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1. INTRODUCTION AND MAIN RESULT

Let Q be a bounded domain in R? with smooth boundary 9Q2. We denote by S? the standard 2-sphere.
We consider the harmonic map flow for maps from Q into S2, given by the semilinear parabolic equation

uy = Au+ [VulPu  in Q x (0,7T) (1.1)
u=¢ ondQx(0,T) (1.2)
u(-,0) =y inQ (1.3)

for a function u : Q x [0,T) — S2. Here up :  — S? is a given smooth map and ¢ = “0|aQ' Local
existence and uniqueness of a classical solution follows from the works [5,14,31]. Equation (1.1) formally
corresponds to the negative L?-gradient flow for the Dirichlet energy [, [Vu|?dz. This energy is decreasing

along smooth solutions u(x, t):
9 2 2
= L2 =— L2

Struwe [31] established the existence of an H!-weak solution, where just for a finite number of points
in space-time loss of regularity occurs. This solution is unique within the class of weak solutions with
decreasing energy, see Freire [15].

If T'> 0 designates the first instant at which smoothness is lost, we must have
IVu(-,t)loo = +o0 as t1T.

Several works have clarified the possible blow-up profiles as t T T'. The following fact follows from results
by Ding-Tian [13], Lin-Wang [18], Qing [23], Qing-Tian [25], Struwe [31], Topping [33] and Wang [36]:

Along a sequence t, — T and points ¢i,...,q; € €2, not necessarily distinct, u(z,t,) blows-up occurs
at exactly those k points in the form of bubbling. Precisely, we have
k n
Lr—4q; .
u(@,tn) — u(x) =Y (Ui ( 2 ) —Ui(00)] = 0 in HY(Q) (1.4)
i=1 i

where u, € H*(Q), ¢* — ¢, 0 < A" — 0, satisfy for i # j,
2
Ar N gt = qf

Y= —— .
)\?—i—)\?-i- )\?)\;? +00

The U;’s are entire, finite energy harmonic maps, namely solutions U : R? — S? of the equation
AU + |[VU|?U =0 in R?, IVU|? < +o0.
]R2

After stereographic projection, U lifts to a smooth map in S2, so that its value U(oco) is well-defined.
It is known that U is in correspondence with a complex rational function or its conjugate. Its energy
corresponds to the absolute value of the degree of that map times the area of the unit sphere, and hence

|VU|? = 4mm, m €N, (1.5)
R2
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see Topping [33].
In particular, u(-,t,) — u, in H'(Q) and for some positive integers m;, we have
k
IVu(t)]? = [Vuaf>+ ) drm, 6, (1.6)
i=1
in the measures sense, were d, denotes the unit Dirac mass at g.

Topping [34] estimated the blow-up rates as A" = o(T — tn)% (also valid for more general targets), a
fact that tells that the blow-up is of “type II”, namely it does not occur at a self-similar rate.

A decomposition similar to (1.4) holds if blow-up occurs in infinite time, T = +o00. In such a case
one has the additional information that u, is a harmonic map, and the convergence in (1.4) also holds
uniformly in © (the latter is called the “no-neck property”), see Qing and Tian [25]. Finer properties of
the bubble-decomposition have been found by Topping [33].

A least energy entire, non-trivial harmonic map is given by

1 2$ 2
w = — R 1.7
(CL’) 1+|1:|2 <z|21) ’ T e ’ ( )
which satisfies
0
/ VW[ =4r, W(c0)= |0
R2 1

Very few examples are known of solutions, which exhibit the singularity formation phenomenon (1.6),
and all of them concern single-point blow-up in radially symmetric corrotational classes. When (Q is a
disk or the entire space, a 1-corrotational solution of (1.1) is one of the form

i0

u(z,t) = <e sinu (r, t)> . x=re?.

cos v(r, t)

Within this class, (1.1) reduces to the scalar, radially symmetric problem

v,  Sinwvcosv

v, 1.8
Vt Vpp + , ( )

2
We observe that the function
w(r) = m — 2arctan(r)
is a steady state of (1.8) which corresponds precisely to the harmonic map W in (1.7). Indeed,

W () = <ei9 sinw(r)) '

cosw(r)

Chang, Ding and Ye [6] found the first example of a blow-up solution of problem (1.1)-(1.3) (which was
previously conjectured not to exist). It is a 1-corrotational solution in a disk with the blow-up profile
x
t :W(—) o(1), 1.9
uw.t) = W (575) + 0) (19)
with O(1) bounded in H!'-norm and 0 < A(t) — 0 as t — 7. No information on the blow-up rate A(t)
is obtained. Angenent, Hulshof and Matano [1] estimated the blow-up rate of 1-corrotational maps as
A(t) = o(T —t). Using matched asymptotics formal analysis for problem (1.8), van den Berg, Hulshof
and King [3] demonstrated that this rate for 1-corrotational maps should generically be given by
T—1t
At) ~ k————
O " Tog@— 0P
for some x > 0. Raphael and Schweyer [28] succeeded to rigorously construct an entire 1-corrotational
solution with this blow-up rate.

(1.10)

In this paper we deal with the general, nonsymmetric case in (1.1)-(1.3). Our first result asserts
that for any given finite set of points of Q2 and suitable initial and boundary values, a solution with a



SINGULARITY FORMATION IN THE TWO-DIMENSIONAL HARMONIC MAP FLOW 3

simultaneous blow-up at those points exists, with a profile resembling a translation and rotation of that
in (1.9) around each bubbling point.

To state our result, we observe that the functions

U,\)q)Q(l‘) = QW (aj ; q)

with A > 0, ¢ € R? and Q an orthogonal matrix in R? do solve problem (1.5), and all share the least
energy property:

/R2 [VUx .0 = 4m.

Let us consider the a-rotation matrix around the third axis given by

cosa —sina 0 0 -1 0
e’ = |sina cosa O, J=|1 0 0
0 0 1 0 0 0

In all what follows, we consider problem (1.1)-(1.3) with the boundary condition (1.2) given by the
constant
0

p(x)=10] . (1.11)

This constant precisely corresponds to W (oo). In the radial 1-corrotational equation (1.8), this boundary
condition in the disk Q@ = D(0, R) simply corresponds to v(R,¢) = 0. All results below do apply to a
boundary condition which slightly perturbs (1.11), or in the case of entire space R? where this value is
set as a condition at infinity.

Theorem 1. Given points ¢ = (q1,...,qr) € QF and any sufficiently small T > 0, there exist ug such
the solution ug(x,t) of problem (1.1)-(1.3), for ¢ given by (1.11), blows-up at exactly those k points as
t 1 T. More precisely, there exist numbers k} > 0, of and a function u, € H(Q) N C(Q) such that

k
uq(x,t)—u*(x)—ZeJ“f[W(x;qi)—W(oo)} — 0 as t17T, (1.12)
j=1 !

in the H' and uniform senses in Q) where
T—t

Ai(t) = K] s (L o(l LT 1.13
( ) l%z ‘log(T I t)‘Q( +0( )) as T ( )
In particular, we have
k
V(- 1)|> = |Vu|? + 47r25qj as t1T.
j=1

In the next result we analyze the stability of the solutions constructed in Theorem 1. We recall
that in the l-corrotational class in a disc, Chang-Ding-Ye [6] provided robust conditions on initial and
boundary data that guarantee finite time blow-up. Raphael-Schweyer [28] established stability within
the 1-corrotational class in entire space for a solution blowing-up with the rate (1.10). Merle-Raphael-
Rodnianski [22] and Raphael-Schweyer [28] conjectured instability outside the 1-corrotational class. Van
der Berg and Williams [4] provided formal and numerical evidence that blow-up may indeed be destroyed
by small non-radial perturbations of a 1-corrotational singularity.

Our proof of Theorem 1 yields codimension-one stability of the predicted blow-up phenomenon in the
case of a single blow-up point when no symmetries are assumed. The meaning of this form of stability is
as follows:
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Theorem 2. Let u(x,t) be the solution predicted in Theorem 1 of the problem (1.1)-(1.3) that blows-up
at a point ¢ € Q and a time T > 0. Then there exists a C* manifold M in C1 (2, S?) with codimension
one that contains ug such that for any tg € M close to ug, the solution @(x,t) of problem (1.1)-(1.8)
with initial datum o blows-up at a point G € Q and a time T which are close respectively to q and T.

The solutions in Theorems 1 are classical in [0,7). Our next result concerns the continuation of the
solution after blow-up. As we have mentioned Struwe [31] defined a global H!-weak solution of (1.1)-
(1.3). Struwe’s solution is obtained by just dropping the bubbles appearing at the blow-up time and
then restarting the flow. The energy has jumps at each blow-up time generated by this procedure and
it is decreasing. Decreasing energy suffices for uniqueness of the weak solution, as proven in [15]. On
the other hand the bubble-dropping procedure modifies in time the topology of the image of the solution
map. Topping [34] showed a different way to construct a continuation after blow up in the symmetric
1-corrotational class. The solution in [6] is continued after blow-up by attaching a bubble with opposite
orientation, which unfolds continuously the energy. The solution referred to is a reverse bubbling solution.
As emphasized in [34], this continuation has the advantage that, unlike Struwe’s solution, it preserves the
homotopy class of the map after blow-up. Formal asymptotic rates for 1-corrotational reverse bubbling
were found in [3]. In [2] other forms of continuation of radial solutions were found.

We establish that Topping’s continuation can be made without symmetry assumptions, with exact
asymptotics, for the solution in Theorem 1. We define the bubble w with reverse orientation to that of

W as ) . 1 =2\ (—ePsinw(r)
Wz) = e"Wi@) = 7 <|z|2_1> - ( cos w(r) )

Theorem 3. Let u,(z,t) be the solution in Theorem 1. Then u, can be continued as an H'-weak solution
in Qx (0,T+9), which is continuous except at the points (q;, T), with the property that, besides expansion
(1.12), we have ug(x,T) = u.(z)

k
uq(x,t)—u*(x)—ZH“HW(%\;(;%)—W(oo)} — 0 as t]T,

in the H' and uniform senses in €, where

Mt) = t—T

miw. (1.14)

We observe that the energy in this continuation fails to be decreasing: it has a jump exactly at time
T and it goes back to its previous level immediately after.

We consider a question related to Theorem 3 treated in the 1-corrotational symmetric class in [34] and
in [2]: the occurrence of perfectly smooth solutions which spontaneously develop a singularity in finite
time by the addition of an infinitely concentrated bubble which instantaneously raises the energy in a

multiple of 4. We find that the typical rate for this backward bubbling is A(t) of order m rather
than (1.14). This was formally derived in [3].
Theorem 4. Given points qi,...,q: in Q and any sufficiently small T > 0 there exists an H'-weak

solution u(z,t) of problem (1.1)-(1.3) in Q x (0,7 + 6) which is continuous except at the points (q;,T), it
is smooth in Q x (0,T] and has spontaneous reverse bubbling at the points q; in the form

k
u(z,t) —u(x,T) — WL %) W (o0) 0 as tlT,
]Z::l [ ( Ai(t) > I -

in the H' and uniform senses in §, where for some positive numbers r;
t—T

MO o
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Before proceeding into the proof we make some further comments. It is plausible that the solutions
of the form described in Theorem 1 represent a form of “generic” bubbling phenomena for the two-
dimensional harmonic map flow, still too general in the form (1.4). For instance, it is reasonable to
think, yet unknown, that the limits along any sequence should have the same elements in the bubble
decomposition. On the other hand, is it possible to have bubbles other than those induced by W or
W, and or decomposition in several bubbles at the same point? Some evidence is already present in the
literature. It is known that in the more general symmetry class of the d-corrotational ones, d > 1,

dif
(e sinv(r,t) T
u(z,t) = ( cosv(r, ) ) , T=re

are steady states v = wgy(r) = 7 — 2arctan(r?) which do not lead to blow-up, at least for d > 4
(conjectured for d = 2,3). See Guan-Gustafson-Tsai [16]. On the other hand, no bubble trees in finite
time exist in the 1-corrotational class. See Van der Hout [35]. Infinite time multiple bubbling was found
by Topping [33] in a target different from S2. On the other hand, bubbling rates faster than (1.13) do exist
in the 1-corrotational case, but they are not stable, see Raphaél and Schweyer [29]. Many other results
on bubbling phenomena, and regularity for harmonic maps and the harmonic map flow are available in
the literature, we refer the reader to the book the book by Lin and Wang [19].

In bubbling phenomena in this and related problems very little is known in nonradial situations.
The method in [28,29], was successfully applied to very related blow-up phenomena in dispersive equa-
tions in symmetric classes. See for instance Rodnianski-Sterbenz [30] Merle-Raphaél-Rodnianski [22],
Raphaél [26], Raphaél-Rodnianski [27]. Our results share a flavor with finite time multiple blow-up in
the subcritical semilinear heat equation, as in the results by Merle and Zaag [21]. Bubbling associated
to the critical exponent has been recently studied in [9,10]. Our approach is parabolic in nature. It is
based on the construction of a good approximation and then linearizing inner and outer problems. An
appropriate inverse for the inner equation is then found (which works well if the parameters of the prob-
lems are suitably adjusted) which makes it possible the application of fixed point arguments. The general
approach, which we call inner-outer gluing, has already been applied to various singular perturbation
elliptic problems, see for instance [11,12]. A major difficulty we have to overcome is the coupled nonlocal
ODE satisfied by the scaling and rotation parameter.

2. THE 1-CORROTATIONAL HARMONIC MAPS AND THEIR LINEARIZED OPERATOR
The harmonic map equation for functions U : R? — S? is the elliptic problem
AU +|VUPU inR? |U|=1. (2.1)

For £ € R?, w € R, A > 0, we consider the family of solutions of (2.1) given by the following 1-corrotational
harmonic maps

Urew(®) = Qu W(x ; §>7

where W is the canonical least energy harmonic map

1 2y 2
w = — , e R-,
0 = e (i)

and @Q,, is the w-rotation matrix

cosw —sinw 0
Q. = |sinw cosw 0
0 0 1

The linearized operator for (2.1) around U = U) ¢, is the elliptic operator

Ly[p] = Ap + VU2 + 2(Vep - VU)U.
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Differentiating U with respect to each of its parameters we obtain functions that annihilate this operator,
namely solutions of Ly [p] = 0. Setting y = %, these functions are

U ¢,0() ZiQwVW(y) Y,
awU/\,f,w(x) :(8wa)W(y>

1
0e, Ung.0 (@) =5 Quy, W ().
We observe that
0 -1 0
(aqu) =QuJo, Jo=|1 0 0
0 0 O

We can represent W (y) in polar coordinates,

' sinw(p)
cosw(p)

W(y) = < ) , w(p) =7 —2arctan(p), y = pe'’.

We notice that
. 2p

w,=———, sinw=—-pw, = ——-, COSW=-——

’ 1+ p%’ e

and derive the alternative expressions

O eao(w) = 5 Quon (), Zo(y) = sy (p) E1 ()

uUrgw(@) = QuZoz(y), Zo2(y) = pw,(p) E2(y)

0 Uneslt) = 3 QuZunv), Z1(y) = w,(p) [c030 Ex(y) +sin 0 Ba(y)

Og, U e () %szu(y), Z12(y) = w,(p) [sin 0 E1(y) — cos 0 Ex(y)], (2.2)

where

- (“5 ). - ()

—sinw(p)

The relation |Uy ¢ .,| = 1 implies that all the functions Z,; are pointwise orthogonal to Uy ¢ .,. In fact the
vectors E1(y), Fa2(y) constitute an orthonormal basis of the tangent space to S? at the point W (y).
We have Ly [Z;;] = 0 where for a function ¢(y) we define

Lw[d] = Ayd+ [VW (y) ¢+ 2(VW (y) - Vo)W (y).

In addition to the elements (2.2) in the kernel of Ly there are also two other relevant functions in the
kernel, namely

Z_11 = p*w,(p)(cos 0B, — sinOE,)
Z_19 = p*w,(p)(sin 0F; + cos O Ey). (2.3)

It is worth noticing the connection between this operator and Ly which is given by

r—§

Lulel = 55 Qulwldl,  olx) = ol), y=
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The linearized operator at functions orthogonal to U. It will be especially significant to compute
the action of Ly on functions with values pointwise orthogonal to U. In what remains of this section we
will derive various formulas that will be very useful later on.

For an arbitrary function ®(z) with values in R® we denote
Ny ®:=2— (- U)U

Then the following formula holds:

Ly[y.®] =y Ad + Ly [®] (2.4)
where B

Ly[®)] := |VU* Iy ® — 2V(® - U)VU,

and

V(®-U)VU = 0y, (®-U) 0, U.

A very convenient expression for LU[q)] is obtained if we use polar coordinates. Writing in complex
notation

O(z) = (r,0), z=~¢4re,

we have

Lul#] = 2w, () (9, - U)QuB: ~ (¥ U)QuE, p= 1. (2.5)
Proof of formula (2.4). We have that
A®-U)=(A®)-U +2VP-VU — (& -U)|VU|?

so that
Al @ =TI  AD — 2(VE - VU)U + 28 - U|VU|*U + 2V(® - U)VU
Now,
V[(® -U)U]-VU = (®-U)|VU?
hence

Vil ®-VU =V -VU — (& -U)|VU
It follows that
Ly[y. @] =My A® + VU [* Ty ® — 2V(® - U)VU
as desired. 0

Proof of formula (2.5). We have that
1
V(@ U)VU = 0,(P - U)3,U + —0p(® - U)OU
r
1
= ((I)T . U)aTU + ﬁ(‘bg -U)0gU

1
+ 772(@ . 89U)39U.

We see that
0,U = %wp(p)El, %(%U _ /I\Sinj:(p)Ez _ —%wp(p)Ez.
Hence
V(@ UYVU = 20, (p)[(®, - U)Ey — (% - U) ]
2w, (p)[(2- BB + (2 BBy

On the other hand, [VU|?* = 2w? and
Hyr® = (- E1)QuEr + (P E2)QuEs
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hence
y 2 1
Ly[®] = |VU| Iy ® — 2V(® - U)VU = —pr(p)[(q% -U)E; — ;@9 -U)Ey)

and the proof is concluded. O

Next we single out two consequences of formula (2.5) which will be crucial for later purposes. Let us
assume that ®(x) is a C! function ® :  — C x R, which we express in the form

B(z) = (@1(3«"30:'(;302(95)) . (2.6)
We also denote
P =1 tipe, =1 ip
and define the operators
divp = Oz, 01 + Opy 02, curlp = 0y 02 — Op, 1.
We have the validity of the following formula

Ly[®] = Ly[®]o + Ly[®]; + Ly (@] , (2.7)
where
iU[‘I’}o = A_lpwi [ div(e ™) Q. F1 + curl(e ™) QwEg]
Ly[®]; = —2X\ " Yw, cosw [ (02, 03) o8 0 + (05, 03) sin b | QuEy
[ (Dy03) sin 6 — (8, ¢3) cos ] QuEs | (2.8)
Ly[®], = A_lpwi [ div(e™ ) cos260 — curl(e™ @) sin20] Q. E;
+ )\_lpwi [ div(e™ @) sin 20 + curl(e® @) cos 20] QuEs.

— 2)\_1wp cosw

Proof of formula (2.5). Let us assume first w = 0. We notice that

b, =c0s00,,P + sinh0,,P

1
—®p = —5infh0,, P + cos00,,P.
,

Then
o,.-U
= sinw [ 9y, 1 cos® O + Dy, 1 o8 Osin 6 + Oy, pasin b cosf + Oy, pasinfsinf |
+ cosw [6,21903 cos 6 + Ox, 03 sin@]
= %Sinw [0y 1 + O, 2] + €08 20[0s, 01 — Oy p2] + [Ony 1 + Oz, 2] sin 20
+ cosw [ Oy, 3 cos0 4 Oy, p38in6 |,
while

1

-0y U

,

=sinw [ — Oy, 108 0sin 0 + O, 01 08?0 — 0y, pasin? 0 + O,, 0o cosfsind |
+ cosw [ — Oy, 3 8inb + O,,¢3 cos |

1
=3 SInw [ [0z, 01 — Ouy@2] + €08 20[05, 02 + Oy 1] + [y 02 — O, 1] 8in 26|
+ cosw [ — Oy, p38inf + 9y, 05 cosf].
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Since sinw = —pw,, we obtain from formula (2.5)

Ly[®] :A_lpwi [div pFy + curl pFs]
+ )flpwi [div @ cos 26 — curl g sin 20] Ey
+ )\_lpwz [div @ sin 26 + curl @ cos 26] F
— 22" 'w, cosw [0y, 3 cos O + Oy, 3 sin 0] By
— 2)\_1wp coS W [0y, 3 8in € — O, 3 cos B] Es.
For the case of a general w, we observe that we have the identity
Ly[®) = Qulq .vQ-.2]

hence we obtain the desired result by substituting in the above formula ¢ by e~™®¢. The proof is
complete. O

Another corollary of formula (2.5) that we single out is the following: assume that

B(x) = (éf’(rgei(’)’ - ng

where ¢(r) is complex valued. Then

~ 2 —iw 1 —iw
Ly[®] = pr(p)2 [Re (e7*0ro(r)QuEr + ;Im (e7"p(r)QuwEs| - (2.9)
Proof of Formula (2.9). We have
. B ¢Tei6 ' ei(0+w) sin w _ .
o,..-U = [ 0 cos = Re(¢re”")sinw
1 1 fige?] [e@+9)sinw] 1 i s
;@9~U = { 0 ] . [ cos = ;Re(que ) sinw.
Since sinw = —pw,, formula (2.5) then yields the validity of (2.9). O

A final result in this section is a computation (in polar coordinates) of the operator Ly acting on a
function of the form

(p(x) = 901(/7, Q)QwEl + 502(/03 Q)QwE% T = 5 + )‘peie'

We have:
_ 0 02 1 2
Ly[®] = A"? <3§<P1 4 2Py 672@1 + (2w} — =1 — —5Ogepa cos w) QuE
p p p p
0 02 1 2
+ 272 (85@2 + 9p¥2 + 9(2'02 + (2w§ — — )2 + —0pp1 cos w) QuE-. (2.10)
P p p p

Proof of Formula (2.10). Let us assume that
(I)(,O, 9) = %1 (pv G)QwEl + 502(pa G)QwEl-
We notice that
_ 1 1
A0 =277 <a§<1> + ;apcb + p233¢’> :
Since @ - U = 0 we get
Ly[®] = Oy A® + |VU|*®.
Then
Af(@leEl) = (Am(pol)QwEl + 2)\728p§018pQwE1 + SoleAzEl
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We have that
QuEi, = —Uw,,
QuErpp = —w,pU — QwElwz,
QuE199 = — cosw(sinw U + cosw Q,, E1).
Thus ,
NA(QuEr) = —QuE: (wi + CO[S)QU)) +U (wpp + % +

By definition of w(p) we have

sinw cosw>
2
p

w,  sinwcosw
Wpp+— —————— = 0.
P P
Hence
sin w cos w

cosZw 1
A2A$(QwEl) = _QwEl (wi + P2 ) = _?QwEl - 2TU

Thus we have
A2A1‘ (QOIQwEl)
p1Ey sin w cos w

2
= N (A,01)QuEr — 2p1,w,U + ?@19 cosw QuEs — i 2 =

Using this and (3.9) we find after a direct computation
Ly[p1QuEr] = (Aa:§01 + (2w} — plz)@l) QuE: + %@19 cosw Qu Ey.
On the other hand, we find similarly
AQAz(SDQQwEQ) = )\2(Az§02)QwE2 — p2—2<p29(sin wU + coswQuEr)

and hence
1 2
Ly[p2Es] = (Aﬂpg +A72(2 i - ?) cpg) QuFE> — )\_2?@29 cosw QuEr.

The proof is concluded.

3. THE ANSATZ FOR A BLOWING-UP SOLUTION

In what follows we shall closely follow notation and computational formulas derived in the previous
sections, here applied in a time-dependent framework. Thus we consider the semilinear parabolic equation

uy = Au+ |Vul*u  in Q x (0,T)
u=ugn on I x (0,T)
u(-,0) =wup in
for a function u : Q x [0,T) — S2. Here ug : Q — S? is a given smooth map and
Uy = u0|6§2 =ez on 0.

Here and in what follows we denote

1 0 0
e = 0 5 €y = 1 s €3 — 0
0 0 1

(3.1)
(3.2)
(3.3)

(3.4)

—

3.5)

The constant boundary value eg precisely corresponds to W (oo) where W is the standard 1-corrotational
harmonic map (1.7). This choice of ugn as a constant is made for convenience, in fact sufficiently small

non-constant perturbations of it are also admissible in all arguments below.

In order to keep the notation to a minimum, we shall do this in the case £ = 1 of a single bubbling
point. We will later indicate the necessary changes in the general case. Given a fixed point ¢ € 2, and
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any sufficiently small number T' > 0 we look for a solution u(z,t) of problem (3.1)-(3.3) which at main
order looks like

z — (1)
U(,t) = Uxy.et)0() (@) = Qu) W( N0 )
for certain functions £(¢), A(t) and w(t) of class C1([0,T]) such that

1) =q, ANT)=0,

so that u(x,t) blows-up at time T and the point g. We shall find values for these functions so that for
a small remainder v(z,t) we have that « = U + v solves (3.1)-(3.3) for ug(x) = U(x,0) + v(x,0). Let us
denote

S(u) := —uy + Au + |Vul*u

A useful observation that we make is that as long as the constraint |u| = 1 is kept at all times and
u = U + v with |v| < § uniformly, then for u to solve equation (3.1) it suffices that
S(U +wv) =b(z,t)U (3.6)
for some scalar function b. Indeed, we observe that since |u| = 1 we have
1d 1
b(U-u)=8u) u=—=—|ul®+ ZAlu)? =
U w) = S(u) - u = —5 |l + SAJf =0,

and since U - u > %, we find that b = 0.
We can parametrize all small functions v(z,t) such that |U 4+ v| =1 in the form
v=1yro+a(lyrp)U, (3.7)
where ¢ is an arbitrary small function with values into R3, and
My i=¢—(p-U)U, a(¢):=1-[C -1

Using that
AU + |VU|?U =0

we find the following expansion for S(U + v) with v given by (3.7):
S{U+yrp+alU) = -Uy — 0Ilgro + Ly(Myre) + Ny(gre) + cMyrp)U
where for ¢ = 1, a = a((),
Lu(¢) = AC+|VUPC+2(VU - QU
Ny (¢) = [2V(aU) - V(U + ) 4+ 2VU - V¢ + |V + [V(aU)? |¢ — ali
+ 2VaVU, (3.8)
c(¢)=Aa—a;+ (VU + ¢+ alU))?> = VU (1 +a) - 2VU - V(¢
Since we just need to have an equation of the form (3.6) satisfied, we find that
u=U+ 1o+ allyrp)U
solves (3.1) if and only if ¢ satisfies
0= U, — &Ilyrp+ Ly (e g) + Ny My ) + bz, )T, (3.9)

for some scalar function b. The logic of the construction goes like this: We decompose ¢ into the sum
of two functions ¢ = " + ¢°, the “inner” and “outer” solutions and reduce equation (3.9) to solving a
system of two equations in (¢*, ¢°) that we call the inner and outer problems.

The inner function ¢*(x,t) will be assumed supported only near z = £(t) and better read as a function

of the scaled space variable y = I;(i()t) with zero initial condition and such that ¢° - U = 0, so that

I " = ' The outer function ¢°(x,t) will be made out of several pieces and its role is essentially to
satisfy (3.9) far away from the concentration point x = £(¢).
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We write equation (3.9) in the following way:
0= —8p" + Lul¢'] + Lu[p°] — Uy [8p° — Ap® + U] (3.10)
+ Nu (@' + My ) + (¢° - U)U; + bU.

For the outer problem, we consider a function ®° that depends explicitly on the parameter functions
chosen in such a way that IT; 1 [0,®° — A®Y + U] gets concentrated near = = £(¢) by elimination of the
terms in the first error U; associated to dilation and rotation. Then we write

©°(x,t) = ®O(x,t) + U*(a,t). (3.11)

For the inner solution, we consider a smooth smooth cut-off function 79(s) with n9(s) =1 for s < 1 and
=0 for s > % We also consider a positive, large smooth function R(t) — +o00 as t — T that we will
later specify. We define

n(z,t) =m0 (R yl), y=" ;é)(t)
and let
¢ (2.1) = 0z DQud(y. 1), y =" ;(f)(t)

for a function ¢(y, t) with initial condition ¢(-,0) = 0 that satisfies ¢(-,¢) - W = 0, defined for |y| < 2R(t)
and that vanishes as ¢ = T. Then we have

Q-wLulp'] = A 2nLw (8] + (Aun)é + 2071V Vyo
Q-wpi = (e = A"y - Vo = A1 Vo + 0Q-000Qud) + mo.
Equation (3.10) then becomes
0=A"nQu[~N¢: + Lw(¢] + N>Q_oLy[¥]] (3.12)
+7Qu(A Ay - Vyd + N1V, — w0 J )
+ Ly[®°) + Ty [0,0° — A, 0° + U]
= 00" + AV + (1 =) Lu[¥*] + Qul(Aan) + 2V Vad — 1]
+ Ny(nQué + Mo (B0 + T*)) + (T* + @) - U)U; + bU.
Next we will define precisely the operator ®° and estimate the quantity
Ly [@°] + Ty [0,0° — A, ®° + U] (3.13)

The idea is to choose ®° such that 9;®% — A, ®° + U; ~ 0 whenever |z —&| > A, so that in particular the
last error term in the outer equation (3.11) is of smaller order.

Invoking formulas (2.2) to compute U; we get
Uy = AU g + 00uUx g0 + 0cUn e - € = E + &1,

where, setting y = T—;g = pe'?, we have

Eo(,t) = —Qul2 pp(p) Erly) + wpwp(p) Ealy) ]

A
Ei(z,t) = —5—)\1 wy(p) Qul cos b E1(y) + sin b Es(y)]
8 ,(0) Qulsind By (y) — cost Ba(y) .

Since &; has faster space decay in p than & we will choose ®° to be an approximate solution of

Y — AP0+ & =0. (3.14)
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For z = ¢ + 7€' and r > X we have
2r
2+ A2

Here and in what follows we let

Eolx,t) = AQuE1 + NoQuEs | ~

O 2r [ idw)ei0rw)
r2 4 A2 0 '

Then

IREEYT 0 =i o |TEW.

With the aid of Duhamel’s formula for the standard heat equation, we find that the following function is
a good approximate solution of ®9 — A, ®Y + £, = 0 and hence of (3.14). We define

0w, \, €] = [“"O(r(’)t)ew} (3.15)

2r [(A+Mw)ei<9+“’>] 2 [p(t)e“’} g

©O(r,t) = — [Tp(s)rk(z(r),t —8)ds (3.16)

l—e &
2r) = VPPN, k(s ) =2— =
z

where for technical reasons that will be made clear later on, p(t) is also assumed to be defined for negative
values of ¢. See section 17 for a derivation of the formula (3.16).
A direct computations yields

)+ A0+ &) =Ry + Ray Ro= (73) R (73)

where
10 )\2 ! . 2
Ro := —re’ 2—4/ p(s)(zk, — 2°k..)(2(r),t — s) ds
-7

and
t

Ry = —eRe (e (1)) /_Tp(s) k(z(r),t —s)ds

+ Z%ew (AA(t) — Re (reiaf(t)))/ p(s) zk.(z(r),t — s)ds.

-7
We observe that R is actually a term of smaller order. Using formulas (2.7), (2.9) and the facts
A2r 1

_ 2 T _ 1
— = P Z—2(1 —cosw) = NP

we derive an expression for the quantity (3.13):
Ly[®°) 4+ Ty. [~U, + AD — )
= Ly[®°] — & + Iy2 (€] — &0 + s [Ro] + s [Ry]
= Kolp, €] + K [p, €] + s [Ri]
where
Kolp, €] = Ko1[p, £] + Koz[p, ]

with
t
[Re (p(s)e ") QuEr + Im (5(s)e™“")Qu ]

k(z,t—s)ds (3.17)

Koilp, €] :== _§pw§/

-T
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K:OQ[pa 5] = %sz |:)\ - /t Re (p(s)e_iW(t))rkz(Z7t - S)Z'r‘ d8:| QwEl
-7
- %pwz CoS W [/ Re (p(s)e™“®) (zk, — 2%k,.)(2,t — 5) ds} QuF1
-T
- %pwz [/t Im (p(s)e™“®) (zk, — 2%k..) (2, t — 5) ds} Q. Eo, (3.18)
-7
ICl [p, f] = %wp [Re ((f1 — iég)ew)QwEl + Im ((51 — iég)eie)QwEQ]. (319)

We insert this decomposition in equation (3.12) and see that we will have a solution to the equation if
the pair (¢, *) solves the inner-outer gluing system

Moy = Lw[g] + NQ_, [ZU[‘I’*] + Kolp, €] + K1 wﬂ] in Dyg

¢ -W =0 in DQR (320)
(b(ao) =0= ¢(aT)7
Uy = A U* 4+ gp, &, 0%, ¢] inQx(0,T) (3.21)
where
9lp. &, 0, ¢] := (1 — )Ly [¥*] + (¥* - U)U, (3.22)

+ Qu((Aan)d +2VanVad — 1:9)
+1Qu (—w I+ A" Ay - Vyd + A7E- Vo)
+ (1= m[Kolp, €] + Kalp, €]) + Ty [Ra] + (@7 - U)U,
+ Ny (nQuo + Iy (27 + %)),
and we denote
Dyr={(y.t) €R* x (0,T) / [y| <vR()}.
Indeed if (¢, ¥*) solves this system, then we have that
u(z,t) = U+ My [0 + U +1Qud] + a(lly+ [87 + " +nQue))U (3.23)
solves equation (3.1). The boundary condition (3.4) u = ez amounts to
Hyo [0 + U] + a(y o [U + @0 + U )U = (e3 — U)
and then it suffices that we take the boundary condition for (3.21)
U, =es—U—9°. (3.24)

Since we want that u(x,t) be a small perturbation of U(z,t) when we stand close to (g, T), it is natural
to require that U* satisfies the final condition

*(q,T) = 0.

This constraint amounts to three Lagrange multipliers when we solve the problem, which we choose to
put in the initial condition. Then we assume

\I/*(x, 0) = Zj(x) + c1e1 + cae2 + cses,

where ¢y, ¢2, ¢ are undetermined constants and Zj(x) is a small function for which specific assumptions
will later be made.
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4. THE REDUCED EQUATIONS

In this section we will informally discuss the procedure to achieve our purpose in particular deriving
the order of vanishing of the scaling parameter A(t) as t — 7.

The main term that couples equations (3.20) and (3.21) inside the second equation is the linear
expression

Qw[(AMW +2VenVeo + nt¢]7

which is supported in |y| = O(R). This motivates the fact that we want ¢ to exhibit some type of space
decay in |y| since in that way U* will eventually be smaller and in turn that would make the two equations
at main order uncoupled. Equation (3.20) has the form

>\2¢t = LW[(M + h[p7£a \II*](y,t) in D2R
qj) -W =0 in DQR

#(-,0) =0 in Bap(o),
where, for convenience we assume that h(y,t) is defined for all y € R? extending outside Dy as
h[p7€’ lI/*] = )‘QQ—UJEU[‘II*]X'DQR + A262—(.;.)K:0[ 75] + A262—0.JK:1 [pa E]XDzRa (41)

where x 4 designates characteristic function of a set A, Ky is defined in (3.17), (3.18) and K; in (3.19). If
A(t) has a relatively smooth vanishing as t — T' it seems natural that the term A\?¢; be of smaller order
and then the equation is approximately represented by the elliptic problem

Lw(é] + h[p, &, ¥*] =0, ¢-W =0 inR? (4.2)

Let us consider the decaying functions Z;;(y) defined in formula (2.2), which satisfy Lw[Z;;] = 0. If
o(y,t) is a solution of (4.2) with sufficient decay, then necessarily

/Rz B, &, 07 (0 t) - Zu(y)dy =0 for all ¢ € (0,T), (4.3)

for I = 0,1, j = 1,2. These relations amount to an integro-differential system of equations for p(t), {(¢),
which, as a matter of fact, detemine the correct values of the parameters so that the solution (¢, ¥*) with
appropriate asymptotics exists.

We derive next useful expressions for relations (4.3). Let us first compute the quantities

Busbl(0)i= 5 [ | Q-ulKolp €+ Kalp.€]l - Zoy(0) (14)

Using (3.17), (3.18) the following expressions for By, By are readily obtained:

Re (3(s)e= ) T, (W) =i

t

Boulpl(t) = 2 /

7 t—s) t—s
Boz[p](t) = 2LT Im (p(s)e ™) Ty <j(—t)s> tciss

where I'j(7), j = 1,2 are the smooth functions defined as follows:
0o 2
0

(=7(1+p?)
Pa(r) == [ 5P (K0 = CReclO] oy A0

where
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and we have used that fooo p3w2dp = —2. Using these expressions we find that
ITy(t) =1 < C7(1 + |log7|) forT <1, (4.5)
Ty ()| < g for > 1.
Let us define
Bolp] = 53¢ (Boalp] + iBoalp) (4.6)
and
aoj[p, &, V"] == —% B waiU[‘I’*] “ Zoj(y) dy
olp, & 9°] 1= 3¢ (aunlp, & ") + iaoalp, €, V7)) (47)

Similarly, we let
Buld0)i= 5= | @-ulKalp.€] + Kalp. €]+ Zi ) d

B1[€](t) == Bui[§](t) + iBi2[€](F)-
Using (3.19), (2.2) and the fact that fooo pwidp =2 we get
Bil€](t) = 2[&1(t) +i&(1)].
At last, we set

* /\ T *
alj[pagv v ] = % B Q—wLU[\I’ ] : Zl](y) dy
2R

ar[p, &, 0] i= —e™ W (ay;[p, &, U] + iara[p, &, U)).
We get that the four conditions (4.3) reduce to the system of two complex equations
Bo[p] = aolp, &, V7], (4.8)
Bi[¢] = ailp, &, ¥7]. (4.9)

At this point we will make some preliminary considerations on this system that will allow us to find a
first guess of the parameters p(t) and &(¢). First, we observe that

t—A2 .
pts .
Bl = [ Has o).
-T — S
To get an approximation for ag, we analyze the operator Ly in ag. For this let us write
v ] e =i,
U3
From formula (2.7) we find that
Lu[¥*)(y) = [Lolo[¥*] + [Luli [¥*] + [Lul2[97],

where

AQ_u[Lulo[T*] = pw? [ div(e ™¢*) Ey + curl(e” ") Ey |
AQ_u Ly [¥*] = — 2w, cos w [ (92,05) cos 0 + (8, 05) sin 6 | Ex
— 2w, cosw [ (O, 13) sinf — (0y,103) cos O] B
AQ_u[Lyla[0F] = pwf} [ div(e™9*) cos 20 — curl(e™)*) sin26 | B4
+ pwi [ div(e™1)*) sin 20 + curl(e™9*) cos20] Es,
and the differential operators in U* on the right hand sides are evaluated at (z,t) with x = £(t) + A(t)y,
y = pe'? while E; = Ej(y), | = 1,2.
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From the above decomposition, assuming that U* is of class C'! in space variable, we find that
aolp, &, ] = [dive)"™ +icurly*](€,t) 4 o(1),

where o(1) > 0ast — T.
Similarly, we have that

(p,6) = 200,05 + 00,0360 [ coswudpdp-+ o)
=o(l) as t—T,

2
p

Let us discuss informally how to handle (4.8)-(4.9). For this we simplify this system in the form

since [ w2 coswpdp = 0.

t—A% .
/ P6) s = fdiv g + i curd ) (E(0),6) + o(1) + O(5oc)

-T t—s
Et)=o(1) as t—T. (4.10)

We assume for the moment that the function U*(x,¢) is fixed, sufficiently regular, and we regard T as
a parameter that will always be taken smaller if necessary. We recall that we want £(T") = g where g € Q
is given, and A\(T") = 0. Equation (4.10) immediately suggests us to take {(t) = ¢ as a first approximation.
Neglecting lower order terms, we arrive at the “clean” equation for p(t) = A(t)e™®),

t—X(t)2 p(S)
/ " ds = divy*(q,0) + i curlyp*(q,0) =: a; (4.11)
—-T — S
At this point we make the following assumption:
divy™(¢,0) < 0. (4.12)
This implies that af = —|a§|e® for a unique wy € (—%,%). Let us take w(t) = wo. Then equation (4.11)
becomes )
t=A2 5
As)
ds = —|ag|. 4.13
[ s =—la (113)
We claim that a good approximate solution of (4.13) as t — 7' is given by
: K
M) =———5——
®) log?(T —t)

for a suitable x > 0. In fact, substituting, we have

/“ RO / TET M) ot A0 log(T — 1) — 2los(A(®)

_r t—s _r t—s

O
- 20" As) =A@,

7(T7t) t — S

~ /t Mds — At)log(T —t) =: B(t) (4.14)
-7 T — S
ast — T. We see that J J
loa(T — 1) 22 (1) = 4 (10g*(T — 1) A(1)) = 0

from the explicit form of A(t). Hence ((t) is constant. As a conclusion, equation (4.13) is approximately

satisfied if k is such that )
R
+T—s or

And this finally gives us the approximate expression

At) = —|divp*(q,0) + i curl * (¢, 0)| A, (¢),
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where
: log T
Aty = - 18T
log“(T —t)
Naturally imposing A, (T") = 0 we then have
|log 7|
M(t)= ————(T —1) (14 o0(1 as t—T.
()= ot (T =1 (1 +0(1)

5. SOLVING THE INNER-OUTER GLUING SYSTEM

Our purpose is to determine, for a given ¢ €  and a sufficiently small T > 0, a solution (¢, ¥*) of
system (3.20)-(3.21) with a boundary condition of the form (3.24) such that u(x,t) given by (3.23) blows
up with U(z,t) as its main order profile. This will only be possible for adequate choices of the parameter
functions £(¢) and p(t) = A(t)e™®). These functions will eventually be found by fixed point arguments,
but a priori we need to make some assumptions regarding their behavior. For some positive numbers
ai, as, o independent of T' we will assume that

ar| A ()] < |p(t)] < ag| M (t)] for all te (0,T), (5.1)
IE()] < A\u(t)®  forall te(0,T). (5.2)

We also take
R(t) = M\ (t) 77, (5.3)

where 3 € (0, 3).
To solve the outer equation (3.21) we will decompose ¥* in the form
U= 7 4 4h
where we let Z* : Q x (0,00) — R? satisfy
Z7; =AZ" in Qx (0,00),
Z*(-,t) =0 in 09 x (0,00), (5.4)
Z°(,0) = Z; inQ,

with Zj(x) a function satisfying certain conditions to be described below. Since we would like that u(x,t)
given by (3.23) has a blow-up behavior given at main order by that of U(z,t), we will require

U*(q,T) = 0.

