand if |x− ξ′j | > δ0 minj1 ̸=j2 |ξ′j1 − ξ′j2 |, then

|(W p−1 −W p−1
j )Zi

j | ≤ C|Zi
j | ≤ Ce−ρminj1 ̸=j2

|ξ′j1−ξ′j2
|e−

α
2 |x−ξ′j |

As a conclusion we obtain the following estimate

|ci0j0 | ≤ C(ε+ e−ρminj1 ̸=j2
|ξ′j1−ξ′j2 |)∥ϕ∥∞ + ∥g∥∞ (1.19)

Lemma 1.1: Given k ≥ 1, there exist R0, C0, ε0 such that for all points

ξ′j with |ξ′j1 − ξ′j2 | > R0, j = 1, . . . , k and all ε < ε0 then exist a unique

solution ϕ to the linearized projected problem with

∥ϕ∥∞ ≤ C0∥g∥∞.

Proof: As before we first prove the a priori estimate ∥ϕ∥∞ ≤ C0∥g∥∞. If

not there exist εn → 0, ∥ϕn∥∞ = 1, ∥gn∥ → 0, ξ′nj with minj1 ̸=j2 |ξ′nj1 −
ξ′nj2 | → ∞. We denote Wn =

∑
j Wjn , and we have

∆ϕn − V (εnx)ϕn + pW p−1
n ϕn + gn =

∑
i,j

(cij)n(z
i
j)n

Our first observation is that (cij)n → 0 (which follows from the same

estimate for ci0j0). Next we claim that ∀R > 0 ∥ϕn∥L∞(B(ξ′nj ,R)) → 0, j =

1, . . . , k. If not, there exist j0 ∥ϕn∥L∞(B(ξ′nj0
,R)) ≥ γ > 0. We denote ϕ̃n(y) :=

ϕn(ξ
′n
j0
+y). We have ∥ϕ̃n∥L∞(B(0,R)) ≥ γ > 0. Since |∆ϕ̃n| ≤ C, ∥ϕ̃n∥∞ ≤ 1.

This implies that ∥∇ϕ̃n∥ ≤ C. Passing to a subsequence we may assume
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ϕ̃n → ϕ̃ uniformly on compacts sets. Observe that also V (εn(ξ
′n
j0

+ y)) =

V (εnξ
′n
j0
) + O(εn|y|) → λj0 over compact sets and Wn(ξ

′n
j0

+ y) → Wλj0
(y)

uniformly on compact sets. This implies that ϕ̃ is a solution of the problem

∆ϕ̃− λj0 ϕ̃+ pwp−1
λ0

˜p− 1 = 0,

∫
ϕ̃
∂Wλj0

∂yi
dy = 0, i = 1, . . . , N

Nondegeneracy of wλj0
implies that ϕ̃ =

∑
i αi

∂wλj0

∂yi
. The orthogonality

condition implies that αi = 0, ∀i = 1, . . . , N . This implies that ϕ̃ = 0 but

∥ϕ̃∥L∞(B(0,R)) ≥ γ > 0, a contradiction.

Now we prove: ∥ϕn∥L∞(RN \ ∪nB(ξ′nj , R)) → 0, provided that R ≫ 1

and fixed so that ϕn → 0 in the sense of ∥ϕn∥∞ (again a contradiction).

We will denote Ωn = RN \∪nB(ξ′nj , R). For R≫ 1 the equation for ϕn has

the form

∆ϕn −Qnϕn + gn = 0

where Qn = V (εx) − pW p−1
n ≥ α

2 > 0 for some R sufficiently large (but

fixed).

Let us take for σ2 < α/2

ϕ̄ = δ
∑
j

eσ|x−ξ′nj | + µn.

We denote φ(y) = eσ|y|, r = |y|. Observe that ∆φ − α/2φ = eσ|y|(σ2 +
N−1
|y| − α/2) < 0 if |y| > R≫ 1. Then

−∆ϕ̄+Qnϕ̄− gn > −∆ϕ̄+
α

2
ϕ̄− ∥gn∥∞ >

α

2
µn − ∥gn∥∞ > 0 (1.20)

if we choose µn ≥ ∥gn∥∞ 2
α . In addition we take µn =

∑
j ∥ϕn∥L∞(B(ξnj ,R))+

∥gn∥∞ 2
α . Maximum principle implies that ϕn(x) ≤ ϕ̄ for all x ∈ Ωn. Taking

δ → 0 this implies that ϕn(x) ≤ µn, for all x ∈ Ωn. It is also true that

|ϕn(x)| ≤ µn for all x ∈ Ωc
n, and this implies that ∥ϕn∥L∞(RN ) → 0.

Remark: If in addition we have the following decay for the error

θn = ∥gn

∑
j

e−ρ|x−ξ′nj |

−1

∥∞ → 0

with ρ < α/2, then we can use as a barrier function

ϕ̄ = δ
∑
j

eσ|x−ξ′nj | + µn

∑
j

e−ρ|x−ξ′nj |
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with µn = eρR
∑

j ∥ϕn∥L∞(B(ξ′nj ,R)) + θn. It is easy to see that ϕ̄ is a super

solution of the equation in (∪jB(ξj , R))
c and we have |ϕn| ≤ ϕ̄. Letting

δ → 0 we get |ϕn(x)| ≤ µn

∑
j e

−ρ|x−ξ′nj |. As a conclusion we also get the a

priori estimate

∥ϕ

 k∑
j=1

e−ρ|x−ξ′j |

−1

∥∞ ≤ C∥g

 k∑
j=1

e−ρ|x−ξ′j |

−1

∥∞

provided that 0 ≤ ρ < α/2, |ξ′j1 − ξ′j2 | > R0 ≫ 1, ε < ε0.

We now give the proof of existence.

Proof: Let g be compactly supported smooth functions. The weak formu-

lation for

∆ϕ− V (εx)ϕ+ pW p−1ϕ+ g =
∑
i,j

cijZ
i
j ,

∫
ϕZi

j = 0, ∀i, j (1.21)

is to find ϕ ∈ X = {ϕ ∈ H1(RN ) :
∫
ϕZi

j = 0, ∀i, j} such that∫
RN

∇ϕ∇ψ + V ϕψ − pwp−1ϕψ − gψ = 0, ∀ψ ∈ X. (1.22)

Assume ϕ solves (1.21). For g ∈ L2, we decompose g = g̃ + Π[g] where∫
g̃Zi

j = 0 for all i, j, and Π is the orthogonal projection of g onto the space

spanned by the Zi
j ’s.

Let ψ ∈ H1(RN ). We now use ψ − Π[ψ] as a test function in (1.22).

Then if φ ∈ C∞
c (RN ), then we have∫

RN

∇φ∇(Π[ψ]) = −
∫
RN

∆φΠ[ψ] = −
∫
RN

Π[∆φ]ψ. (1.23)

On the other hand, we have Π[∆φ] =
∑

i,j αi,jZ
i
j , where∑

αi,j

∫
Zi,jZi0,j0 =

∫
∆φZj0

i0
=

∫
φ∆Zj0

i0
(1.24)

Then ∥Π[∆φ]∥L2 ≤ C∥φ∥H1 . By density argument it is also true for φ ∈ H1

where ∆φ ∈ H−1. Therefore∫
∇ϕ∇ψ +

∫
(V ϕ− pW p−1ϕ− g)ψ =

∫
Π(V ϕ− pW p−1ϕ+ g)ψ (1.25)

It follows that ϕ solves in weak sense

−∆ϕ+ V ϕ− pW p−1ϕ− g = Π[−∆ϕ+ V ϕ− pW p−1ϕ− g] (1.26)
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and Π[−∆ϕ + V ϕ − pW p−1ϕ − g] =
∑

i,j c
j
iZij. Therefore by definition ϕ

solves (1.22) implies that ϕ solves (1.26). Classical regularity gives that this

weak solution is solution of (1.26) in strong sense, in particular ϕ ∈ L∞ so

that

∥ϕ∥∞ ≤ C∥g∥∞. (1.27)

Now we give the proof of existence for (1.21). We take g compactly

supported. The equation (1.26) can be written in the following way (using

Riesz theorem):

⟨ϕ, ψ⟩H1 + ⟨B[ϕ], ψ⟩H1 = ⟨g̃, ψ⟩H1 (1.28)

or ϕ+B[ϕ] = g̃, ϕ ∈ X. We claim that B is a compact operator. Indeed if

ϕn ⇀ 0 in X, then ϕn → 0 in L2 over compacts and

|⟨B[ϕn], ψ⟩| ≤ |
∫
pW p−1ϕnψ| ≤ (

∫
pwp−1ϕ2n)

1/2(

∫
pW p−1ψ2)1/2 (1.29)

which yields

|⟨B[ϕn], ψ⟩| ≤ c(

∫
pW p−1ϕ2n)

1/2∥ψ∥H1 (1.30)

Take ψ = B[ϕn], which implies

∥B[ϕn]∥H1 ≤ c(

∫
pW p−1ϕ2n)

1/2 → 0. (1.31)

This gives that B is a compact operator.

Now we prove existence with the aid of Fredholm alternative. Problem

(1.21) is solvable if for g̃ = 0 the only solution to (1.22) is ϕ = 0. But

ϕ+B[ϕ] = 0 implies solve (1.21)(strongly) with g = 0. This implies ϕ ∈ L∞,

and the a priori estimate implies ϕ = 0. Considering gΞBR(0) we conclude

that

∥ϕR∥∞ ≤ ∥g∥∞ (1.32)

Taking R → ∞ then along a subsequence ϕR → ϕ uniform over compacts

we obtain a solution to (1.21).

Next we want to study the dependence and regularity of the solution

with respect to the parameters. Let g ∈ L∞. We denote ϕ = Tξ′ [g], where

ξ′ = (ξ′1, . . . , ξ
′
k). We want to analyze derivatives ∂ξ′jiTξ′ [g]. We know that

∥Tξ′ [g]∥ ≤ C0∥g∥∞. First we make a formal differentiation. We denote

Φ = ∂ϕ
∂ξ′i0j0

.
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We have ∆ϕ − V ϕ + pW p−1ϕ + g =
∑

i,j c
i
jZ

i
j and

∫
ϕZi

j = 0, for all

i, j. Formal differentiation yields

∆Φ−V Φ+pW p−1Φ++∂ξi0j0
(W p−1)ϕ−

∑
i,j

cij∂ξi0j0
Zj
i =

∑
i,j

c̃ijZ
i
j (1.33)

where formally c̃ji = ∂ξi0j0
cji . The orthogonality conditions is reduced to∫

RN

ΦZi
j =

{
0 if j ̸= j0

−
∫
ϕ∂ξi0j0Z

i
j0

if j = j0
(1.34)

Let us define Φ̃ = Φ−
∑

i,j αi,jZ
i
j . We want

∫
Φ̃Zi

j = 0, for all i, j. We need

∑
i,j

αi,j

∫
Zi
jZ

ī
j̄ =

{
0 if j̄ ̸= j0

−
∫
ϕ∂ξi0j0Z

i
j0

if j̄ = j0
(1.35)

The system has a unique solution and |αi,j | ≤ C∥ϕ∥∞ (since the system is

almost diagonal). So we have the condition
∫
Φ̃Zi

j = 0, for all i, j. We add

to the equation the term
∑

i,j αi,j(∆ − V + pW p−1)Zi
j , so Φ̃ satisfies the

equation∆ϕ− V ϕ+ pW p−1ϕ+ g =
∑

i,j c
i
jZ

i
j

∆Φ̃−V Φ̃+pW p−1Φ̃+∂ξi0j0
(W p−1)ϕ−

∑
i,j

cij∂ξi0j0
Zj
i =

∑
i,j

c̃ijZ
i
j−
∑
i,j

αi,j(∆−V+pW p−1)Zi
j

(1.36)

This implies ∥Φ̃∥ ≤ C(∥h∥+ ∥g∥) ≤ C∥g∥∞ and hence ∥Φ∥ ≤ C∥g∥∞.

The above formal procedure can be made rigorous by performing the

analysis discretely, namely we consider solutions corresponding to ξ and

ξ + h respectively. Then we consider the quotient and pass the limit in h.

We omit the details. In conclusion the map ξ → ∂ξϕ is well defined and

continuous (into L∞). Besides we also have ∥∂ξϕ∥∞ ≤ C∥g∥∞, and this

implies

∥∂ξTξ[ϕ]∥ ≤ C∥g∥ (1.37)

1.6. Nonlinear projected problem

Consider now the nonlinear projected problem

∆ϕ− V ϕ+ pwp−1ϕ+ E +N(ϕ) =
∑
i,j

cjiZ
i
j ,

∫
ϕZj

i = 0, ∀i, j (1.38)

We solve this by fixed point. We have ϕ = T (E + N(ϕ)) =: M(ϕ). We

define Λ = {ϕ ∈ C(RN ) ∩ L∞(RN ) : ∥ϕ∥∞ ≤ M∥E∥∞}. Remember that
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E =
∑

i(λj − V (εx))Wj + (
∑

j Wj)
p −

∑
j W

p
j . Observe that

|E| ≤ ε
∑
i

e−σ|x−ξ′j | + ce−δ0 minj1 ̸=j2
|ξ′j1−ξ′j2

|
∑
j

e−σ|x−ξ′j | (1.39)

so, for existence we have ∥E∥ ≤ C[ε + e−δ0 minj1 ̸=j2
|ξ′j1−ξ′j2 |] =: ρ (see that

ρ is small). Contraction mapping implies there exists a unique solution

ϕ = Φ(ξ) and ∥Φ(ξ)∥ ≤Mρ. The proof is standard and hence omitted.

1.7. Differentiability in ξ′ of Φ(ξ′)

As before the solutions obtained for the nonlinear projected problem has

more regularity. In fact we can write the equation for Φ as

Φ− T ′
ξ(E

′
ξ +N ′

ξ(ϕ)) = A(Φ, ξ′) = 0 (1.40)

If (DΦA)(Φ(ξ
′), ξ′) is invertible in L∞, then Φ(ξ′) turns out to be of

class C1. This is a consequence of the fixed point characterization, i.e.,

DΦA(Φ(ξ
′), ξ′) = I + o(1) (the order o(1) is a direct consequence of fixed

point characterization). Then it is invertible. Contraction mapping theorem

yields the existence of C1 derivative of A(Φ, ξ′) in (ϕ, ξ′). This implies Φ(ξ′)

is C1. With a little bit of more work we can show that ∥D′
ξΦ(ξ

′)∥ ≤ Cρ

(just using the derivative given by the implicit function theorem).

1.8. Solving the reduced problem: direct method

By (1.38), to solve (1.17), we need to find ξ′ such that the reduced problem

cij = 0,∀i, j (1.41)

to get a solution to the original problem (1.10). There are two ways to

solve the reduced problem (1.41): the first one is the direct method, and

the second one is the variational reduction method. We describe the first

method first by proving the following

Theorem 1: (Oh [54]) Assume that ξ0j , j = 1, ..., k are k distinct non-

degenerate critical points of V . Then there exist a solution uε to the original

problem with

uε(x) ≈
k∑

j=1

wV (ξεj )
(x− ξεj/ε), ξεj → ξ0j
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Proof: To solve the problem (1.41) we first obtain the asymptotic formula

for cij . To this end we multiply the equation (1.38) by Zi0
j0

and integrate by

parts. We obtain∫
RN

Zi
jZ

i0
j0
cij =

∫
RN

(V (ξj + ϵx)− V (ξj))wξjZ
i0
j0

+O(ϵ2)

and thus

ci0j0 ∼ ∂i0V (ξ0j ) +O(ϵ)

The nondegeneracy of the critical point ∇V (ξ0j ) and implicit function

theorem yields the existence of ξj = ξ0j +O(ϵ) such that (1.41) holds.

The direct method can be used to construct multiple spike solutions for

problems without variational structure, such as Gierer-Meinhardt system.

For this application we refer to [62].

1.9. Solving the reduced problem: variational reduction

If the problem concerned has a variational structure, it is more appropriate

to use a variational reduction method to solve (1.41). This method gives

much stronger results under very weak assumptions.

We now describe the procedure that we call Variational Reduction in

which the problem of finding ξ′ with cij = 0, for all i, j, is equivalent to

finding a critical point of a reduced functional of ξ′.

Define an energy functional

J(v) =
1

2

∫
RN

|∇v|2 + V (εx)v2 − 1

p+ 1

∫
RN+1

vp+1
+ (1.42)

where v ∈ H1(RN ) and 1 < p < N+2
N−2 . Since p is subcritical, by standard

elliptic regularity arguments and Maximum Principle v is a solution of the

problem

∆v − V v + vp = 0, v → 0 (1.43)

if and only if v ∈ H1(RN ) and J ′(v) = 0. Observe that ⟨J ′(v), φ⟩ =∫
∇v∇φ+ V vφ− vp+φ.

We will prove the following Variational Reduction Principle

Theorem 2: v = Wξ′∗
+ ϕ(ξ′) is a solution of the original problem (for

ρ≪ 1) if and only if

∂ξ′J(Wξ′ + ϕ(ξ′))|ξ′=ξ′∗ = 0. (1.44)
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Proof: Indeed, observe that v(ξ′) := Wξ′ + ϕ(ξ′) solves the problem

∆v(ξ′)− V (εx)v(ξ′) + v(ξ′)p =
∑

i,j c
i
jZ

i
j and also that

∂ξ′j0i0
J(v(ξ′)) = ⟨J ′(v(ξ′)), ∂ξ′j0i0

v(ξ′)⟩ = −
∑
j,i

cij

∫
Zi
j∂ξ′j0i0

v = −
∑
i,j

cij

∫
Zj
i (∂ξ′j0i0

Wξ′+∂ξ′j0i0
ϕ(ξ′)).

(1.45)

Recall that Wξ′ =
∑k

j=1 wλj (x− ξ′j),

∂ξ′j0i0
W ′

ξ = ∂ξ′j0i0
wλj0(ξ′)(x−ξ

′
j) = (∂λwλ(x−ξ′j0))|λ=λj0

−∂xi0
wλj0

(x−ξ′j0) = O(e−δ|x−ξ′0|)o(ε)−Zj0i0 (x)

(1.46)

This is because ∂λwλ = O(e−δ|x−ξ′0|). On the other hand since
∫
Zj
i ϕ(ξ

′) =

0 we have ∫
Zj
i ∂ξ′j0i0

ϕ(ξ′) = −
∫
ϕ(ξ′)∂ξ′j0i0

Zj
i

which is small thanks to the fact that |ϕ| ≤ Cρe−δ|x−ξ′j0
|. Finally, observe

that

−
∫
Zi
j(∂ξ′j0i0

W ′
ξ + ∂ξ′j0i0

ϕ) =

∫
Zi
jZ

i0
j0

+O(ρ) (1.47)

The matrix of these numbers is invertible provided ρ≪ 1.

We now discuss several applications of the reduction principle.

Theorem 3: (del Pino and Felmer [15]) Assume that there exists an open,

bounded set Λ ⊂ RN such that

inf
∂Λ
V > inf

Λ
V, (1.48)

then there exist a solution to the original problem, vε with vε(x) =

wV (ξε)((x− ξε)/ε) + o(1) and V (ξε) → minΛ V , ξ = ξε.

Theorem 4: (del Pino-Felmer [16]) Assume that Λ1, . . . ,Λk are disjoint

bounded sets with

inf
Λj

V < inf
∂Λj

V, j = 1, · · · , k.

Then there exist a solution uε to the original problem with

uε(x) ≈
k∑

j=1

wV (ξεj )
(x− ξεj/ε), ξεj ∈ Λj

and V (ξεj ) → infΛj V . The same result holds if the minimum is replaced by

maximum.
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Theorem 5: (Kang-Wei [39]) Let Γ be a bounded open set such that

max
Γ

V (x) > max
∂Γ

V (x)

Then for any positive integer K there exists a solution uϵ such that

uε(x) ≈
k∑

j=1

wV (ξεj )
(x− ξεj/ε), ξεj ∈ Λ, V (ξεj ) → max

Λ
V (x)

Proof:

Assume that j = 1 first so that v(ξ′) = Wξ′ + ϕ(ξ′). Then we can

compute the reduced energy as follows:

J(v(ξ′)) = J(Wξ′+ϕ(ξ
′))+⟨J ′(W ′

ξ+ϕ),−ϕ⟩+
1

2
J ′′(W ′

ξ+(1−t)ϕ)[ϕ]2 (1.49)

(This follows from Taylor expansion of the function α(t) = J(Wξ′ + (1 −
t)ϕ).) Observe that ⟨J ′(W ′

ξ + ϕ),−ϕ⟩ =
∑

i,j c
i
j

∫
Zj
i ϕ = 0. Also observe

that

J ′′(W ′
ξ + (1− t)ϕ)[ϕ]2 =

∫
|∇ϕ|2 + V (εx)ϕ2 − p(W ′

ξ + (1− t)ϕ)ϕ2 = O(ε2)

(1.50)

uniformly on ξ′ because ∇ϕ, ϕ = O(εe−δ|x−ξ′|). We call Φ(ξ) := J(v(ξ′)) =

J(Wξ′) +O(ε2), and

J(Wξ′) =
1

2

∫
|∇Wξ′ |2+V (ξ)W 2

ξ′ −
1

p+ 1

∫
W p+1

ξ′ +

∫
(V (εx)−V (ξ′))W 2

ξ′

(1.51)

Taking λ = V (ξ), we have that∫
|∇wλ(x)|2 = λ−N/2

∫
|∇w(λ1/2x)|2λ1+2/(p−1)λN/2dx = λ−N/2+p+1/p−1|∇w(y)|2dy

(1.52)

and

λ

∫
w2

λ(x) = λ−N/2p+1/p−1

∫
w(y)p+1dy (1.53)

This implies that

1

2

∫
|∇Wξ′ |2+V (ξ

′
)W 2

ξ′ −
1

p+ 1

∫
W p+1

ξ′ = V (ξ′)p+1/p−1−N/2cp,N (1.54)

and we also have ∫
(V (εx)− V (ξ′))wλ(x− ξ′)2 = O(ε) (1.55)

uniformly in ξ′.
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In summary we have the following asymptotic expansion of the reduced

energy

Φ(ξ) = J(v(ξ′)) = V (ξ)p+1/p−1−N/2cp,N +O(ε) (1.56)

To prove Theorem 3 we observe that p+1
p−1 − N

2 > 0. Then ∀ε ≪ 1 we

have

inf
ξ∈Λ

Φ(ξ) < inf
ξ∈∂Λ

Φ(ξ) (1.57)

and therefore Φ has a local minimum ξε ∈ Λ and V (ξε) → minΛ V . The

same procedure also works for local maximums.

For several separated local minimums, the proof is similar. In fact when

|ξj1 − ξj2 | > δ, for all j1 ̸= j2, we have ρ = e−δ0 minj1 ̸=j2
|ξ′j1−ξ′j2

| + ε ≤
e−δ0δ/ε + ε < 2ε. So we obtain

|∇xϕ(ξ
′)|+ |ϕ(ξ′)| ≤ Cε

∑
j

e−δ0|x−ξ′j | (1.58)

Now we get

J(v(ξ′)) =
∑
j

V (εξ
′

j)
p+1/p−1−N/2cp,N +O(ε) (1.59)

εξ′ = (ξ1, . . . , ξk) implies for several minimal points on the Λj we have the

result desired.

Finally we prove the existence of multiply interacting spikes. The com-

putations are little bit involved since we have to measure precisely the

interactions. The reduced energy functional takes the following form:

J(v(ξ′)) =
∑
j

V (εξj)
p+1/p−1−N/2(cp,N+o(1))−(1+o(1))

∑
i ̸=j

e−mini ̸=j(
√

V (ξi),V (ξj))|ξ
′
−ξ

′
j |.

(1.60)

We shall take the following configuration space

Σ = {(ξ1, ..., ξk) | ξi ∈ Λ,min
i ̸=j

|ξi − ξj | > ρϵ log
1

ϵ
}

and prove that the following maximization problem attains a solution in

the interior part of the set Σ:

min
(ξ1,...,ξk)∈Σ

J(v(ξ′))
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2. Part II: Infinite-dimensional reduction method

2.1. An introduction

In Chapter one, we have dealt with the problem of constructing solutions

with finitely many bumps. The idea is to first sum up these finite many

bumps and solve it in the space orthogonal to the translations. Then we

adjust the points to obtain a true solution. The concentrating solutions con-

centrate at finite number of points which accounts for zero Lebesgue mea-

sure. In this Chapter we generalize this idea to the problem of constructing

solutions concentrating on higher dimensional sets, such as curves, surfaces,

or minimal surfaces of codimension k. As in the finite dimensional case, we

proceed in two steps. In the first step, we solve the problem along each

tangent fibre. This amounts to imposing infinitely many orthogonal con-

ditions. In the second step, we move the higher dimensional object in the

normal direction to find a true solution. We will encounter at least three

problems: the first is the uniform estimate of the error in the first step.

Sometimes there may be resonances due the combined effect of tangential

and instability of the profile. The second problem is the adjustment of the

higher dimensional subjects, which typically involves a second order nonlo-

cal nonlinear reduced equation. The third problem is the non-compactness

of the higher dimensional object.

In the following we take the model problem of Allen-Cahn equation in

R3 and the higher dimensional concentration object is minimal surfaces.

For higher dimensional concentration problems with resonances we refer to

papers [19], [21] and [22].

2.2. Model problem: the Allen-Cahn equation and minimal

surfaces

We consider the following so-called Allen-Cahn equation in RN

∆u + f(u) = 0 in RN , (2.1)

where f(s) = −W ′(s) and W is a “double-well potential”, bi-stable and

balanced, namely

W (s) > 0 if s ̸= 1,−1, W (1) = 0 =W (−1), W ′′(±1) = f ′(±1) =: σ2
± > 0.

(2.2)

A typical example of such a nonlinearity is

f(u) = (1− u2)u for W (u) =
1

4
(1− u2)2, (2.3)
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while we will not make use of the special symmetries enjoyed by this exam-

ple.

Equation (2.1) is a prototype for the continuous modeling of phase tran-

sition phenomena. Let us consider the energy in a subregion region Ω of

RN

Jα(v) =

∫
Ω

α

2
|∇v|2 + 1

4α
W (v),

whose Euler-Lagrange equation is a scaled version of (2.1),

α2∆v + f(v) = 0 in Ω . (2.4)

We observe that the constant functions u = ±1 minimize Jα. They are

idealized as two stable phases of a material in Ω. It is of interest to analyze

stationary configurations in which the two phases coexist. Given any subset

Λ of Ω, any discontinuous function of the form

u∗ = χΛ − χΩ\Λ (2.5)

minimizes the second term in Jε. The introduction of the gradient term

in Jα makes an α-regularization of u∗ a test function for which the energy

gets bounded and proportional to the surface area of the interfaceM = ∂Λ,

so that in addition to minimizing approximately the second term, station-

ary configurations should also select asymptotically interfaces M that are

stationary for surface area, namely (generalized) minimal surfaces. This in-

tuition on the Allen-Cahn equation gave important impulse to the calculus

of variations, motivating the development of the theory of Γ-convergence

in the 1970’s. Modica [46] proved that a family of local minimizers uα of

Jα with uniformly bounded energy must converge in suitable sense to a

function of the form (2.5) where ∂Λ minimizes perimeter. Thus, intuitively,

for each given λ ∈ (−1, 1), the level sets [vα = λ], collapse as α → 0 onto

the interface ∂Λ. Similar result holds for critical points not necessarily min-

imizers, see [60]. For minimizers this convergence is known in very strong

sense, see [10, 11].

If, on the other hand, we take such a critical point uα and scale it around

an interior point 0 ∈ Ω, setting uα(x) = vα(αx), then uα satisfies equation

(2.1) in an expanding domain,

∆uα + f(uα) = 0 in α−1Ω

so that letting formally α → 0 we end up with equation (2.1) in entire

space. The “interface” for uα should thus be around the (asymptotically
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flat) minimal surfaceMα = α−1M . Modica’s result is based on the intuition

that if M happens to be a smooth surface, then the transition from the

equilibria −1 to 1 of uα along the normal direction should take place in the

approximate form uα(x) ≈ w(z) where z designates the normal coordinate

to Mα. Then w should solve the ODE problem

w′′ + f(w) = 0 in R, w(−∞) = −1, w(+∞) = 1 . (2.6)

This solution indeed exists thanks to assumption (2.2). It is strictly in-

creasing and unique up to constant translations. We fix in what follows the

unique w for which ∫
R
t w′(t)2 dt = 0 . (2.7)

For example (2.3), we have w(t) = tanh
(
t/
√
2
)
. In general w approaches

its limits at exponential rates,

w(t)− ±1 = O( e−σ±|t| ) as t→ ±∞ .

Observe then that

Jα(uα) ≈ Area (M)

∫
R
[
1

2
w′2 +W (w)]

which is what makes it plausible that M is critical for area, namely a

minimal surface.

The above considerations led E. De Giorgi [24] to formulate in 1978 a

celebrated conjecture on the Allen-Cahn equation (2.1), parallel to Bern-

stein’s theorem for minimal surfaces: The level sets [u = λ] of a bounded

entire solution u to (2.1), which is also monotone in one direction, must be

hyperplanes, at least for dimension N ≤ 8. Equivalently, up to a translation

and a rotation, u = w(x1). This conjecture has been proven in dimensions

N = 2 by Ghoussoub and Gui [29], N = 3 by Ambrosio and Cabré [9],

and under a mild additional assumption by Savin [58]. A counterexample

was built for N ≥ 9 by M. del Pino, M.Kowalczyk and Wei in [25], see also

[14, 43]. See [26] for a recent survey on the state of the art of this question.

The counter-example in [25] was built on the counter-example to the

Bernstein conjecture for minimal graphs: Bernstein conjectured that all

minimal graphs, i.e. graphs {xN = F (x
′
)} for which F satisfies additionally

the minimal graph equation

∇(
∇F√

1 + |∇F |2
) = 0, x

′
∈ RN−1 (2.8)
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In 1969, Bombierie, De Giorgi and Giusti [8] built a nontrivial solution

to (2.8) in dimension N = 9. In [25, ?] we took the opposite view of Γ-

convergence: for a given nondegenerate minimal surface it is possible to

build a solution to the Allen-Cahn equation which concentrates on this min-

imal surface. The class of minimal surfaces will include the Bombierie-De

Giorgi-Giusti minimal graph, and the complete embedded minimal surfaces

in R3.

In this following we construct a new class of entire solutions to the

Allen-Cahn equation in R3 whose level sets resemble a large dilation of a

given complete, embedded minimal surface M , asymptotically flat in the

sense that it has finite total curvature, namely∫
M

|K| dV < +∞

where K denotes Gauss curvature of the manifold, which is also non-

degenerate in a sense that we will make precise below.

2.3. Embedded minimal surfaces of finite total curvature

The theory of embedded, minimal surfaces of finite total curvature in R3,

has reached a notable development in the last 25 years. For more than a

century, only two examples of such surfaces were known: the plane and the

catenoid. The first nontrivial example was found in 1981 by C. Costa, [12, ?].

The Costa surface is a genus one minimal surface, complete and properly

embedded, which outside a large ball has exactly three components (its

ends), two of which are asymptotically catenoids with the same axis and

opposite directions, the third one asymptotic to a plane perpendicular to

that axis. The complete proof of embeddedness is due to Hoffman and

Meeks [34]. In [35, 37] these authors generalized notably Costa’s example

by exhibiting a class of three-end, embedded minimal surface, with the

same look as Costa’s far away, but with an array of tunnels that provides

arbitrary genus k ≥ 1. This is known as the Costa-Hoffman-Meeks surface

with genus k.

Many other examples of multiple-end embedded minimal surfaces have

been found since, see for instance [44, ?] and references therein. In general all

these surfaces look like parallel planes, slightly perturbed at their ends by

asymptotically logarithmic corrections with a certain number of catenoidal
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links connecting their adjacent sheets. In reality this intuitive picture is not

a coincidence.

Using the Eneper-Weierstrass representation, Osserman [51] established

that any embedded, complete minimal surface with finite total curvature

can be described by a conformal diffeomorphism of a compact surface (ac-

tually of a Riemann surface), with a finite number of its points removed.

These points correspond to the ends. Moreover, after a convenient rotation,

the ends are asymptotically all either catenoids or plane, all of them with

parallel axes, see Schoen [59]. The topology of the surface is thus character-

ized by the genus of the compact surface and the number of ends, having

therefore “finite topology”.

2.4. Main results

In what follows M designates a complete, embedded minimal surface in R3

with finite total curvature (to which below we will make a further nonde-

generacy assumption). As pointed out in [38], M is orientable and the set

R3 \M has exactly two components S+, S−.

In what follows we fix a continuous choice of unit normal field ν(y),

which conventionally we take it to point towards S+.

For x = (x1, x2, x3) = (x′, x3) ∈ R3, we denote

r = r(x) = |(x1, x2)| =
√
x21 + x22.

After a suitable rotation of the coordinate axes, outside the infinite cylinder

r < R0 with sufficiently large radius R0, then M decomposes into a finite

number m of unbounded components M1, . . . ,Mm, its ends. From a result

in [59], we know that asymptotically each end of Mk either resembles a

plane or a catenoid. More precisely, Mk can be represented as the graph of

a function Fk of the first two variables,

Mk = { y ∈ R3 / r(y) > R0, y3 = Fk(y
′) }

where Fk is a smooth function which can be expanded as

Fk(y
′) = ak log r + bk + bik

yi
r2

+O(r−3) as r → +∞, (2.9)

for certain constants ak, bk, bik, and this relation can also be differentiated.

Here

a1 ≤ a2 ≤ . . . ≤ am ,
m∑

k=1

ak = 0 . (2.10)
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The direction of the normal vector ν(y) for large r(y) approaches on the

ends that of the x3 axis, with alternate signs. We use the convention that

for r(y) large we have

ν(y) =
(−1)k√

1 + |∇Fk(y′)|2
(∇Fk(y

′) , −1 ) if y ∈Mk. (2.11)

Let us consider the Jacobi operator of M

J (h) := ∆Mh+ |A|2h (2.12)

where |A|2 = −2K is the Euclidean norm of the second fundamental form

ofM . J is the linearization of the mean curvature operator with respect to

perturbations ofM measured along its normal direction. A smooth function

z(y) defined on M is called a Jacobi field if J (z) = 0. Rigid motions of

the surface induce naturally some bounded Jacobi fields: Associated to

respectively translations along coordinates axes and rotation around the

x3-axis, are the functions

z1(y) = ν(y) · ei, y ∈M, i = 1, 2, 3,

z4(y) = (−y2, y1, 0) · ν(y), y ∈M. (2.13)

We assume that M is non-degenerate in the sense that these functions

are actually all the bounded Jacobi fields, namely

{ z ∈ L∞(M) / J (z) = 0 } = span { z1, z2, z3, z4 } . (2.14)

We denote in what follows by J the dimension (≤ 4) of the above vector

space.

This assumption, expected to be generic for this class of surfaces, is

known in some important cases, most notably the catenoid and the Costa-

Hoffmann-Meeks surface which is an example of a three ended M whose

genus may be of any order. See Nayatani [49, 50] and Morabito [47]. Note

that for a catenoid, z04 = 0 so that J = 3. Non-degeneracy has been

used as a tool to build new minimal surfaces for instance in Hauswirth

and Pacard [33], and in Pérez and Ros [53]. It is also the basic element,

in a compact-manifold version, to build solutions to the small-parameter

Allen-Cahn equation in Pacard and Ritoré [52].

Let us consider a large dilation of M ,

Mα := α−1M.
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This dilated minimal surface has ends parameterized as

Mk,α = { y ∈ R3 / r(αy) > R0, y3 = α−1Fk(αy
′) } .

Let β be a vector of given m real numbers with

β = (β1, . . . , βm),
m∑
i=1

βi = 0 . (2.15)

Our main result asserts the existence of a solution u = uα defined for all

sufficiently small α > 0 such that given λ ∈ (−1, 1), its level set [uα = λ]

defines an embedded surface lying at a uniformly bounded distance in α

from the surface Mα, for points with r(αy) = O(1), while its k-th end,

k = 1, . . . ,m, lies at a uniformly bounded distance from the graph

r(αy) > R0, y3 = α−1 Fk(αy
′) + βk log |αy′| . (2.16)

The parameters β must satisfy an additional constraint. It is clear that

if two ends are parallel, say ak+1 = ak, we need at least that βk+1−βk ≥ 0,

for otherwise the ends would eventually intersect. Our further condition on

these numbers is that these ends in fact diverge at a sufficiently fast rate.