This constraint has three parameters. Therefore we need three “Lagrange multipliers” which we include
in the initial datum.

5.1. Assumptions on Z;. To describe the assumptions on Z§, let us write

olx) =% o z(@) = 201 (2) +izge (). (5.5)
243()
A first condition that we require, consistent with (4.12), is divz{(¢) < 0. In addition we require that
Z§(q) = 0 in a non-degenerate way.
We want also Z* to be sufficiently small, but independently of T, so that the heat equation (5.4) is
a good approximation of the linearized harmonic map flow far from the singularity. In order to achieve
later the desired stability property, it is convenient split Z§ into two parts

zZy =73+ 731,
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where Z3? is sufficiently smooth and Z;! allows more irregular perturbations. More precisely, for Z3° we
assume that for some o > 0 small and some a1, s > 0, all independent of T'; we have

||ZSOHC3(6) < ao,

2% ()] < 5T,

* - (5.6)
(Dz5°(q)) "] < e,
—ap < div za‘o(q) < —ap.
(The notation here is analogous to (5.5).)
To describe Z3! we introduce the following norm
1
Z:|, = sup |23t (x)] + ——— sup |V 25 ( 5.7
126° I+ = sup 25" ()] |log€*‘ﬂ\ o (@) (5.7)
- q _ 2 r7x1
+ |10g5*|1/2 Nép("r qo|+€*)|DzZ0 (Z‘)|,
where
T
Ep = ——.
[ log T'|
Then we assume that for some o > 0 fixed we have
125 <77 (5.8)
In summary, the conditions on Zj are the following:
Zg = 730 + 73" with 230, Z31 satistying (5.6) and (5.8). (5.9)

5.2. Linear theory for the inner problem. The inner problem (3.20) is written as
A2at¢ = LW[¢] + h[pa 67 \IJ*] in Do
(b -W =0 1in DQR
¢(-,0)=0 in BQR(O)

where h[p, &, ¥*] is given by (4.1). To find a good solution to this problem we would like that h[p, &, U*]
satisfies the orthogonality conditions (4.3).

We split the right hand side h[p,&, U*] and the inner solution into components with different roles
regarding these orthogonality conditions.

Recall that

hlp, € 07] = N*Q o Lu (W7 ]xp,n + N*Q-uKolp, €] + N QK [p, E]x
the decomposition of Ly given in (2.7):
Ly[¥*] = Ly[¥*]o + Ly [V + Ly [P,
and the explicit formula:
Ly[®] = — 22w, cosw [ (0, p3) cos @ + (D, 03) sind | QuEr
—2X" w, cosw [ 0y, p3) sin @ — (9, 03) cos 0 ] QuE>
Using the notation (2.6), we then define
Ly[@]” = —2)"Yw, cosw [ (8, 03(E(E), 1)) cos 8 + (Duyp3(£(2),1))) 5in 6 | Qu By
— 20w, cosw [ (0a, 03(&(t), 1)) sin b — (9, 03(£(¢), 1)) cos 0] QuEo . (5.10)

That is, we freeze the derivatives of ¢3 in the definition of the operator.
We then decompose
h=hy+ hy+ hg
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where
I [p, €, %) = N Q- (Lo (W7o + Lu[U7]2)xpyn + A2Q—uKo[p. €, (5.11)
halp, &, 0] = N Qo Lu[¥']{" XD, 5 + N Q-wKi[p, E]xDss (5.12)
halp. €, 0°] = N2Q_u(Lu[¥"): — Lu[7)”) xps- (5.13)

Next we decompose ¢ = ¢1 + ¢2 + ¢3 + ¢4. The function ¢, will solve the inner problem with right
hand side hq[p, &, U*] projected so that it satisfies essentially (4.3). The advantage of doing this is that
h1 has faster spatial decay, which gives better bounds for the solution. For this we let, for any function
h(y,t) defined in R? x (0,7 with sufficient decay,

ajlh](t) == W /R2 h(y,t) - Zi;(y) dy. (5.14)

Note that h[p, €, ¥*] is defined in R? x (0,7, and for simplicity we will assume that the right hand sides
appearing in the different linear equations are always defined in R? x (0, T).
We would like that ¢, solves

1 2

N1 = Lw[dn] + Inlp, & ] = Y > " eylha(p, & U)wiZy;  in Dag,

I=—1j=1

but the estimates for ¢ are better if the projections co;[h(p, &, ¥*)] are modified slightly.
Here is the precise result that we will use later. We define the norms

|h(y, )]

Blya= sup -~ 5.15
Ilhea = 500 ST+ Ty (5.15)
and
oy, )|+ (1 +|y))|Vyoly, T
H¢II*,u,a,s=Sup‘ (. 7) éa(s,at DIV )|- (5.16)

Dor AV maX((1+|y|)3’ (1+|y1|)"’_2)

Proposition 5.1. Let a € (2,3), 6 € (0,1), v > 0. Assume |h|l,,o < co. Then there is a solution
¢ = Taalhl, Cojh] of

AN0p = L[] +h — Z ¢oj M ZojxB, — Z ajlhlZijxs, in Dar
j=1,2 I=—1,1
=2 (5.17)
¢ -W =0 1in DQR

¢(+,0) =0 in Bar()
where cy; is defined in (5.14), which is linear in h, such that
[181+,0.a,6 < Cllhllv.a
and such that
[cos ] = o 1] < CALR™3=2)

|v.a- (5.18)

The function ¢2 solves the equation with right hand side hs[p, £, ¥*], which is in mode 1, a notion that
we define next (this is basically motivated by the analysis of section 6, where we consider the linearized
parabolic equation and use a Fourier decomposition of the right hand side and the solution).

Let h(y,t) € R3, be defined in R? x (0,7 or Dag with h- W = 0. We say that h is un mode k € 7Z if
h has the form

h(y, t) = Re(hi(|y|, t)e’™) Er + Re(hn(ly|, t)e™*) Ex,

for some complex valued function hy(p, t).
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Consider then

/\2at¢ = LW[¢] + h — Z C1j [h]wf)le in Dog
Jj=1,2

¢ W =0 inDypg (5.19)

¢(-,0) =0 in Bap(o)

Proposition 5.2. Let a € (2,3), 6 € (0,1), v > 0. Assume that h is in mode 1 and ||h||,,, < co. Then
there is a solution ¢ = Tx2[h] of (5.19), which is linear in h, such that

||¢||l/,a—2 < C”h”V,a'

In the above statemen the norm |||, 4—2 analogous to the one in (5.15), but the supremum is taken
in DQR.

Another piece of the inner solution, ¢3, will handle hs[p, £, ¥*], which does not satisfy orthogonality
conditions in mode 0. We will still project it to satisfy the orthogonality condition in mode 1. Let us
consider then (5.19) without any orthogonality conditions on h in mode 0. We define

[¢(y, )| + (1 + [y [Vyo(y, 1]
AR+ )=t

Proposition 5.3. Let 1 < a < 3 and v > 0. There exists a C > 0 such that if ||h|lq,, < 400 there is a
solution ¢ = Ty slh]| of (5.19), which is linear in h and satisfies the estimate

[@llex, < Clihlla,u-

Note that we allow a to be less than 2 in the previous proposition.
Next we have a variant of Proposition 5.3 when h is in mode -1.

[l = SDup (5.20)
2R

Proposition 5.4. Let 2 < a < 3 and v > 0. There exists a C > 0 such that for any h in mode -1 with
|l < 400, there is a solution ¢ = Ty alh] of problem (5.19), which is linear in h and satisfies the
estimate

[@llexs,r < CllBlla,vs

where

6y, )] + (L + |y [Vyo(y, D)
Ax(t)” log(R(t)) '

All propositions stated here are proved in section 6.

[@]]sxx, = sup (5.21)
D2r

5.3. The equations for p = \e’”. We need to choose the free parameters p, £ so that cijlh(p, &, ¥)] =0
for I = —1,0,1, j = 1,2. This will be easy to do for I = 1 (mode 1), but mode [ = 0 is more complicated.
To handle ¢g; we note that by definitions (4.1), (4.4), (4.7)

27

2 Zo; 2 (Bojlp] — aojlp, &, ¥*])

CO,][ (paE v )] f]R2

where By, ag are defined in (4.6), (4.7) and we recall that p = \e®
So to achieve ¢g;[h(p, &, ¥*)] = 0 we should solve

Bo[pl(t) = aolp,& V7|(t), t€0,77, (5.22)

adjusting the parameters A(t) and w(¢). This equation is delicate and we will instead solve it up to an
€erTor.

To make this precise we define the following norms. Let I denote either the interval [0,T] or [T, T].
For © € (0,1), I € R and a continuous function g : I — C we let

lglle. = sup (T —1)=®[1og(T — t)['[g(t)], (5.23)
€
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and for v € (0,1), m € (0,00), and [ € R we let

_ _aem ) lg() —g(s)|
[9]y,m,i =sup (T —t)"™|log(T — t)] iy (5.24)
where the supremum is taken over s < ¢t in I such that t — s < E(T t).
We have then the following result, whose proof is in section 13.

Proposition 5.5. Let a,y € (0,3), l € R, C; > 1. There is ag > 0 such that if © € (0,ap), m <O —~
and T > 0 is small, then there are two operators P and Rq with the following properties.
Assume that a : [0,T] — C satisfies

1
a <|a(T)| < Cy

(5.25)
TNog TI"* ! |la(-) = a(T)lle -1 + [aly.mi-1 < C1,
for some o > 0. Then p ="Pla] : [-T,T] — C satisfies
Bolp](t) = a(t) + Rolal(t), t€[0,T], (5.26)
with
[Rolal(t)]
T®
< (17 + O (177 o g ) o) = (D)1 + a1
(T — t)m+(1+a)7 (5.27)
[log(T' = )" .

for some o > 0.

Roughly speaking, to obtain the modified equation (5.26) we notice that the main term in p in By[p]

is the integral operator
t—X.(t)2 -
/ 25) g
_T t—s

_ A0
Bolp] :BO@]—/_T B(s) 4.

Thus we define

t—s
It will be sufficient to solve approximately equations (4.3) replacing in part this integral operator by a
“regularized” version of it following the logic of the formal derivation of the rate (4.14). For o > 0 let us
write

/t)\*(t) Bs) 4o Salp] + Ralp]

—-T t—s
where
t—(T—t)'+e s
Salg] == g(t)[—2log A (t) + (1 + a) log(T — t)] + /_T tgi lds, (5.28)
t—X\2
Ralgl = — [ S0 Z9) 5.29
= (529)

Thus equation (5.22) can be written in the form
Salp] + Ra[p] + Bolp] = a(t), in (0,71,
for some function a(t). The modified equation is
Salp] + Bolp] = a(t) in [0,T],

and the remainder Ry is essentially R, [p]. This is a sketch of how we obtain the modified equation and
remainder. For more details see section 13.
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Another modification to equations (5.22) that we introduce is to replace ag[p, £, ¥*] by its main term.
To do this we write

aolp, &, 9] = al” [p, €, 9] + aV [p, €, W] + ol [p, €, V]

where
oPlp. W) = e /B (Q-wLul®)i - Zor +iQ wLu(¥) - Zo2) dy (5.30)
for 1 =0,1,2. -
We define
el & VN0 = T (Ro [a 6] 0+ of I & w7
+al [p, &, UI()) — (colhlp, & W] = ol p, & ), (5.31)
and

o1 == Re(cg), gy :=Im(cp),
where Ry is the operator given Proposition 5.5 and ¢y = €g1 + i¢p2 are the operators defined in Proposi-
tion 5.1.
Let us explain the formula for cj. We have

27\ .
coj[h[p, & W] = m(goﬂp] — ag;[p, &, V)
Then by (4.6), (4.7)
1 w * 2w *
3¢ colhlp, &, ¥*]] = m(BO[P] aolp, &, ¥)),
where ¢y = cg1 + icge. What we will really solve is
Bolp] = af[p, &, 9°)(t) + Ro [af”[p. &, "] (5.32)

which is equivalent to

L i 27 (0) * (1) | + 0
2ol = iz (Ro [a” & W1I] + 0l o W)+ a6 ),
that is, the equation to be solved is
47T>\ 710‘) (0)
CO[h[p7£a fRQ |ZOJ|2 (RO |: [p7§ \I/ ]] ( )+a0 [pa£ \Ij ]( )
+ap,€, 9)(1)). (5.33)

The reduced equation that we will consider is
60[}1'1 [pa 67 \Il*]] = CS [pa 67 \Ij*]
and we want this to be equivalent to (5.33). We rewrite (5.33) as

I 47?20 ze (Ro [l 1., 1] () + ol Ip. &, 91(0) + 0 [p, €, w](1))
R2 j
- CO[ [Z%f, \I] ”

= Colha[p, & W] + (co[hlp, & ¥7]] — Co[ha[p, & ¥T]]).
and then define

6 V)= 4“ZOJ|2 i (Ro [0 .6, 9] () + 0. 7] (0)

+a’0 [p’ga ]( ) - (Co[h[p,f,\:[/*]] - 60[h1[p,€7\:[f*”)
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This is (5.31).

‘We mention here how to adapt the parameters ©, m, [ of Proposition 5.5 to the context of the main
result, and what is the advantage of having a remainder Rq satisfying (5.27).

For this we note that from (5.32) and the norm (5.44) the natural assumptions on the function a :
[0,T] — C in Proposition 5.5 are given by

la(t) — a(T)] < CX(1)®, t€[0,T]
(t —s)7

la(t) — a(s)| < C/\*(t)QW

for 0 < s <t <T,suchthatt—s < %(T —t), where © > 0 and v € (0, %) are for the moment arbitrary.
It is therefore natural to select
m:=0 —2y(1 - ). (5.34)
In order for ||a(-) — a(T)|le, to be finite we need I < 1+ 20 and in this case we get
la(-) = a(T)]le-1 < Cllog T|'~°.
Similarly, in order for [a]y.m;—1 to be finite we need I < 1+ 2m and in this case we get
[a}%m,l—l <C| 10gT|lilim-

Next we note that m < © — « is equivalent to 5 < %, which is true.
Let us rewrite the conclusion of Proposition 5.5, namely the estimate (5.27). We have m = ©—2v(1-7)
and so

m+(1+a)y=0+v(a—-1+25).
We want this constant to be greater than ©, and this happens provided
a—14+28>0. (5.35)

But we have the restriction that o < % We see that it is possible to find o < % such that (5.35) holds if
1
> —.
b 4
The conclusion is that with the above choice of parameters m, v, I, we obtain from (5.27) that

T@
|log T|
(T — t)®+7(a*1+2ﬁ)
|log(T —t)|*
< O\ (1)OF, (5.36)

(T77™ + log |log T|) |la(-) — a(T)|

Rola)()] < O(17 + C 011+ alymi1)

where o7 is any fixed number such that
o1 € (0,y(a — 14 2p))

and o is some positive constant. This gain in the rate of vanishing of the remainder Rola](t) will be
crucial to obtain the contraction property of the system.
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5.4. The system of equations. Summarizing the above considerations, we transform the system (3.20)-
(3.21) in the problem of finding functions v (z,t), é1,...,¢s, parameters p(t) = A(t)e® £(t) and
constants ¢y, cg, c3 such that the following system is satisfied:
wt:Amw+g(p,532*+¢a¢l+¢2+¢)3+¢4) IHQX(O,T)
Y= (e3—U)—®° on 9Q x (0,7)

o (5.37)
U(,0) =(c1e1+caea+cseg)x+ (L—x)(es—U—®") in
(g, T)=-2"(q,T)
NOup1 = L [¢1] + ha[p, &, 0] = > ;lhalp, & U w? Z,
j=1,2
- Z cjlhalp, & U JwiZy;  in Do
1=—1,1 ’ (5.38)
j=1,2
¢1 . W =0 in DQR
$1(-,0) =0 in Bap(o)
N0ypa = Lw[¢2) + halp, &, U] — Z cijlhalp, & W Jw’Zy; in Dag
j=1,2
¢2 -W =0 1in DQR (539)
¢2(-,0) =0 in BQR(O)
NOps = Lw[ds] + hs — > c1jlhslp, &, W w2 Zy;
j=1,2
+ Z Caj [p,f, \I/*}ngOJ in DQR (540)
j=1,2
¢3 -W =0 in DQR
¢3(,0)=0 in BQR(O)
N20y¢s = L [¢a] + Z cojlhalp, & Vw2 1
j=1,2
¢4-W =0 inDyp (5.41)
¢4(',t) =0 on aBQR(t)
¢4(‘70) =0 in BQR(O)
cojlh(p, &, U)|(t) — Cojlp, &, ¥](t) =0 forall te(0,T7), j=1,2, (5.42)
c1[h(p, &, T")](t) =0 forall te (0,T), j=1,2. (5.43)

In (5.37) x is a smooth cut-off function with compact support in € which is identically 1 on a fixed
neighborhood of ¢ independent of T" and the function g(p, £, ¥*, ¢) is given by (3.22).

We see that if (¢1, do, ¢3, d4,0, p, ) satisfies system (5.37)—(5.43) then the functions
p=¢1+td2+ 3+ s, V' =Z"+9
solve the outer-inner gluing system (3.20)—(3.21).

The way in which we will proceed to solve the full problem (5.37)—(5.43) is the following. For given
functions ¢1, ..., ¢4 and parameters p, £ in a suitable class, we solve first the outer problem (5.37) in the
form of an operator ¢ = V[¢1 + ¢ + ¢3 + P4, p, €] and denote V*[¢1 + ¢ + ¢3,p,&] = Z* + V[p1 + ¢ +
¢3 + ¢4,p,&]. Then we substitute ¥*[p1 + ¢ + @3 + ¢4, p,&] in (5.38)—(5.41) and solve for ¢1, ¢, 3,
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¢4 as operators of the pair (p, ). Finally, we solve for p and £ the remaining equations. All this will be
done by suitable control on the linear parts of the equation and contraction mapping principle.

5.5. Choice of spaces. We will work with the following space for the inner solutions ¢1—¢4:

Ey = {¢1 € L= (Dar) : Vyp1 € L=(Dar), |91ll4,01,a1,6 < 00}

Ey = {¢2 € L™(D2r) : Vy¢2 € L=(D2r), ||¢2]l1z,0, < 00}

Ey ={¢3 € L™(D2g) : Vyd3 € L>(D2g), ||$3]lsxup, < 00}

Ey = {¢s € L™ (D2r) : Vyds € L= (D2r), ||Pallsss, < o0}
and use the notation

E = FE; x Ey x B3 X Ey,
O = (¢1,h2,¢3,¢04) € E
@Mz = 1]l 01,6 + 1P2llvn,az—2 + (1@l ws .5 + | Dallins,

We define the closed ball
B={beX:|o]p<1}
For the outer problem we will work with the following norm. Given © > 0, v € (0, 3) we define

B 1 _
[l = A (0) eIlogTIA*(O)R(O)Hz/’HL“(Qx(o,T)) + A (0) ™Y Vatdl| oo (2 (0,1))
1
+ sup M) OTRE) T ———|(x, t) — (2, T
o (t) (t) |10g(T_t)ll (z,t) —Y(z,T)|
+ sup A*(t)fewx?/f(x,t)*Vx¢($,T)|

Qx(0,T)

2y |Vm¢($7 t) B v:c'l/)(x/a t/)|
(lz = 2'|> + [t = t'[)7

+sup A ()" O (A (H)R()) (5.44)

where the last supremum in taken in the region
1
r, ' €Q, t,t'€(0,T), |v—2a|<2\R(E), [t—t]< Z(T—t).

5.6. Choice of constants. The spaces chosen before depend on some constants, which we would like to
summarize here.
e 3€(0,1) is so that R(t) = A\.(t)7".
e a € (0, %) appears in Proposition 5.5. It is the parameter used to define the remainder R, in
5.29).
. gNe u)se the norm || ||«,,,a1,6 (5.16) to measure the solution ¢ in (5.38). Here we will ask that
v1 € (0,1), a1 € (2,3), and 6 > 0 small and fixed.

o We use the norm || ||uy,a,—2 (5.15) to measure the solution ¢2 in (5.39), with v, € (0,1), a2 € (2, 3).

o We use the norm || ||ss,s (5.20) for the solution ¢3 of (5.40), with v > 0.

o We use the norm || ||«sx,., for the solution ¢4 of (5.41), with vy > 0.

o We are going to use the norm || ||3,0,, with a parameters ©, -y satisfying some restrictions given
below.

e We have parameters m, [ in Proposition 5.5. We work with m given by (5.34) and [ satisfying
[ <14 2m.

To get the estimates for the outer problem (5.37), see the computation that lead to (10.4), we need
(8.3), (10.5), (10.6), and (10.13):

1
9<min(ﬁ,§—ﬂ,l/1—1+ﬁ(a1—1),1/2—1—|—5(a2—1),1/3—1,1/4—1—|—5)

© < min(v1 = 88(5 — a1) — B,v2 — B,v5 — 38,04 — ) (5.45)
0 > 0.
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Also to control the nonlinear terms in (5.37) we need 6 > 0 in || ||« ,4,,6 to be small.
To find © in the range above we need

vi > max(1 - Blar —1),68(5 — a1) - )

vy > max<1 — Blaz — 1),6)
v3 > max(1,33)
vq > max(1l — 3, 5).
To solve the inner system given by equations (5.38), (5.39), (5.40), and (5.41) we will need
v <1,
ve <1—p(az —2),

vy < min(l +O0+01,1+0+298,11 + %56((11 — 2))7
vy <1,
where o7 is the constant in (5.36) (see (11.1), (11.9), and (11.15), (11.48)).
5.7. The outer problem. The next proposition gives a solution to the outer problem (5.37).

Proposition 5.6. Assume Z; satisfies (5.9). Let p(t) = A\(t)e™®) and £(t) satisfy estimates (5.1), (5.2),
® € B. Then there exists C > 0 such that if T > 0 is sufficiently small then there exists a solution
P =U(p,& P, Z5) to equation (5.37) such that
19(p, &, @, Z5) 1,04 < CT (1@ + 1Bl oe (— 1.1y + €]l L 0.7) + 125 ]14)-
The proof of this proposition is given in section 10.

The operator ¥(p, &, ®, Z) satisfies Lipschitz properties, which are consequence of its construction.

Corollary 5.1. Let ¥(p,&,®, ZF) be the solution to equation (5.37) constructed in Proposition 5.6. Let
pi, & satisfy (5.1), (5.2) and py = Ae™, | ®]|g < 1, and || Z§|l« < o0, 1 =1,2. Then

||\Ij(p1a§7 (I)l7 Zgl) - \II(anfv @2’ Z§2)||ﬁ7®7’)/
SCT7([|@1 = P2l + [| A (@1 — w2)lloe + 1201 = Zoall+)-

Corollary 5.1 gives a partial Lipschitz property of the exterior solution ¥(p, &, ¢) of (5.37) with respect
to p, namely it only considers variations of p = Ae? with respect to w. We will need Lipschitz estimates
for variations of p = Ae® in A and also variations with respect to £&. These estimates are obtained for
U(p,&, ¢) when considered as a function of the inner variable (y,t) € Dag.

For this let us introduce some notation. Suppose that ¢(z,t) is defined in Q x (0,7T). We let

The following expression is |9y 6., expressed in terms of 9 (and restricted to Dag):

~ L e 1
[llgz.0,7 := Ax(0) [ log T\ (0)R(0)

+ %121; A*(t)_e_lR(t)_lmW;(% t) = (y, T)|

+ sup MOV (. t) — Viyi(y, T)|
(y7t)€D2R

190 2 (Do) + 24 (0) "IV &ol| e (D)

by, t) — V(Y t
4 sup A, (t)_e_lR(t)QV |Vy¢(y, ) /VQW(:U > )|
(y:),(y/ ) €Dz ly —y'|*

2 |vy1/~)(y7 t) — vylzj(xlv t,)‘
=vp |

+sup A ()" (D R(1))
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where the last supremum is taken in the region
1
(4:1), (y,), € Dag, [t =t < (T = 1).

Corollary 5.2. Let ¥(p,&, @) be the solution to equation (5.37) in Proposition 5.6. Let p; = \je', &
satisfy (5.1), (5.2) and ||¢]lx,a0 < 1. Then for © € (0,0) we have

¥ (p1, &1, 6) — @(pmfz,éﬁ)uw,é,v
<c[IP5

T N =]

LOO
The proof of this is in Section 16.

What we do next is to take ® € E with || @]z < 1 and substitute ¥*(p, &, ®, Z§) = Z* + ¥(p, &, D, Z§)
into (5.38)—(5.41). We can then write equations (5.37)—(5.41) as the fixed point problem

o = F(P) (5.46)
where
]:(CI)):(fl(q)),fz(q)),fg(q)),]:4((1)))7 ]:261 CFE—FE
with
Fi(®) = Tai(halp, & ¥*(p, &, @, Z5)))
Fo(®) = Th2(ha[p, &, ¥" (p, &, @, Z5)])

B) = T (Bl 0, 0, 2] + Yty 069 0.0, 25020 )
j=1

2
]:4(¢) - 7;\74 (Z C_1,5 [hl [pv g’ \II*<pa ga (b’ Zg)]]wiz_L]) .
j=1
Although F also depends on p, &, Z§ we will omit this dependence from the notation for the moment.
Our next step is to solve problem (5.46).

5.8. The inner problem.

Proposition 5.7. Assume that p and § satisfy estimates (5.1) and that Z satisfies (5.9). Then the
system of equations (5.46) for ® = (¢1, 2, 3, d4) has a solution ®(p,&,Z3) in By C E.

The proof is in Section 11.

Let ®(p, &, Z§) be the solution of (5.46) constructed in Proposition 5.7. Next we show that the solution
®(p, &, Z;) is Lipschitz in the parameters p, &, Z§.

Proposition 5.8. Assume that p1,p2 and &1, &2 satisfy estimates (5.1) and that Z3 1, Zg 5 have the form
Z5, =230+ 25y, 1=1,2,

with Z;° satisfying (5.6) and
1Z53ll- <17,

Let us write pj = \;e™i for j =1,2. for some o > 0. Then

* * o . . A
101,61, Z5.1) = @2, €2, Z52) | < M(0)7 [IA o — o)l + ||

A HL&

él—rfgu
R

+ 1A = Aol + ‘ 3!

ot
+ 1284 - Z5h )]

for some possibly smaller o > 0.
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With this we can now state the following result. Let ®(p,&, Z}) denote the solution of (5.46) con-
structed in Proposition 5.7.

Proposition 5.9. Given Z} of the form (5.9) there exists p = Xe’ and € such that (5.42) and (5.43)
are satisfied.

The proposition above yields the existence of a blow-up solution. The proof is given in Section 12.

6. LINEAR THEORY FOR THE INNER PROBLEM

At the very heart of capturing the bubbling structure is the construction of an inverse for the linearized
heat operator around the basic harmonic map. We consider the linear equation

N0 = Lw[¢] + h(y,t) in Dag (6.1)
#(-,0) =0 in Bapo)
¢-W =0 in Dap
where
Dor ={(y,t) / t €(0,T), y € Bar()(0)}-
We assume that h(y,t) is defined for all (y,t) € R? x (0,T) and satisfies

AV
h-W=0, [y t)|<C—T—,
M O1= Oy
where v > 0 and a € (2,3) (so that ||h||o,, < 0o with the norm defined in (5.15)).
The parameter R is given by (5.3), that is R(t) = A.(t)™%, B € (%,3). Also, we assume that the

parameter function A(t) satisfies we have that
aX(t) < A(t) < bA(t) forall te(0,T)

for some positive numbers a, b, ¢ independent of T'.

We observe that a priori we are not imposing boundary conditions in problem (6.1). Our purpose is to
construct a solution ¢ that defines a linear operator of h and satisfies uniform bounds in terms of suitable
norms.

All functions h(y,t) with h(y,t) - W(y) = 0 can be expressed in polar form as
h(y,t) = h'(p,0,0)E1(y) +h*(p,0,1)Ea(y), y = pe”. (6.2)

We can also expand in Fourier series

h(p,0.t) :=h' +ih? = " hi(p,t)e™, Ty = hiy + ihpo (6.3)
k=—o00
so that
h(yt) = Y hi(y,t) =: ho(y,t) + ha(y,t) + ho1(y,t) + h*(y, 1), (6.4)
k=—o00
where ) 3
hi(y, t) = Re (h(p, 1)e™) Er + Tm (hy(p, 1)e™) Es. (6.5)

We consider the functions Z;(y) defined in (2.2) and (2.3) and define for k = —1,0, 1,

Z fXZk] h(z,t) - Zii(2) dz,

R2 X|ij|2 R2

where

if [y > 2R(¢).

The main result in this section is the following, where we use the norm ||h||,,, defined in (5.15).

X(y.t) = {8”5(|y> if |y| < 2R(1),
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Proposition 6.1. Let2 < a < 3, v > 0 and let h with |||, < +oo. Let us write h = hg+hy +h_1+ht
with h- = E,#O,il hi.. Then there exists a solution ¢[h] of problem (6.1), which defines a linear operator
of h, and satisfies the following estimate in Dag:

(1+ 10 960001 + 1600 £ 737 7o |
A (B R(t) =
1+ [yl
A (1) R(t)?
L+ |y
Au(t)”
TH [yl |
A (B R(t) =
1+ [yl
+ A (t)" log R(#) [[P-1]a,v-

o,

. 5—a _ -
mln{LR 2 |y| 2}Hh0_h0”a,v

17olla.

. ORI
=l + 20

. S—a, -
min{1, B2 [y| 7} oy — hetllaw

The construction of the operator ¢[h] as stated in the proposition will be carried out mode by mode
in the Fourier series expansion. We shall use the convention that h(y,t) = 0 for |y| > 2R(t). Let us write

6= > ¢ Ok(yt) =Re(pi(p, )e™) By +Im (o1 (p, t)e™”) By

k=—o00
We shall build a solution of (6.1) by solving separately each of the equations
N0 = Lw[gr] + hi(y,t) =0 in Dyp, (6.6)
(rbk(ya O) =0 in B4R(O) (0)7
which, are equivalent to the problems
NOwpr = Lilow] +hn(p,t) in Dar,
er(p,0) =0 in (0,4Ro)
with ~
Dyr ={(p,t) / t €(0,T), p € (0,4R(t))}
and we recall

0
Lilor] = 0ok + pTSOk — (k* 4 2k cosw + COS(2U)))%
We have the validity of the following result.
Lemma 6.1. Letv >0 and 0 < a < 3, a# 1,2. Assume that

17 (y,t)
Then problem (6.6) has a unique bounded solution ¢ (y,t) of the form

(bk(y,t) = Re(ﬁpk([),t)eike) E1+Im(@k(p,t)€ik9)E2

which in addition satisfies the boundary condition

or(y,t) =0 forallt € (0,T), y € OBpy(0). (6.7)

These solutions satisfy the estimates

u(y, D) < cnhna,uxzk*{ (

la.p < 400.

R?~@ if  a<2,

L+p)20 if a>2 UF22

[p-1(y, 1) < Cllh

\ R if a<?2,
oy logR if a>2,
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_ R? if a>1
v 1 ’
[¢o(y,t)] < CllAllapAL(1+p) { R if a<l,

61(y.0)] < CllhllapAL(1+p)2R™.

with C' independent of R and k.

Proof. Standard parabolic theory yields existence of a unique solution to equation (6.6) that satisfies the
boundary condition (6.7), for each k. Equivalently, the problem

NOvpr, = Lilr] + hi(p,t) in Dag, (6.8)
wr(t,4R) =0 forall te€ (0,7T)
¢x(0,p) =0 in (0,4R(0)),
Oppr

Lilpr] = 559% + T — (k‘2 + 2k cosw + cos(Qw))%

has a unique solution ¢ (p,t) which is bounded in p for each t.

We use barriers to derive the desired estimates. A first observation we make is that for mode k = —1
the elliptic equation £_1[¢] + g(p) = 0 in (0,4R) with p(4R) = 0 has a unique bounded solution given
by the variation of parameters formula

4R r r
o(p) = Z-1(p) / pzd() / 9(8)Z1(s)s ds, (6.9)
Z_1(p) = —pPw, = %

Here we have used that £_1[Z_1] = 0. Let us call ¢o(p) the function in (6.9) with g(p) := 2(1 + p)~°.
We readily estimate

ool(o)] < R?—@ if a <2,
POE= Y142 ifa>2
Let us call 3(p,t) = Au(t)”0(p). Then we see that
“X1(p,1) + Lo [p(p, )] + o < XA po(p) — e
’ ’ (L+p) = 7 (1+p)e
< —N/(14p)"" [1 = CAR* (14 p)°]
<0

. _1
in Dyr. Indeed, since R(t) < A« 2, the inequality holds provided that T was chosen sufficiently small.
Thus for k = —1 the barrier ||h||q, @(p,t) dominates both, real and imaginary parts of ¢_1(p,t). As a
conclusion, we find

R?—@ ifa <2,

in Dyg.
(1+p)20 ifa>2, "

[¢-1(y, 1) < Cllhllawi{

The cases k = 0,1, —2 can be dealt with in exactly the same manner, by replacing Z_; in Formula (6.9)
respectively by the functions

) Zl(p):
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The estimates for ¢y, predicted in the Lemma then readily follow for £ = —2,—1,0,1. Finally, let us now
consider k with |k| > 2 and k # —2 and the function ¢(p,t) as above. Now we find

—N@i(p,t) + Li[p(p,t)] < (L — L1)[(p,1)]

1
< —ON(K* =1+ 2(k — 1))?(1 +p)* e

A -
<-Ck*=1+2k—-1)——— in Dyp.
( ( ))(1+p>a m 4R

The latter quantity is negative provided that |k| > 2 and k # —2 and hence we get the estimate

C R?*a ifa<2
A < = |hllesA” *in Dyp.
o] < 5l {<1+p>2—a e sy D

The proof is concluded. O

We can get gradient estimates for the solutions built in the above lemma by means of the following
result.

Lemma 6.2. Let ¢ be a solution of the equation
N0 = Lw[¢] + h(y,t) in Dayr (6.11)
(b('a 0) =0 n B4"/R(O)-
Given numbers a,b,~y, there exists a C' such that if for some M > 0 we have
|6y, )] + (L4 )[Ry, )] < MA@ (L + [y~ in Dayp, (6.12)
then
1+ [yDIVye(y,t)] < C MA@ (1+]y)™" in Dsyr (6.13)
and we recall
Dyr =A{(y,t) / lyl <~R(t), te(0,T)}.
If in addition we know that ¢ satisfies the boundary condition ¢(-,t) = 0 on By re) for all t € (0,T)
then estimate (6.13) holds in the entire region Dayg.

Proof. To prove the gradient estimates, we change the time variable, defining

¢
T(t) = /O AEZ:)Q, (6.14)
so that (6.11) becomes in the variables (y, 7)
0-¢ = Lw @] + h(y,7) in Dyyp
¢(-,0)=0 in B4R(O)
Let 7 > 0 and y; € B3ygr(+,)(0). Let p= "’5—1' + 1 so that B,(y1) C Bayr(r,)(0). Let us define

5 T
O(=1) = oy +p2,mi+p%), 2 €BI0), s>

We distinguish two cases. First, when 7, > p?, we use interior estimates for parabolic equations, while
for the case 71 < p2, we use estimates for a parabolic equation with initial condition.
Assume 71 > p?. Then ¢(z, s) satisfies an equation of the form

bs = Aop+ AV.¢p+ B+ h(z,s) in B(0) x (—1,0]
with coefficients A(z, s) and B(z, s) uniformly bounded by O((1 + p)~2) in B1(0) x (—1,0] and
h(z,s) = p*h(ys + pz, 71 + p*s).
Since p < CR(71) and R(m1)? < 7 for 71 large we get
M (1) S (11 4+ p%8)° < A(m)b, s € (—1,0].
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Standard parabolic estimates and assumption (6.12) yield
”vz(ZE”LOO(B%(O)x(lQ)) S ||<Z~5||Loo3%(o)x(o,2) + HBHL‘”(B%(O)X(OQ))
g M)‘*(Tl)bp2iaa
so that in particular
pIVyd(y1, )| = [V20(0,1)] S M A(1)"p* "

In the case 7 > p? the argument is similar, but the equation for ¢ holds in B;(0) x (—2%, 0] and has

initial condition 0 at s = —;—5. Finally, for the last assertion we argue in similar way but using boundary

rather that interior gradient estimates. O

In addition to estimate (6.13) we have a Holder gradient estimate which is more natural to express
using the variable 7 in (6.14) as follows. We denote

Be(y,7) ={(y',7") [ ly =/ P + 7" = 7| < 7}
For a function g(y,7), a number 0 < a < 1, and a set A we let
|fy,7) = f', ") ror
= ,T), (', 7)€ A
=yl rpE | ) W) e Ay

Corollary 6.1. Let ¢ be a solution of the equation (6.11) with h(y,7) = div H(y, 7). Given o € (0,1)
and constants a, b, v there is C' such that if

|6y )+ L+ D H (. 7+ O+ ) H] s, (), mnDa e < M A(T) (L [y
in Dayr, where l(y) =1+ I%‘, then

L+ yDIVyely, T + @+ ) Vb, )P < C MG A+ [y]) (6.15)

in D3yg. If in addition we know that ¢ satisfies the boundary condition ¢(-,t) = 0 on OByyg() for all
t € (0,T) then estimate (6.15) holds in the entire region Dayr.

o= s0p |

Our next goal is to construct an inverse for modes k = —1,0,1 with a better control when subject to
a certain solvability condition.

6.1. Mode k = 0. Let us consider again equation (6.6) for £ = 0 and the functions Zy;(y) defined in
(2.2) . We have the following result.

Lemma 6.3. Let assume that 2 < a <3, k=0 and
/ ho(y,t) - Zoj(y)dy = 0 forall te0,T) (6.16)
R2

for j =1,2. Then there exist a solution ¢g to equation (6.6) for k = 0 that defines a linear operator of
ho and satisfies the estimate in Dsg,

[¢0(y, )| < [lho

A central feature of estimate (6.17) is that it matches the size of the solutions obtained in Lemma 6.1
for k # 0,1 when |y| ~ R.

5—a

RN+ y) ™ min{1, R [y| 72} . (6.17)

Proof. We observe that conditions (6.16) can be written as

2R
/ ho(p,t) Zo(p)pdp = 0 forall 7€ (0,T). (6.18)
0

Let us consider the complex valued functions

Holprt) = ~2) [

$Z0(s)?

/ Ro(C, 1) Zo(C)CdC, K =0,1.
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They are well-defined thanks to (6.18). Then the function
Ho(y, t) := Re (Ho(p, 7)) E1(y) + Re (Ho(p, 1)) Ea(y)

solves
Lw[Ho(y,7)] = ho(y,7) inDur
and satisfies
[Ho(y, )] S A(®)”(1+1y1)* *holla,y  in Dag.
Moreover, elliptic gradient estimates yield

Yy Ho(y, 7)< M) (1 + [y]) =l ho

Let us consider the problem

|a’y in D3R.

N2®;, = Ly [®] + Ho(y,t) in Dyg, (6.19)
®(y,0) =0 in Byr(0)
®(y,t) =0 forallte (0,7), y€ dBypo)(0)
According to Lemma 6.1, this problem has unique solution ® = ® that satisfies the estimates
@0y, )] < ClHolla—z0Xe(7)" (1 +|y)) ™" R*™* in Dyp.
Applying Lemma 6.2 we deduce that, also,
Vy@o(y, t)| < [ Holla—z0 X (1) (L + |y))7* R*™* in D3g
Let us write
®g; = 0y, P9, Ho; = 0,,Ho
Then we have
N20,®0; = Ly [®o;] + 0,, VW [*®q + 2V, WV + Ho;(y,T)
+2(V®0,, VW)W +2(VE,VIW)9,, W in Dsp,
Po;(y,0) =0 for all y € B3p(0)(0)
According to Lemma 6.2 and the above estimates we obtain that
(1+ [yDIV®o;(y, )] < lholla, A (®)” (1 + |y)) 2RO
+lhollapXe(®)” (L + [y))* ™ in Dsp.

Then we define
o := L [®o]
so that ¢ = ¢ solves
Mgy = Lw[g] + ho(y,t) in Dap,

#(y,0) =0 forall y & Bsr(0)

and defines a linear operator of the function hy. Moreover, observing that
|Lw [®o]| < |[D2®o| + O(p™*) [®o] + O(p™?) | Dy 0|
we then get the estimate
60(y, )| < [1h0llaw B2~ N(®) (1 + |y) 2. (6.20)

To complete the proof of estimate (6.17), we let ¢ be the complex valued function defined as

$o(y,t) = Re(po(p,t)) Ex+Im (po(p,t)) E>
so that letting R’ = R <« R, using the notation in (6.8), yq satisfies the equation
N0upo = Lolwo] + ho(p,t) in Dpy, (6.21)
©00(0,p) =0 in (0, R'),
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and from (6.20), we can find an explicit supersolution for the real and imaginary parts of equation (6.21),
which also dominates their boundary values at R’, which yields

2oy, )] < lhollap AL IRPA+ 1), [yl < R
Combining this estimate and (6.20) yields the validity of (6.17). O

We mention next a variant of Lemma 6.3, in which we weaken the hypothesis on the right hand
side, allowing it to be a divergence of Holder continuous function. This will be needed when analyzing
estimates of the derivative with respect to A of operator 7, 2 (Proposition 5.3).

Lemma 6.4. Let assume that 2 < a <3, v >0, and k = 0. Let hg have the form
hO(va) = div HO(va)
such that
(14 D [ Ho(y, )| + (1 + [y1) ™ [Hol s, (y) v r)nDan < Ae(T) (1 [y) ™%,
in Dag, where o € (0,1) and £(y) =1+ I%‘, Assume also that

/ ho(y,t) - Zos(y)dy = O for all ¢ € [0,T)
R?

for j = 1,2. Then there exist a solution ¢g to equation (6.6) for k = 0 that defines a linear operator of
ho and satisfies

5=a ., _ . 5—a _
[60(y, )] < 1hollaw B AG(L+ [y)) ™" min{1, R7=" |y| =2},
mn D3R.

6.2. Mode k = —1. Let us consider equation (6.6) for k = —1 and the functions Z_1;(y) defined in (2.3)
. We have the following result.

Lemma 6.5. Let assume that 2 < a <3, k=0 and

/R2 h-1(y,t) - Z_1;(y)dy =0 forall te[0,T) (6.22)
for 7 =1,2. Then there exist a solution ¢_1 to equation (6.6) for k = —1 that defines a linear operator
of ho and satisfies the estimate in Dsg,

|6-1(y: )] S [Ih-1]la,, AV min{log R, R*~“|y|*}. (6.23)

Proof. The proof is essentially the same as that of Lemma 6.3. The differences are as follows.
From (6.22) we can find a function H_; defined in R? such that

Lw[H_i]=h_1 inR?
and satisfying the estimates
[Ho1| S M)+ [y)* llholla,y  in Dag,
IVyH_1(y, 7)] S M) (L +y)) ' holla,y  in Dsp.
Let us consider the problem
N, = Lw[®] + H_1(y,t) in Dag,
®(y,0) =0 in Bygr(0)
P(y,t) =0 foralltec (0,T), y € dByp)(0).

This problem has unique solution & = ®_;, and applying the same proof as in Lemma 6.1, we get the
estimate

|(I)*1(y3t)| §C||H71||a72,y)\*(T)VR47a in D4R~
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Applying Lemma 6.2 we deduce that, also,
|qu)71(yvt)‘ S ||H71||a72,1/)\*(7—)y(1 + |y|)71R4ia in D3R~ (624)
Arguing as in Lemma 6.3 we get that
-1 = Lw|[P_4]
satisfies
Nér = Lw[g] + h_1(y,t) in Dy,
#(y,0) =0 forall y € Bsr(o)(0)

and defines a linear operator of h_;. Moreover we get estimate

[0-1(y, 1) S [h-rllawAe ()R + [y]) 7> (6.25)

As in Lemma 6.3, using a super solution in D with R’ = R logfl/2 (R) we find that
621D S Ih-1lla log R, in D (6.26)
Then combining (6.25) with (6.26) we obtain the desired estimate (6.23). O

6.3. Mode k = 1. Now we deal with (6.6) for £k = 1. For convenience we give the result for a right hand
side more general than strictly need for the proof of Proposition 6.1. Let us assume that h is defined in
entire R? x (0,T) and that

ha(y,t) = div, G(y, t) (6.27)
where
Au(t)” 2
Gy, t)| < ——=2 4y eR2 te(0,T), 6.28
|G(y )\_1+|y|a,1 y (0,7) (6.28)

for some v > 0, a € (2,3). Then the following result holds.
Lemma 6.6. Let assume that 2 < a < 3, k =1, hy has the form (6.27) so that (6.28) holds and

hi(yt)- Z{(y)dy = 0 forall te(0,T)
R2
for j =1,2. Then there exist a solution ¢1 to equation (6.6) for k = 1 that defines a linear operator of
h1 and satisfies the estimate in Dsp,

[01(y, 1) S A(®)” (1 + [y])*
From this we get directly the next result.

Corollary 6.2. Let assume that 2 < a <3, k=1 and
/ h(y,t)- Zi(y)dy = 0 forall te(0,T)
Bar

for j =1,2. Then there exist a solution ¢1 to equation (6.6) for k = 1 that defines a linear operator of
h1 and satisfies the estimate in Dsg,

D1, )] S IPallawAe()” (1 [y)* ™"

Let us do the same change of the time variable as in (6.14) so that (6.6) for k = 1 in entire R? becomes
in the variables (y, 7)

d;¢ = Lwlp]+h inR?x(0,00), (6.29)
#(-,0) = 0 inR%
Thus, we consider a function h(y,7) defined in entire R? x (0, 4+00) of the form

h = Re (he'®) Ey + Im (he'?) Es, (6.30)
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that satisfies the orthogonality conditions for j = 1,2
/ h(-,7)-Z1; = 0 forall 7€ (0,00) (6.31)
R2

and such that h(y,7) = 0 for |y| > 2R(7).
By standard parabolic theory, this problem has a unique solution, which is therefore of the form

¢ = Re (pe'?) By + Im (pe') By, (6.32)
where the complex valued function ¢(p, 7) solves the initial value problem
0-p = L[] + h(p,7) in (0,00) x (0,00), (6.33)
¢(p,0) =0 in (0,00),
0
Li[p] = 0o + pTSD —(1+2cosw + cos(?w))%.

We have the validity of the following result.

Lemma 6.7. Let 0 < o <1, v > 0. Assume that h is mode 1, that is, has the form (6.50), satisfies the
orthogonality conditions (6.51), and can be written as in (6.27) with g; satisfying (6.28) where b =1+o0.
Then there exists a constant C' > 0 such that the solution ¢ of problem (6.29) satisfies the estimate

[p(y, 1) < C IA;(ZIV" (6.34)

For the proof of this result we will use the following Liouville type result.
Lemma 6.8. Let 0 < o < 1. Suppose ¢~> satisfies
Q;T = LW[(JB} in R? x (—OO, 0]7

G(7)- Z1; =0 forall € (—00,0],
R2

in R? x (—o00,0], j=1,2,

oy,
3071 < 7
é(y,7) = Re (¢(p, 7)e’’) By + Im (§(p, 7)e”’) En.
Then QNS =0.
Proof. By standard parabolic regularity &(y, 7) is a smooth function. A scaling argument shows that
(L+ ) Dyo| + | + D36l < C(L+[yl) ™
Differentiating the equation in 7, we also get 9;¢, = Lw[#,] and we find the estimates
(L+1y) " Dydr| + [6rr| + 1Djd-| < CL+1y) ™"

Testing suitably the equations (taking into account the asymptotic behaviors in y in integrations by
parts) we find

1 - -
507-/ |¢T|2+B(¢T7¢T) :07
R2
where
BG.6) == [ Iwldl 6= [ V3 - [PWIG.
It is useful to observe the following: since
#y,7) = Re((p,7)e”) Ex + Im (&(p, 7)e") Ex

then we compute, using that £;[w,] =0,

B3 =~ [ Cilelesds = [ I 0, Putpdp = o
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We also get
- 1 -
/ ‘¢‘r‘2 = 7587'3(9257 ¢)
R2

0
ar/ 6.7 <0, / dT/ 6. < +oo
R2 — 00 R2

and hence ¢, = 0. Thus ¢ is independent of 7 and therefore LW[(;S] = 0. Since ¢ is at mode 1, this implies
that ¢ is a linear combination of Zy;, j = 1,2. Since fRQ ¢-Z1; =0, j=1,2 we conclude that ¢ =0, a
contradiction. 0

From these relations we find

Proof of Lemma 6.7. Let us write
I8llo.r, = sup Au(7) V(L + [yI") 6]l oo m2).

T€(0,71
We claim that for any 7 > 0 we have that
||¢||2+0’,T1 < +00. (635)

Let us recall that with the transformations (6.32) we have that the complex valued function ¢(y,7) is
radial in y and solves the initial value problem

Orp = Apzp — (1 +2cosw + cos(2w))p% + h(p,7) in R? x (0, 00),
¢(-,0) =0 inR?
where p = |y|, y € R? and h is related to h by (6.30). Let us write ¢ = ¢, 4 ¢, where ¢, is the unique
solution to
0-pa = Ag2pa + h(p,7) in R? x (0,00),
¢a(-,0) =0 in R?
given by Duhamel’s formula. Using the heat kernel in R? one readily shows that ||¢a||240,~ < +00. Let
Orpp = Apzp — (1 + 2cosw + cos(Zw))%(cpa +¢p) in R? x (0, 00),
op(-,0) =0 in R%

By standard linear parabolic theory ¢y (y, 7) is locally bounded in time and space. More precisely, given
R > 0 there is a K = K(R, ) such that

[96(y,7)] < K in Br(0) x (0,71].

If we fix R large and take K; sufficiently large, we see that K;p~7 is a supersolution for the real and

imaginary parts of the equivalent complex valued equation (6.33) in the region p > R. As a conclusion,
we find that |¢p| < 2K71p77, and therefore ||¢p||o,r, < 400 for any 71 > 0. This proves (6.35).
Next we claim that

G(7)-Z1; =0 forall 7e(l,m), j=1,2 (6.36)
]R2
Indeed, let us test the equation against
Zyjn,  n(y) =no(R™'yl)

where 7 is a smooth cut-off function with 79(r) = 1 for r < 1 and = 0 for » > 2 and R is an arbitrary
large constant. We find that

(1) - Zijm = / ds [ () (Lw[nZij] + h- Zim). (6.37)
R2 0 R2
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On the other hand,

/2 ¢ - (LwnZijl +h-Ziyng) = /2 ¢ (Z1;An+2Vn - NVZi;) — h- Z1j(1 —ng)
R R

= O(R™*77)
uniformly on 7 € (0,71). Letting R — 400 in (6.37) we get that (6.36) holds.

Now we claim that there exists a constant C' such that for all 71 > 0 we have the validity of the
estimate

H¢||U7Tl S Ca (638)

so that in particular estimate (6.34) holds.
To prove (6.38) we assume by contradiction the existence of sequences 7{* — 400 and ¢, h,, of the
form (6.30), (6.32) satisfying

Ordm = Lw[dn] + hn  in R? x (1,71,
. On(,7)-Z1; =0 forall Te(1,77),
’ én(-,1) =0 in R?,
so that

¢nllomp =1 (6.39)

but

li4orn — 0, asn— oo.

2
hn =Y 0y gim: lgjn

j=1
We claim first that

sup 7¥|¢n(y,7)[ = 0 (6.40)
1<r<r

uniformly on compact subsets of y € R2. If not, for some M > 0 there are |y,| < M and 1 < 75 < 77 s0
that

N | =

(72)" (1 + lyn|")|D(yn, 73')| =

Clearly we must have 73° — +00. Let us define

Py, ) = (13)" bn(y, 75 + 7).
Then
Ordn = L [dn] + e in R? x (1 —73,0]
where h,, — 0 has the form
(15)" 1
(g + 77 T+ Ty

2
hn = Zangj,na 19j,n(y, 7)| < o(1)
j=1

and

in R? x (1 —73,0].
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From standard parabolic estimates, we find that passing to a subsequence, ¢~>n — ¢~) uniformly on compact
subsets of R? x (—oo, 0] where ¢ # 0 and

¢r = Lw[¢] inR? x (—o0,0],

¢(,7) Z1;=0 forall 7€ (—00,0],
R2

37 < T

d(y,7) = Re (¢(p, 7)e™) By +Im (p(p, 7)e') Es.
But then Lemma 6.8 implies that ¢ = 0, which is a contradiction, and we conclude that (6.40) indeed

holds.
From (6.39), we have that for a certain y,, with |y,| — oo and 73 > 0,

in R? x (—00,0], j=1,2,

n\v o n 1
(75)"[yn [ &n (yn, 73)| 2

3
Now we let
én(zaT) = (Tzn)y|yn‘o ¢n(|yn|_1z’ |yn|_27 + TQH)
so that
Drpn = Dy 4 an - Vot 4 bndn + hn(2,7)
where

(2, 7) = () 7 (|~ 2 Lyl =27+ 75),
and |a,| + |bn| — 0 uniformly on compact sets of R? \ {0}.

Note that
2
hn = Z 8zj gj,n
j=1

where
Gjon(2:7) = (13)"[ynl 77 g5 (1Yl ™ 20 lynl 27 + 73),
By assumption on g;,, we find that g;,, — 0 uniformly on compact sets of (R?\ {0}) x (—o0,0]. Besides
|[én (12, 0)] = 1. and

|Gz, m) < L2177 ((r3) "yl 27 + 1) 7%
As a conclusion, we may assume that qgn — c;NS # 0 uniformly over compact subsets of R? \ {0} x (—o0, 0]
where

br =A.¢ inR?\ {0} x (—o0,0].

and

|6(z,7) < |27 in R*\ {0} x (—o0,0].

Moreover, the mode 1 assumption for ¢,, translates for (/; into

(E)(Z, ) = {@(pv 7_)621‘9

D)o e

for a complex valued function ¢ that solves

vy, 4y

Or = Qpp + ? — ? in (0,00) x (—00,0], (6.41)
lo(p,7)] < p77 in (0,00) X (=00, 0].
Let us set -
ulp,t) = (" + 07+ 5
Then

4
—uy + Au— TZ < (PP +t) 7 o(o+2) — 4+ g] <0.
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It follows that the function u(x, 7 + M) is a positive supersolution for the real and imaginary parts of
equation (6.41) in (0, 00) x [-M,0]. We find then that |¢(p, )| < 2u(p, 7 + M). Letting M — +oco we
find

2e
le(p, 7)| < e

and since € is arbitrary we conclude ¢ = 0. Hence ¢ = 0, a contradiction that concludes the proof of the
lemma. ]

Proof of Lemma 6.6. We take h to be the extension as zero of the function h; as in the statement of the
lemma. Then we let ¢ be the unique solution of the initial value problem (6.29), which clearly defines a
linear operator of h;. From Lemma 6.7, expressing the resulting estimate in the variables (y,t), we have
that for any t; € (0,7

0@y, 1) < OX()” (L + [y) "7 [All24+0e,  forall te(0,t1), yeR
Then letting ¢ := ¢|D3R and letting t; T 7T the result follows. O

6.4. Proof of Proposition 6.1. We let i be defined in Dy with ||h|q,, < 400, with a € (2,3), v > 0.
We consider the problem

)\28t¢ = Lw[gb] + h in D4R
#(-,0) =0 in Byg(o),

(recall that h is assumed to be defined in R? x (0,7'). Let ¢y be the solution estimated in Lemma 6.1 of

N0y = Lw[¢r] + he  in Dag
¢(,t) =0 on dByr forall te (0,7T),
#(-,0) =0 in Byp(o)-

In addition we let ¢o1, ¢11, ¢_11 solve

)\26t¢k1 = LW[¢k1] + Bk in D4R
¢r1(,t) =0 ondByg forall te (0,7T),
¢k:1(', 0) =0 in B4R(O)

for k = 0,1, —1. Let us consider the functions ¢g2 constructed in Lemma 6.3, ¢_1 2 constructed in Lemma
6.5, and ¢12 constructed in Lemma 6.6, that solve for £k =0,1,—1

N0, ¢k2 = Ly [pra] + he — by, in Dag
¢k2(', 0) =0 in BSR(O)-

We define
= > (trator)t+ >, ok

k=0,1,—1 k#£0,1,—1

which is a bounded solution of the equation

N¢y = Lw[¢] + h(y,t) in Dsg
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that defines a linear operator of h. Applying the estimates for the components in Lemmas 6.1, 6.3, 6.5,
and 6.6 we obtain

()Y log R(t
6.0 5 29T
Ao (1) LM ()R
N Nk — R Ax\Y) U
1+| |a 2 || 1= 1|| 1+| |2 H 1||z/a
)\*() == . S—a, | _g — )\*(t)VRz -
—_ 1,R = ho — h _
R (LR 2 o — Rolles + S

+ A min{log R, R*™“|y| 7} |h—1 — hilaw + As(8)" log Rl At lav,
in D3g. Finally, Lemma 6.2 yields that the same bound is valid for (1 + |y|)|Vy¢| in Dagr. The function

¢| Don solves (6.1), it defines a linear operator of h and satisfies the required estimates. O

6.5. Modified theory for mode 0. Let us consider the problem

Ny = Lwe+h(y,t) + Y éojZojws in Dag
7j=1,2

p-W =0 inDap (6.42)
©=0 on dBsg x (0,T)
¢(,0)=0 in BQR(O)a

in mode 0. The result here is the following.

Proposition 6.2. Let o € (0,1), 6 € (0,1), v > 0. Assume ||h]|y240 < 00. Then there is a solution ¢,
Coj of (6.42), which is linear in h, such that

oy, ) + (L + |yDIVye(y, 1) < CXL

(I+1yl)
1 2R° < |y| <R,

{RS(SU; lyl < 2R’
T

and such that

Jp. e Zo;
fR2 |ZOJ|2
where G is a linear operator of h satisfying the estimate

coj[h] = - G[h]

|G[h]| < CALR™

(6.43)
with 0 < o’ < 0.

We are using the terminology mode 0 from §6, which means that ¢ has the form
¢ = Re(@e)Ey + Im(pe'?) By

where ¢ is a complex valued function of p and t. The equation A?¢; = Ly ¢ + h(y,t) (wit h also in mode
0) becomes

cos(2w) _
—5—,
p

5 1
N0yp = Lo@+h, where Lo[@]:=d,p+ ;apgz: —

and we have a similar definition for h. Note that the operator £y at p = 0 and p = oo is given by
85(,5 + %a,@ — p%gé. The last equation can be written as a regular parabolic PDE by setting ¢(y,t) =

G(p,t)e ", y = pe®,

16 .

>\28th5 = Ayﬁﬁ + W + h(y,t).
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Thus, instead of (6.42) we will construct a solution to (changing the notation to ¢ and h)

Ny = Ay + S¢+ h(y,t) + éopwf; in Dop

16

(T +1yl?)
¢=0 ondBag x (0,T) (6.44)
¢(-,0) =0 in Bag(),

with ¢ complex valued of the form o(y) = ¢?@(p,t) (and the same for k). Here & is complex and related

to on in (642) by 50 = 601 + ’i&og.

We will construct ¢ solving (6.44) of the form
=m0+

where

n(y,t) =m (%)

and ny(r) = 1 for r < 1, m(r) = 0 for » > 2. Here R; = R°. We find a solution to (6.44) if we get ¢, ¥
solving the system

(6.45)

AN0rp = A¢p + Bo + By + h(y,t) + copwi in Dog,
¢(-,0)=0 in Bag, (0)s

A20pp = Ap+ (1 —n)BY + Ap+ (1 — n)h(y,t) in Dag
Y =0 ondByr x(0,T) (6.46)
¥(,0) =0 on Byr(),

where
B—L Ap = ¢An + 2VoV 10)
- (1 + |y|2)27 - 77 77 Tlt'
Consider
N0pp = Ap+ (1 —n)Bp + h(y,t) in Dap
=0 on 0Byr x (0,T), (6.47)
Y(y,0) =0 Vy € Bap(o),
with ¢ and h of the form ¢ = ¢ (p, t)e?. Let

lollS = %UP{A:”(t)(l +1yD7 [ O+ A+ DIV (y, 1)l ]}

Lemma 6.9. Let o € (0,1), v > 0 and let 3 solve (6.47). If Ry is sufficiently large, then
19155 < Cllhlly,240- (6.48)
If in (6.47) h is replaced by (1 —n)h we get the additional estimate
1

[U(y, )] + Ri|Vip(y, t)] < CAZRW ly| < 2R;.
1

Proof. To prove this lemma, we first claim that for the equation
N0wp = Ay + h(y,t) in Dag
¥ =0 on dBsg x (0,7,
Y(y,0) =0 Vy € Bag(o),
with ¢ and h of the form ) = ¥(p,t)e’. we have
19155 < Cllpll2+0- (6.49)
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This is obtained using a barrier for the real and imaginary parts of 1/3, which satisfies
N0 = 0, + %a,ﬂz) - pizlz +h.
To find the estimate for the solution of (6.47) we need to estimate ||(1 — 17)B||,,2+0. We have that
(L=mB ¢l < (L —mA L +[yh ™l
< Ra(0) N1+ y) 2wl

and therefore

(L = M) Bll2+o < CR1(0) (91152
Then, if ¢ satisfies (6.47), using (6.49) we get

1911 < CIA=mBY + hlluaro < CRUO) ML) + Clhll2t0-
If R1(0) is large enough, we obtain (6.48). O

Proof of Proposition 6.2. We use Lemma 6.9 to find a solution 9[¢] of (6.47) with h replaced by A¢, and
a solution [h] of (6.47) with h replaced by (1 — n)h, so that ¢[¢] + ¢[h] is the solution of (6.46).
Let o1 € (0,1). We also get the estimate

191811152, < CllABlu 240, (6.50)
We take R; = R® and construct a solution of the system (6.45), (6.46). For this it suffices to find ¢
such that

. (6.51)
#(-,0) =0 in Bag, (0)-

Let T denote the linear operator given by Lemma 6.3, Applied in Dag,. Then to solve (6.51) we consider
the fixed point problem

{A28t¢ = A¢ + Bo + BY[¢] + BY[h] + h(y,t) + copw); in Dag,

¢ = T[ByY[¢] + By[h] + h].
Let 0 € (0,1). By Lemma 6.3,

HT[9H|*,V,2+U < ||g||t/,2+o'7 (6.52)
where
ALY+ [yD)?
||¢||*,V,O' = sup T_J Hqﬁ(y, t)' + (1 + |y‘)|vy¢(yvt)|] .
1
We claim that if oy < o then
||A¢||V,2+61 < CR1(0)0170||¢”*,V,0~ (6'53)
Indeed, we have
1 R3—0' Ralfa
dAn| < N ———|An ||| ]l 0 < CN————— 0|40
| | R% (1+ |y‘)3| 1||| || (1+ |y|)2+01 H ||
1
<CR1(0)7 7N ————— D] 4vi0-
> 1( ) *(1+ |y|)2+0-1 H¢|| s
Similarly
1 R370’ Ra'l—a
VoV < —N —L1 |V oo KON —L —||flso-
‘ (b 77| = Rl (1+‘y|)4| anl(b” W, = (1+|y|)2+01 ||¢|| Vs

Similar estimates for the remaining terms in A prove (6.53).
From (6.50) and (6.53) we find

(152, < CR1(0)7 7 |8]4,.0- (6.54)
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Now we claim that

||Bw||l/,2+0 < Cllel(j()fl
Indeed,
AY Y
Bly| < Co——rm Wi, < O ey 1102
V= Oy e = Oy Ve,
so (6.55) follows. Combining (6.55) and (6.54) we get

1BY[0llv2+e < ClUIONINY, < CRI(0)7 [ llve-
From the above inequality and (6.52) we then get

||T[B'(/)[¢H ||*,z/,a S CRI (O)Ul_a H(b”*,y,zﬂ

45

(6.55)

which shows that the operator ¢ — T [B[¢] + Bi[h] 4+ h] is a contraction if R;(0) is sufficiently large,

and we find a unique fixed point, which satisfies the estimate

19ll«.v.0 < ClIT[BY[R] + h]
Next we estimate || 7 [By[h] + h|||«,v,0. We have by (6.52)

|*,u,a~
IT[BYA] + hlll«vo < ClIBY[R] + hllv2+0

and hence

< ClIYMIISS + 1Pllvz+o < ClAllv2+o,
[6ll+v.0 < CllAly 240
Similar to (6.54) we have

)

B[] < Cligllws < ClA|
and

v,240-

DRI < CllAlly2+o-
Recalling that ¢ = ¢ + v and R; = R°, we get

e < 2R
1

ROG—0)
O+ 1+ yDIVye(y, 1) < CXL[Alv2+0
ey )+ 1+ [yD[Vye(y, 1) 17llv,2+ {(Hy)” 2R’ < |y| < R.

Finally, thanks to Lemma 6.3, we have that

1
cnilhl = -~
ol I, 1 Zoj1?

that

/ hpw,, +/ (Bylo] + B?/)[h])/)wp]
Bar, Bar,

||A¢||V+5(0*01),2+01 < Cll(z)”*,lfﬁ'
This implies

and therefore

18811480 -01).00 < Clllo

/ By[¢] - Zoj| < CNRT 77|90
Barg,

and using (6.56)

/ BY[g] - Zoj| CALRT 7 ||hllv 240
Bag,

(6.56)

The last term is a linear operator of h, which we estimate next. A similar computation as in (6.53) shows
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We have for |y| < 2R?
[[p)(y, O] + (1 + [yDIVylhl(y, )] < CR7[B]ly240-
Then for |y| < 2R’ we have
[BI¢Rll < XA+ )RR ]v 24,

and hence

< ON/Ry [

/ Bij[hlpw,
Bagr,

We would like to have the orthogonality condition defined as an integral in R?. Note that

1
hows| < CllllvaraX | i dy
/(B2R5>c ! " (B, e (1+[y)?te
< Cllhly 240 AR,
Then, going back to the original notation, we get
Je2 - Zo;
coj[h] = ————= — GIh]
’ AR
where G satisfies (6.43). O

7. LIPSCHITZ BOUNDS WITH RESPECT TO A IN THE LINEAR THEORY FOR THE INNER PROBLEM

Let us consider the linear operator we constructed in Proposition 6.1 as a solution ¢[h] = Ty 1[h] of
problem (6.1),
N0, = Lw[¢] + h(y,t) in Dag
#(-,0) =0 in Bapo)
¢ -W=0 in DQR
where Dop = {(y,t) / t € (0,T), y € Bag)(0)}, and we assume h - W = 0 in Dyr. The purpose in this
section is find estimates for directional derivatives of the operator Ty 1[h] with respect to the parameter

function A. Examining the construction of 7} 1[h] as the superposition of the unique solutions of different
problems, it is not hard to see that the directional derivative

ox = (OnTx,1)[R][M] = %ﬂ—&-sh,l[hHS:o

satisfies the equation

Ndho = Lvloa) — 25 (Lwld] + by, 1) in Do

#A(+,0) =0 in Bar(o)

with ¢ = Ty 1[h]. We will find estimates for this quantity inherited from those we have already established
for ¢. We assume that for some positive numbers a, b, ¢ independent of T we have that

aXe(t) < A(t) < bA(L), M) <chi(t) forall te(0,T).
The following estimate holds.

Proposition 7.1. The function ¢y is well defined and satisfies the estimate
(1 + 1y [Vyoa(y, )] + [y, 1)

R“*3"logR _ [R“**7
S a e min{ 1 R
L+ lyl Y]

At

7 m DQR.

oo
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Proof of Proposition 7.1. We recall that ¢[h] = T 1[h] was constructed mode by mode. According to
the decomposition (6.2), (6.3), (6.4), (6.5), we can write

p=do+dr1+¢1+¢", h=ho+hi+h_1+h", (7.1)

where we can assume for kK =0,1, j = 1,2,

/ hie(yst) - Zij(y)dy = 0.
Bar
We will give the estimates for ¢, in each mode separately, writing

O = Gor + P1x + d1x + By

We will estimate each of the terms ¢gx, ¢1x, d—_1, (bi separately.
First we give some estimates for the equation in entire space with some suitable right hand side.

7.1. Estimates for a heat equation.
Lemma 7.1. Let ¢ be the solution of
00 =Ayo+divy,G(y,7) in R? x (0, 00)
6(-,0)=0 inR?
given by Duhamel’s formula, where

1
Gy, 7)| <

(1 +7) (1 +[yl*)

and v € (0,1), a € (2,3). Then
C(1+log, 7))

TS G )

where log, T = max(0,log ).

Proof. The solution ¢ is given by Duhamel’s formula

Y z\
oy, T / e —i=5 S div,G(z,s)dz ds
T T—35 Jre

—Z

_C/ / e E(’rzlﬂ -G(z,8)dzds
T—S5 Jr2 T—S

and so

T 1 == |y — z]| 1
<C | —s TAGs) dzds.
<0 [ o [ e e

Letting z = y — /7 — s(, we get

’ 1 L2 €]
o= || o L e

We claim that for y € R? and b > 0

_L2 [q C
1 d ) '
/Rz © Tty ¢= (L+b)(1+yl*—?) (7.2)

We will consider first |y| > 1. Let us consider the case 1 < |y| < b. Then, by the Hardy-Littlewood

inequality we have
2 C
/ B S S g/ ALl | B
R? 1+|y—bCI“ ! 1+ [y —b¢l*

_lep C+[¢]
S/ Tt %
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Letting B = B1(0) we get

e _C+[¢ ,fi ¢
/Be 1—|—|b§\“ 7 d¢ < / C+|C|)dz<

2 2
e*%icﬂd_l d¢ g/ e*%CH_Cl' ¢ <

Be 1+ [b¢|e ¢ |b¢]e

Thus in the case 1 < |y| < b we deduce that

Kl e C

7} dc<Cch—°
Lo o = Ty

Next assume that |y| > b > 0. Note that
2

and

_1e? q C C
e 4 d¢ < < .
/@y Aty b © = et = Grp)ye

o5
Next consider

b b 26 =
4lvl
lyl? b 1
< e~ 16b2
<e 16 /0 T (br)ailrdr
|2 3—a
< Ce™ 1‘61‘)2 |y|l)2
C
(1+0)[yl*—2
Finally, if b > 1
_le? I<] L i<
e~ 1 dc < C e” Tt —>
/@g Ty -0 “ = oo & T
1 1
<c[ | rumerds
=2t |C] [b¢let
_C
bly|e—2
Ifb<1,
_ Ll <l o~
e 4 d <O d
/<>2b' (L +Jy = b¢l*=T) ‘= 2ty clae
ba—2
<C

<C :
yle=2 = (L4 b)lyle—2
Therefore for |y| > max(1,b)

O c
L e S aroe

From (7.3) and (7.4) we deduce (7.2) in the case |y| > 1. The case |y| < 1 is proved similarly.

Using (7.2) we get

C Tl 1
p(y, )| < 1+ ‘y|a72/0 (14 s¥) VT —s(1++7—5) ds

C(1+1log, 7)
T+ A+ yle?)

le| €] _lul? / 1
e 4 d( < e 1682
/“ggg ' (1+ly —b¢l*—1) il <jej<lul (1+ [y = b¢l*T)

dg
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Lemma 7.2. Let ¢ be the solution of
0-p=0y0+ Gy, 7) in R? x (0, 00)
é(-,0)=0 inR?

giwen by Duhamel’s formula, where

1
‘G(yv7)| S (1 +7_y)(1 + |y|a)
and v € (0,1), a € (2,3). Then
9y, )| < 018 T)

1477
where log, T = max(0,log ).

Proof. We have

1 (7 1 ly—z|? 1 1
Py, 7)| < */ / e A=) ———dzds
A Jo T—8 Jre (14+s)Y 1+ |z

Let z =y —+/t —s¢. Then

1 (7 1 _le? 1
|¢(y77')|§a/0 W/RZB 1+|y*\/t*78C|ad<dS

We claim that for any y € R? and b > 0.
l¢1? 1 C

4

e dc < .
/Rge 1+ Jy — bC|® CS {73

Indeed, if b < 1, then

/e—$71 ¢ <C
R2 L4y —b¢le >~
It b > 1, then
1c|? 1 1
T ———— 4 < —d
Lo e < L
1 1
- [ —
7 L Tr i
Then
171 1 C(1 +log, 7)
< — <
|¢(y’7)|_47r/0 (I+s¥14+7-35s 5= 1+7v

7.2. Estimate of ¢y and ¢_1,. We claim that for any o € (0,1) we have
1+ [yDIVx (g, 1) + |ox (v, )]

_ —a A
SR log R(L+ |y)* =18 law || 5

by

(oo}

L+ [y IVo—1a(y, O)] + [¢Z1a(y, 1)]

—2+40 —a A
SAO R )P el | 5

Y

oo

49
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Proof. Let us recall that ¢ is the restriction to Dar of the unique solution to the problem
N0i¢t = Lw[¢pt] +ht inDyg
¢t () =0 on dByr forall te (0,T),
¢L('70) =0 in B4R(0)7

and h' is understood as zero outside Dop. It is clear that (bi- corresponds to the unique solution to

A .
Nowy = Lwlox] - 25 (Lwlét] + h™) in Dap
¢y (-,t)=0 on dBsr forall te (0,T),
¢x(,0) =0 in By,

restricted to Dog. We will prove that

640, 0)] £ () R log B+ [y1)> s | 3 (77)
To see this, we decompose ¢, in the form h
Ox = dp + ¢c
where ¢, is the unique solution to the Cauchy problem
{ﬁat(z)b =Aydp+9(y.t) inR*x(0,7) 78)
ép(-,0) =0 in R? '
where
g = 22 Lwlo*] + 1 Ixous,
represented by Duhamel’s formula
ou(y,t) = /OT mds /]Rz e_%g(z,b\(s)) dz (7.9)

and

T=7A\(t) ::/O )\;l(&e), tA(T) =73 H(7).

We have used the notation x 4 for the characteristic function of the set A. Using Lemmas 6.1 and 6.2 we
obtain that g(y,t) = divy Go(y,t) + G1(y,t) in Dsr with

(L +[yDIG1(y, D) + (1 + [y1)*[Gol B, (y.r)nDar + 1Go(y, 1)
At

S A"+ Iy A o || 5

)
oo

ly) =1+ ‘%l, and 7 = 7 () is given by (6.14). Using Lemmas 7.1, 7.2 and Schauder estimates we obtain

At

|66y, )] + (1 + |y Vou(y, 1) S A(t)” log RI|Ih*[la U (7.10)

o0

for |y] < 5R. On the other hand ¢, solves
NOipe = Lw[pe] + VW gy + 2(VW - V)W in Dyp
¢e(-t) = —¢p on OBygr forall te (0,7), (7.11)
¢e(-,0) =0 in Byp(o)-

Observe that by (7.10)

M

[VW2[go] +2[(VWV - Vo)W | S A (8) Tog R(L+ [y]) =[P+ law || 5

oo
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Then, using the same supersolutions as in Lemma 6.1 but on Dsr we get

A

[@e(y, )] S Ae()” log RO+ [y)*~* |2 o || 5

oo

This and (7.10) yield (7.7). We note that by Corollary 6.1 the function ¢ has a gradient satisfying the
Holder condition

A+ yDIVyd™ (v, 1)l + A+ ) V0 50y,m) Dy
ST A+ yD* 7 N o,
expressed in the variables y, 7. Then Corollary 6.1 gives the desired estimate (7.5).

The proof of (7.6) is similar, with the following modifications. We have again that ¢_; is the restriction
to Dog of the unique solution to the problem

N0p_1 = Lw[p_1] +h_1 in Dyg
¢_1(-,t) =0 on dByg forall ¢e(0,T),
¢-1(-,0) =0 in Byg(),

and h_; is understood as zero outside Dagr. The derivattive ¢J_-1 y is the unique solution to

N0 1x = Lo~ 25H(Lwlo ] +h1) inDi
d—1a(,t) =0 on dBug forall te (0,T),
$#—12(,0) =0 in Byg(o),
The solutions ¢_ satisfies the estimate (see Lemma 6.1)
-1l + A+ yDIV-r] + (1 + [y) V1] p,y,m)psn < Cllhllay AL log R. (7.12)

We again decompose

P—1x = dp + ¢c
where ¢, solves the problem (7.8) with
A1
g= _27[LW[¢71} + h*I]X'DALR'
Estimate (7.12) allows us to write g(y,t) = divy, Go(y,t) + G1(y,t) in Dyr with

(L +[yDIG1(y, D) + (1 + [y1)*[Gol B, (y.r)nDar + 1Go(y, 1)

, log R A1
5 /\*(t) 1+ |y| Hh—lna,u 7

)
oo

Ly) =1+ %, and 7 = 7(t) is given by (6.14). In Dyr we then have the estimate

(L +1yDIG1L(y, O] + (1 + ) [Gol By (y.r)npar +Goly, 1)

R° A1
S M) eyl [
~ () (1+|y‘)1+g/2 || 1“ ) Y

)
oo

for any o € (0,1). Using Lemmas 7.1, 7.2 and Schauder estimates we obtain

At

|90y, )+ (1 + lyDIVon(y, )] S Ac(t)" R [|h-lla ||

)
oo

for |y| < 5R. Then arguing as for ¢ we obtain (7.6).
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7.3. Mode 0. Estimate of ¢g). We claim that
(L+ [yDIVdor(y, )] + [dor(y, 1)) (7.13)
M RY“*3* log R {1 if |y| < R%

A ly| + 1 2 if [yl > R=.

SN

170l

oo

Proof. We refer to the notation in the proof of Lemma 6.3 on the construction of ¢y. We recall that
¢o = Lw [®g] where ®q is the unique solution of the problem (6.19),

N®; = Ly [®] + Ho(y,t) in Dag,
®(y,0) =0 in Byr(0)
O(y,7) =0 forallte (0,T), y& IBsr()(0).
Then ¢oy = Lw[Por] where $gy solves
A20, @05 = Lw [®or] — 2%(% + Ho(y,t)) in Dag, (7.14)
Por(y,0) =0 in Byg(0)
Qor(y,7) =0 forallte (0,T), y € IdBir()(0).
We recall that we obtained
60y, )] < Nholla,w B A (8)” (1 + y]) %,

and a posteriori the better estimate

R\ (1 if [y < R™%,
[0(y, )| < [1Polla.w {

—*{ s-a .
L+lyl | £5 if ly| > R*.