We require

βk+1 − βk > 4 max {σ−1
− , σ−1

+ } if ak+1 = ak . (2.17)

Let us consider the smooth map

X(y, z) = y + zν(αy), (y, t) ∈Mα × R. (2.18)

x = X(y, z) defines coordinates inside the image of any region where the

map is one-to-one. In particular, let us consider a function p(y) with

p(y) = (−1)kβk log |αy′|+O(1), k = 1, . . . ,m,

and β satisfying βk+1−βk > γ > 0 for all k with ak = ak+1. Then the map

X is one-to-one for all small α in the region of points (y, z) with

|z − q(y)| < δ

α
+ γ log(1 + |αy′|)

provided that δ > 0 is chosen sufficiently small.

Theorem 6: (del Pino-Kowalczyk-Wei [20]) Let N = 3 and M be a mini-

mal surface embedded, complete with finite total curvature which is nonde-

generate. Then, given β satisfying relations (2.15) and (2.17), there exists
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a bounded solution uα of equation (2.1), defined for all sufficiently small α,

such that

uα(x) = w(z − q(y)) +O(α) for all x = y + zν(αy), |z − q(y)| < δ

α
,

(2.19)

where the function q satisfies

q(y) = (−1)kβk log |αy′|+O(1) y ∈Mk,α, k = 1, . . . ,m.

In particular, for each given λ ∈ (−1, 1), the level set [uα = λ] is an em-

bedded surface that decomposes for all sufficiently small α into m disjoint

components (ends) outside a bounded set. The k-th end lies at O(1) distance

from the graph

y3 = α−1 Fk(αy) + βk log |αy′|.

We will devote the rest of this part to the proofs of Theorems 6. For the

full proofs we refer to [20] in which more detailed behavior of the solutions

constructed, such as finite Morse index, can be found.

3. Geometric Background

In this section we present the geometric backgrounds on the expansion of

the Laplacian operator near a manifold.

3.1. Parametrization of M and its Laplace-Betrami

Operator

Let D be the set

D = {y ∈ R2 / |y| > R0}.

We can parameterize the end Mk of M as

y ∈ D 7−→ y := Yk(y) = yiei + Fk(y)e3 . (3.1)

and Fk is the function in (2.9). In other words, for y = (y′, y3) ∈ Mk

the coodinate y is just defined as y = y′. We want to represent ∆M–the

Laplace-Beltrami operator of M–with respect to these coordinates. For the

coefficients of the metric gij on Mk we have

∂yiYk = ei +O
(
r−1
)
e3

so that

gij(y) = ⟨∂iYk, ∂jYk⟩ = δij +O
(
r−2
)
, (3.2)
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where r = |y|. The above relations “can be differentiated” in the sense that

differentiation makes the terms O(r−j) gain corresponding negative powers

of r. Then we find the representation

∆M =
1√

det gij
∂i(
√
det gij g

ij∂j) = ∆y +O(r−2)∂ij +O(r−3) ∂i on Mk .

(3.3)

The normal vector to M at y ∈Mk k = 1, . . . ,m, corresponds to

ν(y) = (−1)k
1√

1 + |∇Fk(y)|2
( ∂iFk(y)ei − e3 ) , y = Yk(y) ∈Mk

so that

ν(y) = (−1)ke3 + αkr
−2 yiei +O(r−2) , y = Yk(y) ∈Mk . (3.4)

Let us observe for later reference that since ∂iν = O(r−2), then the principal

curvatures of M , k1, k2 satisfy kl = O(r−2). In particular, we have that

|A(y)|2 = k21 + k22 = O(r−4). (3.5)

To describe the entire manifold M we consider a finite number N ≥ m+ 1

of local parametrizations

y ∈ Uk ⊂ R2 7−→ y = Yk(y), Yk ∈ C∞(Ūk), k = 1, . . . , N. (3.6)

For k = 1, . . . ,m we choose them to be those in (3.1), with Uk = D, so that

Yk(Uk) = Mk, and Ūk is bounded for k = m + 1, . . . , N . We require then

that

M =
N∪

k=1

Yk(Uk).

We remark that the Weierstrass representation of M implies that we can

actually take N = m+1, namely only one extra parametrization is needed

to describe the bounded complement of the ends inM . We will not use this

fact. In general, we represent for y ∈ Yk(Uk),

∆M = a0ij(y)∂ij + b0i (y)∂i, y = Yk(y), y ∈ Uk, (3.7)

where a0ij is a uniformly elliptic matrix and the index k is not made explicit

in the coefficients. For k = 1, . . . ,m we have

a0ij(y) = δij +O(r−2), b0i = O(r−3), as r(y) = |y| → ∞. (3.8)
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The parametrizations set up above induce naturally a description of the

expanded manifold Mα = α−1M as follows. Let us consider the functions

Ykα : Ukα := α−1Uk →Mα, y 7→ Ykα(y) := α−1Yk(αy), k = 1, . . . , N.

(3.9)

Obviously we have

Mα =
N∪

k=1

Ykα(Ukα).

The computations above lead to the following representation for the oper-

ator ∆Mα :

∆Mα = a0ij(αy)∂ij + b0i (αy)∂i, y = Ykα(y), y ∈ Ukα, (3.10)

where a0ij , b
0
i are the functions in (3.7), so that for k = 1, . . . ,m we have

a0ij = δij +O(r−2
α ), b0i = O(r−3

α ), as rα(y) := |αy| → ∞. (3.11)

3.2. Coordinates near M and the Euclidean Laplacian:

Fermi coordinates

Next we shall consider the parametrization of a neighborhood of M . Let us

consider the smooth map

(y, z) ∈M × R 7−→ x = X̃(y, z) = y + zν(y) ∈ R3. (3.12)

Let us consider an open subset Õ of M × R and assume that the map

X|Õ is one to one, and that it defines a diffeomorphism onto its image

N = X(Õ). Certainly we can choose Õ such that

{(y, z) ∈M × R / |z| < δ log(1 + r(y))} ⊂ Õ.

Since along ends ∂iν = O(r−2) so that z∂iν is uniformly small in Õ, it

follows that X̃ is actually a diffeomorphism onto is image.

The Euclidean Laplacian ∆x can be computed in such a region by the

well-known formula in terms of the coordinates (y, z) ∈ Õ as

∆x = ∂zz +∆Mz −HMz∂z, x = X̃(y, z), (y, z) ∈ O (3.13)

where Mz is the manifold

Mz = {y + zν(y) / y ∈M}.

To see the formula (3.13) we observe that

Xi = Yi + zνi, i = 1, 2, Xz = ν
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and hence for i, j = 1, 2

gij(x, z) = g0ij + 2zνiYj + z2νiνj

and giz = 0, gzz = 1. Hence the Euclidean laplacian in Õ becomes

∆Mzh(y)|X=X(y,z) =
1√

det gz
∂i(
√
det(gz)g

ij
z ∂ih)(y, z)

= ∂zzh+∆Mzh+ ∂z log(
√
det gz)∂zh

We note that by direct computations det(gz) = Π2
j=1(1 − zkj)

2 det g0.

This gives the formula (3.13).

Local coordinates y = Yk(y), y ∈ R2 as in (3.1) induce natural local

coordinates in Mz. The metric gij(z) in Mz can then be computed as

gij(z) = ⟨∂iY, ∂jY ⟩+ z(⟨∂iY, ∂jν⟩+ ⟨∂jY, ∂iν⟩) + z2 ⟨∂iν, ∂jν⟩ (3.14)

or

gij(z) = gij + z O(r−2) + z2O(r−4) .

where these relations can be differentiated. Thus we find from the expression

of ∆Mz in local coordinates that

∆Mz = ∆M + za1ij(y, z)∂ij + zb1i (y, z)∂i, y = Y (y) (3.15)

where a1ij , b
1
i are smooth functions of their arguments. Let us examine this

expansion closer around the ends of Mk where y = Yk(y) is chosen as in

(3.1). In this case, from (3.14) and (3.2) we find

gij(z) = gij + z O(r−2) + z2O(r4) + . . .

Then we find that for large r,

∆Mz = ∆M + z O(r−2)∂ij + zO(r−3)∂i. (3.16)

Let us consider the remaining term in the expression for the Laplacian,

the mean curvature HMz . We have the validity of the formula

HMz =

2∑
i=1

ki
1− kiz

=

2∑
i=1

ki + k2i z + k3i z
2 + · · ·

where ki, i = 1, 2 are the principal curvatures. SinceM is a minimal surface,

we have that k1 + k2 = 0. Thus

|A|2 = k21 + k22 = −2k1k2 = −2K
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where |A| is the Euclidean norm of the second fundamental form, and K

the Gauss curvature. As r → +∞ we have seen that ki = O(r−2) and hence

|A|2 = O(r−4). More precisely, we find for large r,

HMz = |A|2z + z2O(r−6).

Thus we have found the following expansion for the Euclidean Laplacian,

∆x = ∂zz +∆M − z|A|2∂z +B (3.17)

where expressed in local coordinates in M the operator B has the form

B = z a1ij(y, z)∂ij + z b1i (y, z)∂i + z2b13(y, z)∂z (3.18)

with a1ij , b
1
i , b

1
3 smooth functions. Besides, we find that

a1ij(y, z) = O(r−2), b1i (y, z) = O(r−3), b1i (y, z) = O(r−6), (3.19)

uniformly in z for (y, z) ∈ Õ. Moreover, the way these coefficients are

produced from the metric yields for instance that

a1ij(y, z) = a1i,j(y, 0) + za
(2)
i,j (y, z), a2i,j(y, z) = O(r−3),

b1i (y, z) = b1i (y, 0) + zb
(2)
i (y, z), b

(2)
i (y, z) = O(r−4) .

We summarize the discussion above. Let us consider the parametrization

in (3.12) of the region Ñ .

Lemma 3.1: The Euclidean Laplacian can be expanded in Ñ as

∆x = ∂zz +∆Mz −HMz∂z =

∂zz +∆M − z |A|2∂z + z [a1ij(y, z)∂ij + b1i (y, z)∂i] + z2b13(y, z)∂z,

∆M = a0ij∂ij + b0i ∂i, x = X̃(y, z), (y, z) ∈ Õ,

where alij, b
l
j are smooth, bounded functions, with the index k omitted. In

addition, for k = 1, . . . ,m,

alij = δijδ0l +O(r−2), bli = O(r−3), b13 = O(r−6) ,

as r = |y| → ∞, uniformly in z variable.
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3.3. Laplacian in expanded variables

Now we consider the expanded minimal surface Mα = α−1M for a small

number α. We have that N = α−1Ñ . We describe N via the coordinates

x = X(y, z) := y + zνα(y), (y, z) ∈ α−1Õ. (3.20)

Let us observe that

X(y, z) = α−1X̃(αy, αz)

where x̃ = X̃(ỹ, z̃) = ỹ+z̃ν(ỹ), where the coordinates inNδ previously dealt

with. We want to compute the Euclidean Laplacian in these coordinates

associated to Mα. Observe that

∆x[u(x)] |x=X(y,z) = α2∆x̃[u(α
−1x̃) ] |x̃=X̃(αy,αz)

and that the term in the right hand side is the one we have already com-

puted. In fact setting v(y, z) := u(y + zνα(y)), we get

∆xu |x=X(y,z) = α2(∆ỹ,Mz̃ + ∂z̃z̃ −HMz̃∂z̃) [v(α
−1ỹ, α−1z̃)] |(ỹ,z̃)=(αy,αz) .

(3.21)

We can then use the discussion summarized in Lemma 3.1 to obtain

a representation of ∆x in N via the coordinates X(y, t) in (3.20). Let us

consider the local coordinates Ykα of Mα in (3.9). .

Lemma 3.2: In N we have

∆x = ∂zz +∆Mα,z −HMα,z∂z =

∂zz+∆Mα−α2z |A(αy)|2∂z +αz [a1ij(αy, αz)∂ij+αb
1
i (αy, αz)∂i] +α

3z2b13(αy, αz)∂z,

∆Mα = a0ij(αy)∂ij + b1i (αy)∂i, (y, z) ∈ α−1Õ, y = Ykα(y)

where alij, b
l
j are smooth, bounded functions. In addition, for k = 1, . . . ,m,

alij = δijδ0l +O(r−2
α ), bli = O(r−3

α ), b13 = O(r−6
α ) ,

as rα(y) = |αy| → ∞, uniformly in z variable.
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3.4. The Euclidean Laplacian near Mα under a

perturbation

We now describe in coordinates relative to Mα the Euclidean Laplacian

∆x, x ∈ R3, in a setting needed for the proof of our main results. The

main idea is to introduce a smooth perturbation of the minimal surfaces,

a priori unknown. We will need to compute the Euclidean Laplacian under

this perturbation.

Let us consider a smooth function h :M → R, and the smooth map Xh

defined as

Xh : Mα × R → R3, (y, t) 7−→ Xh(y, t) := y + (t+ h(αy) ) ν(αy) (3.22)

where ν is the unit normal vector to M . Let us consider an open subset O
of Mα×R and assume that the map Xh|O is one to one, and that it defines

a diffeomorphism onto its image N = Xh(O). Then

x = Xh(y, t), (y, t) ∈ O,

defines smooth coordinates to describe the open set N in R3. Moreover, the

maps

x = Xh(Ykα(y) , t), (y, t) ∈ (Ukα × R) ∩ O, k = 1, . . . , N,

define local coordinates (y, t) to describe the region N . We shall assume in

addition that for certain small number δ > 0, we have

O ⊂ {(y, t) / |t+ h(αy)| < δ

α
log(2 + rα(y) ) }. (3.23)

We have the validity of the following expression for the Euclidean Lapla-

cian operator in N .

Lemma 3.3: For x = Xh(y, t), (y, t) ∈ O with y = Ykα(y), y ∈ Ukα, we

have the validity of the identity

∆x = ∂tt +∆Mα − α2[(t+ h)|A|2 +∆Mh]∂t − 2αa0ij ∂jh∂it +

α(t+ h) [a1ij∂ij − 2αa1ij ∂ih∂jt + α b1i (∂i − α∂ih∂t) ] +

α3(t+ h)2b13∂t + α2[ a0ij + α(t+ h)a1ij ]∂ih∂jh∂tt . (3.24)

Here, in agreement with (3.10), ∆Mα = a0ij(αy)∂ij + b0i (αy)∂i.

The functions a1ij, b
1
i , b

1
3 in the above expressions appear evaluated at the

pair
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(αy, α(t+ h(αy)), while the functions h, ∂ih, ∆Mh, |A|2, a0ij, b0i are eval-

uated at αy In addition, for k = 1, . . . ,m, l = 0, 1,

alij = δijδ0l +O(r−2
α ), bli = O(r−3

α ), b13 = O(r−6
α ) ,

as rα(y) = |αy| → ∞, uniformly in their second variables. The notation

∂jh refers to ∂j [h ◦ Yk].

Proof:

Let us consider a function u defined in N , expressed in coordinates x =

X(y, z), and consider the expression of u in the coordinates x = Xh(y, t),

namely the function v(y, t) defined by the relation in local coordinates y =

Yk(y),

v(y, z − h(αy)) = u(y, z),

(by slight abuse of notation we are denoting just by h the function h ◦ Yk).
Then we compute

∂iu = ∂iv − α∂tv∂ih, ∂zu = ∂tv,

∂iju = ∂ijv − α∂itv∂jh− α∂jtv∂ih+ α2∂ttv∂ih∂jh− α2∂tv∂ijh .

Observe that, in the notation for coefficients in Lemma 3.2,

a0ij∂ijh+ b0i ∂ih = ∆Mh, a0ij∂ijv + αb0i ∂iv = ∆Mαv .

We find then

∆x = ∂tt +∆Mα − α2[(t+ h)|A|2 +∆Mh]∂t − 2αa0ij ∂jh∂it +

α(t+ h) [a1ij∂ij − 2αa1ij ∂ih∂jt + α(b1i ∂i − αb1i ∂ih∂t) ] +

α3(t+ h)2b13∂t + α2[ a0ij + α(t+ h)a1ij ]∂ih∂jh∂tt (3.25)

where all the coefficients are understood to be evaluated at αy or (αy, α(t+

h(αy)). The desired properties of the coefficients have already been estab-

lished. The proof of Lemma 3.3 is concluded.

The proof actually yields that the coefficients a1ij and b1i can be further

expanded as follows:

a1ij = a1ij(αy, 0) + α(t+ h) a
(2)
ij (αy, α(t+ h)) =: a1,0ij + α(t+ h)a2ij ,
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with a
(2)
ij = O(r−3

α ), and similarly

b1j = b1j (αy, 0) + α(t+ h) b
(2)
j (αy, α(t+ h)) =: b1,0j + α(t+ h)b2j ,

with b
(2)
j = O(r−4

α ). As an example of the previous formula, let us compute

the Laplacian of a function that separates variables t and y, that will be

useful in §4.

Lemma 3.4: Let v(x) = k(y)ψ(t) . Then the following holds.

∆xv = kψ′′ +ψ∆Mα
k − α2[(t+h)|A|2 +∆Mh] k ψ

′ − 2αa0ij ∂jh∂ik ψ
′ +

α(t+ h) [a1,0ij ∂ijkψ − 2αa1,0ij ∂jh∂ik ψ
′ + α(b1,0i ∂ik ψ − αb1,0i ∂ih k ψ

′) ] +

α2(t+ h)2 [a2ij∂ijkψ − 2αa2ij ∂jh∂ik ψ
′ + α(b2i ∂ik ψ − αb2i ∂ih k ψ

′) ] +

α3(t+ h)2b13 k ψ
′ + α2[ a0ij + α(t+ h)a1ij ]∂ih∂jh k ψ

′′ . (3.26)

4. Approximation of the solution and preliminary

discussion

4.1. Approximation of order zero and its projection

Let us consider a function h and sets O and N as in §3.4. Let x = Xh(y, t)

be the coordinates introduced in (3.22). At this point we shall make a more

precise assumption about the function h.We need the following preliminary

result whose proof we postpone for §7.2.

We consider a fixed m-tuple of real numbers β = (β1, . . . , βm) such that

m∑
i=1

βj = 0. (4.1)

Lemma 4.1: Given any real numbers β1, . . . , βm satisfying (4.1), there

exists a smooth function h0(y) defined on M such that

J (h0) = ∆Mh0 + |A|2h0 = 0 in M,



July 10, 2015 Lecture Note Series, IMS, NUS — Review Vol. 9in x 6in introductiontoreductionmethod-3-15

page 47

Introduction to gluing methods 47

h0(y) = (−1)jβj log r + θ as r → ∞ in Mj for all y ∈Mj ,

where θ satisfies

∥θ∥∞ + ∥r2Dθ∥∞ < +∞ . (4.2)

We fix a function h0 as in the above lemma and consider a function h

in the form

h = h0 + h1.

We allow h1 to be a parameter which we will adjust. For now we will assume

that for a certain constant K we have

∥h1∥L∞(M) + ∥(1 + r2)Dh1∥L∞(M) ≤ Kα . (4.3)

We want to find a solution to

S(u) := ∆xu+ f(u) = 0.

We consider in the region N the approximation

u0(x) := w(t) = w(z − h0(αy)− h1(αy))

where z designates the normal coordinate to Mα. Thus, whenever βj ̸= 0,

the level sets [u0 = λ] for a fixed λ ∈ (−1, 1) departs logarithmically from

the end α−1Mj being still asymptotically catenoidal, more precisely it is

described as the graph

y3 = (α−1aj + βj) log r + O(1) as r → ∞.

Note that, just as in the minimal surface case, the coefficients of the ends

are balanced in the sense that they add up to zero.

It is clear that if two ends are parallel, say aj+1 = aj , we need at least

that βj+1 − βj ≥ 0, for otherwise the ends of this zero level set would

eventually intersect. We recall that our further condition on these numbers

is that these ends in fact diverge at a sufficiently fast rate:

βj+1 − βj > 4 max {σ−1
− , σ−1

+ } if aj+1 = aj . (4.4)

We will explain later the role of this condition. Let us evaluate the error of

approximation S(u0). Using Lemma 3.4 and the fact that w′′ + f(w) = 0,

we find

S(u0) := ∆xu0 + f(u0) =
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−α2[|A|2h1 +∆Mh1]w
′ +

−α2|A|2 tw′ + 2 α2a0ij ∂ih0∂jh0 w
′′ +

α2 a0ij (2∂ih0∂jh1 + ∂ih1∂jh1 )w
′′ +

2α3(t+ h0 + h1)a
1
ij ∂i(h0 + h1)∂j(h0 + h1)w

′′ +

α3(t+ h0 + h1)b
1
i ∂i(h0 + h1)w

′ + α3(t+ h0 + h1)
3b13w

′ (4.5)

where the formula above has been broken into “sizes”, keeping in mind

that h0 is fixed while h1 = O(α). Since we want that u0 be as close as

possible to be a solution of (2.1), then we would like to choose h1 in such

a way that the quantity (4.5) be as small as possible. Examining the above

expression, it does not look like we can do that in absolute terms. However

part of the error could be made smaller by adjusting h1. Let us consider

the “L2-projection” onto w′(t) of the error for each fixed y, given by

Π(y) :=

∫ ∞

−∞
S(u0)(y, t)w

′(t) dt

where for now, and for simplicity we assume the coordinates are defined for

all t, the difference with the integration is taken in all the actual domain

for t produces only exponentially small terms in α−1. Then we find

Π(y) = α2(∆Mh1+h1|A|2)
∫ ∞

−∞
w′2dt+α3∂i(h0+h1)

∫ ∞

−∞
b1i (t+h0+h1)w

′2dt+

α3∂i(h0+h1)∂j(h0+h1)

∫ ∞

−∞
(t+h0+h)a

1
ijw

′′w′dt+α3

∫ ∞

−∞
(t+h0+h1)

3b13w
′2dt

(4.6)

where we have used
∫∞
−∞ tw′2 dt =

∫∞
−∞ w′′w′ dt = 0 to get rid in particular

of the terms of order α2.

Making all these “projections” equal to zero amounts to a nonlinear

differential equation for h of the form

J (h1) = ∆Mh1 + h1|A(y)|2 = G0(h1) y ∈M (4.7)
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where G0 is easily checked to be a contraction mapping of small constant

in h1, in the ball radius O(α) with the C1 norm defined by the expression

in the left hand side of inequality (4.3). This is where the nondegeneracy

assumption on the Jacobi operator J enters, since we would like to invert

it, in such a way to set up equation (4.7) as a fixed point problem for a

contraction mapping of a ball of the form (4.3).

4.2. Improvement of approximation

The previous considerations are not sufficient since even after adjusting

optimally h, the error in absolute value does not necessarily decrease. As

we observed, the “large” term in the error,

−α2|A|2tw′ + α2a0ij∂ih0∂jh0 w
′′

did not contribute to the projection. In order to eliminate, or reduce the size

of this remaining part O(α2) of the error, we improve the approximation

through the following argument. Let us consider the differential equation

ψ′′
0 (t) + f ′(w(t))ψ0(t) = tw′(t),

which has a unique bounded solution with ψ0(0) = 0, given explicitly by

the formula

ψ0(t) = w′(t)

∫ t

0

w′(t)−2

∫ s

−∞
sw′(s)2ds .

Observe that this function is well defined and it is bounded since∫∞
−∞ sw′(s)2ds = 0 and w′(t) ∼ e−σ±|t| as t → ±∞, with σ± > 0. Note

also that ψ1(t) =
1
2 tw

′(t) solves

ψ′′
1 (t) + f ′(w(t))ψ1(t) = w′′(t) .

We consider as a second approximation

u1 = u0 + ϕ1, ϕ1(y, t) := α2|A(αy)|2ψ0(t)− α2a0ij∂ih0∂jh0(αy)ψ1(t) .

(4.8)

Let us observe that

S(u0+ϕ) = S(u0)+∆xϕ+f
′(u0)ϕ+N0(ϕ), N0(ϕ) = f(u0+ϕ)−f(u0)−f ′(u0)ϕ .

We have that

∂ttϕ1 + f ′(u0)ϕ1 = α2|A(αy)|2tw′ − α2a0ij∂ih0∂jh0(αy)w
′′ .
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Hence we get that the largest remaining term in the error is canceled.

Indeed, we have

S(u1) = S(u0)−(2α2a0ij∂ih0∂jh0 w
′′−α2|A(αy)|2tw′)+[∆x−∂tt]ϕ1+N0(ϕ1).

Since ϕ1 has size of order α2, a smooth dependence in αy and it is of size

O(r−2
α e−σ|t|) using Lemma 3.4, we readily check that the “error created”

[∆x − ∂tt]ϕ1 +N0(ϕ1) := −α4 ( |A|2tψ′
0 − a0ij∂ih0∂jh0 tψ

′
1 )∆h1 +R0

satisfies

|R0(y, t)| ≤ Cα3(1 + rα(y))
−4e−σ|t|.

Hence we have eliminated the h1-independent term O(α2) that did not

contribute to the projection Π(y), and replaced it by one smaller and with

faster decay. Let us be slightly more explicit for later reference. We have

S(u1) := ∆u1 + f(u1) =

−α2[|A|2h1 +∆Mh1]w
′ + α2 a0ij (∂ih0∂jh1 + ∂ih1∂jh0 + ∂ih1∂jh1 )w

′′

−α4 ( |A|2tψ′
0 − a0ij∂ih0∂jh0 tψ

′
1 )∆Mh1 + 2α3(t+ h)a1ij ∂ih∂jhw

′′ +R1

(4.9)

where

R1 = R1(y, t, h1(αy),∇Mh1(αy))

with

|DıR1(y, t, ı, ȷ)|+ |DȷR1(y, t, ı, ȷ)|+ |R1(y, t, ı, ȷ)| ≤ Cα3(1 + rα(y))
−4e−σ|t|

and the constant C above possibly depends on the number K of condition

(4.3).

The above arguments are in reality the way we will actually solve the

problem: two separate, but coupled steps are involved: (1) Eliminate the

parts of the error that do not contribute to the projection Π and (2) Adjust

h1 so that the projection Π becomes identically zero.
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4.3. The condition of diverging ends

Let us explain the reason to introduce condition (4.4) in the parameters

βj . To fix ideas, let us assume that we have two consecutive planar ends

of M , Mj and Mj+1, namely with aj = aj+1 and with d = bj+1 − bj > 0.

Assuming that the normal in Mj points upwards, the coordinate t reads

approximately as

t = x3 − α−1bj − h near Mjα, t = α−1bj+1 − x3 − h near Mj+1α.

If we let h0 ≡ 0 both on Mjα and Mj+1α which are separated at distance

d/α, then a good approximation in the entire region between Mjα and

Mj+1α that matches the parts of w(t) coming both from Mj and Mj+1

should read near Mj approximately as

w(t) + w(α−1d− t)− 1.

When computing the error of approximation, we observe that the following

additional term arises near Mjα:

E := f(w(t) + w(α−1d− t)− 1 ) − f(w(t))− f(w(α−1d− t) ) ∼

∼ [f ′(w(t))− f ′(1) ] (w(α−1d− t)− 1 ) .

Now in the computation of the projection of the error this would give rise

to ∫ ∞

−∞
[ f ′(w(t))− f ′(1) ] (w(α−1d− t) − 1 )w′(t) dt ∼ c∗e

−σ+
d
α .

where c∗ ̸= 0 is a constant. Thus equation (4.7) for h1 gets modified with

a term which even though very tiny, it has no decay as |y| → +∞ on Mj ,

unlike the others involved in the operator G0 in (4.7). That terms eventually

dominates and the equation for h1 for very large r would read in Mj as

∆Mh1 ∼ e−
σ
α ̸= 0,

which is inconsistent with the assumption that h is bounded. Worse yet, its

solution would be quadratic thus eventually intersecting another end. This

nuisance is fixed with the introduction of h0 satisfying condition (4.4). In

that case the term E created above will now read near Mjα as

E ∼ Ce−σ+
d
α e−(βj+1−βj) log rα e−σ|t| = O(e−

σ
α r−4

α e−σ|t|)

which is qualitatively of the same type of the other terms involved in the

computation of the error.
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4.4. The global first approximation

The approximation u1(x) in (4.2) will be sufficient for our purposes, however

it is so far defined only in a region of the type N which we have not made

precise yet. Since we are assuming that Mα is connected, the fact that

Mα is properly embedded implies that R3 \Mα consists of precisely two

components S− and S+. Let us use the convention that ν points in the

direction of S+. Let us consider the function H defined in R3 \Mα as

H(x) :=

{
1 if x ∈ S+

−1 if x ∈ S−
. (4.10)

Then our approximation u1(x) approaches H(x) at an exponential rate

O(e−σ±|t|) as |t| increases. The global approximation we will use consists

simply of interpolating u1 with H sufficiently well-inside R3 \Mα through

a cut-off in |t|. In order to avoid the problem described in §4.3 and having

the coordinates (y, t) well-defined, we consider this cut-off to be supported

in a region y-dependent that expands logarithmically in rα. Thus we will

actually consider a region Nδ expanding at the ends, thus becoming wider

as rα → ∞ than the set Nα
δ previously considered, where the coordinates

are still well-defined.

We consider the open set O in Mα × R defined as

O = { (y, t) ∈Mα×R, |t+h1(αy)| <
δ

α
+4 max {σ−1

− , σ−1
+ } log(1+rα(y)) =: ρα(y) }

(4.11)

where δ is small positive number. We consider the the region N =: Nδ of

points x of the form

x = Xh(y, t) = y + (t+ h0(αy) + h1(αy)) ν(αy), (y, t) ∈ O,

namely Nδ = Xh(O). The coordinates (y, t) are well-defined in Nδ for

any sufficiently small δ: indeed the map Xh is one to one in O thanks

to assumption (4.4) and the fact that h1 = O(α). Moreover, Lemma 3.3

applies in Nδ.

Let η(s) be a smooth cut-off function with η(s) = 1 for s < 1 and = 0

for s > 2. and define

ηδ(x) :=

{
η( |t+ h1(αy)| − ρα(y)− 3) if x ∈ Nδ ,

0 if x ̸∈ Nδ
(4.12)

where ρα is defined in (4.11). Then we let our global approximation w(x)

be simply defined as

w := ηδu1 + (1− ηδ)H (4.13)
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where H is given by (4.10) and u1(x) is just understood to be H(x) outside

Nδ.

Since H is an exact solution in R3\Mδ, the global error of approximation

is simply computed as

S(w) = ∆w+ f(w) = ηδS(u1) + E (4.14)

where

E = 2∇ηδ∇u1 +∆ηδ(u1 −H) + f(ηδu1 + (1− ηδ)H) ) − ηδf(u1) .

The new error terms created are of exponentially small size O(e−
σ
α ) but

have in addition decay with rα. In fact we have

|E| ≤ Ce−
δ
α r−4

α .

Let us observe that |t + h1(αy)| = |z − h0(αy)| where z is the normal

coordinate to Mα, hence ηδ does not depend on h1, in particular the term

∆ηδ does involves second derivatives of h1 on which we have not made

assumptions yet.

5. The proof of Theorem 6

The proof of Theorem 6 involves various ingredients whose detailed proofs

are fairly technical. In order to keep the presentation as clear as possible, in

this section we carry out the proof, skimming it from several (important)

steps, which we state as lemmas or propositions, with complete proofs post-

poned for the subsequent sections.

We look for a solution u of the Allen Cahn equation (2.1) in the form

u = w+ φ (5.1)

where w is the global approximation defined in (4.13) and φ is in some

suitable sense small. Thus we need to solve the following problem

∆φ+ f ′(w)φ = −S(w)−N(φ) (5.2)

where

N(φ) = f(w+ φ)− f(w)− f ′(w)φ.
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Next we introduce various norms that we will use to set up a suitable

functional analytic scheme for solving problem (5.2). For a function g(x)

defined in R3, 1 < p ≤ +∞, µ > 0, and α > 0 we write

∥g∥p,µ,∗ := sup
x∈R3

(1 + r(αx))µ∥g∥Lp(B(x,1)), r(x′, x3) = |x′| .

On the other hand, given numbers µ ≥ 0, 0 < σ < min{σ+, σ−}, p > 3,

and functions g(y, t) and ϕ(y, t) defined in Mα × R we consider the norms

∥g∥p,µ,σ := sup
(y,t)∈Mα×R

rα(y)
µ eσ|t|

(∫
B((y,t),1)

|f |p dVα

) 1
p

. (5.3)

Consistently we set

∥g∥∞,µ,σ := sup
(y,t)∈Mα×R

rα(y)
µ eσ|t| ∥f∥L∞(B((y,t),1)) (5.4)

and let

∥ϕ∥2,p,µ,σ := ∥D2ϕ∥p,µ,σ + ∥Dϕ∥∞,µ,σ + ∥ϕ∥∞,µ,σ . (5.5)

We consider also for a function g(y) defined in M the Lp-weighted norm

∥f∥p,β :=

(∫
M

|f(y)|p (1 + |y|β )p dV (y)

)1/p

= ∥ (1 + |y|β) f ∥Lp(M)

(5.6)

where p > 1 and β > 0.

We assume in what follows, that for a certain constant K > 0 and p > 3

we have that the parameter function h1(y) satisfies

∥h1∥∗ := ∥h1∥L∞(M)+∥(1+r2)Dh1∥L∞(M)+∥D2h1∥p,4− 4
p

≤ Kα . (5.7)

Next we reduce problem (5.2) to solving one qualitatively similar (equa-

tion (5.20) below) for a function ϕ(y, t) defined in the whole space Mα×R.

5.1. Step 1: the gluing reduction

We will follow the following procedure. Let us consider again η(s), a smooth

cut-off function with η(s) = 1 for s < 1 and = 0 for s > 2, and define

ζn(x) :=

{
η( |t+ h1(αy)| − δ

α + n) if x ∈ Nδ

0 if x ̸∈ Nδ
. (5.8)

We look for a solution φ(x) of problem (5.2) of the following form

φ(x) = ζ2(x)ϕ(y, t) + ψ(x) (5.9)
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where ϕ is defined in entire Mα ×R, ψ(x) is defined in R3 and ζ2(x)ϕ(y, t)

is understood as zero outside Nδ.

We compute, using that ζ2 · ζ1 = ζ1,

S(w+ φ) = ∆φ+ f ′(w)φ+N(φ) + S(w) =

ζ2 [∆ϕ+ f ′(u1)ϕ + ζ1(f
′(u1) +H(t))ψ + ζ1N(ψ + ϕ) + S(u1) ] +

∆ψ − [ (1− ζ1)f
′(u1) + ζ1H(t) ]ψ +

(1− ζ2)S(w) + (1− ζ1)N(ψ + ζ2ϕ) + 2∇ζ1∇ϕ+ ϕ∆ζ1 (5.10)

where H(t) is any smooth, strictly negative function satisfying

H(t) =

{
f ′(+1) if t > 1 ,

f ′(−1) if t < −1
.

Thus, we will have constructed a solution φ = ζ2ϕ+ ψ to problem (5.2) if

we require that the pair (ϕ, ψ) satisfies the following coupled system

∆ϕ+f ′(u1)ϕ + ζ1(f
′(u1)−H(t))ψ +ζ1N(ψ+ϕ)+S(u1) = 0 for |t| < δ

α
+3

(5.11)

∆ψ + [ (1− ζ1)f
′(u1) + ζ1H(t) ]ψ +

(1− ζ2)S(w)+ (1− ζ1)N(ψ+ ζ2ϕ)+2∇ζ1∇ϕ+ϕ∆ζ1 = 0 in R3 . (5.12)

In order to find a solution to this system we will first extend equation

(5.11) to entire Mα × R in the following manner. Let us set

B(ϕ) = ζ4[∆x − ∂tt −∆y,Mα ]ϕ (5.13)

where ∆x is expressed in (y, t) coordinates using expression (3.24) and

B(ϕ) is understood to be zero for |t + h1| > δ
α + 5. The other terms in

equation (5.11) are simply extended as zero beyond the support of ζ1. Thus

we consider the extension of equation (5.11) given by
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∂ttϕ + ∆y,Mαϕ + B(ϕ) + f ′(w(t))ϕ = −S̃(u1)

−{[f ′(u1)− f ′(w)]ϕ + ζ1(f
′(u1)−H(t))ψ + ζ1N(ψ + ϕ)} in ∈Mα × R,

(5.14)

where we set, with reference to expression (4.9),

S̃(u1) = −α2[|A|2h1 +∆Mh1]w
′ + α2 a0ij (2∂ih0∂jh1 + ∂ih1∂jh1 )w

′′

−α4 ( |A|2tψ′
0−a0ij∂ih0∂jh0 tψ′

1 )∆h1 +ζ4 [α
3(t+h)a1ij ∂ih∂jhw

′′+R1(y, t) ]

(5.15)

and, we recall

R1 = R1(y, t, h1(αy),∇Mh1(αy))

with

|DıR1(y, t, ı, ȷ)|+ |DȷR1(y, t, ı, ȷ)|+ |R1(y, t, ı, ȷ)| ≤ Cα3(1+ rα(y))
−4e−σ|t|.