The use of an explicit barrier in (7.14) then yields

5—a

M| R7 T%logR

By w  L+lyl

and then, arguing similarly as in the construction of ¢y we obtain the estimate for ¢ox = Lw [Pox],

M| R%=**+2logR

By w L1+
Next we want to improve this estimate, as was done in Lemma 6.3. We have that ¢, satisfies the

equation

[@ox| < ALllAolla,

|¢O>\(yvt)| 5 >‘Z||hOHa,V (7.15)

N0ydox = Lw [dor] + g(y, )

where \
9= _271(LW[¢0] + ho(y, 1)) (7.16)
We have that g(y,t) = divy Go(y,t) + G1(y,t) in Dyr, where
(1 + lyDIG1(y, D) + (1 + [y))*[Gol B (y,r)npar + Go(y, 1)] (7.17)
At R (1 if [y < R*7",
I ol 22228 o .
Allso 1+ [yl i if |[y] > R .

Now we argue as in the previous case. We write

dor = Pp + P

where ¢ is given by the Duhamel formula (7.9) with g given by (7.16) and let ¢. solve (7.11). Using
Lemmas 7.1 and 7.2 we find that

A 5-a
0001+ 1+ DT 5 | 3| ol AR g (7.18)

oo
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for |y] < 5R. The above estimate implies that

5—

2" log R(1+ [y|)~° (7.19)

HhO”a,u /\:R

A
VW Rl + 2 (W - Ton] 5 3

o0

Let ¢, be the complex valued function defined by

be(y,t) = Re(pe(p,1)) Er +Im (¢c(p,t)) Ea
so that using the notation in (6.8), ¢, satisfies the equation
{ NOrpe = Lolc] + Ge(p,t)  in Dir, (720)
2e(0,p) =0 in (0,4R),
where by (7.19) g. satisfies
M
A

5—a

1holla, AYRF log R(1 + [y])~>.

3] < \

oo

We can find an explicit supersolution for the real and imaginary parts of equation (7.20) in D p1/2 of the
form
2R1/2 1 T
_ -3
e = d(t)Zo(p) /p T /O Zo(s)(1 + )35 dsdr-
where d(t) = H/\TIHOO 1ol a,v A R*%* log R and Z is defined in (6.10). We note that at p = R/2 the

value of ¢, satisfies, by (7.15) and (7.18)

[6e(RY2, )] < |oor (B2, 0)] + o (B2, 1)]
A —a
SN ol | 5| R log R

oo

and other hand

Be(RY2,0] 2 ¢ |22\ lholla AR log RRY?
for some ¢ > 0. This yields -
o001 S| 3| Mol 2R hog RO+ ) bl < R
and combining with (7.18) we get N
01 5 | 3| Mol ARFF 0g RO+ ) Iyl < 22

Using Schauder estimates together with (7.17) we obtain (7.13).

7.4. Mode 1. Estimate of ¢;,. We claim that
A1

(1 +[yDIVydualy, )] + [o1a(y, )] < CX()" (1 + [y))* IR 3

in DR.

a,v
[eS]

Proof. We recall that ¢; is the restriction to Dyg of the unique solution to the problem
NOp1n = Lw[dia] + hixp., inR* x (0,7),
$12(-,0) =0 in R? x (0,7),

where by assumption fBzR hi(-,t)-Z1; =0, j=1,2, for all t € (0,T). The function ¢, then corresponds
to the restriction to Dyr of the unique solution to

NOpin = Lw[p1n] —g in R? x (0,7),
$12(-,0) =0 in R? x (0,7),
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were

—2% (LW [Qsl] + hl (y7 t)XDZR)

and ¢1, hy are is as in (7.1). The function g satisfies for j = 1,2

/ g(,t) 'le =0.
R2

We note that g = div, G, as in (6.27) with G satisfying

Gy 1) “)

g:

, yERYte(0,T).

Then Lemma 6.7 implies that

Ae(t)

A1
) ) S ——lhllav

By

oo

By the same argument as in section 7.2, using Corollary 6.1, we deduce also

y _ A
(14 (9D Vydra(y: )] < CAD (L4 D> llaw || 5
]
8. THE HEAT EQUATION WITH RIGHT HAND SIDE
Given ¢ €  and T > 0 sufficiently small we consider the problem
¢t:AIw+f(xat) IDQX(OaT)
Yv=0 ondQx (0T
(©.T) (8.1)

¥(g,T) =0

(x,0) = (c1e1 +caea+czez)y in Q
for suitable constants ¢y, co, c3, where e1, e1, e1 are defined in (3.5), and 7, is a smooth cut-off function
with compact support, such that 71 = 1 in a neighborhood of q.

The right hand side of (8.1) is assumed to be bounded with respect to some weights that appear in
the exterior problem (5.37). Thus we define the weights

01 = A (AR) "X (r<aray

1—(7'0

02 :=T"7° X{r>RA.}
03 ‘= T_UO7

where 7 = |z — ¢|, ® > 0 and o¢ > 0 is small. For a function f(z,t) we consider the L*°-weighted norm
1
£ en = sup, (1—&—2@1 2, 1) ) F(a,1). (8.2)
Qx
The factor T7° in front of g and g3 is a simple way to have parts of the error small in the outer problem.
We are going to measure the solution to (8.1) in the norm || |30, (c.f. (5.44)) with © and f (recall

that R = ;") satisfying:

se (o %) 0 c(0,8) (8.3)

Our main result in this section is the following, where we use the norm || ||ye,y defined in (5.44).
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Proposition 8.1. Assume (8.3). For T, € > 0 small there is a linear operator that maps a function
F:Qx(0,T) = R® with ||f|l«x < 00 into 1, c1,co,c3 so that (8.1) is satisfied. Moreover the following
estimate holds

A:(0)"® (A (0)R(0)) "
HwHﬁ’@ﬁ + |Tog T|

(le] + lez| + les|) < Cllfllxs (84)
where v € (0, 3).

Remark 8.1. The condition 8 € (0, %) is a basic assumption to have the singularity appear inside the
self-similar region. The condition © > 0 is needed for Lemma 8.1. The assumption © < [ is so that the
estimates provided by Lemma 8.2 are stronger than the ones of Lemma 8.1.

To prove Proposition 8.1 we consider
Yy =AY+ f inQx(0,T)
Y(x,0)=0, z€Q (8.5)
P(x,t) =0, xe€dQte(0,T),

and let g be a point in €.
We always assume that R is given by (5.3).

Lemma 8.1. Assume 3 € (0,3) and © > 0. Let ¢ solve (8.5) with f such that
£ (@, 0] < M) A (ORE) ™ X (a—gl<ar. R0}

Then
¢ (z,1)] < CA(0)° A (0)R(0)[log T, (8.6)
(2, 1) = (2, T)| < M)A (D) R()| log(T — 1), (8.7)
IVip(z,t)| < CX(0)°, (8.8)
Vi (2,t) — p(a, T)| < CA()°, (8.9)
and for any v € (0, 3),
‘V¢($»t) - le(fﬂatl)\ )‘*(t)@
< .
i = e (810)
for any z, and 0 < t' <t < T such thatt —t' < 1—10(T —t), and
Vi(z,t) — V(o' )| A(t)®
< .
e = CLOROP 51y
for any |z — 2’| <2X.(t)R(t) and 0 <t <T.
The proof is in section 15.1.
Lemma 8.2. Assume (3 € (0,3) and m € (1,1). Let ¢ solve (8.5) with f such that
@ O] < 7 Xle—aiza R}
Then
¥ (z,1)] < CT™|log T|*~™, (8.12)
W (@, t) — (2, T)| < Cllog T|™(T — )™ log(T — t)[*~>™, (8.13)
Tm—1| logT|2—m
<(———————— .
[Vip(z,t)| < C R(T) (8.14)
m—1 _
Vib(a,t) — Vola, 7)) < ¢ os@ 0] (815)

R(t)
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and for any v € (0, 3):
Vi (z,t) = Vo', ) _ 1 A(t)™ ! log(T — t)]
(le =a'P+t=t))r = (A@)R(E)> R(t)

for any |z — 2| <2A(H)R(t) and 0 < ¢' <t < T such that t —t' < (T —t).

The proof is in section 15.2.
Faltan las demostraciones de la cota holder

Lemma 8.3. Let 7 solve (8.5) with f such that

|f(z, )] <1,
Then
[Y(z,t)] < Ct. (8.16)
(. t) — p(z,T)| < C(T — t)|log(T —t)]. (8.17)
Vi (, t)| < T (8.18)
V(x,t) — Vip(2, T)| < C(T — 1)/ (8.19)
\Vip(x,ta) = Vip(a,t1)| < Clty — ta|'/2. (8.20)

|Vip(z1,t) — V(22,t)| < Clzy — m2|[log(|z1 — 22]).

The proof is in section 15.3.
Falta la demostracion de la cota holder en x

Proof of Proposition 8.1. Let 1)o[f] denote the solution of (8.5) where f satisfies || ]|« < 00.

We claim that ||¢o[f]|l« < C||f||««- Indeed, given f with || f]|.+« < co we decompose f = Zle fi with
|fil < CJf|lsx0i- By linearity it is sufficient to prove that when f is each of the g;, the corresponding
has finite || ||« norm.

The case f = p; is direct from Lemma 8.1. Using the hypothesis ©® < § we can find g small so that
the case f = oo follows from Lemma 8.2. The case f = p3 follows from Lemma 8.3.

Finally, let us show that in problem (8.1) we can choose ¢; so that that ¢ (g, T") = 0. To do this we let
1; the solution

6twi = Axwz in © x (O,T)
’l/)i =0 on JQ x (O,T)
Y;(x,0) =em;  in Q

Let
3
=10+ Y cithi.
i=1
Then for T' > 0 small there is unique choice of ¢; such that 1(q, T') = 0. Moreover |c;| < CA.(0)Y R(0)27¢|log T'||| f] .+«
and hence v satisfies (8.4). O

9. THE HEAT EQUATION WITH INITIAL CONDITION
In this section we consider the heat equation
o7y (x,t) = AZ(z,t) in Qx (0,T)
Zi1(2,0)=Z(z) ze€Q (9.1)
Zy(z,t) =0 (z,t) € 9Q x (0,T),

and derive estimates assuming, roughly speaking, that Z7 behaves like (r + €)|log(r + €)|.
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Lemma 9.1. Suppose Z; € C?(Q) satisfies
1

D2Zi(a)| < ————— zeQ.
| 1( )| |£E o q0| +e
Then the solution Z, of (9.1) satisfies
. ~ T-—t T
Vo Zi(2,t) — Vo Zy (2, T)| < CT(l + log(?)) fe2<t<T. (9.2)

Proof. We do the computation when  is R? and we deal with the solution given by Duhamel’s formula.
The general case follows by the decomposing the solution as a sum of the one in R? and a smooth one in

Q. Then
V.71 (z,1) = 471#/ VL2 (@ — ) dy. (9.3)
Assume €2 < ¢t < T'. Then, using (9.3), we have
|V Z1(0,t) = V2 Z1(0,T)|
L ~ Ly / Ve Z1 sfy—i—(l—s)\fy) dsdy

/ / D2Z; (—sv/Ty + (1 — s)Vi) (VT — vVDy| dsdy
(VT — 1)yl J
o s(WVT —VOlyl+ Vitly| + ¢

<ofe
/ LS f\y|+€>dy
/

sdy

\[|y|+s

2
- log \\C;):j)pdp

_e? 1
cvr \/)/0 ‘ (ﬁp+s)(x/ip+e)d

T
2 1 C T
/ ' (VTp+e)(Vip+e) dp<ﬁ<l+10g(t)).

We claim that

Indeed,
o p2 1 1 21
e T dpSC’—/ e T —dp
/5{ (VTp+e)(Vip+e) Tt ) p?
< C
evVT
Vi 1 C (Vi 21
e T < e 1T —dp
/\% (VTp+e)(Vitp+e) evT J = p
< Gl
oo =
_E\/T g p
/«% o2 1 i< 1 VT 2
e 7 p < —= e T dp
0 VTp+e)Vip+e) "~ o
1
<
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Therefore we get

V2 21(0,1) — V4 Z1(0,T)| < Oﬁﬁ‘ﬁ (1 + 10g<€)> :

This implies (9.2).
Lemma 9.2. Suppose Z; € C?(Q) satisfies

1
|D2Z3 (z)| < x €.

e
Then the solution Zy of (9.1) satisfies

Proof. We use Duhamel’s formula to find

~ 1
D27 ()] = |- / e
RQ

<—/ e*¥71 dz
WVt Jre |5c—z|+%

where T = \/i' By the Hardy-Littlewood inequality

D? Z1 (z,1t) < dz.
| z
]R2 \Z|+*

We claim that for a > 0

Indeed,

and

C ifa<1
e ® ifa>1.

This proves (9.6). Combining (9.5) and (9.6) we obtain the desired estimate (9.4).

Lemma 9.3. Suppose Z7 € C%(Q) satisfies

1
D2Z;(z)| < ———— zeq
x |.’E—QO| Le

(9.4)
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Then the solution Zy of (9.1) satisfies for 0 < tg < ty:

ffmlog@t ) ifto > €2

\VoZi(z,t1) — VaZi(z,t0)| < C \F\/g\/% log(24) iftg < &2, ty > &2

€

@ ift; < &2
Proof. Assume 0 < to < t;. Then, using (9.3), we have

|V$21(x,t1) - vwzl ($7t0)|

1 2 (Y d_ -
T / e’%/ Ve Zi(x = svhy — (1 5)v/ioy) dsdy
2 0

< (i - Vi) / / D22 (2 — sv/Ery — (1 — s)Vioy) y] dsdy

1
_lw? |y

C(Vt] — Vit 1 dsd

(Vh 0)/R2e /0 |z — svtiy — (1 — s)vVtoy| +¢ W

1 2
=C t—t//e_% |y\ dy ds
Wa=vio) | ] e = oy v
0(\/?\/7)/1/ e L+l dy ds
LIV Jge @ — sv/hy — (1— s)v/Eoy| +e

We use now the Hardy-Littlewood inequality and obtain

IV 21(33 tl) —V Zl(l‘ t0)|

sowi—vi [ [ i
V) [ [ e

—c/ T 1+ ) tog( Y ) ap

= Ce(Vti — Vo) /Ooog(p)(\/ap+€)1(\/%p+s) dp,

where
oo 52
so) = [ e T
P

We claim that

1t log(&) if g > 2e2

oo 1 eVt to
1 t . 2 2
/0 g(p)(\/ﬂers)(\/%ers) ip= vh tog (&) TftOS%Q’ =2
= if t1 <2e
Indeed,
| o< O [ gl
g(p p < 9(p)— dp
_e ( t1p+€)( t0p+€) Vitot1 e p2
Vo Vio
1 [ ifg > 262,

Vit | (Me)k if g < 2¢2,

59
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1 1

to C ﬁ
/\/EH g(p)(\/ﬁp+6)(\/gp+€) dp < 5\/ﬂ/\/% g(p);dp

log(&) if tg > 2¢2
log(4) if tg < 262, t; > 2¢2
(B)k if g < 262

£ £

NGy 1 1/&
dp < = d
/O g(p)( TSN g9(p) dp
C{E if £, > 2¢2,

1 if t; < 22,
Therefore we get
Ly if ¢y > 262

t
VoZi(z,t1) — Vo Zi(z,t0)] < C 4 Yl 100(8) if 1y < 262, #; > 262
Vit if ¢, < 222

Let us recall the norm || ||, defined in (5.7). As a corollary of the previous estimates we have.

Lemma 9.4. Suppose Z5 € C*(Q). Then the solution Z* of (9.1) satisfies
Vo Z*(x,t)] < |logel || Z5 -, ¢20,
* * T-1 *

|27 (@, ) = 27 (2, T)| < Cllog T|=—=||Z]l~

7
|log €| if0<t<e?

VoZi(z,t) — Vo Zi(z,T)| < C||Z|«
| T 1($ ) T 1(1' )|— || 0” {|10g5|1/2’1’;t(1+10g(’{)) ZfEQStST

10. THE EXTERIOR PROBLEM
In this section we prove Proposition 5.6.

Proof of Proposition 5.6. We use the norms || ||.. defined in (8.2) and || ||3,e,, defined in (5.44), where
O satisfies (5.45) and v € (0, 3).

Let H be the operator constructed in Proposition 8.1 that maps f to the solution 9, ¢1, ..., c3 of (8.1)
(here we need © > 0).

To find a solution to (5.37) we set up a fixed point problem in the space

Y={¢:Qx(0,T) = R*: [[¢llse, < oo}
Let us define the nonlinear operator
Al =Hlg(p, &, Z" +¢,9)], &€ Bi(0) CY,

where g is defined in (3.22), ¢ = ¢1 + ¢p2 + 3 + ¢4 and we assume ||®||g < 1, and consider the fixed point
problem

¥ = Alg. (10.1)
We claim that
lg(0: &, Z* + 1, )llux < CT (1@l 2 + 1Pl L (—1.7) + €]l Lo 0.7) + 127 [l
+ 1llteq), (10.2)
and

lg(p, & Z* + ¥1,0) — g(p, &, Z* + 2, d)||sx < CT (|01 — ¥2lz.0.4) (10.3)
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for some o > 0. Using these estimates and the contraction mapping principle we obtain v satisfying
(10.1) and this gives a solution as stated in Proposition 5.6.
To prove (10.2) and (10.3) we will be using constantly the inclusion

Bax,r(§) C B3, r(q),

which holds provided that
|€ - Q| S )\*Rv

which in turn holds because of (5.2). Indeed, because of (5.2) and £(T') = ¢ we have |£ —q| < (T —¢t)1*°,
and so

|1ogT|(T—t))1‘5

— = 1_ﬁr\1
-l < an =~ (1200

Let us write
9(¥) = g1+ 92 + g3 + 94
where
91 = Qu((Azn)d + 2VonVad — mi)
+1Qu (I + A" Ay - Vyd + A1 -V, 8)
g2 = (1 =)Ly [¥*] + (¥* - U)U,
gs = (1= n)[Kolp. &) + K1lp, &]] + My [Ry] + (20 - U) U,
94 = Nu(nQu¢ + My (9° + ¥)*).

Estimate of g;. We claim that
l91]l+» < CT7||®] 2, (10.4)

for some o > 0.
We note that

|Azndr] < CX2R™ X (lu—qi<ar. 1) |01
|Aznd2] < CX22R™x(1u—gi<ar. R | 92]|vssas—2
[Azngs| < CAB 2R X(ja—qi<sn. 5] |93 s,
|Aznda] < CXA2R™?1og RX[j4—q)<x. R)|| O]l cxsovs -

*,U1,a1,0

If
© <min(ry — 14 B(a1 —1),v0 — 1+ B(ag — 1),v3 — L,y — 1+ ), (10.5)
we find that for any j =1, 2,3, 4:
|Aand;| < CTOATT X (o gizan.ml|®] B,

for some o > 0.
Then we have

1Qu(Aen)@llsx < CT7|| 2|
and similarly
10m)Qutllx + QAT ViV ol < CT7(|®| -

Let us analyze wn@,J¢. We have
lwnQuJ ol < || |IX{je—gl<2x. (1) R(1)}-
By (5.1), |&| < C|AJA;! < CA; ! and hence
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onQuJ 1| < CAZTTRICT Wy can i r@ |61 v an,0
lonQud d2| < CAL2 ™ X(ja—qi<ar. ()R} 2]l varas—2
|onQuJds| < CAP T R2x(a—qi<ar. (t)r(0)} B3] v
|onQuJ pa| < CAL110g R X{ju—ql<3r. (8 R(t)} || Pl ixrws -
If
(€] <min(1/1 —55(5—@1)—B,Vg—ﬁ,yg—3ﬂ,u4—ﬂ) (10.6)
we get for any j = 1,2,3,4:
01QuT 651 < CAL0)7 A () X (ja—gi<ar. () R} I 24
for some ¢ > 0 In particular we get for any j =1,2,3,4:

Let us analyze nQ,\ Ay - V¢ and NQUALE - Vy¢. Using (5.1) we have |)\| < C and then
NQuA™ Ay - Vyoi| < CXNTT ROy gican, ey 191 e ,00,65
and similarly, because |£] < C by (5.2),
|77Qw)‘_1é : Vy(lsl| < CAZI_1R6(5_a1)X{|x7q|§3)\*(t)R(t)}||¢1||*,V1,a1,6-
As before we get
1QuA™ Ay - V1| + [NQuATE - V1
< CX(0)7 A ()T X o—qi<an. () R 1011401015
In a similar way we obtain
1QuA™ Ay - Vya| + [NQuA™E - Vo
< CM0)7 M ()X (lomqi<an. (R0} 192|200 —2

InQuAT' Ay - Vydal + [QuATE - Vsl
< CX(0)7 A ()T X fo—gqi<an. () Ry 031wy
and
NQuAT Ay - Vydal + [1QuATE - Vyhal
< CM(0)7 X ()P X (oqi<an. () R(0)} | Pl s s -
From the above estimates we deduce (10.4).

Estimate of go. Recall that go = (1 — 1)Ly [¥*] + (¥* - U)U,. We claim that

g2l < CT?([[Pll5.0.4 + IV Z5 [l ~)- (10.7)
Thanks to formula (2.5):
~ 2 1 T
Ly[®] = —pr(P) (P, - U)QuE — ;(‘I’e U)QuEs], p= %
where r = |z — £(t)], which implies that
- A
L < —— . 10.
Zolull < 2551Vl (105)

But |V1| < A.(0)®||¢])s,0,4 and hence
(1=m)Lu ]| < 02T A (0)°[¢

£,0,v-
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Since © > 0,
(1= Lo ]| < T702[¥[ls,0.-
As in (10.8) we have
(1= n)Lu[Z*)| < T 02|V Z*|| L (2% (0.1))
and hence

1A =) Lo [Tl <T([¢lls.0.4 + IVZ L0 @x0.7))-
Next we estimate the term (¥* - U)U;. Because ¥*(q,T) = 0 we have
(W (2, 8)] < (197 (x, 8) = W (2, T)| + |97 (2, T) — ¥*(q, T)|.
Then we estimate
[W(x,t) = (@, T)| < A(t)° T R()|log(T — )¢z,
[z, T) — (g, T)| < |z —ql VYL~ @xo,r) < v —ql Y]
For the function Z* we estimate, using Lemma 9.4,

T—t
Z*(x,t) — Z%(x, T)| < Cllog T|—=1|Z | %,
127 (2, t) (z,T)| < Cllog |\/T” ol

< Cllog TIVT —t]| Z5 |«
127(x,T) = Z"(q, T)| < |z = al [V Z7[| L= (ax(0,1)
< Cllog T |z — q | Z5 |+
By (8.3) we have © +1 — 3 > % The above inequalities imply that
U (2, )] < Cllog T|(r + VT = t)(|¥llz.00 + 125 )
with 7 = |z — ¢|. Note that because of assumptions (5.1), (5.2) we have

1Al ] Al
A A A

|Ui| < lpw,| +|dl[pw,| + < |w,| < C

Then thanks to (10.10) we find
Al
T+ A

|(T* - U)U| < CllogT|(r + VT —t)C

N
)

(I9llz04 +112011)

<c (1 n von +12Z314).

We estimate I;t in the regions r > A\, R and r < A, R. We have

vI—t

X{TZ/\*R}m

T—t -
< X{r>\.R} (1 + T2+)\2) < T7(02 + 03),
for some ¢ > 0. This implies

X¢rz=ary | (U7 U)U| <T7 (02 + 03)([[¥ll5.0.4 + 1 Z0+)-

In the other region

VT -t [ log(T = )| | 172
YT <o L= SRZAL Wy
X{T‘S/\*R} r + )\* — X{TS)\*R} |10gT|1/2

But assuming
1
0<=-—
3 B
we have MAII/Q < TN OB for some o > 0, and hence

|log T'|1/2
X{r<n mp (YT -U)U <T701 ([ llg,0,4 + 125 1])-

63

(10.9)

(10.10)

(10.11)

(10.12)

(10.13)

(10.14)
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Combining (10.12) and (10.14) we get
1(E™ - U)Uillar < CT ([
Combining this with (10.9) we obtain (10.7).

Estimate of gs. Let us estimate g3 = (1 —1)[Ko[p, ] + K1[p, &]] + i [Re] + (90 - U)U;. Here we claim
that

0.0+ [1Z01]+)-

lgallx < CT(1B]l ow (— 1,7 + €]l o= 0,7 )- (10.15)
First let us consider the term (U - ®°)U;. By (5.1)
|®°(r, t)| < Cr(|log(r + Au(t))| +1).
This in combination with (10.11) gives
(U - @%)Uy| < C(|log(r + Xu(1))| +1) < CT7 (01 + 02 + 03)-
Next, using (5.1) and (5.2), we find that
1L = m)IKo[p, €] + Kalp, ]l < CT ([l oo (~,7) + 1]l e (0,1)-
Indeed, let us consider Ko, see (3.17). We have

2

t
1-— < T 5 _ )
(1=l < Cxeonmy s | )t = s)ds

2

where we recall that k(z,t) = 21=%, % and 2(r) = V2 + A2, Then

L = ()] .
[T Ip(s)|k(z,t — s)ds < C’/ : dsqLC/tiZ2 |p(s)| ds

T — S
< Cllog(r® + A®)*)[|IB ]| oo (1,1

Using (5.1), we obtain
AR1L .
(1 =n)Ko1| < CX{TZA*R}T\ log 7[||p[| Loe (—7,1)

< CT? 02||pll oo (-1, 1)

The same estimate holds for Kgo and hence

1@ =n)Kollsx < CT7|Pl[ oo (—7,1)- (10.16)
The estimate for K is similar, gives

11 = ) ller < CTE] 01 (10.17)
The term II;;. [R,] is quadratic in the parameters p, & and by (5.1), (5.2) we can bound

Ty s [Ra]lase < CT (I[Pl oo (-7.1) + €]l Lo (0,17))-

From the above estimate and (10.16) and (10.17) we obtain (10.15).

Estimate of g;. Finally, we estimate g4(¢)) = Ny(nQu¢ + Ly (®° + Z* + 1)) where Ny is given in
(3.8). We claim that

lga ()l < CT (@]l + 1 Z5 1 + Ipllze + 1€l + [¥llz0,4), (10.18)

and

19a(¥1) = ga(¥) lsx < CT7 |91 — 2|30 -

The computations are similar to the ones before. We omit the details. d
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11. THE INTERIOR PROBLEM

In this section we prove Proposition 5.7. We use the notation of Section 5.
We need to show that for T' > 0 small, F : By C E — By and that it is a contraction.

Estimate of F;. Assume

v <1, (1L.1)
Recall that we have decomposed Z§ = Z3% + Zg! (c.f. (5.9)). We claim that for ||®|| gz < 1 we have
IFA@)earin < COOCT (@] + [ iy + [Ele o) + CT2 1200, (112
and for [|®1[z, [[®2]lp <1
[F1(®1) — F1(P2) w100 < CTN(0)P)|®1 — B 5. (11.3)

We start with (11.2). By Proposition 5.1 we have
[FL(P) [l41,01.6 < Cllha[p, & ¥ (0, €@, Z5) s as -
We estimate from the definition of h; in (5.11) and recalling that
U (p, &, @, 2Z5) = Z* + ¥(p, &, @, Zp)
we get
th[pa €7 \Ij*(p7 Ea (1)7 Zg)k)]”Vl,al
S H)\2Q—w(EU[\II(p7 5) (I)v ZS)]O + EU[\II(pa Ea (1)7 Zg)]Q)XDQR”l/l,Gl
+ ”)‘QQ*w(f’U[Z*]O + ‘Z’U[Z*]Q)XDW?,HVLM
+ ||A2Q—UJ’CO[p7§]HV1,a1~
We claim that for j =0 and j = 2:
INQ-wLu[¥(p, & ®, Z) XDog lvr.ar < CTA(0) (@11 + 1Bl oo (—11)
+ 1€l 0,7) + 125 ]])- (11.4)
Indeed, let ¢ = U(p,&, ®, ZF). From (2.8) we get, for j =0 and j = 2:

. A,
INQ-wLul¥]j| € C——5 IVt L.

(1+1y))
We use v1 <1 (c.f. (11.1)) and a1 < 3 to estimate for |y| < 2R
s AL

Tr e = g @

Then for |y| < 2R and j =0,2:

A
(1+ly[)m
By the definition of the norm || ||;0. (c.f. (5.44)) and Proposition 5.6 we have

IVatsllze < OO ¥ (p, &, @, Z5) 1204
< ON(O)°T7 (@] + 1Bl L= () + €l oo 0,y + 125 ])-

INQ_oLull| < C V(1) Rl v e

Hence for j = 0,2
V1

- Y o ) .
NQ-uwLullil < Cpina T A(0)°(I12l1e + 1Bl (-.7) + €]l L 0.7

+1Z511+),
and therefore we see that (11.4) is valid.
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Next we claim that
INQ-wLulZ*)jxDorllvr.ar < CT7 || Zo|, (11.5)

for j = 0,2 and some o > 0,
Indeed, we use estimate (14.9) of Lemma 14.2 to obtain for j = 0,2:

*

INQ-wLy(Z"]j xDan| < C 5 [1ogel[| Zo]|+

(1+p)
where e > 0 satisfies (?7?). Since v; <1 (11.1), we get
IXQ-wLulZ7); Xanllin.ar < CA(0)' 7" [log A (0) [ Zo] .
This implies (11.5).
Next we estimate A\2Q _,Ko[p, £]. We claim that
INQ-wKolp, Ellvr,ar < CTBll o= (—1,7)- (11.6)
Indeed, consider Ko; given in (3.17). We have

t
INQ_Koi[p, €]l < C A / |p(s)k(z,t — s)| ds.
-7

(1+p)?
But
t t—(r2+ A (8)?) ¢
[ et —sjds< [ s [ ds
-7 -7 (PN (D))
and
t—(r2+ X (t)%) (P A (1)) |
/ (s (et )| ds < C o
-T -T t—s
< Ollpllre=(|log(Ae)| + [ log(1 + p)|)
t
/ [Ps)k(z,t = 8)| ds < Cllp] -
t= (240 (0)?)

This implies that
IN Q- Lv (Kot [p, EllxDar o ,ar < CA(0)' [ oo~
< CT|pllpes (-1,1)
for some o > 0 (by (11.1)). The estimate for Koq is similar, and we obtain (11.6).
Combining (11.4), (11.5), and (11.6) we obtain
Vs, € (5,6, D, Z lonsar < CT (18l + [Pl + 175 1) (11.7)
Then thanks to Proposition 5.1 we get (11.2).
The proof of (11.3) is very similar, using that
[71lp, & W™ (p, &, @1, Z5)] — halp, & V™ (p. &, P2, Z5)]llvr 0
< INQ-uLu¥(p,& 1, Z5) = U(p,& P2, Z5)|oXDanllvr
+INQ L[ (p, & ®1, Z5) — ¥(p, &, P, Z5)axDanlvr an
< CTN(0)°)1W(p, &, @1, Z5) — V(P &, P2, Z5)lz.0.4
< CT7X(0)°|®1 — Dol s, (11.8)
by Corollary 5.1. This proves (11.3).
Estimate of F>. Assume that

Vo < 1—6(&2—2). (119)
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If |®]||lg <1 then

[F2(2)luzra—2 < CT (| @] + Bl e~y + €]l Lo 0,7y + 1125 1]5)5 (11.10)
for some o > 0, and if ||®1] g, || P=2||r < 1 then
[F2(P1) — Fa(P2)lvs,00—2 < CT7 || @1 + Do 5. (11.11)

By Proposition 5.2
||‘F2((I))||V27a2*2 < C||h2 [p’ ga \II*(pv g, (I)v ZS)] Hl/g,az
We estimate from the definition of hg in (5.12) and recalling that U*(p, &, ®, Z) = Z* + U(p, &, D, Z)
* * 7 %11(0
halp, &% (9,6, ®, Z5 ) lvnar < INQ-wLu[®(p, &, ZOI 11y 0
- (0
+132Q-wLu (2" xDanllvs s
+ H)‘QQ*wlcl[ ,ﬂ]”l/z,ar
We claim that

7 * 0 o .
||/\2Q—UJLU[\II(p7£’ (bvzo)]g )XDzR||V2,a2 <CT /\*(O)G(H(I)”E + Hp”Lw(fT,T)

+ 1€l o) +1Z5114)- (11.12)
Indeed, let ¢ = U(p, &, ®, Z§). From (5.10) we get
~ A
MO L]V < O —2 IVt 1o
We use 1 — vp — B(az — 2) > 0 to estimate for |y| < 2R

)\* < )\:2 )\*(0)17V2Ra272.
(L+1[yh)?* = A+ [yl

Then for |y| < 2R

A2

* )\*(O 1—vo—fB(az—2) vxw Loo.

At o= ) Va1l
By the definition of the norm || ||3.e,4 (c.f. (5.44)) and Proposition 5.6 we then obtain

A2
(1+ ly[)e
+ Wl + 12511,

INQ_, Lol <C

(O)l—VQ—ﬁ(a2—2)+®(|

INQ_ LoV <C ]| + 1Bl p (1)

which implies (11.12).
A similar argument, using (14.9) of Lemma 14.2, gives
INQ-uLu (271 XDanllva s < CT7 1 201, (11.13)

for some o > 0.

Next we estimate A\2Q_,K1[p, €] (c.f. (3.19)). We have

A .
2 < *
Q- Kilp. €]l < CT5I€0)
and then we see that
INQ K1 [P, vz < CTNIE]| L (0,7)- (11.14)

Combining (11.12), (11.13), and (11.14) we obtain

1halp, & ¥ (9, €, @, Z5)]lvs.ar < CT (@] + 1Bl Lo (~rm) + 1]l e 0,7y + 1 Z5 ).
Then thanks to Proposition 5.2 we get (11.10).
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The proof of (11.11) is very similar, using that
[halp, & ¥ (p, &, @1, Zg)] — ha[p, & V™ (p, & P2, Z5)][lvs a2
< [N Q-uLu[¥(p, & 1, Z5) = U(p, &, B2, Z5)\ Xl
< TP 0)° (0, &, 1, Z3) — U(p, £, 82, Z0) |50
< CTIX(0)°]|®1 — &5 2,
by Corollary 5.1. This proves (11.11).

Estimate of F3. Assume that
1
Vs < min(l +6 401,146 + 298,11 + 558(ar - 2))7 (11.15)
where o1 > 0 is the constant appearing in (5.36).
We claim that if ||®||g < 1 then
[F3(®)| 4,05 < CA(0)7, (11.16)
for some o > 0, and if ||®1] g, ||P2]|g < 1 then
[F3(®1) = F3(P3)[lss,vs < CA(0)7[[ @1 — Do 5. (11.17)

Let a € (1,2). By Proposition 5.3

2
||‘F3((I))||**7’/3 S OHh’3[pa 57 \Ij*(p7 ga (1)7 Zg)] + Z Céj[pa €7 \Ij*(p7 Ea q)7 Zg)]wizo_]
j=1

v3,a
We estimate first ||hs[p, &, U*(p, &, @, Z§)]||vs,q- and for this we recall (5.13):
ha[p, &, W (p, €, @, Z5)] = NQ o (L [W* (9, €, @, Z5))1 — Lu[¥*]” XDy
Let us write ¥ = ¥*(p, &, ®, Z§) and define
U(x,t) = DaW(E(L), ) (x — £(1)).
Then
Lu[¥)}" = Ly[¥)s.
We can then estimate
. .- L1
Ly 9]y — Ly[¥]i| < OALY TEE IVEE() + Ay, t) — VE(E(), 1)]
<ot MO YDPAC (N R)~2|| W ,
=ONq +p)2( OlyD)TAL(AR) ¥z 0,4
and this gives
* * — 1 * *
|h3[p7§7\11 (p,gaq)?ZO)H < C)‘i+®R 2’YWH\I] (p7£7 (I)vzo) Iﬁ,@”Y' (11'18)

By choosing
v3 <14+0+42v5

and
a=2-—2y
since v € (0, 5) we have a € (1,2)), we get
i 0,3) we h 1,2
Hh?)[p’fv\D*(paqu)azg)]lll/ma < CTUH\IJ*(p,é,(I),ZS)Hﬁ’@ﬁ. (11'19)

Next we estimate cg;[p, &, ¥*(p,§, ®, Z7)] (defined in (5.31)) and for this we use Proposition 5.5 with

a(t) = a [p, &, U* (p, &, ®, Z5)].
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We need to check that
A=al)[p.&, V" (p.€,®, Z))(T)
satisfies

1
1

and estimate ||a(-) — a(T)|le,1-1, [a]y,m,i—1-
To do the computations we need a formula, which is proved later in this section.

Lemma 11.1. Let ¥(x) € R3 be a continuous function in Q and write

@=<¢>, Y € C =R (11.21)
V3

Then

@[, & W0 = - | pPupldive) +icurl(y)] dy, (11.22)

where div(y) and curl(y)) are evaluated at £(t) + A(t)y.

Note that al[p, ¢, U] is linear in ¥ and recall that U*(p,&, ®, Z;) = U(p, &, ®, Z2) + Z2*0 + Z*1.
Then to see that (11.20) holds, we use (11.22) to get

af” [p, €. W)(T) = div(¥) (¢(T). T) + i curl(¥) (€(T). 7). (11.23)
using the same notation (11.21). By Corollary 5.6
Vo ¥(p, &, ®, Z5)| < CTA(0)° (| @] & + 1Bll 2 (—1) + €]l oe 0.1y + 125 1I+)
<CT?

and by the hypothesis (5.9) and Lemma 9.4 we have

IV.Z*| < o

|V.Z*| < CT7|logT|.
It follows that

0§ [p. & " (p, &, ®, Z5)|(T) = div(z")(q) + i curl(°)(q) + O(T"/?)

which thanks to (5.6) imply (11.20) for 7' > 0 sufficiently small.

Next we estimate |la(-) — a(T)|
prove later on.

©,1—15 [a]y,m,1—1. For this we state here some auxiliary results that we

Lemma 11.2. Suppose that | V|30, < 0o and p, § satisfy (5.1), (5.2). Then

a6 [p. &, W)(1) — ag” [p. & W)(T)| < OM(0)° | ¥[ls0.1 (1124)
and
(t—s)
46, )(0) = af[p, & W1(6)]| < ON (0% 5 iy 1¥lor (11.25)

for s <t in [0,T] with t — s < 15(T —t).
We decompose
a) [p, €, 9 (p, €, @, Z3)] = af[p, €, W (p,&, @, Zp)] + af[p, €, 2°°) + o [p, &, Z*").
Using the choice of m (5.34) we see that if | < 1+ 20 then

a$” [p, &, W(p, &, ®, Z)]() — al” [p, &, W (p, &, ®, Z5)(T) |01
< Cllog T ¥(p, &, @, Z5)lz.0.+- (11.26)
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Similarly, if [ < 1+ 2m then

[0 [p, €, W (p, &, @, Z5)))ymi—1 < Cllog T 1™ | W(p, &, @, Z) 1.0, (11.27)
On the other hand, by the assumption (5.6) we have
a8 [p, &, Z2*°)(-) — a{” [p, &, Z*°)(T)|@4-1 < CT° (11.28)
and
[0y [p. &, Z°))yma—1 < CT7. (11.29)

for some o > 0.
Next, using the hypothesis on Zi! in (5.8) and the estimates in Lemmas 9.2, 9.3, and 9.4 we get

1l [p, &, Z7)(-) = al” [p, &, Z(T) o1 < CT? (11.30)
and
[ [p, €, ZM)ymi1 < CT®. (11.31)

for some o > 0.
Combining (11.26), (11.27), (11.28), (11.29), (11.30), and (11.31), and using Proposition 5.6 we deduce
that

lal [p, &, 9" (p, &, @, Z3)](-) — i’ [p, &, W (p, &, ®, Z)|(T) |01 < CT® (11.32)
and
[a(()O)[paf7\IJ*(p7$7¢7Zg)]}7ym7l—1 S CTU (1133)

for some o > 0.