(5.16)

In summary S̃(u1) coincides with S(u1) if ζ4 = 1 while outside the

support of ζ4, their parts that are not defined for all t are cut-off.

To solve the resulting system (5.12)-(5.14), we find first solve equation

(5.12) in ψ for a given ϕ a small function in absolute value. Noticing that

the potential [ (1 − ζ1)f
′(u1) + ζ1H(t) ] is uniformly negative, so that the

linear operator is qualitatively like ∆ − 1 and using contraction mapping

principle, a solution ψ = Ψ(ϕ) is found according to the following lemma,

whose detailed proof we carry out in §8.1.2.

Lemma 5.1: For all sufficiently small α the following holds. Given ϕ with

∥ϕ∥2,p,µ,σ ≤ 1, there exists a unique solution ψ = Ψ(ϕ) of problem (5.12)

such that

∥ψ∥X := ∥D2ψ∥p,µ,∗ + ∥ψ∥p,µ,∗ ≤ Ce−
σδ
α . (5.17)

Besides, Ψ satisfies the Lipschitz condition

∥Ψ(ϕ1)−Ψ(ϕ2)∥X ≤ C e−
σδ
α ∥ϕ1 − ϕ2∥2,p,µ,σ . (5.18)
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Thus we replace ψ = Ψ(ϕ) in the first equation (5.11) so that by setting

N(ϕ) := B(ϕ)+ [f ′(u1)−f ′(w)]ϕ + ζ1(f
′(u1)−H(t))Ψ(ϕ) + ζ1N(Ψ(ϕ)+ϕ),

(5.19)

our problem is reduced to finding a solution ϕ to the following nonlinear,

nonlocal problem in Mα × R.

∂ttϕ + ∆y,Mαϕ + f ′(w)ϕ = −S̃(u1)− N(ϕ) in Mα × R. (5.20)

Thus, we concentrate in the remaining of the proof in solving equation

(5.20). As we hinted in §4.2, we will find a solution of problem (5.20) by

considering two steps: (1) “Improving the approximation”, roughly solving

for ϕ that eliminates the part of the error that does not contribute to

the “projections”
∫
[S̃(U1) + N(ϕ)]w′(t)dt, which amounts to a nonlinear

problem in ϕ, and (2) Adjust h1 in such a way that the resulting projection

is actually zero. Let us set up the scheme for step (1) in a precise form.

5.2. Step 2: Eliminating terms not contributing to

projections

Let us consider the problem of finding a function ϕ(y, t) such that for a

certain function c(y) defined in Mα, we have

∂ttϕ + ∆y,Mαϕ = −S̃(u1)− N(ϕ) + c(y)w′(t) in Mα × R,∫
R
ϕ(y, t)w′(t) dt = 0, for all y ∈Mα .

(5.21)

Solving this problem for ϕ amounts to “eliminating the part of the error

that does not contribute to the projection” in problem (5.20). To justify

this phrase let us consider the associated linear problem in Mα × R

∂ttϕ+∆y,Mαϕ+ f ′(w(t))ϕ = g(y, t) + c(y)w′(t), for all (y, t) ∈Mα × R,∫ ∞

−∞
ϕ(y, t)w′(t) dt = 0, for all y ∈Mα .

(5.22)

Assuming that the corresponding operations can be carried out, let us

multiply the equation by w′(t) and integrate in t for fixed y. We find that

∆y,Mα

∫
R
ϕ(y, t)w′ dt+

∫
R
ϕ(y, t) [w′′′+ f ′(w)w′] dt =

∫
R
g w′+ c(y)

∫
R
w′2 .
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The left hand side of the above identity is zero and then we find that

c(y) = −
∫
R g(y, t)w

′dt∫
R w

′2dt
, (5.23)

hence a ϕ solving problem (5.22). ϕ precisely solves or eliminates the part

of g which does not contribute to the projections in the equation ∆ϕ +

f ′(w)ϕ = g, namely the same equation with g replaced by g̃ given by

g̃(y, t) = g(y, t)−
∫
R f(y, ·)w

′∫
R w

′2
w′(t) . (5.24)

The term c(y) in problem (5.21) has a similar role, except that we cannot

find it so explicitly.

In order to solve problem (5.21) we need to devise a theory to solve

problem (5.22) where we consider a class of right hand sides g with a quali-

tative behavior similar to that of the error S(u1). As we have seen in (5.15),

typical elements in this error are of the type O((1+ rα(y))
−µe−σ|t|), so this

is the type of functions g(y, t) that we want to consider. This is actually

the motivation to introduce the norms (5.3), (5.4) and (5.5). We will prove

that problem (5.22) has a unique solution ϕ which respects the size of g

in norm (5.3) up to its second derivatives, namely in the norm (5.5). The

following fact holds.

Proposition 5.1: Given p > 3, µ ≥ 0 and 0 < σ < min{σ−, σ+}, there
exists a constant C > 0 such that for all sufficiently small α > 0 the

following holds. Given f with ∥g∥p,µ,σ < +∞, then Problem (5.22) with

c(y) given by (5.23), has a unique solution ϕ with ∥ϕ∥∞,µ,σ < +∞. This

solution satisfies in addition that

∥ϕ∥2,p,µ,σ ≤ C∥g∥p,µ,σ . (5.25)

We will prove this result in §6 . After Proposition 5.1, solving Problem

(5.21) for a small ϕ is easy using the small Lipschitz character of the terms

involved in the operator N(ϕ) in (5.19) and contraction mapping principle.

The error term S̃(u1) satisfies

∥S̃(u1) + α2∆h1w
′∥p,4,σ ≤ Cα3. (5.26)

Using this, and the fact that N(ϕ) defines a contraction mapping in a ball

center zero and radius O(α3) in ∥ ∥2,p,4,σ, we conclude the existence of

a unique small solution ϕ to problem (5.21) whose size is O(α3) for this

norm. This solution ϕ turns out to define an operator in h1 ϕ = Φ(h1)
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which is Lipschitz in the norms ∥ ∥∗ appearing in condition (5.7). In precise

terms, we have the validity of the following result, whose detailed proof we

postpone for §8.2.

Proposition 5.2: Assume p > 3, 0 ≤ µ ≤ 3, 0 < σ < min{σ+, σ−}. There
exists a K > 0 such that problem (8.8) has a unique solution ϕ = Φ(h1)

such that

∥ϕ∥2,p,µ,σ ≤ Kα3 .

Besides, Φ has a Lipschitz dependence on h1 satisfying (5.7) in the sense

that

∥Φ(h1)− Φ(h2)∥2,p,µ,σ ≤ Cα2∥h1 − h2∥∗. (5.27)

5.3. Step 3: Adjusting h1 to make the projection zero

In order to conclude the proof of the theorem, we have to carry out the

second step, namely adjusting h1, within a region of the form (5.7) for

suitable K in such a way that the “projections” are identically zero, namely

making zero the function c(y) found for the solution ϕ = Φ(h1) of problem

(5.21). Using expression (5.23) for c(y) we find that

c(y)

∫
R
w′2 =

∫
R
S̃(u1)w

′ dt+

∫
R
N(Φ(h1) )w

′ dt . (5.28)

Now, setting c∗ :=
∫
R w

′2dt and using same computation employed to

derive formula (4.6), we find from expression (5.15) that

∫
R
S̃(u1)(y, t)w

′(t) dt = −c∗ α2(∆Mh1 + h1|A|2) + c∗α
2G1(h1)

where

c∗G1(h1) = −α2 ∆h1 ( |A|2
∫
R
tψ′

0w
′ dt− a0ij∂ih0∂jh0

∫
R
tψ′

1w
′ dt ) +

α∂i(h0+h1)∂j(h0+h1)

∫
R
ζ4(t+h)a

1
ijw

′′w′ dt+α−2

∫
R
ζ4R1(y, t, h1,∇Mh1 )w

′ dt

(5.29)

and we recall that R1 is of size O(α3) in the sense (5.16). Thus, setting

c∗G2(h1) := α−2

∫
R
N(Φ(h1) )w

′ dt, G(h1) := G1(h1) +G2(h1), (5.30)
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we find that the equation c(y) = 0 is equivalent to the problem

J (h1) = ∆Mh1 + |A|2h1 = G(h1) in M. (5.31)

Therefore, we will have proven Theorem 6 if we find a function h1 defined

onM satisfying constraint (5.7) for a suitable K that solves equation (5.31).

Again, this is not so direct since the operator J has a nontrivial bounded

kernel. Rather than solving directly (5.31), we consider first a projected

version of this problem, namely that of finding h1 such that for certain

scalars c1, . . . , cJ we have

J (h1) = G(h1) +

J∑
i=1

ci
1 + r4

ẑi in M,

∫
M

ẑih

1 + r4
dV = 0, i = 1, . . . J. (5.32)

Here ẑ1, ..., ẑJ is a basis of the vector space of bounded Jacobi fields.

In order to solve problem (5.32) we need a corresponding linear invert-

ibility theory. This leads us to consider the linear problem

J (h) = f +

J∑
i=1

ci
1 + r4

ẑi in M,

∫
M

ẑih

1 + r4
dV = 0, i = 1, . . . J. (5.33)

Here ẑ1, ..., ẑJ are bounded, linearly independent Jacobi fields, and J is the

dimension of the vector space of bounded Jacobi fields.

We will prove in §7.1 the following result.

Proposition 5.3: Given p > 2 and f with ∥f∥p,4− 4
p
< +∞, there exists

a unique bounded solution h of problem (5.33). Moreover, there exists a

positive number C = C(p,M) such that

∥h∥∗ := ∥h∥∞ + ∥ (1+ |y|2)Dh∥∞ + ∥D2h ∥p,4− 4
p
≤ C∥f∥p,4− 4

p
. (5.34)

Using the fact that G is a small operator of size O(α) uniformly on func-

tions h1 satisfying (5.7), Proposition 5.3 and contraction mapping principle

yield the following result, whose detailed proof we carry out in §9.

Proposition 5.4: Given p > 3, there exists a number K > 0 such that for

all sufficiently small α > 0 there is a unique solution h1 of problem (5.32)

that satisfies constraint (5.7).
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5.4. Step 3: Conclusion

At the last step we prove that the constants ci found in equation (5.32)

are in reality all zero, without the need of adjusting any further parameters

but rather as a consequence of the natural invariances of the of the full

equation. The key point is to realize what equation has been solved so far.

First we observe the following. For each h1 satysfying (5.7), the pair

(ϕ, ψ) with ϕ = Φ(h1), ψ = Ψ(ϕ), solves the system

∆ϕ+f ′(u1)ϕ+ ζ1(f
′(u1)−H(t))ψ+ζ1N(ψ+ϕ)+S(u1) = c(y)w′(t) for |t| < δ

α
+3

∆ψ + [ (1− ζ1)f
′(u1) + ζ1H(t) ]ψ +

(1− ζ2)S(w) + (1− ζ1)N(ψ + ζ2ϕ) + 2∇ζ1∇ϕ+ ϕ∆ζ1 = 0 in R3 .

Thus setting

φ(x) = ζ2(x)ϕ(y, t) + ψ(x), u = w+ φ ,

we find from formula (5.10) that

∆u+ f(u) = S(w+ φ) = ζ2c(y)w
′(t) .

On the other hand choosing h1 as that given in Proposition 5.4 which solves

problem (5.32), amounts precisely to making

c(y) = c∗α
2

J∑
i=1

ci
ẑi(αy)

1 + rα(y)4

for certain scalars ci. In summary, we have found h1 satisfying constraint

(5.7) such that

u = w+ ζ2(x)Φ(h1) + Ψ(Φ(h1) ) (5.35)

solves the equation

∆u+ f(u) =
J∑

j=1

c̃i
1 + r4α

ẑi(αy)w
′(t) (5.36)

where c̃i = c∗α
2ci. Testing equation (5.36) against the generators of the

rigid motions ∂iu i = 1, 2, 3, −x2∂1u + x1∂2u, and using the balancing

formula for the minimal surface and the zero average of the numbers βj in
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the definition of h0, we find a system of equations that leads us to ci = 0

for all i, thus conclude the proof. We will carry out the details in §10.

In sections §6-10 we will complete the proofs of the intermediate steps

of the program designed in this section.

6. The linearized operator

In this section we will prove Proposition 5.1. At the core of the proof of

the stated a priori estimates is the fact that the one-variable solution w of

(2.1) is nondegenerate in L∞(R3) in the sense that the linearized operator

L(ϕ) = ∆yϕ+ ∂ttϕ+ f ′(w(t))ϕ, (y, t) ∈ R3 = R2 × R,

is such that the following property holds.

Lemma 6.1: Let ϕ be a bounded, smooth solution of the problem

L(ϕ) = 0 in R2 × R. (6.1)

Then ϕ(y, t) = Cw′(t) for some C ∈ R.

Proof: We begin by reviewing some known facts about the one-

dimensional operator L0(ψ) = ψ′′ + f ′(w)ψ. Assuming that ψ(t) and its

derivative decay sufficiently fast as |t| → +∞ and defining ψ(t) = w′(t)ρ(t),

we get that∫
R
[|ψ′|2 − f ′(w)ψ2] dt =

∫
R
L0(ψ)ψ dt =

∫
R
w′2|ρ′|2 dt,

therefore this quadratic form is positive unless ψ is a constant multiple of

w′. Using this and a standard compactness argument we get that there is

a constant γ > 0 such that whenever
∫
R ψw

′ = 0 with ψ ∈ H1(R) we have

that ∫
R
( |ψ′|2 − f ′(w)ψ2 ) dt ≥ γ

∫
R
( |ψ′|2 + |ψ|2 ) dt. (6.2)

Now, let ϕ be a bounded solution of equation (6.1). We claim that ϕ has

exponential decay in t, uniform in y. Let us consider a small number σ > 0

so that for a certain t0 > 0 and all |t| > t0 we have that

f ′(w) < −2σ2.

Let us consider for ε > 0 the function

gε(t, y) = e−σ(|t|−t0) + ε
2∑

i=1

cosh(σyi)
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Then for |t| > t0 we get that

L(gδ) < 0 if |t| > t0.

As a conclusion, using maximum principle, we get

|ϕ| ≤ ∥ϕ∥∞ gε if |t| > t0,

and letting ε→ 0 we then get

|ϕ(y, t)| ≤ C∥ϕ∥∞e−σ|t| if |t| > t0 .

Let us observe the following fact: the function

ϕ̃(y, t) = ϕ(y, t)−
(∫

R
w′(ζ)ϕ(y, ζ) dζ

)
w′(t)∫
R w

′2

also satisfies L(ϕ̃) = 0 and, in addition,∫
R
w′(t) ϕ̃(y, t) dt = 0 for all y ∈ R2. (6.3)

In view of the above discussion, it turns out that the function

φ(y) :=

∫
R
ϕ̃2(y, t) dt

is well defined. In fact so are its first and second derivatives by elliptic

regularity of ϕ, and differentiation under the integral sign is thus justified.

Now, let us observe that

∆yφ(y) = 2

∫
R
∆yϕ̃ · ϕ̃ dt+ 2

∫
R
|∇yϕ̃|2

and hence

0 =

∫
R
(L(ϕ̃) · ϕ̃)

=
1

2
∆yφ−

∫
R
|∇yϕ̃|2 dz −

∫
R
( |ϕ̃t|2 − f ′(w)ϕ̃2 ) dt .

(6.4)

Let us observe that because of relations (6.3) and (6.2), we have that∫
R
( |ϕ̃t|2 − f ′(w)ϕ̃2 ) dt ≥ γφ.

It follows then that

1

2
∆yφ− γφ ≥ 0.
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Since φ is bounded, from maximum principle we find that φ must be iden-

tically equal to zero. But this means

ϕ(y, t) =

(∫
R
w′(ζ)ϕ(y, ζ) dζ

)
w′(t)∫
R w

′2
. (6.5)

Then the bounded function

g(y) =

∫
R
wζ(ζ)ϕ(y, ζ) dζ

satisfies the equation

∆yg = 0, in R2. (6.6)

Liouville’s theorem implies that g ≡ constant and relation (6.5) yields

ϕ(y, t) = Cw′(t) for some C. This concludes the proof.

6.1. A priori estimates

We shall consider problem (5.22) in a slightly more general form, also in a

domain finite in y-direction. For a large number R > 0 let us set

MR
α := {y ∈Mα / r(αy) < R}

and consider the variation of Problem (5.22) given by

∂ttϕ+∆y,Mαϕ+ f ′(w(t))ϕ = g(y, t) + c(y)w′(t) in MR
α × R,

ϕ = 0, on ∂MR
α × R,∫ ∞

−∞
ϕ(y, t)w′(t) dt = 0 for all y ∈MR

α ,

(6.7)

where we allow R = +∞ and

c(y)

∫
R
w′2dt = −

∫
R
g(y, t)w′ dt .

We begin by proving a priori estimates.

Lemma 6.2:

Let us assume that 0 < σ < min{σ−, σ+} and µ ≥ 0. Then there exists a

constant C > 0 such that for all small α and all large R, and every solution

ϕ to Problem (6.13) with ∥ϕ∥∞,µ,σ < +∞ and right hand side g satisfying

∥g∥p,µ,σ < +∞ we have

∥D2ϕ∥p,µ,σ + ∥Dϕ∥∞,µ,σ + ∥ϕ∥∞,µ,σ ≤ C∥g∥p,µ,,σ. (6.8)
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Proof: For the purpose of the a priori estimate, it clearly suffices to con-

sider the case c(y) ≡ 0. By local elliptic estimates, it is enough to show

that

∥ϕ∥∞,µ,σ ≤ C∥g∥p,µ,σ. (6.9)

Let us assume by contradiction that (6.9) does not hold. Then we have

sequences α = αn → 0, R = Rn → ∞, gn with ∥gn∥p,µ,σ → 0, ϕn with

∥ϕn∥∞,µ,σ = 1 such that

∂ttϕn +∆y,Mαϕn + f ′(w(t))ϕn = gn in MR
α × R,

ϕn = 0 on ∂MR
α × R,∫ ∞

−∞
ϕn(y, t)w

′(t) dt = 0 for all y ∈MR
α .

(6.10)

Then we can find points (yn, tn) ∈MR
α × R such that

e−σ|tn|(1 + r(αnyn))
µ |ϕn(yn, tn)| ≥

1

2
.

We will consider different possibilities. We may assume that either

rα(yn) = O(1) or rα(yn) → +∞.

6.1.1. Case r(αnyn) bounded.

We have αnyn lies within a bounded subregion of M , so we may assume

that

αnyn → ỹ0 ∈M.

Assume that ỹ0 ∈ Yk(Uk) for one of the local parametrization of M . We

consider ỹn, ỹ0 ∈ Uk with Yk(ỹn) = αnyn, Yk(ỹ0) = ỹ0.

On α−1
n Yk(Uk), Mα is parameterized by Yk,αn(y) = α−1

n Yk(αny), y ∈
α−1
n Uk. Let us consider the local change of variable,

y = α−1ỹn + y.

6.1.2. Subcase tn bounded

Let us assume first that |tn| ≤ C. Then, setting

ϕ̃n(y, t) := ϕ̃n(α
−1ỹn + y, t),
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the local equation becomes

a0ij(ỹn + αny)∂ij ϕ̃n + αnb
0
j (ỹn + αny)∂j ϕ̃n + ∂ttϕ̃n + f ′(w(t))ϕ̃n = g̃n(y, t)

where g̃n(y, t) := gn(ỹn + αy, t). We observe that this expression is valid

for y well-inside the domain α−1Uk which is expanding to entire R2. Since

ϕ̃n is bounded, and g̃n → 0 in Lp
loc(R2), we obtain local uniform W 2,p-

bound. Hence we may assume, passing to a subsequence, that ϕ̃n converges

uniformly in compact subsets of R3 to a function ϕ̃(y, t) that satisfies

a0ij(ỹ)∂ij ϕ̃+ ∂ttϕ̃+ f ′(w(t))ϕ̃ = 0 .

Thus ϕ̃ is non-zero and bounded. After a rotation and stretching of co-

ordinates, the constant coefficient operator a0ij(ỹ)∂ij becomes ∆y. Hence

Lemma 6.1 implies that, necessarily, ϕ̃(y, t) = Cw′(t). On the other hand,

we have

0 =

∫
R
ϕ̃n(y, t)w

′(t) dt −→
∫
R
ϕ̃(y, t)w′(t) dt as n→ ∞.

Hence, necessarily ϕ̃ ≡ 0. But we have (1 + r(αnyn))
µ |ϕ̃n(0, tn)| ≥ 1

2 , and

since tn and r(αnyn) were bounded, the local uniform convergence implies

ϕ̃ ̸= 0. We have reached a contradiction.

6.1.3. Subcase tn unbounded

If yn is in the same range as above, but, say, tn → +∞, the situation is

similar. The variation is that we define now

ϕ̃n(y, t) = eσ(tn+t)ϕn(α
−1
n yn+y, tn+t), g̃n(y, t) = eσ(tn+t)gn(α

−1
n yn+y, tn+t).

Then ϕ̃n is uniformly bounded, and g̃n → 0 in Lp
loc(R3). Now ϕ̃n satisfies

a0ij(yn + αny) ∂ij ϕ̃n + ∂ttϕ̃n + αnbj(yn + αny) ∂j ϕ̃n

−2σ ∂tϕ̃n + (f ′(w(t+ tn) + σ2) ϕ̃n = g̃n.

We fall into the limiting situation

a∗ij ∂ij ϕ̃ + ∂ttϕ̃ − 2σ ∂tϕ̃ − (σ2
+ − σ2) ϕ̃ = 0 in R3 (6.11)

where a∗ij is a positive definite, constant matrix and ϕ̃ ̸= 0. But since, by

hypothesis σ2
+ − σ2 > 0, maximum principle implies that ϕ̃ ≡ 0. We obtain

a contradiction.
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6.1.4. Case r(αnyn) → +∞.

In this case we may assume that the sequence αnyn diverges along one of the

ends, say Mk. Considering now the parametrization associated to the end,

y = ψk(y), given by (3.1), which inherits that for Mαn,k, y = α−1
n ψk(αny).

Thus in this case a0ij(ỹn+αny) → δij , uniformly in compact subsets of R2.

6.1.5. Subcase tn bounded

Let us assume first that the sequence tn is bounded and set

ϕ̃n(y, t) = (1 + r(ỹn + αny))
µ ϕn(α

−1
n ỹn + y, tn + t).

Then

∂j(r
−µ
αn
ϕ̃n) = −µα r−µ−1∂jrϕ̃+ r−µ∂j ϕ̃

∂ij(r
−µ
αn
ϕ̃n) = µ(µ+1)α2r−µ−2∂ir∂jrϕ−µα2r−µ−1∂ijrϕ̃−µαr−µ−1∂jr∂iϕ̃

+r−µ∂ij ϕ̃− µαr−µ−1∂ir∂j ϕ̃ .

Now ∂ir = O(1), ∂ijr = O(r−1), hence we have

∂j(r
−µ
αn
ϕ̃n) = r−µ

[
∂j ϕ̃+O(αr−1

α )ϕ̃
]
,

∂ij(r
−µ
αn
ϕ̃n) = r−µ

α

[
∂ij ϕ̃+O(αr−1

α )∂iϕ̃+O(α2r−2
α )ϕ̃

]
,

and the equation satisfied by ϕ̃n has therefore the form

∆yϕ̃n + ∂ttϕ̃n + o(1)∂ij ϕ̃n + o(1) ∂j ϕ̃n + o(1) ϕ̃n + f ′(w(t))ϕ̃n = g̃n.

where ϕ̃n is bounded, g̃n → 0 in Lp
loc(R3). From elliptic estimates, we also

get uniform bounds for ∥∂j ϕ̃n∥∞ and ∥∂ij ϕ̃n∥p,0,0. In the limit we obtain a

ϕ̃ ̸= 0 bounded, solution of

∆yϕ̃+ ∂ttϕ̃+ f ′(w(t))ϕ̃ = 0,

∫
R
ϕ̃(y, t)w′(t) dt = 0 , (6.12)

a situation which is discarded in the same way as before if ϕ̃ is defined in R3.

There is however, one more possibility which is that r(αnyn)−Rn = O(1).

In such a case we would see in the limit equation (6.12) satisfied in a half-

space, which after a rotation in the y-plane can be assumed to be

H = {(y, t) ∈ R2×R / y2 < 0 }, with ϕ(y1, 0, t) = 0 for all (y1, t) ∈ R2.

By Schwarz’s reflection, the odd extension of ϕ̃, which achieves for y2 > 0,

ϕ̃(y1, y2, t) = −ϕ̃(y1,−y2, t), satisfies the same equation, and thus we fall

into one of the previous cases, again finding a contradiction.
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6.1.6. Subcase tn unbounded

Let us assume now |tn| → +∞. If tn → +∞ we define

ϕ̃n(y, t) = (1 + r(ỹn + αny))
µ etn+t ϕn(α

−1
n ỹn + y, tn + t).

In this case we end up in the limit with a ϕ̃ ̸= 0 bounded and satisfying the

equation

∆yϕ̃ + ∂ttϕ̃ − 2σ ∂tϕ̃ − (σ2
+ − σ2) ϕ̃ = 0

either in entire space or in a Half-space under zero boundary condition. This

implies again ϕ̃ = 0, and a contradiction has been reached that finishes the

proof of the a priori estimates.

6.2. Existence: conclusion of proof of Proposition 5.1

Let us prove now existence. We assume first that g has compact support in

Mα × R.

∂ttϕ+∆y,Mαϕ+ f ′(w(t))ϕ = g(y, t) + c(y)w′(t) in MR
α × R,

ϕ = 0, on ∂MR
α × R,∫ ∞

−∞
ϕ(y, t)w′(t) dt = 0 for all y ∈MR

α ,

(6.13)

where we allow R = +∞ and

c(y)

∫
R
w′2dt = −

∫
R
g(y, t)w′ dt .

Problem (6.13) has a weak formulation which is the following. Let

H = {ϕ ∈ H1
0 (M

R
α × R) /

∫
R
ϕ(y, t)w′(t) dt = 0 for all y ∈MR

α } .

H is a closed subspace of H1
0 (M

R
α ×R), hence a Hilbert space when endowed

with its natural norm,

∥ϕ∥2H =

∫
MR

α

∫
R
( |∂tϕ|2 + |∇Mαϕ|2 − f ′(w(t)ϕ2 ) dVα dt .

ϕ is then a weak solution of Problem (6.13) if ϕ ∈ H and satisfies

a(ϕ, ψ) :=

∫
MR

α ×R
(∇Mαϕ · ∇Mαψ − f ′(w(t))ϕψ ) dVα dt =

−
∫
MR

α ×R
g ψ dVα dt for all ψ ∈ H.
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It is standard to check that a weak solution of problem (6.13) is also clas-

sical provided that g is regular enough. Let us observe that because of the

orthogonality condition defining H we have that

γ

∫
MR

α ×R
ψ2 dVα dt ≤ a(ψ,ψ) for all ψ ∈ H.

Hence the bilinear form a is coercive in H, and existence of a unique weak

solution follows from Riesz’s theorem. If g is regular and compactly sup-

ported, ψ is also regular. Local elliptic regularity implies in particular that

ϕ is bounded. Since for some t0 > 0, the equation satisfied by ϕ is

∆ϕ+ f ′(w(t))ϕ = c(y)w′(t), |t| > t0, y ∈MR
α , (6.14)

and c(y) is bounded, then enlarging t0 if necessary, we see that for σ <

min{σ+, σ−}, the function v(y, t) := Ce−σ|t|+εeσ|t| is a positive supersolu-

tion of equation (6.14), for a large enough choice of C and arbitrary ε > 0.

Hence |ϕ| ≤ Ce−σ|t|, from maximum principle. Since MR
α is bounded, we

conclude that ∥ϕ∥p,µ,σ < +∞. From Lemma 6.2 we obtain that if R is large

enough then

∥D2ϕ∥p,µ,σ + ∥Dϕ∥∞,µ,σ + ∥ϕ∥∞,µ,σ ≤ C∥g∥p,µ,σ (6.15)

Now let us consider Problem (6.13) for R = +∞, allowed above, and for

∥g∥p,µ,σ < +∞. Then solving the equation for finite R and suitable com-

pactly supported gR, we generate a sequence of approximations ϕR which

is uniformly controlled in R by the above estimate. If gR is chosen so that

gR → g in Lp
loc(Mα × R) and ∥gR∥p,µ,σ ≤ C∥g∥p,µ,σ, We obtain that ϕR is

locally uniformly bounded, and by extracting a subsequence, it converges

uniformly locally over compacts to a solution ϕ to the full problem which

respects the estimate (5.25). This concludes the proof of existence, and

hence that of the proposition.

7. Theory of the Jacobi operator

We consider this section the problem of finding a function h such that for

certain constants c1, . . . , cJ ,

J (h) = ∆Mh+ |A|2h = f +
J∑

j=1

ci
1 + r4

ẑi in M, (7.1)

∫
M

ẑih

1 + r4
= 0, i = 1, . . . , J (7.2)
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and prove the result of Proposition 5.3. We will also deduce the existence of

Jacobi fields of logarithmic growth as in Lemma 4.1. We recall the definition

of the norms ∥ ∥p,β in (5.6).

Outside of a ball of sufficiently large radius R0, it is natural to pa-

rameterize each end of M , y3 = Fk(y1, y2) using the Euclidean coordi-

nates y = (y1, y2) ∈ R2. The requirement in f on each end amounts to

f̃ ∈ Lp(B(0, 1/R0)) where

f̃(y) := |y|−4f(|y|−2y) . (7.3)

Indeed, observe that

∥f̃∥pLp(B(0,1/R0))
=

∫
B(0,1/R0)

|y|−4p| f(|y|−2y) |p dy =

∫
R2\B(0,R0)

|y|4(p−1)|f(y)|p dy .

In order to prove the proposition we need some a priori estimates.

Lemma 7.1: Let p > 2. For each R0 > 0 sufficiently large there exists a

constant C > 0 such that if

∥f∥p,4− 4
p
+ ∥h∥L∞(M) < +∞

and h solves

∆Mh+ |A|2h = f, y ∈M, |y| > R0 ,

then

∥h∥L∞(|y|>2R0) + ∥ |y|2Dh∥L∞(|y|>2R0) + ∥ |y|4−
4
pD2h∥Lp(|y|>2R0) ≤

C [ ∥f∥p,4− 4
p
+ ∥h∥L∞(R0<|y|<3R0) ] .

Proof: Along each end Mk of M , ∆M can be expanded in the coordinate

y as

∆M = ∆+O(|y|−2)D2 +O(|y|−3)D.

A solution of h of equation (7.1) satisfies

∆Mh+ |A|2h = f, |y| > R0

for a sufficiently large R0. Let us consider a Kelvin’s transform

h(y) = h̃(y/|y|2).

Then we get

∆h(y) = |y|−4(∆h̃)(y/|y|2) .
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Besides

O(|y|−2)D2h(y)+O(|y|−3)Dh(y) = O(|y|−6)D2h̃(y/|y|2)+O(|y|−5)Dh̃(y/|y|2) .

Hence

(∆Mh)(y/|y|2) = |y|4
[
∆h̃(y) +O(|y|2)D2h̃(y) +O(|y|)Dh̃(y)

]
.

Then h̃ satisfies the equation

∆h̃+O(|y|2)D2h̃+O(|y|)Dh̃+O(1)h = f̃(y), 0 < |y| < 1

R0

where f̃ is given by (7.3). The operator above satisfies maximum principle

in B(0, 1
R0

) if R0 is fixed large enough. This, the fact that h̃ is bounded,

and Lp-elliptic regularity for p > 2 in two dimensional space imply that

∥h̃∥L∞(B(0,1/2R0)) + ∥Dh̃∥L∞(B(0,1/2R0)) + ∥D2h̃∥Lp(B(0,1/2R0)) ≤

C[∥f̃∥Lp((B(0,1/R0)) + ∥h̃∥L∞(1/3R0<|y|<1/R0)] ≤

C [ ∥f∥p,4− 4
p
+ ∥h∥L∞(B(R0<|y|<3R0)) ] .

Let us observe that

∥h̃∥L∞(B(0,1/2R0)) = ∥h∥L∞(|y|>2R0),

∥Dh̃∥L∞(B(0,1/2R0)) = ∥ |y|2Dh∥L∞(|y|>2R0).

Since

|D2h(y)| ≤ C( |y|−4 |D2h̃( |y|−2y)|+ |y|−3|Dh̃( |y|−2y)| )

then

|y|4−
4
p |D2h(y)| ≤ C( |y|−4/p|D2h̃( |y|−2y)|+ |y|−

4
p−1|Dh̃(|y|−2y)| ).

Hence ∫
|y|>2R0

|y|4p−4|D2h|pdy ≤

C(

∫
B(0,1/2R0)

|D2h̃(y)|p dy + ∥Dh̃∥pL∞(B(0,1/2R0))

∫
|y|>2R0

|y|−4−pdy ).

It follows that

∥h∥L∞(|y|>2R0) + ∥ |y|2Dh∥L∞(|y|>2R0) + ∥ |y|4−
4
pD2h∥Lp(|y|>2R0) ≤
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C [ ∥f∥p,4− 4
p
+ ∥h∥L∞(B(R0<|y|<3R0)) ] .

Since this estimate holds at each end, the result of the lemma follows, after

possibly changing slightly the value R0.

Lemma 7.2: Under the conditions of Lemma 7.1, assume that h is a

bounded solution of Problem (7.1)-(7.2). Then the a priori estimate (5.34)

holds.

Proof:

Let us observe that this a priori estimate in Lemma 7.1 implies in par-

ticular that the Jacobi fields ẑi satisfy

∇ẑi(y) = O(|y|−2) as |y| → +∞.

Using ẑi as a test function in a ball B(0, ρ) in M we obtain∫
∂B(0,ρ)

(h∂ν ẑi − ẑi∂ν ẑi) +

∫
|y|<ρ

(∆M ẑi + |A|2ẑi)h =

∫
|y|<ρ

fẑi +
J∑

j=1

cj

∫
M

ẑiẑj
1 + r4

.

Since the boundary integral in the above identity is of size O(ρ−1) we get∫
M

fẑi +
J∑

j=1

cj

∫
M

ẑiẑj
1 + r4

= 0 (7.4)

so that in particular

|cj | ≤ C∥f∥p,4− 4
p

for all j = 1, . . . , J. (7.5)

In order to prove the desired estimate, we assume by contradiction that

there are sequences hn, fn with ∥hn∥∞ = 1 and ∥fn∥p,4− 4
p
→ 0, such that

∆Mhn + |A|2hn = fn +
J∑

j=1

cni ẑi
1 + r4

∫
M

hnẑi
1 + r4

= 0 for all i = 1, . . . , J.
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Thus according estimate (7.5), we have that cni → 0. From Lemma 7.1 we

find

∥hn∥L∞(|y|>2R0) ≤ C[o(1) + ∥hn∥L∞(B(0,3R0))] .

The latter inequality implies that

∥hn∥L∞(B(0,3R0)) ≥ γ > 0.

Local elliptic estimates imply a C1 bound for hn on bounded sets. This

implies the presence of a subsequence hn which we denote the same way

such that hn → h uniformly on compact subsets of M , where h satisfies

∆Mh+ |A|2h = 0 .

h is bounded hence, by the nondegeneracy assumption, it is a linear com-

bination of the functions ẑi. Besides h ̸= 0 and satisfies∫
M

hẑi
1 + r4

= 0 for all i = 1, . . . , J .

The latter relations imply h = 0, hence a contradiction that proves the

validity of the a priori estimate.

7.1. Proof of Proposition 5.3

Thanks to Lemma 7.2 it only remains to prove existence of a bounded solu-

tion to problem (7.1)-(7.2). Let f be as in the statement of the proposition.

Let us consider the Hilbert space H of functions h ∈ H1
loc(M) with

∥h∥2H :=

∫
M

|∇h|2 + 1

1 + r4
|h|2 < +∞ ,

∫
M

1

1 + r4
hẑi = 0 for all i = 1, . . . , J .

Problem (7.1)-(7.2) can be formulated in weak form as that of finding h ∈ H

with ∫
M

∇h∇ψ − |A|2hψ = −
∫
M

fψ for all ψ ∈ H .

In fact, a weak solution h ∈ H of this problem must be bounded thanks

to elliptic regularity, with the use of Kelvin’s transform in each end for the

control at infinity. Using that |A|2 ≤ Cr−4, Riesz representation theorem

and the fact that H is compactly embedded in L2((1 + r4)−1dV ) (which
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follows for instance by inversion at each end), we see that this weak problem

can be written as an equation of the form

h− T (h) = f̃

where T is a compact operator in H and f̃ ∈ H depends linearly on f .