Then, applying Proposition 5.5 we get
47t

S w2l Zor[?

where 01 € (0,7(a—1420)) is the constant in (5.36) and the constant C' above depends on the estimates
(11.32) and (11.33).

—inO{ (0) p, €, U ]}( )’ < OOt (11.34)

Let us look at the remaining terms in ¢f;. First we note that cj can be rewritten as

f;L7T|AZ|(R [0 .6 01] (1) + o [, €, 0 )(0))

— (colh[p, & 0] — Golhalp, € U°T). (11.35)

CO[pag \I’

Indeed, we have

h’[pv fa \IJ*] - hl[pa 67 \Ij*] = AZQ—wEU[\II*hX'DQR + AzQ—le[ 76}
By definition of cy; (5.14)

T * 1 T *
;[N Q—wLu V1 xDop] = / Q- Ly[¥*)1 - Zo;(y) dy.
fR2 |ZlJ Bar

On the other hand, from the definition of a(()) (5.30)
4\ A2

Sz w21 Zoj1? Jr2 w2 Zoj|?

= =[N Q- Lu[¥]ixD, ).

e “af)[p, &, U] = - /B (Q-wLu (W)t Zoy +iQ - Lul¥) - Zoz ) dy

Since

co[NQ-uK1p. €]l =0
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by orthogonality, we deduce that
4 A

—iw (1)
7[]1&2 wg|ZOj|2e ) [pv'g,\:[/]'

Co[h[p,f, \II*H —h [pvfa \I]*H =

From here we deduce formula (11.35).

Using Lemma 11.3 we have
4T
Jr2 w2 Z0a ?

Using estimate (5.18) of Proposition 5.1 we find that

e~ al[p, €, W(t)| < CALYOTH| 0, 0, (11.36)

lcolhn[p, & W) = éolhalp, & W7]]| < CXV R [y, 4,
and using (11.7) we get
lco[halp, & W) = Golhalp, & W] < CT N R™2 (|| 5 + [|Bl] oo () + 12514 (11.37)
Assuming (11.15) and using (11.34), (11.36), and (11.37) we deduce that
lcolp, &, ¥ (P, &, @, Zg) (1) < CTOAL,

This combined with (11.19) implies (11.16).

We prove now the Lipschitz estimate (11.11). Let us write

Q; = (¢i1, Piz, biz, Pia), i = di1 + Piz + Piz + dia
and recall that
2
Fo(@) = Tas (halp, & 0 (06,8, Z3)] + D iyl € 0 (0,6, @, Z3) 0oy )
j=1
Then by Proposition 5.3, and taking a € (1,2) we get

[ F3(®1) = F3(P2)[lxx,s
S C”h?:[pv ga \I}*(pv 57 (blv ZS)] - h3[P7 5» \IJ*(pa 57 (1)27 Z[*;)]Hug,a

+ Z ||(c?)j[p7§7 \I/(p,f, (I)la ZS) + Z*] - Caj [Paf, \I/(pagv CI)27 Zf)k) + Z*DwzszjHu;;,(v (1138)

j=1,2

We claim that
1hs[p, & ¥* (p, &, 1, ZG)] — halp, & V™ (0, &, P2, ZG)]llvs.a < CAL(0)7[[ @1 — P2l (11.39)

and

||(06][p7§> \I](paga (1)17 ZE)k) + Z*] - CS] [p7£a \Ij(p7§> ¢2> Zg) + Z*])szOjHI/e,,a
< CA(0)7]| D1 — Byl (11.40)

for some o > 0. In (11.39) a =2 — 2.
Let us write

\Ili = \P*(paga q)ia Zf)k)
and define

Then
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We estimate as in (11.18) noting that hs (c.f. (5.13)) is linear in ¥:
|h3[p7 57 \IJ*(pv ga (I)la ZS)} - h3[pa 57 lI/*(p7 57 (I)Qa ZS)H

1 * * * *
2_9 ”\I] (paqu)lvzo)] -V (P»&‘I)%Zo)mﬁ,@ﬁ'
(L+|y[)>=>

Then from Corollary 5.1 and using that v3 <14+ 0 4+ 28, a = 2 — 2y we get (11.39).

< C}\i+@R72V

To prove (11.40) we obtain the Lipschitz property for each term in the expression of ¢ given in (11.35).
Using the Lipschitz property of Rg (12.2), we have

[Ro[af” p.€, 9" (0., @1, Z9)]] (6) = Ro [0l . &, ¥ (9. &, @2, Z5)]] (1)

S CAS?+01 ([a’g)) [pa €7 \Ij*(p7 Ea q)la ZS) - aéO) [p7 57 \I/*(pa 67 ©27 ZS)]'y,m,l—l

log |log T N * . *
&g%ua@mw (9, &, D1, ZDIC) — al) [, &, 9% (p, €, @1, Z5)(T)

— (a$[p, &, 9% (p, &, @, Z)I() — i [p, &, ¥ (p, &, D, ZE(T)) 011
O—vy—m
+ 0T a1 = ar (D)o 110 [p. 6.9 (p.6.91. Z5)(T) - ¥ [p.€. 9" (9. €. 0. Z3)(T)]).

|log Tl
(11.41)

+ T@fmf'y

As in (11.26) from (11.24), and using that [ < 1 + 20, we get

a8 [p, &, U* (p,&, @1, Z5)](-) — al [p, &, W* (p, &, @1, Z5)|(T)

— () [p, &, (p, &, @, Z3)|() — al [p, &, V" (p, €, ®o, Z3)|(T))]
S C| 10gT|1717®”\I}*(p3 f, (bla ZS) - \Ij*(pv fa @2; Z())k)”ﬁ,@,’y

0,1-1

and by Corollary 5.1

lal” [p, €, 9 (p, &, @1, ZDI() — al [, €, U (p, €, @1, Z3)(T)

— (@[, &, (p, &, @2, Z3)]() — al [p, &, U* (p, &, D, Z3))(T)) |01
< CllogT|'"19T7|| @) — ®y| . (11.42)

Similarly, if I < 14 2m, from (11.25) we have
[ag]) [p7 Ea \II*(pv §7 (bh Zf)k)] - aéO) [p7 57 \I/*(pa 67 ¢27 Zg)]]’y,m,l—l
S C‘ logT‘lilim”qj*(Z%Ev (I)la Zf)k) - \I/*(pa 67 @27 Zg)”ﬁ,@,'y
< CllogT|""1=™T7 || @) — @[ 5. (11.43)

Combining (11.41), (11.42) and (11.43) we obtain
[Ro[al p,€ " (0, €, @1, 25)]] (1) — Ro [l p.& " (b, &, @2, 23] (1)
< CTONOTo1 By — By s (11.44)

(for possibly a smaller o > 0).
To control the term involving aé2) [p, &, U*] we use the following estimate, whose proof is given at the

end of the section.

Lemma 11.3. Suppose that | ¥

8,0, <00 and p, § satisfy (5.1), (5.2). Then for l = 1,2 we have

lay [p. €, (1) < OAO+>|| |

£.0,7 (11.45)
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Using (11.45) and Corollary 5.1 to estimate

a8 [ €, W (p, &, ®1, Z5) + Z*)(t) — a [p, €, W (p, €, ®a, Z5) + Z7](8))]
< CNOT2B||W(p, &, @y, Z5) — U(p, &, B, Z3)||5.0.-
< ONOT28)| ) — @y . (11.46)

To estimate colh1[p, &, *]] — éolh1[p, &, ¥*]] we use estimate (5.18) and (11.8) to obtain
CO[hl [pa 57 \IJ*(p, fa (bla Z(*)C)H - éo[h‘l [p’ §7 \I’*(pa 57 ‘blv Z(T)]]

- (CO [hl [p7 5’ \11*(177 57 (D27 ZS)]] - é0 [hl LT% §7 \Ij*(pa 57 (I)h Z(ak)]])
< CN Ry [p € U (p, €, D1, Z3)] — ha[p, & (0, &, D2, Z3)]|lur
< CTN(0)PAN1 R 2512 |1B; — By 5. (11.47)

From estimates (11.44), (11.46) and (11.47) and the condition (11.15) we deduce the validity of (11.40).

Estimate of F;. Assume

vy < 1. (11.48)
We claim that if ||®||g < 1 then
| Fa(P) | ssn,vy < CAL(0) (11.49)
and if ||| g, ||P2]|g < 1 then
[F4(®@1) = Fa(P2)[lwxws < CA(0)7[[@1 — o[, (11.50)

for some o > 0.

Indeed, by Proposition 5.4

[ Fa(®) s < C D lle1jlhalp, & U (0, &, @, ZENWEZ 1 jllvsas
§=1,2

where we have fixed any a € (2, 3).

Let U* = U(p, &, ®, Z§) + Z*. Recalling the definition of h; (5.11), and of c_y ; (5.14),
le—1[h[p, &, ¥ (p, &, @, Z5) + Z7]] | < CAZJe—1 5[ Lo [¥¥]1 XD,
+ CA Y Jeo13[Lu 92 XDyl
+ ON2|c_14[Ko]l-

But from (2.5)

e 1 [Lu [ TxDsall < ONOg(R)IIVa ™| o (0 (0,1))- (11.51)
To estimate the term involving KCo (c.f. (3.17), (3.18)) let us rewrite it as

1 1
Kolp, &l = —Xpwifm[p]QwEl - szfoz[P]Qsz

where

K ; 1 1
To1[p|(r,t) = / Re(p(s)e W) (2k + rk, + 708 wzk, — 708 wz?k,,w) ds
-7

~ i)
! ; 1 1

Boalpl(r.t) = [ T(p(s)e ) 2k + Lo, - 122ha0) d,
-7

22
k and its derivatives are evaluated at (z,t—s), z = /72 + A(t)2 and k(z,t) = 2325 and r = |z —&(2)].

22
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We claim that if p satisfies (5.1), then
Il < C, j=1,2. (11.52)
Indeed, let us compute the first term, the rest being similar. We have

/ B(s)k(z, £ — 5)|ds < c/_TZ A (s)k (2, — s)| ds

-7
t
+ c/ B ()k(2,t — 8| ds.
t—22

For the first term we have
2

/t_z e (8)k(z,t — 8)| ds < C. (11.53)

-T

Indeed, assuming T — ¢ < 22 we have

2

t—=z t—z2 |3
/ A (8)k(z,t — s)| ds < c/ Al
=T T t—s
t—(T—t) t—2z2
- / L+ C /
-7 t—(T—t)
Then
t—(T—t) |>\ (S)| t—(T—t) 1
a < CllogT
[, Eescen [ g i
<,
and

t—22 \ t—22
/ A ()] ds < C|logT]| 2/ 1 ds
t—(T—t) t—s [log(T' = t)|* Jy—(r—ty t — s

< C|5\*(t)|\logz|.

Assuming that T —t > 22 we have

Now observe that
A ()] [10g 2| XDy = [Au(t)] [10g(* + Xu()?)| Do
< CIA()][log A ()| Do < C

and this proves (11.53).
Finally

t . C t .
/ Ae(8)k(z,t —s)|ds < — |A«(8)| ds
t—z2 2% J—22
<C.

Combining this with (11.53) we obtain (11.52).

Using (11.52) we find that

)‘3|c—17j[ICOXD2R]| < CA.. (1154)
From (11.51), (11.54) we obtain

lc_1,4[P1[p, &, ¥ (p, &, @, Z5) + Z7]] | < CA1og(R) ||V ¥™ || Lo (ax (0,7)) + C s (11.55)
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But
IV oo (ax(0,7)) < A(0)C WD, €, @, Z5) .04 + IVe Z¥ || Lo (25 (0,1))
and by Proposition 5.6
IV %" | oe x0,9) < CA(O)°T? (@] 5 + (1Bl 1= (1) + 1 Z5]I+)
+ V2 Z™|| oo (2 (0,1))- (11.56)

Since Z* solves the heat equation in Q with initial condition Zj and Zj satisfies (5.9), we have by
Lemma 9.4

192.2% | = @x (079 < Cato + Cllog T 25" (11.57)
Combining (11.55), (11.56), (11.57)we find
lc—15[halp, & ¥(p, &, @, Z5) + Z7]] |
< CXog(RIM(0)°T? (@] & + [1B] e~y + 1 Z5 ]1+)
+ CAlog(R)ag + O\ log(R) | log T| | Z5 ||« + C
Since v4 < 1 we obtain (11.49).
The proof of (11.50) is similar.

With the previous estimates we can give now the proof of Proposition 5.7.

Proof of Proposition 5.7. From (11.2), (11.10), (11.16), (11.49) we see that for T > 0 small, F maps B,
of E into itself. Estimates (11.3), (11.11), (11.17), (11.50) show that F is a contraction. O

Proof of Lemma 11.1. Let us use the notation (11.21). From (2.7) we see that
e [wafo[‘I’]o - Zo + Q- Lu[Wo - Zoz}
= A_powiei“’ [div(e™™ ) + i curl(e )]
= )flp2w?} [div(¥) + i curl(y)] .
Hence from the definition (5.30)

o 60O =3 [ pPud (o) +icul(w)] dy (1158)
where 1) is evaluated at (z,t) with z = £(¢) + A(t)y. O

Proof of Lemma 11.2. From formula (11.58) we have
0" [p, & W)(t) — ay [p. €, W)(T)|

1
: C/Bm W'VW@(T% T) = Vaotb (§(t) + M)y, 1)| dy.

By definition of the norm || ||3,0.~, (5.44), we have
(Vo (§(T), T) — Voo (§(F) + A(#)y, 1))
< Voo (§(T),T) = Varb (§(T), )] + Vo (§(T), 1) — Varb (§(2) + A(t)y, 1)
< [Wllzoq (A2 + (Ao + [E(T) = €BNPA (AR)~>7)
< [¢lor (A2 + (p+1)*TATRT).

Therefore
a8 [p, &, W](t) — a0 [p, &, W|(T)| < (A® + AR~ || W
< CA||¥| .0,

1,0,y

From here we get (11.24).
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Let us prove (11.25). Let s < ¢ be in [0, 7] with ¢t — s < {5(T — ¢). Using (11.58) we see that
jag” [p: € W1() — ag” [p, €, ()

L1V + A1) — Vo (E(s) + M)y, 9)] dy

<C 3
Bar (14 19l)

We estimate
IVaep (§(2) + M)y, t) — Varb(§(s) + Als)y, )|
< Ve (8(2) + Ay, 1) — Vb (§(s) + A(s)y, 1))
+ Vap(§(s) + A(s)y, ) — Varp(§(s) + Als)y, )]
< (&) = &)+ IAE®) = M) y)*T + (= )] M) (O R1)) ™[ ¥| 3,0,
< [(llfllm + A= [y)*7 (= )2 + (= 8)7| A()(A(DR(E) |
Using (5.1), (5.2) and integrating we find (11.25).

£,0,v-

O

Proof of Lemma 11.3. To estimate aél) [p, &, ¥|(t) for I = 1,2 we freeze the function V,¥(z,t) at the point
(&(t),t) and then notice that if V,¥ were a constant in space, then

Q—wZU[\IJ]l ' ZOj dy = 07 l= 13 27 j = 13 2’
Bar

because the function Q,wIN/U[\II]l is in Fourier mode [. This allows us to write
A - - o~
&) = e [ (Quu(Lul¥h - Luf)) - Zn
T Bar

+iQ-w(Lul®li — Lul®L)) - Zo2 ) dy

where
(. t) = DW(E(E), 1) (x — £(1)).
But
Eu[W], — Lo < m:lﬁwwfu) AW, 1) — VUE®D), 1)
<ont AOWDPAC L R) [T, 0,

(1+p)?
which implies

0 [p, &, W](t)] < CAS+28|| 0, 0,

12. ADJUSTING THE PARAMETERS

In this section we prove that the last equations of the gluing system (5.37)—(5.43) can be solved, by
adjusting the parameter functions p = Ae’ and &, as stated in Proposition 5.9, thus concluding the proof
of Theorem 1.

We recall from Section 5 that (12.3) is equivalent to

Bolp] = ai [p. £, W] + Ry [aéo)[p,f,\ll*]} , tel0,7] (12.1)

where U* = U*(p, &, ®(p, &, Z5), Z5). We recall that By is the integral operator defined in (4.6) which has
the approximate form

t—A2 .
sl = [ P o1l
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In Proposition 5.5 we constructed an approximate inverse P of the operator By, so that given a satisfying
(5.25), p := P [a], satisfies the equation

Bo[p] = a + Rola], in [0,T],
for a small remainder Rg[a]. The proof of that proposition gives the decomposition

Pla] = po.x + Pila] + P2[a],

where pg , is defined in (13.2) and k = k[a] € C. The next result gives additional properties of the
operators s[a], P1lal, P2lal.

Proposition 12.1. Let us make the same assumptions as in Proposition 5.5. Let

k=kla], p1="Pifa], p2="P2lal.

Then
1
Kla] = a(T)(1+ O ).
. . |log T|'~“ log(| log T'))*
—por(t)) < )
‘pl(t) Po, ()| ¢ |10g(T_t)|3_U
|log T'|

POLS Cogm —gpa '

Ip2lle < C(T7770 + [la() — a(T)||e,-1),

) e — log|logT|
[P2)yma < C(|log T|' 310~ m=7 4 7O == Tog 7| la(-) = a(T)llei—1 + [aly,m,i-1)

where ag > 0 is some fixed some constant and o > 0 is arbitrary (with C' depending on o), and
|Rola1](t) — Rolaz]|

(T — gym+(+a)
g i

log | log T'|

T =E o () =) = (a2() — ax (M)l
+ O () — (@) (T) - ax(D)]). 122

for a1, as satisfying the assumptions of Proposition 5.5

Proof of Proposition 5.9. Let U(p, &, ®, Z§) be the solution to equation (5.37) constructed in Proposition
5.6. Let ®(p,&, Z§) denote the solution of (5.46) constructed in Proposition 5.7. In (5.42)-(5.43) we
replace U* by U*(p,&, ®(p, &, Z5), Z;). Then to find a solution of the full system (5.37)-(5.43) it is
sufficient to find p, £ such that

COj [h(paga \Il*(pvgv (I)(paga Zf)k)v Zg))}(t) - Csj [pag, \P*(p7£7 (I)(p7£7 Zf)k)v Zf)k)](t) =0 (123)
clj[h(p7f,\I/*(p,ﬁ,@(p,S,Z(T)7Z§))](t) = 0

forallt € (0,7),j=1,2. )
Then it is natural to define the space X7 := C x X; where

X1 = {p1 € O(-T,T:C)) N CH([=T, T C)) | pi(T) = 0, [Ip1fl«3-0 < 00}.
Let us rewrite equation (12.4) as follows. By (5.14), (12.4) is equivalent to

R2
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and recalling (4.1), this is equivalent to

/\/ Q-wLu[V*]- Zy; +>\/ Kilp, €] - 215 =0,
Bar Bar

which yields the following equation

. 1 ~ .
b= R [ QLo 2y j-12 (12.5)
m Bar
We reformulate (12.1)-(12.5) as the fixed point problem
[p.€] = Alp,§] in B (12.6)

where the space B will be introduced below and the operator A = [A;, As] is defined by

Ailp, &) =P (ol p,€ " (0., 0(p,€, 75), Z5)]

T
As[p, €] :q—/t blp, £](s) ds

with
bl €)= 20+ @R)) [ Q Lol W (0.6, 9.6, %), Z))- 21y

Bar
To define B consider the closed ball

Bl = Ell (Iio) X Elz (0) C )(17

where ko = div 23%(q) + i curl 23°(q) with 23 so that

* Z*O € * * -k

Z5%(x) = [ 0! )} LA (2) = 200 (@) +izgs (@),
23 ()
and Z§ = 73 + Z! is the initial condition as described in (5.9). Here the numbers Iy, Iz are given by
I =T°, ly=CollogT|* =7 log?(|logT|),
with o > 0 small and and Cy > 0 is a fixed large constant. We consider £ in the space
Xo ={€ € C'((0, TR?) = &(T) =0}

endowed with the norm )
€llx, = 1€l o< o,y + sup  Au(t)~7[€(D)]
te(0,T)

where o € (0,1) is fixed. In X we consider the closed ball By := B;(¢*), where £* = ¢ € 2. We consider
the Banach space X := X7 x X5 and its closed ball B := B; x By. We formulate the fixed point problem
(12.6) in B. We claim that A(B) C B and that A is a contraction mapping on B for the norm || || x. This
is consequence of the various bounds and Lipschitz estimates derived in §13 for the operator P and in §5

for the operators ¥* and ®.
O

13. THE A\-w SYSTEM
In this section we prove Proposition 5.5, on approximate solvability of the equation
BO [p](t) = a(t)a te [OvT)7

where By is the operator defined in (4.6) and a : [0,7] — C is a given continuous function.
Consistently with the discussion in section 4, we assume that Re(a(T)) < 0. We will construct an
operator P that to a function a in a suitable class assigns p = P[a] such that

Bo[p](t) = a(t) + Rola)(t), in [0,T). (13.1)
so that Rola](t) is a suitably small.
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13.1. Preliminaries. We construct the function p in Proposition 5.5 by linearization, and the first
approximation is a function p, that deals with the case of constant a.
First we introduce some notation. We work with x € C and let py ,, be the function

T
1
Do,x(t) = k| lo T/ —=ds, t<T, 13.2
o) = K108 T| [ (13.2)
so that
: K| log T
() = — _ 13.3
Poult) = o — 1P (15:5)
We will always consider
1
— < <C 13.4
o< k| < Cy (13.4)

where C7 > 1 is a large fixed constant and therefore we have

1 ~
aA* S |p0,m| S CIA*;

with Cy > 0.
The first term in the function p constructed in Proposition 5.5 is a function close to pg . that actually
more or less solves (13.1) in the case that a is constant.

Lemma 13.1. Given k € C satisfying (13.4), there is a function p,, : [-T,T] — C, a constant ¢(k) € C,
and R1(k)(t) such that

Bolpx](t) = ¢(x) + Ra(r)(t) (13.5)
fort € [0,T], where R1(k)(t) satisfies
[R1(k) ()] < CAL° (13.6)
for some ag >0 .

We have additional estimates for p, and the remainder R; (k) constructed above. The function p, can
be decomposed as

Prx = Po,x T Pl,k-
Here py . is defined in (13.2). The function p; ,, satisfies: given k € (1,2) there is C such that
p1sll« k1 < Cllog T1** log?(|log T) (13.7)
and
[IP1ry = Prss g1 < Cllog TIF " log?(|log T) |1 — sz (13.8)
for k1, ko satisfying (13.4), where the norm || ||+ is defined for g € C([-T,T);C) N CY([-T,T); C) with
9(T) =0
and k£ > 0 by
gl = sup [log(T — t)[*|g(t)], (13.9)
t

)

(here g = 4g).
The remainder, satisfies together with (13.6) the estimate for the derivative in ¢:

(ZRl(H)(t)‘ <Ot (13.10)
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and Lipschitz estimates
|R1(I€1)(t) — Rl(lﬁlg)(t” § C)\SO|I€1 — I€2| (1311)
d d

le(lil)(t) - E’R,l(/ig)(t) S C)\(:O_1|I$1 — /€2|, (1312)

for k1, ko satisfying (13.4).
The proof of Lemma 13.1 and estimates (13.7), (13.8), (13.10), (13.11), and (13.12) are in section 13.4.

For the proof of Proposition 5.5 and Lemma 13.1 it will be useful to isolate the main part of the
operator By, defined in (4.6). Given the asymptotic expansion of I'; in (4.5) we write

Bolp] = Z[p] + B,

where
Il = /_:Mt) % ds (13.13)
B[p] = Bl[p]JrBQLP] +l§3[p]+l§4[p} +B5[p], (13.14)
and

- D Re(p(s)e—iw® 2
Bﬂp](t) _ ezw(t)/ R (p( ) )(Fl(;\(_t)s) _ 1) ds

-T t—s
~ . t—X.(t)? m(n(s e—iw(t) 2
Balpl() =i [ 2 Pl ) (ry(X) 1) as

-T t—s t—s
. : ! Re(p(s)e=™1) _ A(t)? 13.15
Bg[p](t) — ezw(t)/ (p( )_ )Fl( (_) )dS ( )
t— A (t)2 t S t S
N » ¢ Im(p(s)e=«®) A(t)?
B4[p](t) _ Zezw(t)/ (p( )_ )1—\2( (_) )dS
t—/\*(t)Q t S t S

Bs[p](t) = =A()e™ ™) = —Re(p(t)),
and we use the notation p(t) = A(t)e™®).
To prove Proposition 5.5, we take p of the form

P = Pk + P2,

where p,. is the function constructed in Lemma 13.1, for some x € C to be determined. The function
p2(t) will have the property

p2(t) = o(px(1)),
ast —T.
We would like that

Tp.](t) + Zp2)(t) + Blp, + pa(t) ~ a(t). (13.16)
Given « > 0, let us decompose
I[p] = Sa [p] + Ra [p]
where S, R, are defined as in (5.28), (5.29), that is

t—(T—t)'+e
9(s) 4

Salg)(t) = g(O[(1 + 0) log(T — £) — 2log(A ()] + /

-T t—s

_ 2

_ / MO g(t) —gls)
t—(T—t)t+a =5

Ra[g](t) =

S.
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The idea is to replace Z[ps] by Sa[pe] in (13.16) to make this equation more manageable, that is, we
consider

Salp2] + Blpx + p2) — Blps] + Ri(k) = a(t), ¢ €[0,T],
where we have used (13.5).
We introduce one more modification, so as to have a more convenient problem to treat. Let us split

Salg] = Lolg] + L1[g]

where
Lolg] = (1 — a)|log(T — t)|g(t)

Ly[g] = (41og(|log(T —t)|) — 2log(x) — 2log(|log(T)|))g(t) (13.17)
TN g(s)
-+ /;T m dS.

Let n be a smooth cut-off function such that
1
n(s)=1 fors>0, n(s)=0 fors< T (13.18)

We actually introduce one more modification to (13.16). For this, it is convenient that a is defined
in [-T,T]. So, given a function a : [0,T] — C satisfying the hypotheses of Proposition 5.5, we extend a
continuously by constant for ¢t < 0.

The equation that we are going to solve is the following one:

. t . 5 5 .
Lo[pa] + n(z) Lalpe] + Blps + p2] = Blps] = a(t) = Ru(x) + ¢ in [-T,T] (13.19)
for some constant c. Later on we shall show that it is possible to adjust x so that ¢ = 0.

13.2. Construction of a solution to (13.20). Since in (13.19) the terms a(t) and Rq(x) have similar
behavior, we will consider just

Lolpa] + () Lalin] + Blpe + pa] — Blpe] = alt) +¢ in [T,7] (13.20)
Consider the norm || ||,,; defined in (5.23).
Lemma 13.2. Let p,a € (0,1) and | € R. Assume that C% <l|a(T)| < Cy and
T log T la(-) — a(T)lui1 < C1, (13.21)

for some o > 0 fized. Then if T > 0 is small there is a solution py to (13.20) for some ¢ € C. Moreover
this solution satisfies

1P2ll0 < Cllal) = a(T) [l (13.22)
For the proof of this lemma we consider the linear equation
t .

Lolg] +n(5)Lalgl = f +¢ in [-T.T]. (13.23)

We will assume that f(7) = 0, and hence ¢ = L1[¢g](T') because all other terms in the equation vanish
at T. Thanks to the cut-off function 7(£), we need only to consider the values of Ly [g](t) for t > —Z.
Then in the definition of Ly[g], t — (T’ — t)!** >t — (T —t) > =T of T > 0 is small.

For the right hand side of (13.23) we take the space C([-T,T];C) with f(T) = 0 and the norm
1] a-1-

The next lemma asserts the solvability of (13.23) in the weighted spaces introduced above.

Lemma 13.3. Let o € (0,3) and T > 0 be sufficiently small. Assume | f||,1—1 < oo where p € (0,1),
I € R. Then for T > 0 small there is a solution S[f] of (13.23) that defines a linear operator of f and
such that

STt < ClF i1 (13.24)
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Proof. We consider (13.23) as a fixed point problem of the form
_ t
9="Lo" |f=n(z) (Lilg(®) = Li[g)(T)) |,

where L L is defined the formula

1 f(t)
(1—a) [log(T — )|

L [f1(t) =

It is clear that

_ 1
IZg Mt < T g Ml

We claim that
C'log |logT|
Lilgl() = Lol (Tl as < ( 7) .
IE416]) = Zalal (Tt < (o4 = 8 s
Indeed consider the term

|(41og(|log(T' — t)[) — 2log(r) — 2log(|log(T)]))g ()|
(T —t)"

< ClO%“%@‘Wm

gl

and this gives
[[(41og(|log(T — t)[) — 2log(r) — 2log(|log(T)[))g(t) [ n1-1 <

To estimate the integral term we decompose

t—(T—t)!+e T
/ g(S) dS — / g(S) dS = Il —|— 12 + 13
_T t—s T T — S

where
t—(T—t)t+e
I = / 96) 4
t—(T-t)j2 t—$
t—(T—t)/2 1 1
I = - d
2 /_T g(s)<t5 Ts) s
T
Is = / g(s) ds.
t—(r—t)y2 ' —s
Then
t*(T*t)l-F& (T _ S)p,
111 < gl | ds
P e—r—nye Nog(T — s)|H(t — s)

=nm|g/@%vg St D
ko (T_t)l+cx | log(T —t+ 7')|l r

(T -t T2 14 0()
Mol gt [ dr
[log(T' = )" Jir—ty1+a r
(T -ty
< _ log(T — .
< lollns gy (o] 0T = ] + )
t—(T—t)/2 (T _ S)p’
I < T—1t
<l =0 [ =
T —t)*
< Cllgllue =Y

[log(T — )|

C'log |logT|
| log 7|

ds

(13.25)

(13.26)

(13.27)

(13.28)
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and
T -1
(T —s)*
1] < gl | =
M e r—ey2 |1og(To)[!
(T —t)*
< CHQH#J | 10g(T — t)‘l .

These estimates imply (13.28). Then this inequality combined with (13.27) shows that

i ) (a0 - L) |

< 1 ( C’log|logT|)” I
« 0l
T l-« |log T Il

Then for o € (0, 1) and T > 0 sufficiently small this operator is a contraction and we obtain the conclusion
of the lemma. O

sl

Proof of Lemma 15.2. Let S denote the linear operator constructed in Lemma 13.3.
Then to find a solution to (13.20) it is sufficient to find a solution py of the fixed point problem

p2 = Alp2] (13.29)
where p = A[ps] is defined by p(T) = 0 and
B 5 [ (B +p2) ~ Blpl) + alt) — a(7)]

Let My = Cylla(-) — a(T)||u,1—1, where Cy is a sufficiently large fixed constant. We claim that if
T > 0 is sufficiently small then A is a contraction in ball By, of the space of complex valued functions
p2 € CY([=T,T)) with po(T) = 0 and with the norm ||pz||,.;. Note that with this norm we have

. (T — t)l“rl
) <C - 13.30
P2(0)| < Clials oz (13.30)
In particular, thanks to (13.21), if ||p2]|,; < My, then
Pl 122] <
A As
for T' > 0 small. - -
Let us verify that A maps By, into itself. Let po € By, . By (13.24) we have
[ Alpal et < (18D + o] Blpdlios + la() — (D)1 ). (13.31)
We claim that for pi,ps € By, we have
5 5 1 . .
I1BIpx + p1] = Blps + p2]llpi-1 < Cm— 151 — P2l st (13.32)

|log T'|

Assuming for now this estimate let us continue with proving that .4 maps By, into itself. Let
p1 € By, By (13.31) and (13.32)

M
1A[pa]ll s < C i + Cllal-) = a(T)llua—1 < M,

| log T
if T > 0 is small. Also thanks to (13.24) and (13.32) we see that A is a contraction in By, . This finishes
the proof of the lemma. O
Proof of (13.32). We will prove that
. . 1
i L — PPk 1 < = |lP1 — P ’ 13.
1By +1) = Bylps + pallios < €l = ol (13.33)

holds for j =1,...,5, with Bj defined in (13.15). The estimate for Bs is direct from the definition.
Let us prove that (13.33) holds for B;.
For this write

5’1 [pr +p1] — Bl [pr +p2] = D1,
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where
o (petp)®) (Ps +P1)(t) 5
Dia = e o e (o oo el 210)
. (pm +p2)(t) e (ﬁn +ﬁ2)(t) 3
o e (o oy Bl 42210 (13:34
and
3 _ [T p(s) ()2
Bl = [ 2 (v (D) 1) s (13.3)
We write
A [ et o (et W) g
R Al e LR | K
where p; = (p1 + (1 — {)p2. Let us analyze the terms in this expression. For this we note that
(px +pc)( ‘ N0
dC|pn+pC | pm+p§
Using (13.30) and (13.108), which will be proved later on, we get
o [ (Px+P)() d (ps +p)(t)
R (Bl 20 e el
olpi(t) = p2()]  [logT|
|(Ps +pg)(t)| | log(T" —1)[?
(1" lP1 — P2l
|log(T" —t)[! .
Let us consider
d%&,am 2l
A (s) |(prs + pe)( -
_/_T T (r( L ) 1) ds (13.36)
+2(pe(t) +pc(t)) - (p1(t) — pa(t))
O (4 5)(8) (e + p) ()
R e e

We estimate the first term using (4.5) (here o € (0,1)):

/H*(”Z pr(s) = pa(s) <F< ) - 1) ds

t—s
O pa(s) = pa(3)] (0w + PO (B
<C’/ t—s ds

(P + ) ()]
t—s

(t —s)7
=X ()2 (T — s)»
< Clpr — Pollua A (£)*7
< Cllp1 = P2llpa A(t) [T (t — s)1+o|log(T — s)|!
and by Lemma 13.11
(T —s)» C(T —t)»

t—A. (t)2
L,

(t —s)t+o[log(T — )] = Ax(t)?7[log(T — 1)

ds

T
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Therefore

‘/t—k*(t)z p1(s) = pa(s) (211- <|(Pf~e+Pc)(t)|2> - 1) ds

-7 t—s t—s

(Tt .
S mllpl—pzllm-

For the second term in (13.36) we take o € (0,1) and compute

=X (t)? /.- V(s 2
0+ 2e0)- 010~ ot [ P2y (V20 >‘

_r (t—s)2 ° t—s
(T =)+ (208 X (6) (e +p) O\ 7
log(T — D[ /,T t—s)2 < T > s

(-t RO A
log(T — ' [T (t—s2 "

< CAO)P1 — Pl

< CA()' 2 1p1 — po

|u7l

(T—-tr ..
= Thogz gy 17~ P2l

Thus we have proved that

(T -
Dl <C il

[log(T —t)]
Let us prove that (13.33) holds for 5’3. For this note that
Bs[pi + p1] — Bs[px + p2] = D1y

where
o (st p)(0) (P +71)(t) =
Dip = (P +p1)(t)] (|(Pn +p1)(t)|31,b[pn +p1](t)>
_ et p)(t) (Pt P2)()
|(px + p2)(2)] R (|(Pn +p2)(t)|31,b[pn +p2](t)> ,
and

Biolpl(t) = / O <'W)'2) os.

tf/\*(t)Q t — S t — S

The estimate of D, is very similar compared to D; ,, the only difference appearing in

d%&?b[pﬁ (1)

_ / B bae) =l (L +p<><t>|2> .

t—s t—s

+2pu(t) + pe(B)) - (1 (1) — pa(t)) /

t—A*(t)2 (t - 5)2 v t — S

We estimate the first term above

/f Pr(s) = P2(s) - <(p~ +P<)(t)|2) ds

—A.(t)2 t—s ‘ t—s

3

C t . .
< |(ps + po) ()2 /t)\*(t)2 P1(s) — p2(s)| ds

Tt
<o s ol
— llog(T_t)|al1 p2||#»l

L et <<pﬁ +p<><t>|2> "

85

(13.37)
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The second term is estimated by

! (pm +pC)(S)F{(|(pm +pC)(t)|2) ds

t—s

(m@+m@%@ﬁ%mﬂﬁ/

t—X, (t)2 (t—s)? '

(T -0+ . . 1 ¢ |log T'|
SCOME) 7101 — P2l v—n7 ool — a2 48
( )|log(T—t)|l” Iy Ax(t)2 ISWOE |log(T — s)|?
(T -t . .
<Cr——rcr——lp1 — .
— HOg(T—t)‘all p2||u,l
We conclude that
A
Dyl <C—r—r—— — . 13.38
| 7b| = \log(T—t)Vle p?HP«J ( )
From (13.37), (13.38) and similar estimates for D;, and D;; with the real part replaced by the
imaginary part, we obtain (13.32). O

We have also a Lipschitz property of the solution constructed in Lemma 13.2.

Lemma 13.4. Let p,a € (0,1) and | € R. Assume that for j = 1,2, a; satisfies C% <la;(T)| £ Cy and
(13.21), and let k1, ko satisfy (13.4). Then for T > 0 is small the solution ps[a, k] to (13.20) constructed
in Lemma 15.2 satisfies
1P2[ar, k1] = palag, s1]l[us < Cllar() — ax(T) = (a2(:) = a2(T)) |11 (13.39)
1P2[ar, k1] = palar, kolllus < Cllar () — ar(T)[[pi-1lr1 = ral. (13.40)

Proof. To prove (13.39) we compute formally the directional derivative of py

d
pl2 (t) = %pQ [a + saq, ‘L{](t) |5:0

where a, a; are functions satisfying (13.21) and C% < |a(T)| < Cy.
From equation (13.20) we get

Lolph] + () Lalit] + DBlpe +p2)(p) = ar(t) + ¢ i [-T,T], (13.41)
and where DB[p](v)(t) is defined as
LBp+ s0l(1)],_y

and is given by

o (2o ) (5528

+ P Re (”Dél[p}(v)>

bl Pl
i (G 2 m ) (- 25) 8)

+ zﬁ Im <|§|Dz§2[p}(u)>

- Re(v),

where

@m@:/”mzmmnwmﬁ_gw+lt ps) b (POF
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and

paem = [ (1, (00 )
+2p(t) - v(t) /_:A*(t)z (tp(sz)2p; (E’(t)f) ds
¥ /;wz oy, (AP
e [ By (),

t?)\*(t)zt—s J t—s

The operator DB[p, + ps] satisfies the estimate
5 C
IDB[ps + p2](0)[[n1-1 < mllvllu,h (13.42)

which follows from (13.32). Using the above estimate together with equation (13.41), and Lemma 13.3
we deduce (13.39).

For the proof of (13.40) we proceed similarly, computing the derivative of equation (13.20) with respect
to K

Lolph] + () Lalih] + DBlpe + pa)(ph) = ~DBlpe + p2)(9}) + DBlp)(p}) + ¢, (13.43)

in [T, T], where now () = -£. We claim that

(T —t)"

IDBlpi +2)) — DBpA)] < Cllan() = ar ()t oz

(13.44)

We have to consider the two terms above together and see a cancellation to get the correct estimate. The
first term of DB[p. + p2](pl.) — DB[ps](pl,) is

P, (pn+p2)((pn+pz)-p')) (Pn‘f'Pz ~ )
R (e — ) Re | L2TP2 B 1
! <|p,§+p2 P + 2P [Pn T po] P P2
/ o =
- (p*’" _ Pulpe ph) 3p'€)> Re <p“31[ n]) (13.45)
|pn| |pn| |pK|
=e1 +ey+e3+ ey
where
. p;) (mepz . )
ep = ——— " |Re| ————=Bq[ps +p
! (|pn+p2| ol ) R\ g 1P 2]
(pn +p2)<(p/i +p2)'p§-;) pli(pfﬁ'p;)) (pn +p2 5 )
e=- L P2 B p
’ ( oot o PRE ot po] 1P F P2
/ -~ D Fps o\ ~
o — (p,@ ~ Pe(ps 3p5)>Re<(pn P2 Pa )Bl[mepg])
D] |Ds| Ipe + 02| [Pkl
P, pn(pm-p;)) (pn . .
e4 = B — === | Re | —(Bi[px + p2] — B1lp«])
(|pn| |pn|3 |pn|
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(We recall that p,, is the function constructed in Lemma 13.1.) Note that

D, j Pl
e ) < P
Ipe +p2| Dkl |Pn|2‘ 2
| log(T — t)|? _
B CW(T — )" log(T — )| Hai(-) — ar(T)||pi—1
| log (T — t)|~"+2
:C(T*t)“—‘ g 7| |a1(-) = a1(T)|| i1

This together with (13.108) shows that
lej| < C(T = )" [log(T — )| [lax () = ar(T) -1, (13.46)

for j = 1. The proof of (13.46) for j = 2,3 is similar. Finally, (13.46) for j = 4 follows from the proof of
(13.32). This shows that the expression (13.45) satisfies

| < C(T = ) og(T = )| " as (-) = ax (T) | s 1-1-
The other terms in DB[p, + pa](pl. + 1) — DB[p,](p’.) are handled similarly and we omit the details.
Using Lemma 13.3 and estimates (13.42), (13.44) we deduce (13.40). O

13.3. Holder estimate of the solution. We will show in this section that the solution constructed in
Lemma 13.2 has some Hoélder regularity inherited from the one of a.
We then have the following result, where the Hélder semi norm [ |, ., is defined in (5.24).

Lemma 13.5. Let a € (0,3), p,v € (0,1), m < p—~, I € R. Assume that Re(a(T)) < 0 with
c% < Re(a(T)) < Cy and

T log T1"*"|a(-) — a(T)||ui—1 + [a]y,ma—1 < Cr, (13.47)
for some o > 0. Then the solution ps constructed in Lemma 15.2 satisfies
TH
[Paly.mi S Tog T (T +log|log T) lla(-) — a(T) |11
+ [a(-) = a(T)]yma-1- (13.48)

For the proof we need an estimate for the operator S constructed in Lemma 13.3.
Lemma 13.6. Let S denote the linear operator constructed in Lemma 13.53. Assume p,~y € (0,1),
m< p—- (13.49)
andl € R. Then S satisfies

log | log T

[S()ym < C([f]“fvmvl_l T [log T

||f||u,z—1>- (13.50)
Proof. The proof uses the fixed point characterization (13.25) of the operator S and the mapping prop-
erties of Lo and L; with respect to the Holder semi-norm [ |, .-

The operator Ly ' defined by (13.26), that is,

1 _ 1 f@)
Fo U0 = =0) Thow(m -1
satisfies: if m < p — then
(Lo 1] Jyma < L[f]%m,z_l +CT* N 1og T~ fllpi1- (13.51)

T 11—«
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Indeed, writing g(t) = % we have, for —T < s <t < T such that t — s < 1—10(T —t):
() — £(9) | 1
01001 < S 01+ VO gy~ |
(T —t)y™ 1 1
< Uit~ gy VO g7 ~ =1
But
1 1
f(s”‘|log<1ﬂ—-t>||log<7’—»sn
(T —t)* t—s
= Ot o= @ = o loa(T )2
< O gy )7

| log(T" — ¢)|+*
But by (13.49),
(T — )Y <CTHY™™(T —t)™.

It follows that

1 1 TH==m(T — )™ (t — 5)7
— <
TN Mog@ =1 ~ Tloa@ — 1| = Wt Tigg =y
A (L =)™ (t — )7
< _|loe T 1Tu o m(
= CHleLJ 1| og | ‘lOg(T — t)|l
This proves (13.51).
Let L; be defined defined in (13.17) and
- t
Lilgl(t) = n(Z)(Lalg](t) = L1 [g)(T),
where 7 is defined in (13.18). Then we claim that if (13.49) holds then
_ log |logT o
alllymi < (o CEELED (gl 4 T gl (13.52)

Let

Tt
T <t <ts<T, to—1t < 102

(13.53)

and then note that

Ly [g)(t2) — L1[g](t1) = hy + ho

with
= (1) =13 (Lalalen) - Llal(T)
ha = () (Lalg)(t2) — Lalg)(12).
Then
] < €2 Lifg)(t) — Lulg)(T)|

T
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and by (13.28)

'
lhy| < C2

-t (T —ta)" C'log|logT)|
) gl

T [log(T — t)] ] [log |
(T —ta)=7 Clog|logT)|
[log(T — to)]t—1 ot |log T gl
ST7HT — )Y Clog|logT|\ .,
‘1 T — ¢ 1—1 1 T T ||g||p.,l
og(T —ta)| |log T'|
(T —ta)™ N C'log|logT)|
[log(T — to)|t—1 |log T|

<Oty —t1)”

< C(ta —t1)

< C(ta —t1)”

) T g

To estimate ho we only need to consider 1 > f% because of the cut-off function. It is convenient to split

Li =L+ Lo
where
L11[g](t) = (4log(|log(T —t)|) — 2log(x) — 2log(|log(T)|))g()
t—(T—t) +e s
Laa[g)(t) = /_T tg(_)s ds.
Then

(T—ty)}+e .
Luslg)(t2) — Lslg) (1) = /( olt2 = 1) 4

T—ty)l+e r
(T=t2)/2 o(ts — p) — g(t: —
+/ glta — 1) —g(ta T)dr
(T,t1)1+a r
(T=t1)/2 ;4. —
+/ 79( 1-7) dr.
(T—t2)/2 r

(13.54)

Note that assuming 7' > 0 small and (13.53) we have that (T' —t1)'** < (T —t5)/2. We estimate

(T—ty) 1+ o —
/ gltz—1) .
(

T_t2)1+(1 T

(T—t)"™™ P g ) 1
<l | T-torr)r 1,
(T—ty)1+e ‘ 10g(T — 1ty + T)l r

But
/(Tt1)1+“ (T —ty+r)* 1 _ (T —t2)* 1y —t
—ar
(T—tyyi+a [log(T —ta+r)|tr = 7 |log(T —t2)|' T — ta
(T — tz)”77
< C(tQ - tl)vm
(T —ta)7
< to — ) — 2
= |10gT|( 2 1) |10g(T7t2)|l71
Therefore
(T—ty)*te .
gtz —7) C (T — t5) -
dr S to — 11 L —.a— ] 9llui-1-
/(Tt2)1+a T |logT|( ) |log(T — to)|I—1 llgll

(13.55)
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We estimate the second term:

/(T_tr“)/2 gty —r) —g(th —7)
(

T—tp)l+e r

dr

(T=t2)/2 (T — o 4 1)™  (ty —t1)7
S[g]w,m,l[ ( 2 +1)" (2 —t1)

dr
T—ty)1+a | log(T — 19 + T)ll r
(T —ta)™
= to —t1) ———=L—
[g]’y,m,l( 2 1) |10g(T—t2)‘l
(T—t2)/2 log(1+ =~—)| 1
. / 1+ M (1 + r )m, d’/‘,
(T—tq)t+e IOg(T - tg) T— tz T
and we estimate
(T—tg)/Q 10 1+ T —
/ 1+7g( —7;) 1+ )" dr
(T—tq) e IOg(T - t2) T— t2 T

(T—t2)/2 1 r
-|114+0 ) dr
/(Ttl)”ra r < (T — tg)
< allog(T — t2)| + C.
With this we deduce

(T—t2)/2 _ ) — _
/ g(tQ T) g(tl T) dr
(

T—t,)l+e r

M (o] log(T — t2)| + C)

(T —to)™ C
< S o SR S 2 A, _— .
< [ghyma(tz — 1) Moa(T — )~ \“ " Tlog T

< lglymalts = t1)"

For the third term in (13.54) we compute

(T=t1)/2 g4, —
/ gty —7) dr
(

T—t9)/2 r

<ol [ Tt )
< gl = dr
Iz (T—t2)/2 |10g(T7t1+r)|lT

and we estimate the integral

/(T—tl)/2 (T—tl —1—7“)“ 1 < (T—tl)“ to — 11
(

—ar
T—ty)2 |og(T =t +r)[tr = " [log(T — t1)[' T — t2
(T_tl)#—’Y
<Oty — ) ——2
<Clt:—t) [Tog(T — t1)|!

Since m < —v, we obtain

(T-t)/2 gy, _
/ g(ti—r) dr
(

T—t)/2 r

(T —t,)™
[log(T — )|~

< ¢ (t2 —t1)"

THTmTY .
— |10gT| HgH#al

From (13.55), (13.56) and (13.57) we obtain

log|logT| .
@Mﬂwﬂlﬁ(a+0|bg”(Mww+T‘m7MMﬂ

Next we analyze L1;. The largest term in L11[g](t2) — L11[g](t1) is

log(|log(T — t2)[)g(t2) — log(|log(T — t1)[)g(t1) = l1 + l2

(13.56)

(13.57)

(13.58)

91
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where
Iy = [log(|log(T" — t2)|) — log(|log(T" — t1)|)]g(t2)
lo = log(|log(T —t2)[)(g(t2) — g(t1)).
Then
ty —t1 (T — ta)H
Ll <C
= T o T — ) T — e 19l
(T - tg)
< - =7
C(tQ ) |10g( )|l+1HgHMa
(T —t2)™ e 2
< — ) ——————= —_TH ™ VogT
> C(tQ tl) |10g(T—t2)|l71 | og | ||g||,U«,l
and
(T —ta)™
<1 log(T — — )
|l2| < log(|log(T" — t1)[)(t2 — t1) |10g(T_t2)|l[g]%m7l
log | log T'| (T —ta)™
< to — 1)) ————F m.l-
= logry 27 og@ T
From this we obtain
log | log T'|
<(O————— . .
[L11[g]lymi-1 < C Nog 1] [9]y,m,i (13.59)

From (13.58) and (13.59) we obtain the validity of (13.52).
Then the conclusion of the lemma is obtained from the contraction mapping theorem. 0

Proof of Lemma 13.5. In Lemma 13.2, ps is constructed as the solution of the fixed point problem (13.29).
From this equation and (13.50) we get

[Bely.ma S [Blpw + p2] = Blpwllyma—1 + [a(-) = a(T)] -1
log |logT|, 3
0|<‘§1|0<‘§||||B[p,{ + p2] = Blpsllui-1
log [log T'|
|log 7'

+ 71

+ T —=———lla(-) = a(T) | u1-1- (13.60)

We have the following estimate

[Blpw + p1] = Blpw + ] 0 (13.61)

1 .
([ — Palymi +TH7Tpr — p2|u7l>7

S Tiog ]
for p1, p2 in By, (with My = Cylla(-) — a(T)|| -1 defined in Lemma 13.2). We give a sketch of a proof
below.

From (13.60), (13.61) and (13.32) we get

. 1 . 1
2hmt 5 oy (Pbma + 77 2l

log |logT], .
Y = a(T)]nmi— Tr_ol o1
+1a0) = ol o + TS B

log | log T'|

T ) ) g
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Therefore for T' > 0 small, and using the estimate (13.22) we get

Tl.
)y mi < ——= (T +log |log T Y = a(T)[ s
obnt 5 g (177 +logllogT) la(?) — a()ni
+ [a( ) - a(T)]'y,m,l—L
This is (13.48). O

Proof of (13.61). We do just some of the terms in the difference. Consider D, , defined in (13.34) and
let us analyze the following term in this difference

ft) = Pt PO <|(m +p2) (1)

o o1 (T el Gl 10 =Bl 210 )

We want to measure the Holder seminorm of this expression, and for this let ¢,s € [-T,T] with 0 <
t —s < 76(T — t). In the expression f(t) — f(s) there are several terms, and let us consider

(Bi,a[pn +p1](t) — Bi,a[pn + pa](t)) — (Bi,a[pn +p1](s) — éi,a[pn + p2](s)).

Writing
. N 1 g .
Bialpe + p1)(t) — Bialpw + p2)(t) = /O iBalpe +2d(®)

where pe = (p1 + (1 — {)p2 we see that it is sufficient to estimate f(t) = f(s) where

and

NOMENTE _
f1(t)—/)\ pi(t —2) pzt z) Fz( pn+pc()| )_1> d=

T+t
Ja(t) = 2(p(t) + pe(0)) < 1(t) = p2(1))
| /H*W (b +5)(3) (|<pn+p<><t>| ) s,

_r (t—s)? t—s

In fact we claim that

; . . L (T—tm
|f(t) = f(s)| < Cp1 — pQ]fy,m,l(t —5) m
+ Cllp1 — P2l G |1O(;T(T_f)t)(f —s) (13.62)

We estimate



94 J. DAVILA, M. DEL PINO, AND J. WEI

where

'L:Ai; m@—zwgm@—ﬁ)_pma—a;pﬂs—@

D(@mfmn> ‘&

H‘:Aijzp(&_d;pﬂs_@

m/ﬁw ms@zm@@<n<mﬁfd@ﬁ)gw&

V- /Ti pult - 2) sz(t—z) <Fi <|(pn+§g)(t)|2) - 1)‘ .
We have

I < [p1 = Palyma(t —s)7 //\T(i; I(EZ(T (_t (; i));)lli
: ‘Fi <W> - 1‘ dz,

but

/T” (T—(—-2z)" 1
Moz |1og(T = (t = 2))|' 2

/*“(> (T2
o log{T =)t —2)

t—X.(s)2 (T _ Z)m
< ON(1)* d
< On) /41 [og(T — 2)[I(t — 2)1+o

F<Q%+RQO|>—4dz

z

T, (WW) - 1‘ dz

t—=z

(T—0m
|log(T" — )|

by Lemma 13.11, and we get

(T 1)

I < Clp1 — palymalt = 8)
_C[pl pQ]’y, ,l(t 3) |10g(T—t)|l

We next estimate

s=Au(s)? | - o
IIS/ p1(2) — p2(2)
—T4s—t §—=z
AT (T 1
< Clpr — p2 ,l/
1P =Pellut | Toa@ =25 ==

r, (I(pn+p<)(t)2) T (I(pn+p<)(8)l2>’ i

s — 2z s —Z

S —Z s —Z

r, (I(pn +pc)(t)l2> T ((pm +p<)(8)|2) ‘ iz

(13.63)
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We have

nC@ﬁmMWj_n<@mw&ﬂj‘

s§—Z s —Z

1 (55)

<

|(Pr +pC 2 _ |(Ps +pC)(S)‘2
s —Z S —Z

At . "
0 (200) 7l 2200 e ] 560
s—z s—z
where o € (0,1). Since p, = po,x + p1 and p; has the estimate (13.7) for its derivative, we get
| log T|
k() — Pr SCOr——F7—Fpt—9).
() = po(o)| < O B (0 =)
On the other hand
. ) (T —t)"
t) — < = (¢ —
e(t) = p5)] < (il + ol ot = )
. : " [ log T'|
< —_
> (lellml + ||p2||u7l) | log T|l,1 | log(T — t)|2 ( 8)
so that
(P + 1) (t) = (P + pc) ()]
|log T'| . ) T+
— |1 — | (t — 5).
|1Og(T7t)‘2 +(||p1HMJ+ ||p2||N,l)|10gT|l,1 ( S)
Since we are assuming (13.47) and we have ||p;]|,.; < Colla(t) — a(T)||,1—1, we have
TH1og T Hpjllus < C,
for simplicity we will use the estimate
| log T'|
t) — <C—"—FF—=(t—5).
(0 +-20)(0) = (0 +20)(5)| € O (1)
Then
. . _ log T
II <Clpr — A*tl%—J—————tf
= ”pl p2||,u,l ( ) IlOg(T—t)|2( S)
s—Au(s)2 T — 5\ 1
. / ( ?) ; 5— dz.
~ris—t [10g(T —2)|" (s — 2)
But
ST (P e 1 T — i) 1
/ ( 2 ] 5y 42 <C ( ) 1 2(1=0)
1ot Mog(T' = 2)|" (s — 2) [log(T" — 1)|" A (t)(1=
and therefore
. . [logT| (T —-t)*(t—s) 1
m<c —
= =2t ioa@ — i Tioa( — 0l 2.0
. . TH=Y=™(T —t)™(t — s)7
< Cllpr — P2l ( ™ ) (13.65)

|log(T —t)|!
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Let us estimate III. We have for o € (0, 1):

7 — /:(<)> Bils —2) = pals = 2) (n— <|<pﬁ +p<><s>|2) B 1)‘ .

z z
MOT L (T (s— )"
<C s )\* 20
< ClIp1 — Paluirs(s) /MS)Q 2149 [log(T — (s — 2))[!

dz

. . (T — t)“ 20 —20 —20

< - T o o~ \x * — Ak

< C|p1 — 2|l log(T—t)|l)\ ()7 (As(s) A(t)727)
. . (T — t)# 20 —1-20|y

<l = Bl A ) )
o (Tt - s)

< —

< Clp p2||u,l | log(T — ¢)|!

(T-t* t—s
log(T — )| T — ¢
TH=Y=™(T — )™ (t — s)7
| log(T —t)[*

< C|lp1 — D2l

Cllpr — pallu (13.66)

Next we handle IV:

T+t
IV =

P1(s — 2) — pals — 2) (Fz— ((pﬁ+p<)(8)|2> _ 1)‘ &

T+s z z

T+t
L 1 (T=(s=2)"
< o )\* 20
< Ol =l 0 [ 5 g o
—T—t+s
o 1 (T = =2)"

_ _ )\* 20 d
Cllp1 — P2/l A«(s) /_T (s — 2)1+7 |log(T — 2)|! o
TiTr=o(t — s)

< - i 2Lt = "\ —S5)

>~ Cle p2||p«,l)‘ (S) |10gT|l

TH (T (= s

[log(T — )" '

Cllpr — pall (13.67)

From (13.63), (13.65), (13.66) and (13.67) we deduce that

() = fu(s)] < Clpr = Pelymalt — s) M

TH=7=m(T — £)"™(t — 5)
[ log(T —t)|!

+ Cllp1 — P2l

The estimate for f, is the same and we get (13.62).

We will also need a Lipschitz estimate of p, as a function of £ and a(t) in the semi norm [ ] ;.

Lemma 13.7. Let o € (0, 3),

I (0,1), m < p—1, 1 € R. Assume that for j = 1,2, we have
Re(a;(T)) < 0 with C% < Re(a;(T)

RS
) < Ch and

TH1og T1" 7 H|aj(-) — aj(T) | wi—1 + [aj]y,mu—1 < C1,
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for some o > 0, and that k1, ko satisfy (13.4). Then the solution ps = pala, k] constructed in Lemma 15.2
satisfies

[D2lar, k1] — P2laz, £1]]y,m.

S lar — azlymi—1

—m_~log|logT|
+ T Wmnal(') —a1(T) — (az2() = a2(T)) | p1-1, (13.68)
and
. . T“
[p2lar, k1] — palar, wallym < |1 7 Ha1(~) — a1 (T || pi—1|r1 — ral- (13.69)

Proof. To prove this result we proceed as in the proof of Lemma 13.4, estimating the directional derivative

d
Ph(t) = PR [a + say, k](t)] _,-

This function satisfies (13.41).
The operator DB[p,; + p2] satisfies the estimate

1

[DB[pK +P2]( )]’Y#l 1= \logT\

(Ehm + 7= o) (13.70)
which follows from (13.61). Using the above estimate together with equation (13.41), and Lemma 13.6
we deduce

log |log T|

Tog T 1PBIPs + p2l(#5)li-

[pQ}’Y,m N [DB[pn + pQ](pQ)]'y,ml 1 THTTTY

—m_~log|logT|
+ [a1]y,mi—1 +T* A’W”al”uyl—l

1 m
S TiogT ([ blyama + TP ||p2||ul)
—m_~log|logT| 3
+ T WWHDB[Werz](P/z)HM—l

log | log T|

+ [al}%m,lfl +THmm Tog T ||a1||#’l,1.

For T > 0 small and using (13.32) we get

T“ =m, —m_~log|logT|
m, mil—1 FTH T —=———— 1.
[N |1 T 1951t + [ar)y mi—1 + Tog 7| llaxllpi-1
Estimate (13.39) translates into
19511 S llax () = ax(T) |11 (13.71)

so that in the end we find that

: —m—~10g[log T|
[P5)y,ma S laa]y,mi—1 +T" VWllal\lm—l-

This is (13.68).

For the proof of (13.69) we proceed similarly. We have the derivative of (13.20) with respect to & in
(13.43), where () = <. We claim that

[DB[ps: + p2)(p.) — DB[pe] (97)]ymi—1 < C%Hal(') = a1(T)| w1, (13.72)

and give a proof of it later on.
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From equation (13.43) and (13.70), (13.72) we deduce that

[52)7.m,0 < C[DBlpx + p2)(0)}y,m.1-1 + C[DBlpw + p2)(9,) — DB[pe)(9))]y.m.t-1

—m—nlog|logT| = '
crr=m= 2808 L DB, -
n Tog 71 | DBlpx + p2)(ph)l11-1
log |logT = 2
4+ opu-m— 108108 Tl b ) — DB () s
|log Tl
< (B + T 35l0) + O () — ()
= Tlog] P20 AR TR
—m—~log|logT| - '
crrimm=1 2B 2L DB, -
+ Tog 7| I DBy + p2] () |11
—m—~log|logT| — ~ 3
+OoTH WWHDB[m + 2] () — DB[p] (0 i-1-

Then from (13.71), (13.42), and (13.44) we get

Bhlma < O ar (1) — ay(T
bt < O () = (D .

Let us prove (13.72). Let us analyze the following term in the expression DB[p, +p2](pl.) — DB[p,](p.)

L pe (K;n'm,a[pﬁ +pa) () — szs’lﬁa[pn]@;))

where B , is defined in (13.35). We write

Dél,a[pm +p2](pi<;) - DBl,a[pn](p:i) = fi(t) + f2(t)

- /:A*(t)2 ]tj;_(ss) (F1 (W) -1 (W)) ds

t—Xi(t)? (.- 5 V(s . )
Fot) = 2pw + p2) (1) - DL (1) [T (P + P2)( )r;. <|(Pn+p )(©)] ) .

where

(t — 5)2 t—s
=X (g 2
= 2ps(t) - Pl (1) /4 (fi(s))2F3 <]1K£tl| > s

Let us compute the Hélder semi norm [ ], of fi. Let then t,s € [-T,7],0 <t —s < L(T —t). We

rewrit
e )= /f; =2 (r, (1 +52><t>2) . (|p<t>|)> .

£ = fu(s) :/M M (1“1 (WW) s (Ipn(t)lz)> o

A (1)2 z z

T s =) (b (et p) (P (eGP
Jo O (o (M) o (1))

=I+0+0I+ 1V

and then
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- _/A*(t)z B(s — 2) (H (I(pn +p2)(8)l2> 1 <|pn(8)2 ) &
P ey
/T%s (p;(t_@ B p;<s—z>> (Fl (I<p+p><t>)
A ()2 o N
+s

v [ ALY <|<pﬁ +p2><t>2> . (|pﬁ<t>|2)

A (t)2 z z

[y (Mot 2008, (Y]

We have, with a computation similar to (13.64), and using the bound for p, that we obtain from

Pr = Kpox + p1, (13.7) and (13.22):
1 ~ T+sq 2 2
1 < CM@_S)/ L, (Wm)(t”) 1 <W>’ "
s z z

where

T =

Log(T — 1) e 2
[e) — T+s
_C’M(zﬁ_) ()1 20||pn()+p2 )] — |ps(t H/ 2220 dz

| log(T —t)| 1 (T —t)"
m(t—S)A*(t) Hm”Wm
< C||P2||y,l%(t —5)
TH=Y=m(T — )™ "
< Clal) = o) aos ™ o e (e o)

Now we use (13.22) and find that
TH=Y=m(T — ¢)™
| log(T' —1)/'

17 < Clla() — a(T) | ua (t—s).

For IV we claim that the same estimate holds
TH=Y=m(T — )™

IV < Clla(-) — a(T)||y1-1 Mog(T — 1)[!

(13.73)

Let us estimate IV. For this we write

p, (1Lt 2O _p, (el
[ <|<pm+p2>< Y -, (0]

:/1i{rl(|pn+ém n(l’ﬁ—@z)( >|2>} "
:20/1@1 (l(pwcpz)( ) ) e+ C)0)- 2200
0

Ja

z z

-1 <|(pn + sz)(S)IQ) (s + sz)(S) ~pa(s)

=A1+ A+ A3
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Ay =4(t—s / T ( Pr + CPQ)( v)[? ) (P + Cp2)(to) - pa2(to)

/ 2
(Pr + Cp2)(tw) - (Pn"‘CPQ)( )ddC
2ty / / 1“’( pN+Cp2)( )|2) (P + CPo)(t0) - Pote) 4
o2t s) / / r ( pn+Cp2)( )I2) (i + Cp2)(to) - Pa(to) dvd¢

where t, = vt + (1 — v)s.
Then we need to estimate

T+s -y _
/ Bels=2) 4 g
As

(t)? z
for j =1,2,3. Using (13.22), we have (with o € (0, 1) fixed)

T+s -/ _
/ Pr(s Z)A1 &
A

«(1)2 z

< O(t - S)'(pﬁ =+ CPQ)(%)F%\PQ(%)\|(]5;<, + <p2)(tv)|

T+s 1
. [Au(s — 2)| dz
//\*(t)2 22 o

< €l = 00 a) — a1 e A 07 2 0
< Clla) — D)ot — ) A o) A0

< Cla) D)ot - o)

< Cla() = o) uaa(e - oy T

Next, again using (13.22),

TH+s -1 _
/ Pels=2) 4 4.
A

«(1)2 z

: T — t)ntt THs
< _ . 2 . —20 ( /
< Ot = )M @) A (1) Tog(T — 1! P2l o 77 dz

\ T — t)uﬂ

< Ot — s)|\(t 2>\*t*2"(7 ()2
_C( $)| ( )| ( ) |10g(T—t)|l ||p2||,u,l ( )

(T—t)» 1
Tog(T — iyt P2l
T”777m(T _ t)'m

| log(T — t)\l ||p2H,u,l

TH=—y—m (T _ t)m

! |10g(T( £l la(-) = a(T) | ui-1-

<C(t—ys)

<C(t—s)

<Ot —

In similar way we get

TH+s -/ o
/ P(s —2) A, dz
A

«(1)2 z

Tr==m(T — )™

g C(t - 5)’\/ | lOg(T . t)ll ||a() - a(T)”lhl—l'

(13.74)

(13.75)

(13.76)
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Combining (13.74), (13.75) and (13.76) we get (13.73).
With similar estimate for I and II we get

[fl]’y,m,l S C—

|1 T| Hal()ia(T)

The estimate of f5 is similar and we omit the detalis.
O

Proof of Proposition 5.5. By Lemma 13.2 there is ps satisfying (13.19), where we have used this lemma
with a replaced by a — R1(k), with R4 (k) being the remainder appearing in (13.5).
Note that by (13.6) and using the assumption © < g, we have

IR1(K)|lei—1 < T ©|logT|'~ . (13.77)
Therefore from (13.22) we find
Ip2lle; < C(T*~log T|"™* + [la(-) — a(T)[le,i-1)- (13.78)

In equation (13.19) the constant ¢ depends on x and we claim that it is possible to choose k satisfying
(13.4) such that ¢ = 0. Evaluating (13.19) at t = T we find

T . .
/ Bu(3) +52(5) (o oy o (13.79)
T T — S
We consider then the equation ¢ = 0 with x as an un known, that is, we look for k satisfying
T . .
/ Dl £a0) g o), (13.80)
-T T—s

(Note that ps also depends on k.)
Let

T . .
R

We claim that
f(r,0) =k + F(r,0) (13.81)

where f satisfies
; C
Fs1,0) = 2, )| < [ lin = sl (13.52)

for k1, ko satisfying (13.4). To prove this we write

f(r,a) = fo(k) + f1(k) + fa(s, a)

where
/TpO’K R/des
TT T T—s
:/T pl,n
r T -
/T Pa(s
T —

By the explicit formula (13.2)
fo(r) = 1+ fo(r),

where fy satisfies (13.82). The functions f1(k), fo(k,a) also satisfy (13.82), which follows from the
Lipschitz estimates (13.8) and (13.40). This proves (13.81).
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Using (13.81) it follows that there exists a unique & so that (13.80) holds. Moreover
kla] = a(T) + k1]a] (13.83)

where the function ki satisfies
TH

[k1la1] = k1az]| < Cllaa(-) — ar(T) — (a2(-) — a2(T))||u,l—1W~ (13.84)
for a1, as satisfy Re(a;(T")) < 0 with C% < Re(a;(T)) < C; and
T log T|"*7|a;(-) — a;(T)llui-1 + lajly.mi—1 < C1,
for some o > 0. To prove this, we have to estimate
|f(k,01) = f(K,a2)| = [ fa(k, a1) — fa(k, az)]
T . .
< / |p2,a1 (S) — P2,a5 (S)| ds
-T T—s
and using (13.39)
T -1
. . (T — s)"
_ < _ S
[f(k,a1) = (£, a2)| < [|p2lar] — palas]lu [T [log(T — s)|! ds
TH
< Cllai(-) — ar(T) — (az2(-) - a2(T))Hu,l—1W-

Now let us prove the estimate (5.27). For this we note that what we left out in (13.19) is R, [p2] and
hence the remainder Ro[a] is just Ry[pe]. By Lemma 13.5 we have

) 70 o
el < o (T777" +log | 1og 1) lla() = a(T) o1
]
¢ T +log|log T|) |R -
+ Crpogry (U777 +log| log T} [Ra (k) 0.1

+ Cla() = a(T)]ymi—1
+ C[R1(K)]y,mi-1-
Using (13.10) we see that for s < ¢ in [0, T] such that ¢ — s < 75(T — t) we have
[R1(t) — Ra(s)| <A (D)0
(t—s)7
and since m < © — v, © < ag by hypothesis, we get
[R1(R)]y,mi-1 < CA(0)°

for some o > 0.
Using this and (13.77) we obtain

(C]

992 ymi ST+ C
[pQ]’Yy N + |10gT|

(T—’Y—m + log | 10gT|) la() —a(T)lleu—1 + [a]%m’lfl’

for some o > 0. Then

t—X.(t)? . o
|Ralpe]] < / [P2(0) = Pa(s)]
t—(T—t)l+e t—s
t—Xu(t)? PSS
< Clpalym. / (T — 5)™| log(T — 8)‘_1(157) ds
t—(T—t)tte -5

(T o t)m+(1+a)'y

[log(T — t)]! 1559

< Clpaly,m.,
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and therefore

(C]

[Relpll < O (17 4 Oy (1777 1o o ) fla() — a1 + foh i)

(T — )m+(1+a)v

| log(T —1)[*

We now prove that Rg[a] is Lipschitz with respect to a. Let a1, as satisfy Re(a;(T)) < 0 with
C% < Re(a;(T)) < Cy and

TH1og T H|a; (-) = a;(T) i1 + [as]ymu—1 < Ci,

for some o > 0. We let k; = k;[a;] as found in (13.83).
We have by the same computation as in (13.85)

' . T — pymt+ta)y
Rulpalar, #1) — Ralpslas, k]| < Clisfar, k1] — palaz, rallomy e

|log(T" — t)|!
Using (13.68) and (13.69) we then get
[P2[ar, k1] — palaz, Kallym.i
< a1 — azlym,i-1
—m_~1og|logT|
+ T Tog 7| ai(-) = a1(T) — (az2() — a2(T))lu,1—1
Th—y—m -
+ Wllal(-)—al( Npg-1l61 = K2,
and using (13.84)
[P2la1, k1] — p2(az, Kallym.
<lai — azly,m,i-1
log |log T
e LTy () (1) — (aa() — aa(T) i
[ log T'|
T/L o T T T
+ O 0 0) = (D)t lan(7) - aa()
Tu y-m - - - TH
+C Tog 7| a1 () = ar ()l pa-1llar(-) = a1 (T) = (az() — ax( ))||“’l_14|1ogT|l'
Using the assumption
T#1og T|™"||ar(-) = ar(T)||pi-1 < Ci|log T|'=7
we may write
[p2lar, k1] — palaz, Kally,m,
< lar — azly,m,i-1
—m—~log|log T
u—m—y 08108 | — a(T) = (as(-) — as(T))||,n1—
n 0 aa() — an(1) = (@20) = aalD) i
Th—y—m

+ O gz 110) — (D lwialan(T) = ax(T)].
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Thus, finally we get

|Ralp2lar, k1] — Ralpelaz, k2]l
T ¢ m+(1+a)y
( ) -([al - a2]77m,l—1

~ [log(T = )"
—m_~log|logT|
rm=y 281081 () — a4y (T) — (a2 () — az(T))||ui—
+ Tog T llax(-) = ax(T) = (a2() — aa(T))[lp1—
TH—y—m
+ Oy 1010 = (D) luaalan (T) = a(7)]).
O
13.4. Proof of Lemma 13.1. To do this we look for p, of the form
Pr = Po,x + D1,
where po . is defined in (13.2), and we would like
Tpo.x] + Zlp1] + Blpo.x + p1](t) — c(x) = O((T — t)*) for t € [0,T]. (13.86)

The idea is to replace in (13.86) the operator Z[p1] by Sa,[p1] defined in (5.28) and try to solve the
corresponding equation. We claim that if gy > 0 is small, then we can find p; such that

Z[po.x] + Saolp1] + Blpo.x + p1](t) — ¢(k) =0 in [0,7], (13.87)
for some ¢(k). This means that instead of (13.86) we have obtained
Bolpo,.x + p1] — ¢(k) = Ray[p1] in [0,T].
The second step is to prove that there is k such that ¢(k) = A. The final step is to show that
[Rao[p1]] < C(T' — 1),
and this implies (13.86).

Construction of a solution to (13.87). To obtain a function p satisfying (13.87) we formulate a fixed
point problem as follows.
‘We decompose

where

Lalg(t) = (1 - ao) log(T ~ 0lg(t) + [

-T T — S
and Ly contains all other terms, that is,
~ t—(T—t)t+eo t
Lilgl(t) = / 9(5) 4 / I_ s
t—(T—t) t—s t—(T—t) T—s
t—(T—1t) 1 1
_—— d
+/_T g(s)(t—s T—s) §
+ (4log(|log(T —t)|) — 21og(|log(T)|))g(t)-

Given a continuous function f in [—7, 7] with a certain modulus of continuity at 7', we would like to
find g such that

Saolgl = in [T, T].
We will not quite obtain this, but we will solve a modified version of this equation. Let 1 be a smooth
cut-off function such that

1
n(s)=1 fors>0, n(s)=0 fors< -7 (13.88)
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We will be able to find a function g such that
= oo b= .. .
Lolgl +n(p)alg) = f +¢ i [=T.T]. (13.89)

We use the norm || ||« defined in (13.9) for the solution g of the above equation. For the right hand
side of (13.89) we take the space C([-T,T];C) with f(T) =0 and the norm

1 {lx = s ]Ilog(T—t)lkIf(t)L (13.90)

)

Note that in (13.89) the expression n(%)ﬂl[g] (t) is well defined for g of class C! in [T, T). Indeed,
because of the cut-off function, L[¢](t) needs to be computed only for ¢ > —L and for t > —T the
integrals appearing in L1 [g] are well defined, since they start at either at =T or t — (T’ —t) = 3¢t — 1T >
—T.

The next lemma gives the solvability of (13.89) in the weighted spaces introduced above. Let

,r:270t0

1—0[0

Lemma 13.8. Let Cy > 1 be fized, k satisfying (13.4), and assume that k > T — 1. Then, there is
ap > 0, so that for 0 < ag < ag, and T > 0 small, there is a linear operator Ty such that g = Ty[f]
satisfies (13.89) for some constant ¢ and

C
gl k41 + el < m“f”**,k- (13.91)

The constant C is independent of T, ay.
Let
E(t) := Tlpo,x](t), (13.92)
E(t) = E(t) - E(T),
where 7 is given by (13.13), and consider the fixed point problem
p1 = Alpi] (13.93)
where
Alp1] = Ty [-nE — Blpo.x + p1]], (13.94)

where 7 is the cut-off function defined in (13.88).
Note that if p; is a solution of (13.93) then p; satisfies

Folps] + 1) Eiljps) = 0 = Blpo.c +pi)(t) + ¢

in [-T,T] for some constant c. This implies that p; satisfies
SaolP1] + Blpos +p1] — E = c

in [0, T for some possibly different constant c¢. This is precisely the equation (13.87).
Note that it is not necessary to subtract B[po , + p1](T) in the argument of 77 in (13.93), because for
the class of functions p; that we consider we have Bpog . + p1](T) = 0, see (13.108) later on.

Proposition 13.1. Let k > 0, k < 2 close to 2 and ag > 0 small. Then for T > 0 small there is a
function py satisfying (13.93) and moreover

1l g1 < M (13.95)
where
M = Co|log(T)|*~ log(|log(T)|)?, (13.96)

with Cy a fixed large constant.
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Moreover, if we denote by p1(k) the solution just constructed, we have, for k1, ko satisfying (13.4)

1p1 (k1) — p1(K2) |l k41 < Clog T" 1 log(|log T|)? |k1 — kal- (13.97)

The rest of the subsection is devoted to the proof of Proposition 13.1.
We start with the construction of the linear operator 77 in Lemma 13.8. We want to find an inverse
for Ly, namely given f find g such that Ly[g] = f. To do this, we differentiate this equation and we get

2— g(t) 1 f(t)
1—ag (T —1t)|log(T —t)] 1—ag|log(T —1)| (13.98)

Then we can write a particular solution for ¢ to (13.98) as

_ T o — )|T-2
1) = = ao){l(;;(T —i 1T_ alo log(T — t)|_Y/t %ﬂs) ds, (13.99)

rT—2
where T = f:gg and where we have assumed that % f(s) is integrable near T (for example

f(s) = O(|log(T — s)|7%) with & > T — 1 suffices).
Define the operator

g(t) +

Tolfl =y, (13.100)
where g is such that ¢ is given by (13.99) and ¢(7") = 0. Note that g = Ty[f] solves (13.98) and therefore
Lolg) = f +e¢,

for some constant c.
Lemma 13.9. Assume k> Y — 1. Then for f € C([— T);C) with f(T) =
ITo[ AUl k1 < k+1 T M lleen
The constant is independent of T (if T is bounded), k, T'.
Proof. This is direct from (13.99). O

Proof of Lemma 15.8. We construct g as a solution of the fixed point problem
g="To {f U(T)Ll[ ]] .
where T} is the operator constructed in (13.100) and 7 is the cut-off function (13.88).

By Lemma 13.9

~ C N
1 To[La[g]}[ k1 < mHLl[Q]H**,k-

Let us analyze the different terms in f)l, which we denote by

4
El = Zilj
j=1

where

_ t—(T—t) +eo

Funlgl(t) = / 90) 4 (13.101)
(T—t) t—s
t .

= 9(s)

Lio|g](t :/ ds

12[9](t) T3
. t=(T-1) 1 1
Dulal) = [ a0 (s - s )
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Then we have

- t—(T—t) oo 1
En o] < gllv pen / ds
iy (= 9)loa(T — s
1 t—(T—t)t+o 1
< 119]%,x 1—/ ds
Vol g —pFet )y T

Q
S g (T — 1)k

< lgl

and therefore 3
[ L11[g][[ s,k < @0llg]4p41-
We also find that

t
) 1
Li21g](t)] < |lg]+,% / s
[L12[g] ()] < || +1 i—(T—1) (T — 5)|log(T — s)[k+1

<|\ 1 /t 1 d
*k Ta s~ N1 11 P S
= WM Mo (T =T Jy_ oy T — s

<l ! /t L d
* T N N1 S
= 191k |log(T — t)[k+1 t—(T—t) T—s

1
<llg R o O — Y FTT log(2),

which implies

; log(2)
|| 12[9”‘ N |10g(T)| ||g|| Jk+1

Concerning L3 we have

- t=(T-1) 1 1 1
L B < |lgll« - d
[L1s[gl ()] < llgll«kt1 /_T [log(T — s)|F+1 (t s T-— s) 5

t—(T—t) 1
< Clgll« T—1t d
< Cllglls k1 ( )/_T (T — 5)2[log(T — s)[F+1 $
o
“H log(T = £)[F+1

<Clg

and this gives
VEaa(g]lerk < o lg]
1319] 1,k = 9ll*,k+1-
[Tog()] 1914+

Finally

log(|log(T" — 1)|) + log(|log(T)[)
|log (T — )[*+1

1L1alg) ()] < Cllgll w41

and hence using that k = O(1) we get

C'log(| log(T)][)

[(Laalg]lls e < g1l k41

|log T|
Therefore
|1 To[ L1 [g]]] <Y L1 (]l
o1 |9]] 1%, k+1 > il T 119]||x,k
1 log | log T|
< % .
= k+1—T(aO+|logT| Tog ] ) 19l

we get a contraction if ag > 0 is fixed small and then 7" > 0 is sufficiently small.

Next we need an estimate for the error E defined in (13.92).