When f = 0, the a priori estimates found yield that necessarily h = 0.

Existence of a solution then follows from Fredholm’s alternative. The proof

is complete.

7.2. Jacobi fields of logarithmic growth. The proof of

Lemma 4.1

We will use the theory developed above to construct Jacobi fields with

logarithmic growth as r → +∞, whose existence we stated and use to set

up the initial approximation in Lemma 4.1. One of these Jacobi fields is the

generator of dilations of the surface, z0(y) = y · ν(y). We will prove next

that there are another m− 2 linearly independent logarithmically growing

Jacobi fields.

Let us consider an m-tuple of numbers β1, . . . , βm with
∑

j βj = 0, and

any smooth function p(y) in M such that on each end Mj we have that for

sufficiently large r = r(y),

p(y) = (−1)jβj log r(y), y ∈Mj

for certain numbers β1, . . . , βm that we will choose later. To prove the result

of Lemma 4.1 we need to find a solution h0 of the equation J (h0) = 0 of

the form h0 = p+ h where h is bounded. This amounts to solving

J (h) = −J (p) . (7.6)

Let us consider the cylinder CR = {x ∈ R3 / r(x) < R} for a large R. Then∫
M∩CR

J (p) z3dV =

∫
M∩CR

J (z3)z3dV +

∫
∂CR∩M

(z3∂np− p∂nz3) dσ(y) .

Hence ∫
M∩CR

J (p) z3dV =

m∑
j=1

∫
∂CR∩Mj

(z3∂np− p∂nz3) dσ(y) .

Thus using the graph coordinates on each end, we find∫
M∩CR

J (p) z3dV =
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m∑
j=1

(−1)j

[
βj
R

∫
|y|=R

ν3dσ(y) − βj logR

∫
|y|=R

∂rν3dσ(y)

]
+ O(R−1).

We have that, on each end Mj ,

ν3(y) =
(−1)j√

1 + |∇Fk(y)|2
= (−1)j +O(r−2), ∂rν3(y) = O(r−3).

Hence we get ∫
M∩CR

J (p) z3dV = 2π

m∑
j=1

βj +O(R−1) .

It is easy to see, using the graph coordinates that J (p) = O(r−4) and it is

hence integrable. We pass to the limit R→ +∞ and get∫
M

J (p) z3dV = 2π

m∑
j=1

βj = 0 . (7.7)

We make a similar integration for the remaining bounded Jacobi fields.

For zi = νi(y) i = 1, 2 we find∫
M∩CR

J (p) z2dV =
m∑
j=1

(−1)j

[
βj
R

∫
|y|=R

ν2dσ(y) − βj logR

∫
|y|=R

∂rν2dσ(y)

]
+O(R−1).

Now, on Mj ,

ν2(y) =
(−1)j√

1 + |∇Fk(y)|2
= (−1)jaj

xi
r2

+O(r−3), ∂rν2(y) = O(r−2).

Hence ∫
M

J (p) zidV = 0 i = 1, 2.

Finally, for z4(y) = (−y2, y1, 0) · ν(y) we find on Mj ,

(−1)jz4(y) = −y2∂2Fj+y1∂1Fj = bj1
y2

r2
−bj2

y1

r2
+O(r−2), ∂rz4 = O(r−2)

and hence again ∫
M

J (p) z4dV = 0 .

From the solvability theory developed, we can then find a bounded solution

to the problem

J (h) = −J (p) +
J∑

j=1

qcj ẑj .
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Since
∫
M

J (p)zidV = 0 and hence
∫
M

J (p)ẑidV = 0, relations (7.4) imply

that ci = 0 for all i.

We have thus found a bounded solution to equation (7.6) and the proof

is concluded.

Remark 7.3: Observe that, in particular, the explicit Jacobi field z0(y) =

y · ν(y) satisfies that

z(y) = (−1)jaj log r +O(1) for all y ∈Mj

and we have indeed
∑

j aj = 0. Besides this one, we thus have the presence

of another m − 2 linearly independent Jacobi fields with |z(y)| ∼ log r as

r → +∞, where m is the number of ends.

These are in reality all Jacobi fields with exact logarithmic growth. In

fact if J (z) = 0 and

|z(y)| ≤ C log r , (7.8)

then the argument in the proof of Lemma 7.1 shows that the Kelvin’s in-

version z̃(y) as in the proof of Lemma 7.2 satisfies near the origin ∆z̃ = f̃

where f̃ belongs to any Lp near the origin, so it must equal a multiple of

log |y| plus a regular function. It follows that on Mj there is a number βj
with

z(y) = (−1)jβj log |y|+ h

where h is smooth and bounded. The computations above force
∑

j βj = 0.

It follows from Lemma 4.1 that then z must be equal to one of the elements

there predicted plus a bounded Jacobi field. We conclude in particular that

the dimension of the space of Jacobi fields satisfying (7.8) must be at most

m− 1 + J , thus recovering a fact stated in Lemma 5.2 of [53].

8. Reducing the gluing system and solving the projected

problem

In this section we prove Lemma 5.1, which reduces the gluing system (5.12)-

(5.14) to solving the nonlocal equation (5.20) and prove Proposition 5.2 on

solving the nonlinear projected problem (5.21), in which the basic element is

linear theory stated in Proposition 5.1. In what follows we refer to notation

and objects introduced in §5.1, §5.2.
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8.1. Reducing the gluing system

Let us consider equation (5.12) in the gluing system (5.12)-(5.14),

∆ψ−Wα(x)ψ+(1−ζ2)S(w)+(1−ζ1)N(ψ+ζ2ϕ)+2∇ζ1∇ϕ+ϕ∆ζ1 = 0 in R3

(8.1)

where

Wα(x) := [ (1− ζ1)f
′(u1) + ζ1H(t) ] .

8.1.1. Solving the linear outer problem

We consider first the linear problem

∆ψ −Wα(x)ψ + g(x) = 0 in R3 (8.2)

We observe that globally we have 0 < a < Wα(x) < b for certain constants

a and b. In fact we can take a = min{σ2
−, σ

2
+}−τ for arbitrarily small τ > 0.

We consider for the purpose the norms for 1 < p ≤ +∞,

∥g∥p,µ := sup
x∈R3

(1 + r(αx))µ∥g∥Lp(B(x,1)), r(x′, x3) = |x′| .

Lemma 8.1: Given p > 3, µ ≥ 0, there is a C > 0 such that for all

sufficiently small α and any g with ∥g∥p,µ < +∞ there exists a unique ψ

solution to Problem (8.2) with ∥ψ∥∞,µ < +∞. This solution satisfies in

addition,

∥D2ψ∥p,µ + ∥ψ∥∞,µ ≤ C∥g∥p,µ. (8.3)

Proof:

We claim that the a priori estimate

∥ψ∥∞,µ ≤ C∥g∥p,µ (8.4)

holds for solutions ψ with ∥ψ∥∞,µ < +∞ to problem (8.2) with ∥g∥p,µ <
+∞ provided that α is small enough. This and local elliptic estimates in

turn implies the validity of (8.3). To see this, let us assume the opposite,

namely the existence αn → 0, and solutions ψn to equation (8.2) with

∥ψn∥∞,µ = 1, ∥gn∥p,µ → 0. Let us consider a point xn with

(1 + r(αnxn))
µψn(xn) ≥

1

2

and define

ψ̃n(x) = (1+r(αn(xn+x))
µψn(xn+x), g̃n(x) = (1+r(αn(xn+x))

µgn(xn+x),
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W̃n(x) =Wαn(xn + x).

Then, similarly to what was done in the previous section, we check that the

equation satisfied by ψ̃n has the form

∆ψ̃n − W̃n(x)ψ̃n + o(1)∇ψ̃n + o(1)ψ̃n = g̃n.

ψ̃n is uniformly bounded. Then elliptic estimates imply L∞-bounds for

the gradient and the existence of a subsequence uniformly convergent over

compact subsets of R3 to a bounded solution ψ̃ ̸= 0 to an equation of the

form

∆ψ̃ −W∗(x)ψ̃ = 0 in R3

where 0 < a ≤ W∗(x) ≤ b. But maximum principle makes this situation

impossible, hence estimate (8.4) holds.

Now, for existence, let us consider g with ∥g∥p,µ < +∞ and a collection

of approximations gn to g with ∥gn∥∞,µ < +∞, gn → g in Lp
loc(R3) and

∥gn∥p,µ ≤ C∥g∥p,µ. The problem

∆ψn −Wn(x)ψn = gn in R3

can be solved since this equation has a positive supersolution of the form

Cn(1 + r(αx) )−µ, provided that α is sufficiently small, but independently

of n. Let us call ψn the solution thus found, which satisfies ∥ψn∥∞,µ < +∞.

The a priori estimate shows that

∥D2ψn∥p,µ + ∥ψn∥∞,µ ≤ C∥g∥p,µ.

and passing to the local uniform limit up to a subsequence, we get a solution

ψ to problem (8.2), with ∥ψ∥∞,µ < +∞. The proof is complete.

8.1.2. The proof of Lemma 5.1

Let us call ψ := Υ(g) the solution of Problem (8.2) predicted by Lemma

8.1. Let us write Problem (8.1) as fixed point problem in the space X of

W 2,p
loc -functions ψ with ∥ψ∥X < +∞,

ψ = Υ(g1 +K(ψ) ) (8.5)

where

g1 = (1− ζ2)S(w) + 2∇ζ1∇ϕ+ ϕ∆ζ1 , K(ψ) = (1− ζ1)N(ψ + ζ2ϕ) .
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Let us consider a function ϕ defined in Mα × R such that ∥ϕ∥2,p,µ,σ ≤ 1.

Then,

| 2∇ζ1∇ϕ+ ϕ∆ζ1 | ≤ Ce−σ δ
α (1 + r(αx))−µ∥ϕ∥2,p,µ,σ.

We also have that ∥S(w)∥p,µ,σ ≤ Cα3, hence

|(1− ζ2)S(w)| ≤ Ce−σ δ
α (1 + r(αx))−µ

and

∥g1∥p,µ ≤ Ce−σ δ
α .

Let consider the set

Λ = {ψ ∈ X / ∥ψ∥X ≤ Ae−σ δ
α },

for a large number A > 0. Since

|K(ψ1)−K(ψ2) | ≤ C(1− ζ1) sup
t∈(0,1)

|tψ1 + (1− t)ψ2 + ζ2ϕ| |ψ1 − ψ2| ,

we find that

∥K(ψ1)−K(ψ2) ∥∞,µ ≤ C e−σ δ
α ∥ψ1 − ψ2 ∥∞,µ

while ∥K(0)∥∞,µ ≤ C e−σ δ
α . It follows that the right hand side of equation

(8.5) defines a contraction mapping of Λ, and hence a unique solution ψ =

Ψ(ϕ) ∈ Λ exists, provided that the number A in the definition of Λ is taken

sufficiently large and ∥ϕ∥2,p,µ,σ ≤ 1. In addition, it is direct to check the

Lipschitz dependence of Ψ (5.18) on ∥ϕ∥2,p,µ,σ ≤ 1.

Thus, we replace replace ψ = Ψ(ϕ) into the equation (5.14) of the gluing

system (5.12)-(5.14) and get the (nonlocal) problem,

∂ttϕ + ∆y,Mαϕ = −S̃(u1)− N(ϕ) in Mα × R (8.6)

where

N(ϕ) := B(ϕ) + [f ′(u1)− f ′(w)]ϕ︸ ︷︷ ︸
N1(ϕ)

+ ζ1(f
′(u1)−H(t))Ψ(ϕ)︸ ︷︷ ︸

N2(ϕ)

+ ζ1N(Ψ(ϕ) + ϕ)︸ ︷︷ ︸
N3(ϕ)

,

(8.7)

which is what we concentrate in solving next.
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8.2. Proof of Proposition 5.2

We recall from §5.2 that Proposition 5.2 refers to solving the projected

problem

∂ttϕ + ∆y,Mαϕ = −S̃(u1)− N(ϕ) + c(y)w′(t) in Mα × R,∫
R
ϕ(y, t)w′(t) dt = 0, for all y ∈Mα,

(8.8)

and then adjust h1 so that c(y) ≡ 0. Let ϕ = T (g) be the linear opera-

tor providing the solution in Proposition 5.1. Then Problem (8.8) can be

reformulated as the fixed point problem

ϕ = T (−S̃(u1)− N(ϕ) ) =: T (ϕ), ∥ϕ∥2,p,µ,σ ≤ 1 (8.9)

which is equivalent to

ϕ = T (−S̃(u1) + α2∆h1 w
′ − N(ϕ) ), ∥ϕ∥2,p,µ,σ ≤ 1, (8.10)

since the term added has the form ρ(y)w′ which thus adds up to c(y)w′.

The reason to absorb this term is that because of assumption (5.7),

∥α2∆h1 w
′∥p,4,σ = O(α3− 2

p ) while the remainder has a priori size slightly

smaller, O(α3).

8.2.1. Lipschitz character of N

We will solve Problem (8.10) using contraction mapping principle, so that

we need to give account of a suitable Lipschitz property for the operator

T . We claim the following.

Claim. We have that for a certain constant C > 0 possibly depending

on K in (5.7) but independent of α > 0, such that for any ϕ1, ϕ2 with

∥ϕl∥2,p,µ,σ ≤ Kα3,

∥N(ϕ1)− N(ϕ2)∥p,µ+1,σ ≤ C α ∥ϕ1 − ϕ2∥2,p,µ,σ (8.11)

where the operator N is defined in (8.7).

We study the Lipschitz character of the operator N through analyzing

each of its components. Let us start with N1. This is a second order linear



July 10, 2015 Lecture Note Series, IMS, NUS — Review Vol. 9in x 6in introductiontoreductionmethod-3-15

page 81

Introduction to gluing methods 81

operator with coefficients of order α plus a decay of order at least O(r−1
α ).

We recall that B = ζ2B where in coordinates

B = (f ′(u1)− f ′(w))− α2[(t+ h1)|A|2 +∆Mh1]∂t − 2αa0ij∂jh∂it +

α(t+ h) [a1ij∂ij − αa1ij( ∂jh∂it + ∂ih∂jt) + α(b1i ∂i − αb1i ∂ih∂t) ) ] +

α3(t+ h)2b13∂t + α2[ a0ij + α(t+ h)a1ij) ]∂ih∂jh∂tt (8.12)

where, we recall,

a1ij = O(r−2
α ), a1ij = O(r−2

α ), b1i = O(r−3
α ), b3i = O(r−6

α ),

f ′(u1)− f ′(w) = O(α2r−2
α e−σ|t|) ∂jh = O(r−1

α ), |A|2 = O(r−4
α ) .

We claim that

∥N1(ϕ)∥p,µ+1,σ ≤ C α ∥ϕ∥2,p,µ,σ. (8.13)

The only term of N1(ϕ) that requires a bit more attention is

α2(∆h1)(αy)∂tϕ . We have∫
B((y,t),1)

|α2(∆h1)(αz)∂tϕ|p dVα(z) dτ ≤

C α2p∥∂tϕ∥L∞(B((y,t),1) (1+rα(y) )
−4p+4

∫
B((y,t),1)

|(1+rα(z) )4−
4
p (∆h1)(αz)|p |dVα(z) ≤

C α2p−2∥∆h1∥pLp(M)e
−pσ|t|(1 + rα(y))

−pµ−4p+4∥∇ϕ∥∞,µ,σ,

and hence in particular for p ≥ 3,

∥α2(∆h1)(αy)∂tϕ∥p,µ+2,σ ≤ C α2− 2
p ∥h1∥∗ ∥ϕ∥2,p,µ,σ ≤ C α3− 2

p ∥ϕ∥2,p,µ,σ.

Let us consider now functions ϕl with

∥ϕl∥2,p,µ,σ ≤ 1, l = 1, 2.

Now, according to Lemma 5.1, we get that

∥N2(ϕ1)− N2(ϕ2)∥p,µ,σ ≤ C e−σ δ
α ∥ϕ1 − ϕ2∥p,µ,σ . (8.14)

Finally, we also have that

|N3(ϕ1)− N3(ϕ2) | ≤
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Cζ1 sup
t∈(0,1)

|t(Ψ(ϕ1)+ϕ1)+(1−t)(Ψ(ϕ2)+ϕ2)| [ |ϕ1−ϕ2|+ |Ψ(ϕ1)−Ψ(ϕ2)|] ,

hence

∥N3(ϕ1)−N3(ϕ2)∥p,2µ,σ ≤ C ( ∥ϕ1∥∞,µ,σ+∥ϕ2∥∞,µ,σ +e
−σ δ

α ) ∥ϕ1−ϕ2∥∞,µ,σ.

(8.15)

From (8.13), (8.14) and (8.15), inequality (8.11) follows. The proof of the

claim is concluded.

8.2.2. Conclusion of the proof of Proposition 5.2

The first observation is that choosing µ ≤ 3, we get

∥S̃(u1) + α2∆h1w
′∥p,µ,σ ≤ Cα3. (8.16)

Let us assume now that ϕ1, ϕ2 ∈ Bα where

Bα = {ϕ / ∥ϕ∥2,p,µ,σ ≤ Kα3}

where K is a constant to be chosen. Then we observe that for small α

∥N(ϕ)∥p,µ+1,σ ≤ Cα4, for all ϕ ∈ Bα,

where C is independent of K. Then, from relations (8.16)-(8.15) we see

that if K is fixed large enough independent of α, then the right hand side

of equation (8.5) defines an operator that applies Bα into itself, which is

also a contraction mapping of Bα endowed with the norm ∥ ∥p,µσ, provided
that µ ≤ 3.We conclude, from contraction mapping principle, the existence

of ϕ as required.

The Lipschitz dependence (5.27) is a consequence of series of lengthy

but straightforward considerations of the Lipschitz character in h1 of the

operator in the right hand side of equation (8.5) for the norm ∥ ∥∗ defined

in (5.34). Let us recall expression (8.12) for the operator B, and consider

as an example, two terms that depend linearly on h1:

A(h1, ϕ) := αa0ij ∂jh1∂itϕ .

Then

|A(h1, ϕ)| ≤ Cα|∂jh1| |∂itϕ .

Hence

∥A(h1, ϕ)∥p,µ+2,σ ≤ Cα∥(1+r2α) ∂jh1∥∞ ∥∂itϕ ∥p,µ,σ ≤ Cα4∥h1∥∗ ∥ϕ∥2,p,µ,σ.
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Similarly, for A(ϕ, h1) = α2∆Mh1 ∂tϕ we have

|A(ϕ, h1) | ≤ Cα2|∆Mh1(αy)| (1 + rα)
−µe−σ|t|∥ϕ∥2,p,µ,σ .

Hence

∥α2∆Mh1 ∂tϕ ∥p,µ+2,σ ≤ Cα5− 2
p ∥h1∥∗ ∥ϕ∥2,p,µ,σ.

We should take into account that some terms involve nonlinear, however

mild dependence, in h1. We recall for instance that a1ij = a1ij(αy, α(t +

h0 + h1)). Examining the rest of the terms involved we find that the whole

operator N produces a dependence on h1 which is Lipschitz with small

constant, and gaining decay in rα,

∥N(h1, ϕ)− N(h2, ϕ)∥p,µ+1,σ ≤ Cα2∥h1 − h2∥∗ ∥ϕ∥2,p,µ,σ. (8.17)

Now, in the error term

R = −S̃(u1) + α2∆h1w
′,

we have that

∥R(h1)−R(h2)∥p,3,σ ≤ C α2 ∥h1 − h2∥∗ . (8.18)

To see this, again we go term by term in expansion (5.15). For instance the

linear term α2 a0ij∂ih0∂jh1 w
′′. We have

|α2 a0ij ∂ih0∂jh1| ≤ C α2 (1 + rα)
−3 e−σ|t| ∥h1∥∗

so that

∥α2 a0ij ∂ih0 ∂jh1∥p,3,σ ≤ C α2 ∥h1∥∗,

the remaining terms are checked similarly.

Combining estimates (8.17), (8.18) and the fixed point characterization

(8.5) we obtain the desired Lipschitz dependence (5.27) of Φ.

This concludes the proof.

9. The reduced problem: proof of Proposition 5.4

In this section we prove Proposition 5.4 based on the linear theory provided

by Proposition 5.3. Thus, we want to solve the problem

J (h1) = ∆Mh1 + h1|A|2 = G(h1) +
J∑

i=1

ci
1 + r4

ẑi in M , (9.1)

∫
M

h1ẑi
1 + r4

dV = 0 for all i = 1, · · · , J ,
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where the linearly independent Jacobi fields ẑi will be chosen in (10.1)

and (10.2) of §8, and G = G1 + G2 was defined in (5.29), (5.30). We will

use contraction mapping principle to determine the existence of a unique

solution h1 for which constraint (5.7), namely

∥h1∥∗ := ∥h1∥L∞(M)+∥(1+r2)Dh1∥L∞(M)+∥D2h1∥p,4− 4
p

≤ Kα , (9.2)

is satisfied after fixing K sufficiently large.

We need to analyze the size of the operator G, for which the crucial step

is the following estimate.

Lemma 9.1: Let ψ(y, t) be a function defined in Mα × R such that

∥ψ∥p,µ,σ := sup
(y,t)∈Mα×R

eσ|t|(1 + rµα ) ∥ψ∥Lp(B((y,t),1) < +∞

for σ, µ ≥ 0. The function defined in M as

q(y) :=

∫
R
ψ(y/α, t)w′(t) dt

satisfies

∥q∥p,a ≤ C ∥ψ∥p,µ,σ (9.3)

provided that

µ >
2

p
+ a .

In particular, for any τ > 0,

∥q∥p,2− 2
p−τ ≤ C ∥ψ∥p,2,σ (9.4)

and

∥q∥p,4− 4
p
≤ C ∥ψ∥p,4,σ . (9.5)

Proof: We have that for |y| > R0∫
|y|>R0

|y|ap
∣∣∣∣ ∫

R
ψ(y/α, t)w′(t) dt

∣∣∣∣p dV ≤ C

∫
R
w′(t) dt

∫
|y|>R0

|y|ap |ψ(y/α, t)|p dV .

Now∫
|y|>R0

|y|ap |ψ(y/α, t)|p dV = αap+2

∫
|y|>R0/α

|y|ap |ψ(y, t)|p dVα

and∫
|y|>R0/α

|y|ap |ψ(y, t)|p dVα ≤ C
∑

i≥[R0/α]

iap
∫
i<|y|<i+1

|ψ(y, t)|p dVα .
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Now, i < |y| < i+ 1 is contained in O(i) balls with radius one centered at

points of the annulus, hence∫
i<|y|<i+1

|ψ(y, t)|p dVα ≤ Ce−σp|t|i1−µp ∥ψ∥pp,µ

≤ Ce−σp|t|∥ψ∥pp,µ
∫
i<|y|<i+1

(1 + rα)
−µpdVα

≤ Ce−σp|t|∥ψ∥pp,µ
∫
i<|y|<i+1

|αy|−µpdVα

≤ Ce−σp|t|∥ψ∥pp,µα−µpi1−µp .

Then we find

∥ |y|a q∥pLp(|y|>R0)
≤ C αap−µp+2∥ψ∥pp,µ

∑
i≥[R0/α]

iap−µp+1 .

The sum converges if µ > 2
p + a and in this case

∥ |y|a q∥pLp(|y|>R0)
≤ C αap−µp+2α−ap+µp−2∥ψ∥pp,µ = C ∥ψ∥pp,µ

so that

∥ |y|a q∥Lp(|y|>R0) ≤ C ∥ψ∥p,µ.

Now, for the inner part |y| < R0 in M , the weights play no role. We have∫
|y|<R0

|ψ(y/α, t)|p dV = α2

∫
|y|<R0/α

|ψ(y, t)|p dVα ≤

Cα2
∑

i≤R0/α

∫
i<|y|<i+1

|ψ(y, t)|p dVα ≤ Cα2 ∥ψ∥pp,µe−σp|t|
∑

i≤R0/α

i

≤ C∥ψ∥pp,µe−σp|t| .

Hence if µ > 2
p + a we finally get

∥q∥p,a ≤ C ∥ψ∥p,µ

and the proof of (9.3) is concluded. Letting (µ, a) = (2, 2− 2
p − τ), (µ, a) =

(4, 4− 4
p ) respectively in (9.3), we obtain (9.4) and (9.5).
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Let us apply this result to ψ(y, t) = N(Φ(h1) ) to estimate the size of the

operator G2 in (5.30). For ϕ = Φ(h1) we have that

G2(h1)(y) := c−1
∗ α−2

∫
R
N(ϕ)(y/α, t)w′ dt

satisfies

∥G2(h1)∥p,4− 4
p
≤ Cα−2∥N(ϕ)∥p,4,σ ≤ C α2.

On the other hand, we have that, similarly, for ϕl = Φ(hl), l = 1, 2,

∥G2(h1)−G2(h2)∥p,4− 4
p
≤ Cα−2∥N(ϕ1, h1)− N(ϕ2, h2)∥p,4,σ.

Now,

∥N(ϕ1, h1)− N(ϕ1, h2)∥p,4,σ ≤ Cα2∥h1 − h2∥∗∥ϕ1∥2,p,3,σ,≤ Cα5∥h1 − h2∥∗,

according to inequality (8.17), and

∥N(ϕ1, h1)− N(ϕ2, h1)∥p,4,σ ≤ Cα2∥ϕ1 − ϕ2∥p,3,σ ≤ Cα4∥h1 − h2∥∗ .

We conclude then that

∥G2(h1)−G2(h2)∥p,4− 4
p
≤ C α2∥h1 − h2∥∗ .

In addition, we also have that

∥G2(0)∥p,4− 4
p
≤ Cα2.

for some C > 0 possibly dependent of K. On the other hand, it is similarly

checked that the remaining small operator G1(h1) in (5.29) satisfies

∥G1(h1)−G1(h2)∥p,4− 4
p
≤ C1 α∥h1 − h2∥∗ .

A simple but crucial observation we make is that

c∗G1(0) = α∂ih0∂jh0

∫
R
ζ4(t+h0)a

1
ijw

′′w′ dt+α−2

∫
R
ζ4R1(y, t, 0, 0 )w

′ dt

so that for a constant C2 independent of K in (9.2) we have

∥G1(0)∥p,4− 4
p
≤ C2α .

In all we have that the operator G(h1) has an O(α) Lipschitz constant, and

in addition satisfies

∥G(0)∥p,4− 4
p
≤ 2C2α.
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Let h = T (g) be the linear operator defined by Proposition 5.3. Then we

consider the problem (9.1) written as the fixed point problem

h1 = T (G(h1) ), ∥h∥∗ ≤ Kα. (9.6)

We have

∥T (G(h1) )∥∗ ≤ ∥T∥ ∥G(0)∥p,4− 4
p
+ Cα∥h1∥∗ .

Hence fixing K > 2C2∥T∥, we find that for all α sufficiently small, the

operator T G is a contraction mapping of the ball ∥h∥∗ ≤ Kα into itself.

We thus have the existence of a unique solution of the fixed problem (9.6),

namely a unique solution h1 to problem (9.1) satisfying (9.2) and the proof

of Proposition 5.4 is concluded.

10. Conclusion of the proof of Theorem 6

We denote in what follows

r(x) =
√
x21 + x22, r̂ =

1

r
(x1, x2, 0), θ̂ =

1

r
(−x2, x1, 0) .

We consider the four Jacobi fields associated to rigid motions, z1, . . . , z4
introduced in (2.13). Let J be the number of bounded, linearly independent

Jacobi fields of J . By our assumption and the asymptotic expansion of the

ends (2.11), 3 ≤ J ≤ 4. (Note that when M is a catenoid, z4 = 0 and

J = 3.) Let us choose

ẑj =
4∑

l=1

djlz0l, j = 1, ..., J (10.1)

be normalized such that∫
M

q(y)ẑiẑj = 0, for i ̸= j,

∫
M

q(y)ẑ2i = 1, i, j = 1, · · · , J . (10.2)

In what follows we fix the function q as

q(y) :=
1

1 + r(y)4
. (10.3)

So far we have built, for certain constants c̃i a solution u of equation

(5.36), namely

∆u + f(u) =
J∑

j=1

c̃iẑi(αy)w
′(t)q(αy)ζ2
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where u, defined in (5.35) satisfies the following properties

u(x) = w(t) + ϕ(y, t) (10.4)

near the manifold, meaning this x = y + (t+ h(αy) ) ν(αy) with

y ∈Mα, |t| ≤ δ

α
+ γ log(2 + r(αy)).

The function ϕ satisfies in this region the estimate

|ϕ|+ |∇ϕ| ≤ Cα2 1

1 + r2(αy)
e−σ|t| . (10.5)

Moreover, we have the validity of the global estimate

|∇u(x)| ≤ C

1 + r3(αx)
e−σ δ

α .

We introduce the functions

Zi(x) = ∂xiu(x), i = 1, 2, 3, Z4(x) = −αx2∂x2u + αx1∂x2u .

From the expansion (10.4) we see that

∇u(x) = w′(t)∇t + ∇ϕ.

Now, t = z − h(αy) where z designates normal coordinate to Mα. Since

∇z = ν = ν(αy) we then get

∇t = ν(αy)− α∇h(αy).

Let us recall that h satisfies h = (−1)kβk log r + O(1) along the k-th end,

and

∇h = (−1)k
βk
r
r̂ +O(r−2) .

From estimate (10.5) we we find that

∇u(x) = w′(t)(ν − α(−1)k
βk
rα
r̂) +O(αr−2

α e−σ|t|). (10.6)

From here we get that near the manifold,

Zi(x) = w′(t) (zi(αy)−α(−1)k
βk
rα
r̂ei)+O(αr−2

α e−σ|t|), i = 1, 2, 3, (10.7)

Z4(x) = w′(t) z04(αy) +O(αr−1
α e−σ|t|). (10.8)
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Using the characterization (5.36) of the solution u and barriers (in exactly

the same way as in Lemma ?? below which estimates eigenfunctions of the

linearized operator), we find the following estimate for rα(x) > R0:

|∇u(x)| ≤ C

m∑
k=1

e−σ|x3−α−1(Fk(αx
′)+βjα log |αx′| ) | . (10.9)

We claim that∫
R3

(∆u + f(u))Zi(x) dx = 0 for all i = 1, . . . , 4 (10.10)

so that

J∑
j=1

c̃j

∫
R3

q(αx)ẑj(αy)w
′(t)Zi(x) ζ2 dx = 0 for all i = 1, . . . , 4. (10.11)

Let us accept this fact for the moment. Let us observe that from estimates

(10.7) and (10.8),

α2

∫
R3

q(αx)ẑj(αy)w
′(t)

4∑
l=1

dilZl(x) ζ2 dx =

∫ ∞

−∞
w′(t)2dt

∫
M

q ẑj ẑidV+o(1)

with o(1) is small with α. Since the functions ẑi are linearly independent on

any open set because they solve an homogeneous elliptic PDE, we conclude

that the matrix with the above coefficients is invertible. Hence from (10.11)

and (10.2), all c̃i’s are necessarily zero. We have thus found a solution to

the Allen Cahn equation (2.1) with the properties required in Theorem 6.

It remains to prove identities (10.10). The idea is to use the invariance

of ∆ + f(u) under rigid translations and rotations. This type of Pohozaev

identity argument has been used in a number of places, see for instance

[31].

In order to prove that the identity (10.10) holds for i = 3, we consider

a large number R >> 1
α and the infinite cylinder

CR = {x / x21 + x22 < R2}.

Since in CR the quantities involved in the integration approach zero at

exponential rate as |x3| → +∞ uniformly in (x1, x2), we have that

∫
CR

(∆u + f(u))∂x3u −
∫
∂CR

∇u · r̂ ∂x3u =

∫
CR

∂x3 (F (u)−
1

2
|∇u|2 ) = 0.
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We claim that

lim
R→+∞

∫
∂CR

∇u · r̂ ∂x3u = 0.

Using estimate (10.6) we have that near the manifold,

∂x3u∇u(x) · r̂ = w′(t)2((ν − α(−1)k
βk
rα
r̂) · r̂)ν3 +O(αe−σ|t| 1

r2
).

Let us consider the k-th end, which for large r is expanded as

x3 = Fk,α(x1, x2) = α−1(ak logαr + bk +O(r−1))

so that

(−1)kν =
1√

1 + |∇Fk,α|2
(∇Fk,α,−1) =

ak
α

r̂

r
− e3 + O(r−2) . (10.12)

Then on the portion of CR near this end we have that

(ν − α(−1)k
βk
rα
r̂) · r̂ ν3 = −α−1 ak + αβk

R
+O(R−2). (10.13)

In addition, also, for x21 + x22 = R2 we have the expansion

t = (x3 − Fk,α(x1, x2)− βk logαr +O(1))(1 +O(R−2))

with the same order valid after differentiation in x3, uniformly in such

(x1, x2). Let us choose ρ = γ logR for a large, fixed γ. Observe that on

∂CR the distance between ends is greater than 2ρ whenever α is sufficiently

small. We get,∫ Fk,α(x1,x2)+βk logαr+ρ

Fk,α(x1,x2)+βk logαr−ρ

w′(t)2dx3 =

∫ ∞

−∞
w′(t)2dt+O(R−2) .

Because of estimate (10.9) we conclude, fixing appropriately γ, that∫
∩

k{|x3−Fk,α|>ρ}
∂x3u∇u(x) · r̂ dx3 = O(R−2) .

As a conclusion∫ ∞

−∞
∂x3u∇u · r̂ dx3 = − 1

αR

m∑
k=1

(ak + αβk)

∫ ∞

−∞
w′(t)2 dt +O(R−2)

and hence ∫
∂CR

∂x3u∇u(x) · r̂ = −2π

α

m∑
k=1

(ak + αβk) +O(R−1) .
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But
∑m

k=1 ak =
∑m

k=1 βk = 0 and hence (10.10) for i = 3 follows after

letting R→ ∞.

Let us prove the identity for i = 2. We need to carry out now the

integration against ∂x2u. In this case we get

∫
CR

(∆u + f(u))∂x2u =

∫
∂CR

∇u · r̂ ∂x2u +

∫
CR

∂x2 (F (u)−
1

2
|∇u|2 ).

We have that∫
CR

∂x2 (F (u)−
1

2
|∇u|2 ) =

∫
∂CR

(F (u)− 1

2
|∇u|2 )n2

where n2 = x2/r. Now, near the ends estimate (10.6) yields

|∇u|2 = |w′(t)|2 +O(e−σ|t| 1

r2
)

and arguing as before, we get∫ ∞

−∞
|∇u|2dx3 = m

∫ ∞

−∞
|w′(t)|2dt+O(R−2).

Hence ∫
∂CR

|∇u|2n2 = m

∫ ∞

−∞
|w′(t)|2dt

∫
[r=R]

n2 +O(R−1) .

Since
∫
[r=R]

n2 = 0 we conclude that

lim
R→+∞

∫
∂CR

|∇u|2 n2 = 0.

In a similar way we get

lim
R→+∞

∫
∂CR

F (u)n2 = 0.

Since near the ends we have

∂x2u = w′(t)(ν2 − α(−1)k
βk
rα
r̂e2) +O(αr−2e−σ|t|)

and from (10.12) ν2 = O(R−1), completing the computation as previously

done yields ∫
∂CR

∇u · r̂ ∂x2u = O(R−1).

As a conclusion of the previous estimates, letting R → +∞ we finally find

the validity of (10.10) for i = 2. Of course the same argument holds for

i = 1.
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Finally, for i = 4 it is convenient to compute the integral over CR using

cylindrical coordinates. Let us write u = u(r, θ, z). Then

∫
CR

(∆u + f(u)) (x2∂x1u − x1∂x1u) =

∫ 2π

0

∫ R

0

∫ ∞

−∞
[uzz + r−1(rur)r + f(u)]uθ r dθ dr dz =

−1

2

∫ 2π

0

∫ R

0

∫ ∞

−∞
∂θ [u

2
z+u

2
r−2F (u)] r dθ dr dz+R

∫ ∞

−∞

∫ 2π

0

ur uθ(R, θ, z) dθ dz =

0 +

∫
∂CR

uruθ .

On the other hand, on the portion of ∂CR near the ends we have

ur uθ = w′(t)2R(ν · r̂)(ν · θ̂) +O(R−2e−σ|t|).

From (10.12) we find

(ν · r̂)(ν · θ̂) = O(R−3),

hence

ur uθ = w′(t)2O(R−2) +O(R−2e−σ|t|)

and finally ∫
∂CR

ur uθ = O(R−1).

Letting R → +∞ we obtain relation (10.10) for i = 4. The proof is con-

cluded.

Acknowledgments: We thank Professors M. Kowalczyk and F. Pacard

for useful discussions.
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