107
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Lemma 13.10. Let po . be given by (13.2) and assume k € C satisfies (13.4). Then

|log T'|log |log(T — t)] T
Et)—ET)|<C —— <t<T. 13.102
B - () < LT el - T e o (13.102)

Proof. By definition we have

=X (t)% .
E(t)=/ Pox(8) o
T t—s

Let t € [-L,T] and let us write

—(T=)/5 t—po(t)®
E(t) = / Por(®) g / Pox(s) g
t—(T—t))5 L —5

t - t .
:/ po-ﬁ(s) dS*/ po,ﬁ(s) dS
-T T—s t—(T—t)/5 T—s

t—(T—t)/5 1 1
o _ d
/_T Po, (8)(t5 Ts) 5

— 2 .
/t - Pox(s) ds.
¢

—(r-t)/s t—S

+

+

We estimate

t . t
Po ,{(8) 1
———~ds| < Ckl|logT ds
/t—(T—t)/S T—s | | t—(r—1)5 (T — s)[log(T — 5)|?
Ck|logT| /t ds
T (T =O)|log(T = )2 Ji—(r—1)/5
Ck|logT|
= |log(T —1)[*’
and
t=(T-)/5 1 1
[ e (- )
t—(T—1)/5 1
< Ckllog(T)|(T —t / ds
loeMIT =0 ] - g — o)t — )T —5)
t—(T—1)/5 1
< log(TH|(T — ¢t d
<OnllosOIT -0 [ e
Ol log(T)]
= |log(T —1)[*

With the fourth term in E we proceed as follows

=X (t)2 -
/ Po(s) |
t

~(r-t/5 178

A =X (1) —
= pon(t) / ds — / Poslt) — Ponls) 4,
t—(T—t)/5t— S t—(T—1)/5 t—s

=M (t)? - P
= dos(0)log(T — 1) 210g(r)) - [T Tl 2P0l g
t—(T—1)/5 t—s
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But
t=X () 5 (1) _ g
/ Poe(t) ZPon(8) 1l om0 e () (T — 1)
—(r-ns tos =
_ Onllog(D|
= |log(T —t)]3"

Therefore we have obtained
Po,k(S) w k|log(T
B [ B gt ton(T— )~ 21080)) + O( L)
We note that

t .
o (1) log(T — 1)| +/ Pos(8) 4o _ .
0 T*S

for some constant c. Indeed, by (13.3)

& (mntintosr -+ [ 2 )

Po,r(t)| log(T —t)| + 2p;5(i)

_ %(Z}O,x(t” log(T — t)|2)
[log(T — 1)

=0.
This shows that

| log T'|[log(|1og T'|) + log(| log(T" )I)])
| log(T =) ’
which implies the estimate (13.102). O

E(t) = E(T) + O(

Proof of Proposition 15.1. Let T be the operator constructed in Lemma 13.8 for T > 0, g > 0 small
and A defined in (13.94).

We will apply inequality (13 91) with k < 2 close to 2. The constant in this inequality remains bounded
as ag — 01, because T = 1 2 2as ag— ot.

For the poof we use the norm (13.90) with k < 2, k close to 2 so k+ 1 < 3 is close to 3. We work
with p; in the space X = C([-T,T];C) N CY([-T,T);C) with the norm || - ||« x+1 defined in (13.9). By
Lemma 13.8

[ A1)l k41 < C(IInEII**,k + 1Blpo.x + p1)(t) = Blpo,x + p1)(T) s k) (13.103)
and by Lemma 13.10
INE|sxe < Crllog T|* " log(|log T)), (13.104)

for some Cp > 0. We take in X the closed ball Bys(0) of center 0 and radius M given by (13.96) with
Co > 0 suitably large. The proof of Proposition 13.1 consists in showing that A : Bps(0) — Bys(0) is a
contraction. The estimates required for this are the following: for ||p1]|«x+1 < M we have

1Blpo. + palllsxx < Cllog(T)[*, (13.105)
and for ||p;||«k+1 < M, ¢ = 1,2 we have

C
1Bpo.x + p1] — Blpo.x + p2]||sxr < oz |||p1 D2l ft1- (13.106)

These inequalities are proved in Lemmas 13.12 and 13.13 below.

Form these estimates we see that A is a contraction in the ball By,. Indeed, from (13.103), (13.104)
and (13.105) we have

A1l k11 < C - Cp|log T|*~ ' log(|log T|) + C|log(T)[*~*
< Co|log T|*~ " log(|1og T1)?
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by fixing Cj large. Therefore A : Bps(0) — B (0).
Next, for ||pill«x+1 < M, i=1,2, by Lemma 13.8 and (13.106) we get
IM[p1] = Alp2]lls k1 < ClIBpo, + pa] = Blpo,x + pa]llcx e

< pi—pal
S \logT\ P1 — P2||%,k+1-

The proof of (13.97) will be given in Corollary 13.1 below.

Lemma 13.11.
a) Ifa>1,b>0 then

t—A.(t)? 1 A (t)Q(l—a)
s < C*i, te|0,T].
/; (0~ 5) [ log(T — )] g —gp 0T
b) If w e (0,1), I € R then
/tut)? (T — ) ds< C— T —0"
r (E—s2log(T— o) = " X2 og(T — O

Proof. Let us start with property a). Consider first ¢ € [0,7]. Then we can write

t—A. (1) 1 t—(T—t) t—A. ()2
/_T (t —s)*[log(T" — s)[° T t—(T—1)

Then

t—(T—t) 1 t—(T—t) 1
ds < d
/4 (t — s)*[log(T — s)|° S_C/T (T = s)*[log(T" = s)|’

(T —t)l-@
< - 7
= |log(T - 1)[P
2(1—a)
<o MO
= [log(T —1)P

ds

The other integral is
t—A. (1) 1 1 t—A. (t)2 1
/

ds < —_—
—(r—t) (t—5)1og(T —s)[° [Mog(T = )" Ji—(r—s) (t—s)"

)\* (t)z(ka)
= og(T =t)|>
Now consider t € [T, 0]:

t—X. ()2 1 1 t—A. ()2 1
/ a b ds < b / a
T (t —s)*|log(T — s)| [log(T' = )" /1 (t—s)
s (t)2(17a)
= log(T —t)|”
As for property b). Again consider first ¢ € [0,T]. Then

=X ()2 (T — s)" t—(T—t) t—A. ()2
/ 2 e [
T (t — 5)?|log(T" — s)| T ¢

- —(T—1)
Then
t—(T—t) T _ )~ t=(T=t) (p _ g\p—2
/ (2 2) ldsgC/ (=  ds
L+ = slog(T—9)] R e
(T -ty

<O
= NogT —

S
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and
t=A. () T — g)H T — )M t=A.(t)? 1
[ Ty o Tt i
t—(r—t) (t—5)?log(T — s)| [log(T' =)' Jim(r—sy (t—s)
(T -t
<C .
T A(B)?log(T = 1)[!
The case ¢ € [T, 0] is handled similarly as in part a). O

Lemma 13.12. Let M be given by (13.96), that is, M = C|log T|*~11og(|log T|)%. For ||p1|sr+1 < M
we have

1BIpo.x +p1)(-) = Blpo,e + pa](T) e < Cllog(T)[F .
Proof. For these estimates it is useful to notice that with the choice of M, if ||p1 ||« k+1 < M we have

P1
Do,k

o Jog([log T))?

1
=0 |log T'| <

for T > 0 small.
Recall B given by (13.14). The estimate

1Bs[po.s + p1](-) = Bs[pos + p1)(T)||sse < C|log(T)[F"

is direct from the definition.
For the other terms let us write

) (50
Bl = gy e et
) ()
Bl = gy et -
Bali(0) = Ui ve (20051l )
O )
where
B =X (t) s 2
By alpl(t) = /_T f(_l(pl(j(_@s) 1) as
~ t 5(s 2
Bialpl(t) == /t o f(_l I‘i(i‘(_t)s)ds.
Then to prove the statement of the lemma it is sufficient to show that
Buulp(0)]+ 1Bualpl(9)] < O B (13.108)

Using Lemma 13.11 and (4.5) we find for any o € (0,1),

i AW
Bualplt) < x| T AP0

) t—X. ()2 1
< COXN()*|logT d
< ()'°g'ff = 9 log(T — s “

|log T'|
= log(T —1)*
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Similarly

t
. [log T'|
Ip(s)]ds < C——F2 .
A (t)? /t—/\*(t)2 | log(T — t)?

This proves (13.108). O

Lemma 13.13. Let M be given by (13.96). For ||pi|lsr+1 < M, i =1,2 we have

|1Blpo.r + p1] — Blpo.x + 2l

||p1 *, k41"

C

Proof. Again the estimate is direct for Bs. To prove the corresponding inequality for By, we use (13.107)
and write

D1 o := Bi[p. +p|(t) — Bilps + p2)(t)
D, = Bo[ps + p1](t) — Ba[ps + p2) (1)
Dsp == Bs[p,. + p1](t) — Bs[p, + p2] (t)
Doy = Bulp,. + p1](t) — Balps + p2] (2).
We claim that
|Dial < —C [p1 = P2l k41, (13.109)
[ log(T" — t)[F+1 ’
|D; p| < LHPI — P2llskt1- (13.110)
7T log(T = ¢)[F+1 ’

To prove this, let us consider D; , and write

_ 1A [ os 20 p (Bt PO(?)
D”‘/o ac L(po,n%-pc)(tﬂR <|(p0,n+p<)(t)

where pe = (p1 + (1 — {)p2, and note that

Bralpos+d(0) | dc

A [ (Pos +p)1) o ( Bor +5)E) 5
i L(Pom-i-pc)(ﬂR <<poﬁ+p< p)] Bralpos +d] ”)] (13.111)
C (ow 5O d (o +0O)(0)
‘Re(|<poﬁ+p><t>| valpo.s +pcl(t )dc (pos + 1) (D)]
(o +2)(0) o 4 (o +20)(1)
T oo 100 ( olpo +pel(B) g0 |<po,€+p<><t>|>
(o + W) o ( (o TP d
T o T p0O1 (|<po,ﬁ T po) )] g alpos “’C]“)> '
But
’d <poﬁ+p<><t>‘
d¢ |(pos + pe) (1))
‘ p2)(t)  (Pos +p)(®)(Po,s + 1) () - (P1 = p2)(1)] ‘
Ipon+p<)( )l |(po,x + pc)(®)?
(1 — p2)(8)]
<2,
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Using (13.108)

o[ Pos+PI)() d (posx +p)(t)
F‘Qmm+mxm m“*““ﬂdumm+mxw
)
t

oo =)t

| [logT|
\(pon+pc)( )| [log(T —)[?
C

S Tog(T — O+ [p1 — pallskr1-

The second term in (13.111) is estimated analogously.
Let us consider

d -
d*CBi,a[po,n +p¢](t)

_ TN puls) = as) (1 (1o PO
_/—T t—s (Fi( t=s >_1>d5
+ 2(pon() + pe (1)) - (pr(1) = pa (1))
| /twf (Po.x +P0)(5) ((po,n +p<)(t)l2) ds
-T ' |

(t — s)2 t—s

We estimate the first term above using (4.5). For o € (0,1) we have

(fqumg—?@<nO@W:%WW)_st

<C/ ﬂmlhﬂ(ﬂ<mw+MWW):k

t—s

t—X.(t)? 1
20
w1 A (t) /T (t — )27 |log(T — s)|F+1 ds

< Cllp1 — p2

and by Lemma 13.11

t—A. (1)
/ ! ds < ¢
T (t— )2 [log(T — s)[F1 ** = X.(6)27 log(T — )1

Therefore

‘/;Mﬁm@_?@(no@wiﬁww>gds

C
. t)|k+1 ”pl 7p2H*,k+1-

<
~ |log(T

113

(13.112)
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For the second term in (13.112) we compute, for o € (0,1),

=X (t)% /.- 5-)(s
(p(),n(t) -l-pg(t)) A (pl(t) _pZ(t))/ (pO,N +pC)( )F/ (|(P0,n +p§)(t)|2> ’

7 t—s)? °° t—s
t—X.(t)? I¢: : 2\ 77
p0n+pC(8))| |(p0n+p<)(t)‘
< OX(1) - |pa(t) = palt ’ :
<On)-In® -n0)] [ o —
T—t E=A () |log T|

< CAM()'7Ip1 = pellekr T
= ()"~ llp1 — p2ll ’k+1|log(T—t)|k+1 /_T (t — 5)2=7|log(T — s)2

_ T—t |log T'|
< OXNO|p1 — p2|«
= OO =Pl oy X 0 g (T~ 1P
< Tt [log T|°~ YT —t)°~t  |logT| o = palle kss
= log(T = t)[F1 " Tlog(T — )22 [log(T — t)[2 ot

< C
< Togr — g 71~ Pl

Thus we have obtained the estimate (13.109).
The estimate of D is very similar, the only difference appears in
d
dg
t . . 2
_ . t
o BOLpOl (1w Y ,
t

IWOL t—s ! t—s
+ 4(po.x(t) +pc(t)) - (p2(t) — pa(t))
[ e gl (et 0 o,

—A.(t)2 (t — 5)2 ¢ t—s

By u[po.x + pel(t)

We estimate the first term above

/tt Pils) = p(s) <|<po,n +pc><f>|2> s

— . (1)2 t—s ' t—s

?

c / [Pr(s) — pals)| ds

.o
(o +p) ) Jioa. )2
< C

= Tiog@ gt It~ 2!

*,k+1-

The second term is estimated by

(ustt) +2600) - 00) = patt) [ Doty (L CpPY

(t — s)2 t—s

T—t t |log T|
<OME) " Ip1 — pollspi1 —— 1281
> ( ) \log(T _ t)‘k'H ”pl pQH Jk+1 )\*(t)4 /t)\*(t)z |10g(T _ S)|2 §

< - ]
— |10g(T—t>|k+1 pl p2 *,k-’rl'
We conclude the validity of (13.110). Estimates (13.109) and (13.110) give the result of the lemma. O

Estimate for the second derivative.
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Lemma 13.14. Let p; be the solution constructed in Proposition 13.1. Then

) |log T|

p1(t)] < C| log(T —t)]3(T — t)
‘ L ‘ |log T|
a [log(T — (T - 1)*

Proof. The fixed point problem (13.93) gives a solution to

Lo[p1]+77( VLi[p1] +nE + Blpo s +pi](t) = ¢, te€[-T,T],

T

for some constant c. We differentiate this equation with respect to ¢ and get (formally)

p1 1 t t.d -
e+ 2 (D)Ll + () 2

)E + aB[po’K +p1] =0.

(1 = o) [log(T = #)[p1 + 2(1 — ) 1[p1]

d

— B4+ (=
M T77 (T
We will use this equation and the norm || ||, defined in (5.23) to prove that

[p1]]-1,3 < Cllog T,

which is the same as (13.113).
We rewrite equation (13.115) as

(1 —ao)|log(T —t)|p1+n(T)L1[p1]+U[p1]() h,

where h is a function satisfying

| log T|

MO < C i@ — @ — 0

and U is the linear operator

) o (B0 N L0 (8,
) = e Fpatol) + gy o (Fgypst)

— Re(p1 (1))

N T
- /ti)\*(t)Q ]t)l—(sz T (Zt)(j)f) ds.

In (13.119) and (13.120) p is given by po x + p1-

where

115

(13.113)

(13.114)

(13.115)

(13.116)

(13.117)

(13.118)

(13.119)

(13.120)

We will verify this for a few terms (the other are analogous). One of the terms in A is %E (t). With a

calculation similar to Lemma 13.10 we get

|log T'|
[log(T —t)[(T' —t)
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Next we compute %le [p1] with Ly defined in (13.101):

4o d [T e
%Lll[pl] = dt/( 76#‘

T—t) 1+eag

T dr — T —t
o (t — (T — t)iteo
+(1+QO)P1( (T_t) )

= Lu[p1] - w +(1+ ao)pl(t — (TT__;)H%). (13.121)

/T_t pr(t —r) pi(t — (T —1))
(

T_t)1+u0

Of this expression L1, [p1] appears in the left hand side of (13.117), while the other terms are part of A,
and they are estimated by

pat — (T — t))' < o [log(T)[*~ log(| log(T)])? |log 7
T—t |~ Jlog(T— (T —t) — [log(T — )T 1)
pr(t = (T —t)t*ee) | [log(T)|** log(|log(T)])* |log 7
Tt = Nog(T — O+ H(T =) —  [log(T — (T 1)

Similar computations for ilj, j=2,3,4 give that %fq [p1] can be decomposed as L1 [j1] plus terms that

belong to h and have the estimate (13.118).
Next we analyze %B[po,,.i + p1] where B is defined in (13.14). The first term in %B[poﬁ +p1] is

I )
= (& - P2 ) e (BBl
+ e (L0 2600
+ Iﬁ?l Re ((i N P(|2;|-3]b)> 31,a[P](t)> 7 (13.122)

where B; 4[p] is given in (13.35).
The first and third term in (13.122) are part of h, and they are bounded, using (13.108), b

(G252 ) 3o
C |log T|

T —t|log(T —t)]?
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We then compute the second term in (13.122), changing variables t — s = 7r:

LN Ry L Y(TEUS P

dt T t—s t—s
d W2 p(t —7) A(t)?

:dt/T—i-t T (FZ( r )_1) i
S 2 2 .
L

P=T) (1 AW
T+t (Fi(Tth) a 1)
MO ) o AP
* /T+t r (Fl( r ) 1) ar
+ 2X(E)A(t) /Mt) G ~ T)F;(A(N)dr-
T+t r "

117

(13.123)

The first, second and fourth terms are part of h, and they have the correct estimate. Indeed, we have

. 2 2 \ 2
A )]s
[log T |log(T —t)|?
= [log(T = t)[* [log T|(T' — 1)
_ [log T
~ [log(T = t)2(T —t)’

p(=T) (. A1) c | log T'|
‘ T+1 (Fi(T+t)_ )‘ = Tog 71T = “Tiog(@ — )P (T — )"

and

2A(1)A(1) / B MO

2
T+t T T

20 [ T B p M

_r (t—s)2 “t—s

p(s)|
t—s)2
)

i t—A*(t)2 |)\*(S | t—s\o
gCA*(t)|A*(t)|[T (t—s)2<)\(t)2) ds

1-203 =2 () 1 1
< OMN(E) T2 N ()| Log T d
<on@ R mlosT| [ e e

2
r;(j(t)s)‘ ds

. t—X. (t)*
< CA*<t>|A*<t>|[T :

But

t—(T—t) 1 1 t—(T—t) 1 1
/ ds < C’/ ds
T |[log(T — 5)|? (t — 5)>~7 T [log(T = 5)[* (T — )~

(T _ t)afl
<O
= ogT — )2
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and

t—A. (1) 1 1 1 t—. (1) 1
/ 2 7o ds<C 2 / g Us
t—(r—t) |1og(T —s)[* (t —s)*>= og(T' =) Ji—(r—vy (t—s)*77

1
< )\* t 20—2
< Tiogw —pp ™

In summary

2A(DA() / MR ) AD?) ),

3
Tt r2 r

< A1) A.(0)] g T| A1)

1
[log(T — )2~
_ o Nos(T =) [logT}?
[log T|(T —t) |log(T —t)|*
|log T
(T = t)|1og(T — )]
Finally, the third term in (13.123) is

/)\*(t)2 Pt —r) (Fi()\(t)z) B 1) Y /t)\*(t)2 p(s) (Fi(A(tﬁ) _ 1) ds

T+t r r _r t—s

which is part of U[p1].
To deduce estimate (13.113) we use (13.117) to get
N t- . .
lF1ll-13 < Cln(GLa[pr]ll-12 + CIUBI 1.2 + CllA]-1.2-

We note that (13.118) gives

[h]|-1,2 < C|log T, (13.124)
and we claim that
= . C .
L1 [P]llm < <ao + Ilmng) 1B1lj,m+1, (13.125)
and that
C
1U[glll.m < @Ilgllmﬂ- (13.126)
Indeed,
- t—(T—t)'T>0 (T — s)j
L1't§ﬁ‘,m1/ ds
(L1 [Pl ()] < [1B]j,m+ s Tog(T — )1~ 3)
. _ _\1l4ao .
<?9”%"l+1/t (= (T—s)
= |log(T = )™+ Ji_r—4))2 (t—s) 7
but

t=(T=t)'*0 ) (T—t)/2 _ J
/ (T —s) ds — / (T—t+r) dr
t (

—(T—t)/2 (t—s) T—t)1+e0 r
o p(T=1)/2 1 4 O(+E
= (T —t)7 / M dr
(T_t)1+a0 T

< (T = 1) (ao| log(T — )] + O).
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Thus

_ C (T —t) .

and this proves (13.125).
To obtain (13.126) we compute

_ 2
/t MO | (leOPY |
-7 t—s | 7\ t—s

t—X. ()2 (T _ S)j 1
<l
> ||p1||wn+1 /_T [log(T — s)["+1 ¢t —s

t 2
n(mw|>_4d&
t—s
A (£)2

We then split the integral into TT(T%) ... and ftt:(T:t) ... and estimate (with o € (0,1) and using (4.5)):

/t—(T—t) ((T— S ('f(t);) - 1’ “

o TogT— s i—s
t—(T—t) (T _ S)j—l—a‘
< . 20 _
< CX (t) /_T |10g(T _ S)|m+1 ds
T —t)i=°
< onr T
< COA() |log(T — t)|™+1
- C (T —t)
= Tlog T| [log(T — t)|™’
and
. )
t=A.(t) (T — s)7 1 (@Y
. T 1| ds
o Tioa@ )i i—s |7 =
. 2
(T B S)J t—Au (1) L
< OM() ey / (oo
[log(T' — )™ Ji_(z,)
(T —s)?
<o M TS
>~ C | log(T o t)|m+1
C  (T—s)
= Tlog T| [log(T — t)[™"
Therefore

A0 |g(s)
/—T t—s

This proves (13.126).

lp(t)[? c (T —s) .
I -1 < ; .
J ( t—s ds < [log T| [log(T — t)|™ 1B1lm 1

Then using (13.124), (13.125), and (13.126) we obtain (13.116).

The proof of (13.114) is analogous, differentiating (13.117) with respect to ¢ once more. We omit the
details. O

Lipschitz estimates. Proposition 13.1 defines a function that to x satisfying (13.4) associates p;(k),
which is the unique fixed point of A in the ball {||p1 |« x+1 < M}, M = Co|log(T)|*~1log(|log(T)|)2.
The next result gives several Lipschitz estimates of this map.

Corollary 13.1. Let k € (0,2). For k1, k2 satisfying (13.4) we have

Ip1(k1) — p1(k2) ||« k1 < C|log T " og(|log T|)? [k1 — Kal. (13.127)
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Proof. The Lipschitz property for p; results from a standard argument once we show that the dependence
of A (see (13.94)) is Lipschitz with respect to . Indeed, let us make the dependence of A4 on x explicit
by writing Alp1, k] = T1[—nE(k) — Blpo,x + p1]]. We claim that for ||p1 |« x+1 < M (defined in (13.96))

we have
[ A[p1, k1] = Alpr, Ko« k41 < Cllog T|*H log(|log T|)? k1 — kal.
Since E(k) is linear in &, using Lemma 13.8, we need only to prove that

IBpo,e, + p1] — Blpows + p1lllswie < Cllog TF 1 k1 — kol

(13.128)

The proof is similar to the one of Lemma 13.13. We use the notation in that lemma and we give details

for one of the terms. Let us consider

~ (pO,Vvl +p1)(t) o (p07l€1 +]51)(t) 5
Dia= ‘(p(),nl +p1)(t)] R <|(po”11 _,_pl)(t”Bz,a[pO,m +p1](t))
(Po.xy +P1)(t) (Pos +P1)(8) 5

(o ) O] ¢ (I(po,@ o) ()] ralpo: +p1](t>> :

We claim that
=~ | log 7|
D; .l <Clk1 — ko| ——r———.
[Dial < Clrs = ol o0 —ap

To prove this, we write

=~ [ d [ (P +p1)() (Posc +P1)(t)
Dz,a = /0 dC [|(po,,<c T p1)(t)\ Re <|(p0’l{( n pl)(t)‘ Bz,a[pO,KC + pl](t))] dCa

where
P0,se = CPo,ky + (1 = C)CPo s -
Let us study

'de’l)“)‘

d¢ |(po,x, +p1)(t)]
(k1 — K2)po,1(t) B (po,fig +p1)(t)[(p0,fi( +p1)(t) - (k1 — ”2)170,1(75)} ‘
|(Po,ke + 1) (1) |(Po,ke + 1) (1)]?
) |(k1 — k2)po,1(t)]
= (Poke + 1) (1))
< Clky — Kal.

Using (13.108)

(Po,ke +P1)(1) 5 d (Po,ke +p1)(1)
‘Re <|<po,n< ()] Prelpose “’”“)> RS0 ‘
|log Tl
< Ol = maligm —ap

Let us analyze

d
7Bi,a [pO,nC + pl} (t)

g
-~ =A% 5o () |(Po,kc + p1)(E)[?
_(Iil—lﬁ)Q)/;T r— s <2FZ<H>_1> ds
+4(k1 — K2)(Po,kc () +p1(t)) - poa
O (po e, +91)(5) -, (1(Pom +P1) ()]
./_T (i —s) I‘i( P )ds.

(13.129)
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We estimate the first term above

(k1 — HQ)/tA*(t)Q Po,1(s) (QD (WW) _ 1) ds

t—s t—s
t—A. ()2 A 2\ ¢
Do,k +01)(
<C\/€1—f€|/ |t—8|<(0<t—51)()|> ds
=2 ()? |log T
< Clr; — A*t2"/ d
< Clm= w07 [ e ogm - s

and by Lemma 13.11

t— A, ()
/ 1 C
ds < .
_7 (t = s)t*o]log(T — s)[? A« (t)?7]log(T —t)[2

(51 — ) /fT**W Boa(s) (m_ (|(po,ﬁct+_ z:)(tn?) B 1) s

logT
<Cl€1—l€2||l| & |

(T =)

For the second term in (13.112) we compute

Therefore

4051 = 52) (Bo.nc () + P1(D) - o
./t—A*(t)z (p()’,i( +}51)(8)F

-7 (t—s2

t—s

|(Po,c +p1)(t )I2> ds)

A0 15, (s)]

/—\/—\

< Ol — @M*(t)g/ | (0, +p1)(t)|2>—a .

_r (t—s)? t—s

t—X. ()2 A
< Clry — /12|)\*(t)2_20/ AN

- (t—s)2—"

=2 ()? |log T
< Cliy — K|\t HU/ & d
Y P (e I

|log T'|

< Oy — ko 2t
= o=l —op

The last term in ﬁi,a is estimated similarly and we obtain (13.129).
From (13.112) we obtain

Hﬁi,a”**,k S Cllﬁ}l — HQH IOgT‘kil.

The other terms in the expression ||B[po s, + 1] — BPo.xy + D1]||sxk are estimated similarly and we
find (13.128).

O
We will also need a Lipschitz estimate for f; in the norm || ||-1 3 and %pl in the norm || ||—2,3-
Lemma 13.15. For k1, ka satisfying (13.4) we have
1P1(k1) — Pr(R2)l[-1.3 < Cllog T |1 — kol (13.130)
3
Hdtspl tspl(ﬁz)H s < CllogT||k1 — Ko (13.131)

Proof. For the proof we proceed formally estimating p} := -Lp;(x) in the norm || ||_1 3 (defined in (5.23)).
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We start from equation (13.117) and differentiate with respect to s to get

(1 —ao)|log(T —t)[p + n(T)L1[p1] +U[R(E) = h, (13.132)
where p} = % and () = %.
We claim that
|h]|—1,2 < C|logT|. (13.133)
We show here a few steps of the computation.
One term in h is ——E But we have
d - | log T'|
—E(t .
dt ( )‘ ~ log(T — )12(T —t)
and F is linear in K, so that
< CllogT|.
Ham ot Hfl,z < CllogT|

Other terms in h come from the computation of % L1 In particular from (13.121) we get

Pt = (T —-1) pl(t — (T —t)F)

T—t ' T—t
Using (13.127) we have
1Bl k1 < Cllog T1~ log(|log T))*. (13.134)
This implies
B~ (T —1)| _ Jlog T/ log(log T))* _ ., [logT|
T—1t [log(T — t)[FtH(T —t) = ~|log(T —t)|2(T —t)
pi(t — (T —t)'**0) |log T'*~" log(| log T')? [log 7|
T—t |log(T" — )I’““(T—t) = [log(T = )[X(T —t)

The other terms in h come from the computation of - dtB[po « + p1]- Let us consider dtBl as in
(13.122) and compute

L ) = [ (2 -2 e (205, 150

dr dt bl WP p(?)
b | e (L0 25 |
o | (B -2V Bupo)] . s

where p = pg . + p1. The first term above is

e {SIZ - e (i)
. e p(t) =~
- [ (= 5]
" (@ - p(foigp)) (
+ (|§| - p(f;|~3p)) Re ( pg) dl?l,a[p](f)> :
Using (13.134) and (13.108) we obtain

i (= )| e (Bt ‘ e

N———

=
@
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and

’(@ 2P e ([ emia) Bl’““’““)‘ e

Next we analyze

Lot = 4 [ (0 (O )
) /tTw) flfsi (Fi <|f(_t);) _ 1> ds

t—X. ()2

— A . S 2
+2p(t) - P (1) L ) (tp_( 3))2” <|f(_t)s ) ds.

These terms are also part of h and using (13.134) we get that

d CllogT]
By alp)| < ToalT — 22
el <
Combining this with the estimate
bl . _C

ol =T -t

we get

(o~ 52 ) v (i aeeP®)| < C s

which is the desired estimate for this part of h.
Let us consider now the second term in (13.135):

% [%;' Re (%Z&,Ap](t)ﬂ = [ddﬁi)l} Re <;zg?iglya[p}(t))
d
+

p(t)

Of these terms, let us analyze the last one. We compute, using the expression (13.123)

Q.
=

iil’;’l,a[p}(t) _ dd/i [ p(t — . — A (1)? )(Fi(/\(t)2 ) — 1)2)\*(t)>'\*(t)}

dr dt (t)? «(8)?
e e (g )]
[
o :2)\(t)5\(t) /T A:tf p(tTQT)F;(A(:)Q)dr]

)
(20T )

123
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Let us examine the third term above (after changing variables)

B 2,
4O ) (F,(M)fl) ds
dr o t—s ' t—s
_ 2 ..
B /t A7t (s) (F(|P(t)‘2) _ 1) ds
-7 s VTt
t*>\*(ﬂ2 b §
B0 (e o)l
Jr/ (Fz( ) - 1) ds
T t=s bes
t=Xa(t)? p(s) p(t)[?
(1) - Pt Py (L) g, e
+p()p()\/7T (t—8)2 1(t—8)5 ( )
The same computations as before show that
ti/\*(t)‘z . 2
H0.(5) 1 Ip(0) os ]
7 I, —1)ds| <C
[T t—s ( (t—s) ) 7= (T = 1) log(T — )

=2 ()? |log T|

(T =1)log(T - 1)]?

2p(t) - p'(t) / p(s) T Ip(t)]* )ds

_r (t—s5)?2 " t—s

and these terms are part of h. The second term in (13.136) is part of U[f].
Using the equation (13.132) and the estimates (13.133) for h and (13.125), (13.126) we deduce that

d
dk -1,3

which gives (13.130).
The proof of (13.131) is similar, and we omit the details. O

Estimate of the remainder. Next we use the previous results on p; to obtain an estimate of Rq,[p1]-

Lemma 13.16. Let p; be the solution constructed in Proposition 13.1. Then
[ log T'|

|Ra0 [pl](t)‘ < CW(T _ t)a07 (13.137)
and for k1, ko satisfying (13.4) we have
. . log T’ o
|R(xo [pl(ﬁl)] - Rao [pl(KQ)H < C|10£(’I’g_|t)|3(T — t) 0|F{,1 — Kal. (13138)

Proof. We have, thanks to (13.113)

t—Aa(t)? 5 (1) —
Reolinl0) < [ LAUES AL

t—(T—t)1+o0 t—s
< sup |1 ()|(T — )+

re(t—(T—1)17%0 t— X, (£)2)

|log 7|
T — t)*,
= “Togr —pp " Y
This proves (13.137).
The proof of (13.138) is similar, using (13.130). O

Lemma 13.17. Let p; be the solution constructed in Proposition 13.1. Then
[ log T'|

iammwwgcw%@_ﬂpwwwl, (13.139)
R [p1 (k1)) (¢ 4 Rl pl < c—1loeTl T —1)* kg — (13.140)
a ag M1 "ﬂ-’l)]()_% Oto[pl('%Q)]( )’— |10g(T7t)|3( R1 Ra|. .
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Proof. We compute

4l =L [T hO=B)

dt _% t—(T—t)+0 t—s

_piteo .

B S TOE
== PN PN
dt )\*(t)Q T
pi(t — (T —t)t+o0)
T—t
. /(“)“‘”“ ) —pilt=r)

)\*(t)Q T
By (13.113) and (13.114) we get (13.139).

The proof of (13.140) is similar, using (13.130) and (13.131).

)Pl(t — A()?)

—(1+ a) 0 A (t)

—2(14—040

14. THE EQUATION FOR Zj

In this section we discuss the stability of the blow-up phenomenon predicted in Theorem 1 and prove
Theorem 2. We consider the class of initial conditions that lead to blow-up at a given point as described
in §5.1. The solution has the form

w(®, ) = Unwywin).et) + ¢ + allel)Unw) wiy.e
where a(s) =+/1—s—1 and
pla,t) =TIy 7 (@,t) + (A w, ) (@,6) + w(w,t) + no(x.1)]

where the point £(T) € Q is prescribed. Changing slightly the proof we can achieve that the value
£(0) = ¢ be prescribed. Let us denote € = A(0). A simple application of implicit function theorem to the
system of equations determining (A, w,§) leads to the fact that the blow-up time 7" and the final point
&(T) can be regarded as functions of arbitrary small values € > 0 and points ¢ € 2.

1
A(t),w(t),€(¢)

The functions (A, w, &) as well as 1) and ¢ have Lipschitz dependence in p := (g, ¢) and Z* in suitable
topologies. We relabel

w(p) =w(0), Up=Ucupe Sp)(2) =20 w,E)(w,0)+v(,0)
so that the initial condition of the solution above becomes
uo(p) = Up + Uy [Z* + @(p)] + a(|y 2 [Z* + &(p)]*) U
A generic initial condition close to
Uy + oz 12 + B(p0)] + alllys (25 + (p0)] Uy,
with values in S? can be written in the form
(a3 1) = Upy + My [ 25+ $(po) + e1] + a(|y s [Z5 + S (po) + ¢1]*) Uy,

where ¢; is a small function, otherwise arbitrary. We shall show that if ¢; is sufficiently small in
C?-topology and it lies on a certain codimension-1 manifold, then problem (3.1) with initial condition
uo(z) = v(x; ¢1) has blow-up as predicted. Thus what we need is that for suitable

(=(4¢2")=0+C, G=I(1,q,%)
we have that
v(5 1) = uo(p). (14.1)
It is convenient to measure the size of ¢; with respect to the norm (see (5.7)),

1]l == lgal + lea | + (127 ]
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We expand ug(p) around p = pg and get
uo(¢) =Ug, + ¢(¢) + a(l(Q)*)) U,
where
(¢) =y [Z7 + @(¢) + (U = Ugo )1 = +(S) + a(p))],
Q) =Up - (Z* + 2(Q))
a(p) =a([Tly 2 [Z* + S(O]).
Therefore, equation (14.1) becomes
My 125 + (Go) + 1] =TIy [Z7 + B(C) + (Uc = Upy)(1 = + )]
or, equivalently
My [Z7 + ®(0) = ®(Co) + (Ue = Ugy)(1 = v(¢) +a(¢)) — 1] = 0.
We will get a solution to this equation if we find a constant ¢y such that
2T+ (G +G) = ®(Go) + (U = Uy )(1 = 7(Q) +a(Q)) = 1 + ol

Let us consider the functions Z;;(y) defined in (2.2), 1 = 0,1, j = 1,2, with y = *=2. We introduce the
following intermediate problem: we want to find a function Zj and five constants cg, ¢;; such that

Z5 +®(Go +p1) = 2(Go) + (U = Ugy ) (1 = 7(¢) +a(Q)) = 1 + coUg, + 152 (14.2)
and the following five real constraints hold for the function Z7(x):
divzi(¢o) =0, curl Zi(g0) =0,  Zi(g0) =0 (14.3)

Summation convention is used in (14.2).

To make the argument more transparent, we consider a simplified linearized version of (14.2)-(14.3),
in which lower order terms are neglected, and only the constants associated to mode 0 (associated to
dilations and rotations) are considered. Thus we consider the model equation for Z7,

2
Z7 + Qo[Z1] = o1+ ZCOjZOjv

=~ (14.4)
div 27 (g0,0) = 0, curl z7(go,0) = 0.
where
(PO[ZT](T) — <¢0[Z10](T7 t))
with
0 1— _%
ool Z7])(r) = rew/ p(s)k(r? +e2,—s)ds, k((,t) = 24, (14.5)
_7 ¢

where p(t) = At)e™®, r = |z — qo|, ¢ = A\(0), and p = p[Z{] is such that the following equation is
satisfied
"op(s)
p(t)|log(T —t)| + /_T T s ds =divz(q,t) +icurl Z1(q,t), t€][0,T). (14.6)

p(T) =0,

where

OZy(x,t) = AZ(z,t) inQx(0,T)
Zy(2,0) = Zi(x) zeQ (14.7)

Zy(z,t) =0 (2,t) €90 x (0,T),
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~ *
~ Zl * Zl
Zi=(2Y), zr=(7).
21,3 %1,3

The main result here is the solvability of (14.4).

and we use the notation

Proposition 14.1. Assume |1« is finite. Then for T > 0 sufficiently small equation (14.4) has a
unique solution Z7, co1, co,2 and moreover

123 [+ + lco1| + [coz| < Cllpa |-

We can obtain a similar result if all constraints and constants are considered, with essentially the
same proof as that below. On the other hand, to derive the corresponding result to the full problem
(14.2)-(14.3), we need to use the linearized version and contraction mapping principle. For that we need
to use the precise Lipschitz estimates of the solution of the inner-outer gluing system on the parameters
involved as done in §5 and §13. The C' character of the manifold predicted in Theorem 2 follows from
the fixed point characterization and the implicit function theorem.

We devote the rest of this section to the proof of the proposition, whose main step is the following
estimate.

Lemma 14.1. Assume that

div z7(qo) =0, curlzy(go) =0. (14.8)
Then
C
D0 Z7 )« < —==11Z7 ]|+
|#0lZ3]). < o121
To prove this we need a corollary of Lemma 9.1 adapted to the norm || ||. defined in (5.7) is the
following.

Lemma 14.2. Suppose Z; € C?(Q) satisfies
V. Z7(x)] <|logel, ze€f

1 1
|D2Z3 (z)| < _|loger x €.
|z —qol +¢
Then the solution Z, of (14.7) satisfies
|VoZy(x,t)] < |loge|, t>0, (14.9)
and
| log e fo<t<e?

VaoZi(z,t) — V2 z,T) <C 1 ;
| 1( ) 1( )| {|log82TTt(1+10g(f)) Zf€2 StST

Proof. As in Lemma 9.1 we consider the function given by Duhamel’s formula in R? and then decompose
the solution as a sum of the one in R? and a smooth one in € with zero initial condition.
From (9.3) and |V, Z; (z)| < |loge| we get (14.9).
For 0 <t < 2 we get
\VoZi(a,t) — VoZi(2,T)| < C|logel

from (14.9). For €2 <t <T from Lemma 9.1 we obtain

\VuZy(2,t) — Vo Zi(2,T)| < C log5|1/2\/ji/_f\/i (1 + 10g(€)> .
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Proof of Lemma 1/.1. Let f(t) = div Z1(q,t) + i curl Z1(g,t). Differentiating (14.6) we find

d .. :
= (1) log(T = 1)[?) = [log(T — )| f(¢).
This can be integrated explicitly and we get

o 1 T . cllogT|
MO = i =ap J, 19T~

for some constant ¢ to be determined. Integrating by parts we find that
s - SO 1) L [0, gt
[log(T'—t)| ~ [log(T —t)[? T - | log(T = t)|*°
This function is defined for ¢ € [0,7] and we need to extend it to [-71,7] to make sense of (14.6). A

possible extension is p(t) = p(0) for ¢t € [T, 0] but this makes this lemma too simple and not useful to
adapt to the real situation. For this reason we make the analysis with the following extension. Define

o f@) = f(T) 1 T f(s) = £(T) <
PO = (gl * o ), T (14.10)
so that log T
. ) c|log
p(t) =p(t) + [og(T — ) for ¢ € [0,T]
Then define
o cllogT|

We want to estimate
0

_ <
%wmm:m”[ﬁmmw+¥f@m,kmwzﬁi§i,

which, thanks to (14.11) depends only on p;(0) and c¢. Therefore we need to estimate these quantities.
We claim that

F(0) = F(T) + Ol Tl | zx],
$1(0) = “Og;'”'/ (1+O(|IO;T|)) (14.12)
= £+ Ol(pon)) + O o) £10) + OCELET D 7. (14.13)

To obtain these estimates we note that evaluating equation (14.6) at ¢ = 0 we get

1
p1(0 )(|logT|—i—log2)—i—c(1—|—0(|1 gT|)) 1(0) (14.14)
and evaluating equation (14.6) at t = T we get
T pas) 1 _
/ T_Sds+c(1+0(|logT|))—f(T). (14.15)

Thus we need to estimate f T ( ) ds where p; is given (14.10). We have

[ fa [

T .
:p1(0)10g2+/ ;17(5)(15.

0 — S

pl s) ds we write

To estimate T
P1 = P1a + P1o
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with
. t)y— f(T
st~ 1O = 1)
| log(T —t)]|
1 T f(s) = £(T)
o1p(t) = ds.
puo(t) |10g(T—t)|2/t T-5 y
We compute
Ty TloxTT T
/ Z}a(s) ds=/ ' —|—/
o 4 =9 0 TTox TT
By Lemma 14.2 we have that
T—t T
log(|log T)|log T|"/> ———, <t<T
. T |log T'|
[f(t) = fF(IM)] < CllZi|l e
logT 0<t<
which in particular implies
T—t T
. log(|log T')| log T|*/* ~———, <t<T
. <c 1 Z5 I T |log T|
el = Hog(T' =) | | 10q 71 0<t< L
&5l ~— 7 |logT|
Therefore .
Mg T |p1a(8)| ¢ *
ds < Z1 |+,
/0 T-5s s*|logT|” il
and
r |pla(8)| ds
. T-—s
[log T
< Cloa(ox o171 [ Tt
= L Roell o8 L1 og Wel + T—s T |log(T —s)] s

[Tog T
1/2
< olo8(|log T')| log T|
B |log T'|

1Z7 |-
It follows that

T .
[Pra(s)] log(|1og T'))
ds < C—=——"—"—"2|Z} ||+
/0 T—s = |log T'|1/2 121l
By (14.16), we find that
log(|log T))|log T|"/?> T — t T

<t<T
) . log(T — )2 T ° J|logT| ~ —
pu)| <ozl N1osd =0l [log T
log(|log ) e
og TP72 STS Tioga]

This implies that

T .-
[l ostlonT)
o IT'—s

From (14.17) and (14.18) we find that

/T ps) | o log([log 7))
o T—s |~ |logT|/?

1271
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(14.16)

(14.17)

(14.18)
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Therefore (14.15) gives

log(|log 7|) 1

$(0)l0g2 + O BT 23 41+ Ol = F(T). (14.19)
Equations (14.14) and (14.19) form a system
|log T| + log 2 1+0(|10%T|) [pl(O)} _ lofg?l?) -
g2 14 0(mi)| | e ) T |0+ o(eeleaThy zz

for p1(0) and ¢, and solving we get (14.12), (14.13).

We use (14.12), (14.13) to estimate ¢g given by (14.5):
0
lZi)r) = e [ pk? + 2t ) ds, k(G.t) = 2
-T
We start with the L> part of the norm. Let us consider first the case 72 + &2 < T. We note that
0 —(r?4e?)
/ p(s)k(r® + €%, —s)ds = / p(s)k(r® + €% —s)ds

=T =T

0
+ / p(s)k(r? + &2, —s) ds. (14.20)
—(r2+e2)

Then

—(7‘2—‘1-62) —(7"2+€2)
/ p(s)k(r® + %, —s)ds = ]5(0)/ k(r? +¢&2,—s)ds
-7

—(r24e?)
b0 - DR 4 ) s (14.21)

But p(0) = $1(0) + 577 From (14.12) and (14.13) we find

. ¢ f(0) 1 log(|log 7).«
The hypothesis (14.8) means f(0) = and hence
; ¢ _ L ofles(les Ty o
Since f(t) = O(|log T|||Z5||.) we find
. . c 1 N

Therefore

C o [T
< —nzln*/ L g
Tog 7] s

r2+€2>

7(r2+52)
p(0) / k(r? + €2 —s)ds
-T

121 1]«

log(
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For the second integral in (14.21), note that

—(r24e?)
[ 0 o)k + e s ds

7(T2+€2) 1 1 1
< |e||log T - =
= ‘CH 0g ‘/—T |:|]0g(T—S)|2 IOgT2:| —S$ ’

ol |2+
< 1 .
_C“OgT|2 0g(——)
Since |c| < C|log T||| Z5 ||« we get
—(r%+4€?) 1Zx| r2 4 g2
(s) — p(0))k(r? + €%, —s)ds| < C-—L = 1 :
[ 06 0+ & —s)ds| < OREE o)
For the second integral in (14.20) we have
0 0
/ P(s)k(r? + €2, —s) ds| < ||p||Lm/ k(2 + €2, —s)| ds
—(r2+e?) —(r24€2)
C
< 77«
< el

In summary, when r2 4+ &2 < T we obtain

0 Z*H 7"2 +€2
. 2, 2 < 127 ||« 141
‘/Tp(s)k(r + &%, s)ds’ < C|10gT| + |log( T )

When 72 + €2 > T we obtain directly

|

‘/0 P(s)k(r? + 22, —s) ds| < 1 Zi D
. ) = |logT]|
Both estimates show that I1Z5]]
Z](r) |~ < CL21
[0l Zi] ()l < Crit

For first derivatives we have

0 0
Orpg = ew/ p(s)k(r? + &2, —s) ds + 2T26i0/ p(8)ke(r® + €%, —s) ds.

=T =T

1 —(r*+e?) p(s «
sup / 7( )dS < 127 ]
|[loge| o |J_7 -8 |log T'|

(r =|x — qo|). We get at worst the same estimate for the other terms of V.
For the second derivatives we proceed similarly. We have, for instance,

0
Orrg = 67"6”/

-T

Using (14.23), (14.24)

Let us analyze the term re® fET P(s)kc(r? + €2, —s) ds. Assume r? + &% < T and split

) 0 . —(r?4€?) ‘ 0
reze/ p(s)ke(r? + €%, —s)ds = rew/ ot re’e/
-7

. —(r2+e2)

0
p(s)ke(r? + &%, —s) ds + 2r3e'? / p(s)kee(r? + €2, —s) ds.
-7

131

(14.23)

(14.24)

For the first term we estimate in a similar way to (14.21), since for r% + &2 < |s|, s € [-T, —r? — 7]

we have |k¢(r? + 2, —s) < % and we get
r? +¢e?

1271+
<
C T )

~ |logT|

‘ (r24e?)
re'? / p(s)ke(r? + €2, —s) ds

r [1 + ‘log(
-7

|
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For the second term we have
0 0
re'? / p(8)ke(r? + €2, —s) ds = re?p(0) / ke(r? + €2, —s)ds
7(T2+€2) 7(7,24]’,52)

0
+ re? / (p(s) — p(o))kc(ﬁ + &2, —s)ds.

—(r2+e2)
But using (14.13) and |f(t)| < C|log T| || Z5]|« we find

0
: C 1
0 . . 2 2
— 5(0))k —s)ds| < -2 |e| ———
e [ ) = O 2 )| < el
Lz
~ |logT|r+e" 710

Since p(0) = p1(0) + Tog 7] Using (14.22) and (14.8) we obtain

C

(0)| < ———
0) < gy

121 1]«

and hence

! (r+¢)
— = Su T g
|10gT|1/2 Qp

Similar estimates for the other terms show the validity of

. c
[Po[Z1]llx < 7—rrr

Z7 %5
< g7 11

which is the desired conclusion.

Proof of Proposition 14.1. We look for a solution of (14.4) in the space of functions
2= {2 € C*Q): | Z{]. < o0, divi (o) = 0, curl 5 (qo) = 0}.
To determinte cy; we apply divergence and curl (14.4) at go to obtain
co1 = € (div ¢o[Z7](q0, 0) — div ¢1(qo))
coz = € (curl ¢o[Z7](qo, 0) — curl v1(qo)) -
With this equation (14.4) becomes the fixed point problem
Zy = FlZ7] + 1 + div o1 (qo)eZo1 + curl v1(qo)e Zo2.
where
Flzi] = =®o[Z7] — div ¢o[Z7](q0, 0)eZo1 — curl ¢o[Z7](qo, 0)e Zo2
By Lemma 14.1 we get
| div 6ol Z:](d0,0) + i curl 6o[ 23] (a0, )| < Clog el | @[]
< Ol 21 ]l
But

C
Zoills £ ——7-
||€ 0]” = |1OgT|1/2

This and Lemma 14.1 shows that

* C *
IF[Z1]1] < WH%H*'

By the contraction mapping principle, equation (14.25) has a unique fixed point in Z.

0
) C
160 . 2 2 *
k + —s)ds| < ———— | Z7]| ..
re /(T2 Ez)p(S) c(r*4¢e%,—s)ds| < log 71772 1Z7]]

(14.25)
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15. ESTIMATES FOR THE SOLUTION OF THE HEAT EQUATION

15.1. Proof of Lemma 8.1. The proof of the estimates is done by analyzing the solution ¥ of

Opho = Apg + f  in R? x (0,7,
1o 0 2 (0,7) (15.1)
Po(2,0) =0 =z eR?,
defined by Duhamel’s formula
_lz—y?
) / / " by, s) dyds
(x, e A=) ,8) dyds.
assuming
|F (@, 0)] < Xyi<ar. ()R A (D) T2 R(E) % (15.2)

The solution to (8.5) is then given by ¥ = 1 + 11 where 1¢); solves the homogeneous heat equation in
Q x (0,T) with boundary condition given by —t)y. In the sequel we prove that the estimates (8.6)—(8.7)
are valid for 9. Then the conclusion for v follows from standard parabolic estimates. In what follows
we denote by ¢ the solution to (15.1) given by Duhamel’s formula.

Proof of (8.6). We have, using the heat kernel,

u 2R _z— 12
W(x,t) C/ A (8)" P R(s) 7 / e AT dyds
t -8 ly|<2X. () R(s)

=O/ M(S)””R(s)f“/ e~ 172 dzds
0 |z| <2, (8)R(s)(t—s)—1/2

where & = z(t — s)~'/2. First we estimate

t—(T—t) o
/ /\*(5)”72R(s)7’1/ e 121" dzds
0 |2|<2A. (s)R(s)(t—s)~1/2

t—(T—t) v 2—a
<o [T MR,

t—s
t— (T t v
< C’/ S)TR(S) ds
—s
< CX(0)VR(0)*7°, (15.3)
Consider the integrals |, (T (? and ft A (8)2 We have

t=Au(t)? 5
/ A*(S)”_ZR(S)_“/ e 1=21/4 g ds
b= (T—1) |21<20. () R(s) (t—5)1/2

TOTA() RGP
t—(T—t) t—s
< O (t)YR(t)*% log(T — t)]. (15.4)
For the second part we have

t
/ )\*(s)l’*QR(s)fa/ e~ 1i=2"/4 gz ds
t

|2 <2 () R(s) (t—s) /2

<C s

Ae(8)2R(s) " ds

c
< ON(H)YR(t). (15.5)
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From (15.3), (15.4), (15.5),we deduce
(2, t)] < CAL(0)" R(0)[log T|.
which is the desired estimate (8.6).

Proof of (8.7). Using the heat kernel we have
[h(z,t) =oY@, T)| <L+ L+ 15,

where
t—(T—1)
Ilz/ A |Gz —y,t—3s) —G(x—y, T —9)||f(y,s)| dyds
0 2
t
B- [ Gl — .t — 8) — Gw — y, T — )| (3, 5)| dyds
—(T—1t) Jr2

T
I3:/ |Gz —y,t —s) — Gz —y, T — 9)||f(y, s)| dyds.
t Jr2

We estimate the first integral

t—(T— t)
T 1) // )"=2R(s)" / 0,G(x — gty — )| dydsdo,
[yl <2X. (s)R(s)

where t, = vT 4 (1 — v)(T — t). We have

/ 10,G(x — . tu — )| dy
ly\<2>\ (s)R(s)

m—yl2 _ .2
/ e ) (1—1— M) dy
(to = $)% iy <2 () R(s) ty — 8

e~ lE=z1’ (147 — 2|?) d=

/|<2)\ (s)R(s)(ty—s)—1/2
We then get

t—(T—t)
/ M ()" 2R(s)" / 10,G( — . tu — )] dyds
|y\<2>\ (s)R(s)

t—(T—t)
co [T RO

)2
0 sy e
<ef M

‘ 10gT‘”_B(2_a) (T _ t)v—ﬁ(Z—a)
= ogm e

where we have used R(t) = \.(t)™#. Therefore
I < CM(H)YR(t)* .

Next we estimate I5:

t
r<[ Gl — gt — s)| A ()2 R(s) ™" dyds
t—(T—t) J|y|<2X.(s)R(s)

¢
+ / / |G(x — y, T — )| \(5)""2R(s) ™ dyds.
t=(T—t) J|y|<2A.(s) R(s)
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These two integrals are very similar. Let us compute the first one

/ / ( - Y, t— S)|)\*(5)U_2R(S)_a dyds
t—(T—t) J|y|<2X.(s)R(s)

v—2 w—yl2
<c M/ e ST dyds
t—(T—1) t—s [y|<2X. (s)R(s)
t
=C /\*(S)V_ZR(S)_“/ e~ 1# 21 /4 g2 s.
t—(T—t) 120 () R(s) (t—s)—1/2

We split this integral in f (T t) e f; A (12 and estimate

t—X. ()2 o,
/ )\*(s)”*QR(s)*“/ e~ 1=/ dzds
t—(T—t) 2| <2 (s)R(s)(t—s)—1/2

X7\, ()7 R(s)*
t—(T—t) t—s
< CA ()Y R(t)* | log(T — t)].

<C ds

For the second part we have

t
/ )\*(S)V_2R(S)_a/ e =217/ G2 ds
SWOE |21<2X. () R(s) (t—s5)~1/2

< OM(H)YR(),

and therefore, summarizing,

/ / ( - Y, t— s)|)\*(3)u_2R(8)_a dyds
t—(T— t) \y|<2/\ (s)R(s)

< CA(t)VR(t)*™*|log(T — t)|.

Similar computations show that

/ / Gla — . T — 5)| ()" R(s)~" dyds
t—(T— t) y|<2)\ (s)R(s)

< OA(8)"R(t)*~|log(T — 1)

and we obtain
I < CA ()" R(t)>|log(T — t)|.

Finally

T — \2

T A(T—s)
I3 < C'/ / C (s)"2R(s) ™" dyds
ly|<2X.(s)R(s) -

v—2
co [falr e /
T-s |2 <20 (5) R(s) (T—5)~1/2

«(S)VR(s)*™@
< C/ (T —— = ds
< CA(t)YR(t)* .

e~18==17/4 (o ds

This finishes the proof of (8.7).
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Proof of (8.8). Using the heat kernel we have

! 1 o—y?
Vo) <C [ A RO s | 5 | — g dyds
0 (t = 5)* Ji<2n.)res)

t )\* v—2 —a ~
- C/ %/ e~15==/4\3 — 2| dzds
(t —s)Y/ |2|<2A. () R(s) (t—s)—1/2

v—2
c/ () P; d / e 1141 + |2]) deds
(t —s)Y/ |2|<2A. () R(s) (t—s)—1/2

where & = (t — s)"'/2z. Then

/tllo(Tt) A, ( )u—zR( )—a

—|Z|2/4(1
e + |2|) dzds
(t—s)1/2 /|<2>\ (s)R(s)(t—s)~1/2 )

AT ) (5) R(s)*
<C’/ =) ds
AT ) (5) R(s)*
<C’/ (7= 5)3/2 ds

1
1

= C|log T|V P2~ /t w0 (T — )P 732
o [log(T — )70
Tufﬁ(2fa)71/2
| log T|2(V*5(2*Q)) ’

ds

= C|log T|"~ P~

and here we need v — 1/2 — 8(2 — a) > 0. Since § < %, we have

TV—ﬁ(Q—a)—l/Q

v=p(2-a)
[ log 7' log TR B0-a) =

To estimate the integral

t
1
/ M) 2R e [ eI 4 J2]) deds
t— L (T—t) (t—s) [2] <2, (s)R(s)(t—s)—1/2

let us define

2v
9(v) :/ e~ (1+ p)pdp
0

so that

t )\* v—2 —a
/ %/ e~ FP/4(1 4 |2)) dzds
a8V |21 <20 () R(s)(t—s)~1/2

_ /i A*(S)”_QR(S)_“Q (A*(S)R(S)> ds

(T—1) (t_S)I/Q (t_s)l/z

1
10
We change variables
t—s

and note that

ds — M(s)R
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Then
t v—2 —a
/ M/ e =P/ (1 1 12]) dzds
ity (t—s) / |2|<2A. (8)R(s)(t—s)—1/2
T—t
t— L (T—t t— L (T—t
:‘/Olm‘*( 16 (T—)?R(t—15(T—t)? )\*(s(u))y—lR(S(u))l—au—l/Zg(u—l/Q)
2X.(s) 2R(s)
1 t— t— d
+ /\*(S)( s) + R(s)( s)| du
< OM() IR .
This establishes (8.8). O

Proof of (8.9). Using the heat kernel we have
811¢(x’ t) - 8ﬂlzw(‘r’ T)

:/Ot/]R2 (02,G(x — y,t —8) — 0,,G(x —y, T — 5)) f(y,s) dyds

T
[ [ 0n G =T = 910 5) dyds,
0 R2
and so

|(9111/1(£U,t) - 3111/J($,T)| S Il + I2 + -[37

where

t—(T—1)
L :/ / |aZiG(x_y’t_s)_aﬂiiG(x_va_S)lf(yv‘S) dde
0 R2
t
I = / 100, G — y,t — 5) — 00, Gl — 9, T — )|y, 5) dyds
—(T-t) JR2

T
b= [ [ 10nG =T = 9IS, dyds.
t JR
For the first integral, we have
t—(T—t) )\ y QR( )
< —
L <C(T-1) / / t _8)5/2 {
mul® (o — y| |z —yf?

e 1tv—9) + ) dy pdsdv
/|y§2)\*(s)R(s) ((tv —s)V/2 0 (t, — )32 }
where t, = vT 4 (1 —v)(T —t). Changing variables

e )
e A(tv—s) + dy
/y|<2)\*(s)R(s) ((t,, — )12 (t, — 5)3/?

w e S)/||<2)\ (s)R(s)(t—s)=1/ e (3, — 2] + 13, — o) d2
z| <2, (s s)(t—s)—1/2

where Z, = z(t, — s) /2. We then need to estimate

/”T“A «(5)"*R(s)™" /
(t, — 5)3/2 |2]<2X. (s)R(s)(t—s)—1/2

t—(T—t) A (8)V"2R(s)~@ 22, (s)R(s) (t—s)~1/2 ,
< 0/ — 8)3/2 /0 e’ /4(1 +p3)pdpd3.

e 1B =2 (5, — 2| + |7, — 2|?) deds
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We note that in the range 7/2 < t < T we have \.(s)R(s)(t —s)"/2 < 1forall 0 < s <t — (T —t).

Therefore
—(T— - —a «($)R(s)(t—s)"1/2
/t (T—1) w/ow\ (s)R(s)(t—s) e—p2/4(1+p3)pdpd8
<C/t T= X\ ( ”_281)33(/2) A (s)Ro(s)(t — s)"1/2ds
—h, ()” 1R()
Therefore

I <CXN()" IR
To estimate I it is sufficient to bound the terms

/ / VoG — y,t— 8)[ A (5)" 2R~ dyds,
t—(T—t) J|y|<2X.(s)R(s)

/ / |V Gz —y, T — )| X (s)" 2R dyds.
t—(T—t) J|y|<2X.(s)R(s

Let us start with:

/ t / VoG =y, t — 8)| A (s)"2R(s) " dyds
t—=(T—t) Jly|<2X.(s)R(s)
¢ A(8)Y2R(s)7
-ty (E—s)/? /|z|<t—s)1/zsm*<s>R<s>
o MR /m«sm(s)uswz
T iy (t—s)/2 0
where # = (t — s)~/22. We note that for s € [t — (T — t),t] the inequality
A (8)R(s)
(t—s)t/2 —
is equivalent to s < s* for some s* € (t — (T —¢),t), and that for s < s*

<C e_‘i_z‘zﬁ“ — z| dzds,

e r’ (1+ p)pdpds,

2\, (s)R(s)(t—s)~1/2 ,
/ e (14 p)pdp < CA()2R(5)2(t — ).
0
Then

. o
8 A(8)Y2R(s)0 [P OREE=9) v
/t—(T—t) (t—s)1/2/0 e ? (14 p)pdpds

e
1
< OV R(t)* / —ds
t—(T—t) (t—s)3/?
< OMN() IR
The integral on [s*,t] is estimated
t )= 2 2X. (s)R(s)(t—s)~1/2
s ( R(s 2
—p
/S* t—s 1/2 /0 (14 p)pdpds

t
V2
< OA(8)" 2RIt / t751/2

< CA(H)IR(t)
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In the same way we get

t
/ / |V.G(z —y, T — 8)|A\(s) " R™dyds < C\(t)" ' R(t)
t—(T—t) J|y|<2X. (s)R(s)
and therefore
I <O 'R()

We deal now with I3:

| /\

u 2R Ja—y|?
) / e 1T-9 |x — y| dyds
[yl <22 (s) R(s)

1/ 2 5
/ Rl/g) / e_‘z_z|2/4|§: — z|dzds
|21 (T—5)1/2 <27 () R(s)
of

| /\

*(S)VR( )2~

IN

(T—s)3/2
L(s)V B(2—a)
< C/ =5 3/2 ds

(T _ S)U—B(Q—a)—3/2

_ S) |2u—2ﬂ(2—a) dS

=C|lo T"—W—a)/
|logT| ¢ [log(T

(T o t)V71/27,3(27a)
|log(T
< CA() IR

S |1Og T|V7ﬁ(2ia) _ t)|2—26(2—a)

This proves (8.9). O

Proof of (8.10). Let 0 < t; < to < T. We assume that ¢t < 2¢;. In the other case a similar proof gives
the result. Let f be given by (15.2). Using the heat kernel we have

|8$L¢('r?t) - a$l¢(x?T)| S Il + 12 + 137

where
t1—(ta—t1)
I = / / |02,G(x — y,t1 — 5) — 0, G(x — y, ta — )| f(y, s) dyds
0 R2
t1
I, = / |0, G(x — y,t1 — s)| f(y, s) dyds
t1 (tg tl) R2
ta
- [ 00, Glw — y,tz — 5)1 (3, ) dyds.
t (tz tl) R2
For the first integral, we have

t1—(ta—t1)
I < (tg—tl)/ / |0102, G(x — y,ty, — 5)| f(y, s) dydsdv
R2

t1—(t2—t1) s )1/ 2R()
(ta —t1) / / —5 5
(t, — 5)5/
e—u® [ |z —y| |z —yf?

e Atv—9 + dy pdsdv
/y|<2)\*(s)R(s) ((tv —s)1/2 0 (t, - 5)3/2) }
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where t, = vta + (1 — v)t;. Changing variables

e [z —y| |z —y|? )
e 2(tv—s) + dy
/y|<2)\*(s)R(s) ((tv =)/ (t, — )32

— tv_ _ljz!_z‘2/4 ~v_ ~U_ 3 d
(ty — 5) /lZKZA*(S)R(S)(%_S)we (&0 — 2| + |0 — 2[%) d=

where &, = z(t, — s)~'/2. But

e B2 5 — |+ (7, — 2)?) d2

/z<2m<s>R<s><tvs>1/2

<

/ e A (|2] + |2°) dz
|21 <2As () R(5) (t,—s) ~1/2

< O(A(3)R(s)(t, — 8)" /)"

forany 0 < p<1
Therefore
t1—(t2—t1) )\*(s)ysz(S)fa /2)\*(5)R(5)(t’u_5)1/2

2
L <C(ty—t _ —r /4 Hpdpd
1> (2 1)/0 (tU*S)S/Q 0 € ( +p )p pas

t1—(t2—t1) )\*(S)pﬁrquR(S)ufa
< Olt2 - tl)/o (ty — 5)3/2+n/2

Recall that R(t) = A\ (t) 2. If p+v —2— B(u —a) <0 we have

t1—(t2—t1) s (3)p+u72R(S)pfa
A

s t1—(ta—t1) 1
Htv— H—a T aioi /o

< Au(t1) R(t1) /0 (ts — s)3/2+n/2 ds
S C)\* (tl),u,—‘,-l/—2R(t1);L—a(t2 _ tl)_1/2_u/2.

fo:=p+v—-2—-0(pn—a)>0

t1—(t2—t1) A (s)b t1—(T—t1) t1—(ta—ty1)
M) s = ...ds+/ .. ds,
/0 (ta — s)3/2Hn/2 /0 t1—(T—t1)

and, assuming b — 1/2 — /2 < 0 (which we have),
t1—(T—t1) A b t1—(T—t1) A b
/ *<:39)2 stgC/ *(:;9)2 5 ds
0 (tg — 5)3/2+n/ 0 (T — 5)3/2+n/
/tl—(T—tl) |10gT|b(T _ 8)1773/27;1,/2
~Jo | log(T" = s)[°
|log T|°(T — t,)b—1/2—#/2
|log(T" — t1)|°
< C(ta)P (b — tr) 712702,

ds

<C

while

t1—(ta—t1) A (s)b
) s < O (t2) (g — t1) V212,
/tl—(T—tl) (tz — 8)3/2+H/2 55 ( 2> ( 2 1)

In any case we obtain
Il < C)\*(tQ)H+V72R(t2)“7a(t2 _ t1)1/27M/2'



SINGULARITY FORMATION IN THE TWO-DIMENSIONAL HARMONIC MAP FLOW 141

To estimate Iy we have

ty
I, = / / IV.G(x —y,t; — 8)|A(s)”2R(s) ™" dyds
t yI<2X.(s)R(s)

1—(ta—t1)
t1 )\*(S)D_ZR(S)_G/
h—(ta—t) (T =) Jpja—syiz<on(s)R(s)

t1 )\*(S)V—QR(S)—G 2)\*(S)R(S)(tl_s)—l/‘2 .
<C —/ e (14 p)pdpds,
t—(taty)  (t1—8)1/2 ;

where # = (t — s)~/22. But then, for 0 < p < 1:

<C el |Z — z| dzds,

ty v—2 — 2, (s)R(s) (t1—s) " 1/2
A(8)"2R(s)@ / _p?
—_ e ” (14 p)pdpds
~/t1—(t2—t1) (tl - 8)1/2 0 ( )
t1 v—2+4u —a+p

t1—(ta—t1) (tl - 5)1/2+M/2

< ON (b)) R(ty) T0 1 (ty — 1) 1/271/2,

We deal now with I3:

to v—2 z—y|2
Lo MR s
t1—(t2—t1) (t2 —s) ly|<2A. (s)R(s)

e
ti—(ta—ty) (B2 =) Jisj<on, (o) R(s) (ta—s) 172

<O/t2 A(8)"2R(s) " /
(ta—ty) (b2 C (ta—9)12 |2|<2X. (s)R(s)(ta—s)~1/2

For p € (0,1) we have the inequality

<C e_li_z‘2/4|5c—z|dzds

ei|z|2/4(1 + |2]) dzds.

/ e F P41 4 12)) dz < CAM.
|z|<A

Therefore
to )\* y—2R —a
/ @_—ﬂ?/ e 1+ [2]) deds
ti—(ta—ty)  (t2—8) |2]<2. (5)R(s)(ta—s)~1/2
ta )\*(S),ququR(S)p‘fa
<C Iy — 5)1/2+2 ds
t1—(ta—t1) ( 2— 8
< O (b)Y 2R (L)~ (tg — t1) /27 1/2,
This proves (8.10). O

Proof of (8.11). We have
IV (21,t) — V(22,1

t
<[ VaGlar =yt — ) — VaGlaz -yt — )| Au(s)"2R(5)
y|<2X.(s)R(s)

Let L = |z1 — x2|. We decompose the integral:

t t—L? t
/ ...d3=/ ...ds—|—/ ...ds,
0 0 t—L2
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and in the first one we estimate:

/ / VoG — g, t— 8) — VaGl(ws — g, t — 8)| A (s)"2R(s) " dyds
|yl <21 (s)R(s)

t—L*
S L/ / / |D2 (2 — Yy, t — 8)|Au(8)" 2 R(5) ™ dydsdv
ly|<2X. (s)R(s)

where x, = vza 4+ (1 — v)z;. We note that

6ij e ﬂ_’_ xe] _¢7
82 167t3

8a:ia:j G(xa t) =

and hence

t—L?
/ / |V.G(x1 —y,t — 5) — VoG(z9 — y,t — 5)|Me(5)" "2 R(s) ™" dyds
|ly|<2X« (s)R(s)

t—L? u 2 wy—y|? - 2
< L/ / As( R(2 s)”" / 6—'4@75') (1 + |x”y|> dydsdv
t —5) ly|<2A. (s)R(s) t—s

We change variables and estimate

_ _ 2
/ ol (1 N wyl) dy
ly|<2). (5)R(s) t—s

— (t — S)/ e_‘:ﬁ'u—z|2/4 (1 + |.,"17/,U _ Z|2> dZ
|2|<2X. (s)R(s)(t—s)=1/2

where #, = x,(t — s)~'/2. Then we note that

/ e PP (14 |7, — 2)?) dz < / e P (14 122) dz < CA*
|z|<A

[z[<A

for any p € (0,1). Hence

t—L?
/ / |V.G(x1 — y,t —5) — ViG(za — y,t — 5)|Me(s5)" "2 R(s) ™" dyds
[y <2X. (s) R(s)

t—L>2 v—2+4+u a+p
A, ( ) +1 R( ) +1
< CL/O (t_5)1+ﬂ/2 ds

< CLY M\ () 2THR(t)*
= CLY M\ ()" 1 YR(t) T
where vy =1 — p.
Next deal with the integral | ti 12 Jge - dyds. We split

. |[V.G(x1 —y,t —s) — V.G(xg —y,t — 5)|X{|y‘§2>\*(S)R(S)})\*(S)szR(s)fa dy
R

:/ ...dy+/ ..dy
Aq Ao

Ay ={reR?: |z — 7| < 3L}, Ay ={zx €R? : |z — | > 3L},

where

and Z = 1 (z1 + x2).
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We estimate
/ . /A [VaG(a1 = y,t — s) = VaG(x2 =y, t = 8)[X{jyi<2n. () R} A ()72 R(s) " dyds
t—L
1 ’ t
< L/ / 2/,4 IDIG(zy —y,t — 8)|X{lyl<2n. (s)R(s)} A= (5)" 2 R(s) ™ dydsdv
L 2
M) 2R() ™ [ e (1 Jwy =y
< A(t—s) 1 dydsd
= / / L t_S)Q /1426 ( + s )X{Iyéﬂ*(S)R(S)} yasav
u 2R Lv »
<L/ / Aels)” T R(s) / e . (14 |2y — 2|?) dzdsdv
L2 5) |z—&|>3L(t—s)—1/2
1/ QR(S) ( )1/2
<L/ /L2 =5 712 dsdv
< LA(t)2R(t)™"
and since L < 2, (t)R(t)
Ax(8)
V.G(xy —y,t —s) — V,G(x2 —y,t — 8)|————
[.] ) RATESRE
<CL'yA ul'YR()la'y
Now we consider the integral over A;. By symmetry it is only necessary to estimate
/ / [VaG(@1 =y, t — ) X{yl<2n. () R(s)} A (8)" 2R (s) " dyds
t—L? J|y—z1|<4L
V2R(s _lz-ul?
= / M/ e T |21 — ylxqiyi<an. () R(s)} dYds
t—L2 (t—s)? ly—a1|<4L
t v—2 —a
As(s R(s g —212
S/ %/ e e |.’131 —yI
-2 (t—3) |z—&1 | <AL(t—s)—1/2
'X{|z\<2)\ (s)R(s)(t—s)—1/2} dyds
1/ 2
< C/ R(s)™ ds
L2 t — S 1/2
< CLA ()" 2R(t)™°
and since L < 2\, (t)R(¢)
/ / IVaG(a1 =y, t = 8)[X{yl<2n. () R(s)} A (8)" 2 R(s) " dyds
L2 J|y—azq|<4L
<CL'Y/\ ul'yR()la'y
O

15.2. Proof of Lemma 8.2. .

Proof of (8.12). We have, using the heat kernel,

t
)\* m _lz—yl?
:C’/ &/ e T 5 dyds
0o t=5 Jy>a(o)Res) ly |

AL ()™ 1
:C/ &/ eIE==/4 T dzds
o t=s [2|>Xu(s)R(s)(t—s)—1/2 | |

where & = z(t — s)~ /2.
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We note that for v > 0

|z|2v [ b if v > '

/ e—|§:—z|2/4i2 dz < 4/ o—1E=22/4 g,
|z|>v ‘Z| [2]>

NN

Indeed, if v > %

Ifo< % then

/ e~1E—217/4 1 dz:/ der/ e~1E==17/4 g
|z|>v |2[? <|z|<1 |Z| |z|>1

< C|loguv|.

t—A. (t)2R(t)?
/ 7/\ (s )m/ e_‘i_z‘z/‘l% dzds
t=5 J1z/>A.(s)R(s)(t—s)—1/2 |2

t—X. (t)2R(t)? ( )
< c/ log(t — s)|ds

< CT™|logT|*~™.

Using (15.6)

Next consider the integral f:ﬂ\*(t)QR(W ...ds. In this range s >t — A\ (t)?R(t)? > t — A\.(s)?R(s)? and
$0 A\ (s)R(s)(t — s)~'/2 > 1. Therefore, using (15.6), we get

‘ Ai(s)™ 5 1
/ &/ el L g
t=x (02R(6)2 =8 Sz >Nl (5)R(s) (1) 1/2 |2

t Ae(8)™ t—s
< ds
/tA*(tPR(t)? t—s A(s)?R(s)?

<CA()™ < CT™|log T ™,

and we deduce the desired estimate (8.12). O

Proof of (8.13). Assume ¢ € [3T,T]. Using the heat kernel we have
WJ(%t) - 1[)(1’,T)| <L +1x+ 137

where

~
I

t—(T—t)
/ \Gx—yﬂf—s) G-y, T —9)|f(y,s)| dyds,

:/ / (x — y.t — 8|/ (4, )| dyds,
(T—t) JR2

Is=/ Gz —y,T = s)|f(y,s)| dyds.
t—(T—t) JR2

We estimate the first integral

1 t—(T—t) )\ m
T—1t) / / / 10:G(z — y,t, — 5)| *(Sg dydsdv,
0o Jo |y|>Xx(s)R(s) ]
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where t, = vT + (1 — v)t. We have

Ax(8)™
/ 8G(w — g, t, — ) 22
ly|> A (s)R(s) lyl

m o—y|2 _ 2
<o " / e—4<tv's><1+|x y|>12d
(to = 8)% Jiy|>x. (s)R(s) ty—s /) |yl

Au(s)™ /
(to = 8)% J)21> 7 (5)R(s) (ty—s)~1/2

Note that ¢, < T so that

_li—=2)? - o 1
e 1 (142 —2) — d=

<C
|22

A (s)R(s) > A (8)R(s) - M (t)R(t)
(ty, — 8)1/2 = (T — 5)V/2 = (T —t)1/2"

Similarly to (15.6) we have

|5—2|2 N
e 1 (1+|3—2 )‘ E dz < Cllog(T —t).

/ZEM(S)R(S)(%—S)I/Q

t—(T—t) A m
/ / |0:G(z — y,t, — 3)| *(83 dyds
[y > 2. (5)R(s) |yl

T t) )\
< C|log(T —t|/ e _S)2ds

Therefore

t—(T—t) (T—S)m_2
=Cllog(T —t long/ — s
(Tit)mfl

< OHos T g —

and this shows that

(T —t)™

t)
I <CllogT|™ .
1 < CllogT| [Tog(T — t)[2m—1

Next we estimate I5:

t m w—y|?
L<C M/ e i 12 dyds
t—(T—t) U= 5 Jy>r.(5)R(s) |yl

t m
=C Au(5) / —lE=2l/4___ g,ds.
ey =5 Jepaomees v |2 \

We note that for s € [t — (T — t), t] the inequality

A (8)R(s
(t(—)s)l(/Q) <1

is equivalent to s < s* for some s* € (t — (T' —t),t). For s < s* we use (15.6) and obtain

s* )\* m
I < c/ A" gt — 5)| ds < CA(1)™ | Tog Au (8) 2
t—(T—t) ¢

< Cllog T|™ ET =9

T — t)‘Qm—Q

| log

145
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Finally, for I3, using (15.6), we get

_le—y? 1
/ / e 1T —= dyds
=8 Jly|>r(s)R(s) |y
/ / e_‘“z_zlz/4 5 dyds
=5 J)|z|>X(s)R(s)(T—s)—1/2 |2

<c/

(@t
SC”%ﬂ|myT—MMA'

| /\

I /\

|1 og(T — s)| ds

This finishes the proof of (8.13) when ¢ € [2T,T)]. For t € [0, 2T estimate (8.13) follows from (8.12). O

Proof of (8.14). Using the heat kernel we have

Vi) (z, t)\<C’/ Ax(5) 2/ sz -yl
o (t—s [> . (s)R(s) |y?

—s)
—C/ «(s)™ / Cjg—z2/alT — |dzds
t*5)3/2 |2]>As (8)R(s) (t—5)~ v |2[2
(s)
- s)

<c/
(t

where & = (t — s)~'/22. We find that

tf(Tft) )\ m 1
/ *(8)3/2 / 6_‘2‘2/4 + ‘22| dZdS
0 (t—s) 21> (s) R(s) (t—s)—1/2 |2]

t—(T—t) A (S)m
<C S| log(t — s)|d
= /0 (t—8)3/2| Og( S)‘ §

<CoTmE |log T|2—2™.

dyds

m

s e—\z|2/41+|2|

dzds
(t—s)3/2 |2]> A (8)R(s) (t—s)—1/2 |22

Let us estimate

‘ As(s)™ 1
/ 7(8)3/2 / 67|Z|2/47+ |22| dzds.
t—(r—t) (t—3) 21> As (s)R(s) (t—s)—1/2 ||

We note that the for s € [t — (T' — t),t] the inequality %ﬁgz) < 1 is equivalent to s < s* for some
e (t— (T —1),t).
Then for s < s* we use the estimate
NERE

dz < C|log(t —
/|z|zx*<s>R(s><t—s>1/2 @ = Clloglt =9l

3/2 .2 dzds
t—(T—t) (t—s) |z|2>\*(s)R(s)(t—s)*1/2 |2|

s A (s)™
<C —————|log(t — s)| ds
t—(T—t) (t—s)3/2 [ log )
()™ log(T —8)| _ ., T™*[log T[>~

R(t) - R(T)

and hence

<C
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For the remaining integral

t*S)g/Q |2]>Ax (8) R(s) (t—8)— 1/z NEED

*(S)WL t )3/2
<C d
o (= s>3/2A<>R<> ’
m m—1 1-m
o T s T
T R() T R(T)
Gathering the previous estimates we deduce (8.14). O

Proof of (8.15). Using the heat kernel we have
t
— [ ] (0uGle =yt = 5) = 0.,Gla 5.7~ ) fy.) dyds
RQ

T
- / / 8:07,G(x -y, T - S)f(yv S) dde
0 R2

and so

where

L

t—(T—t)
/ /|8miG(x—y,t—s)—8ziG(x—y,T—s)|\f(y,s)|dyds,
=/‘ t/\@x?x—%t—ﬁHﬂ%)hw@
t—(T—t) JR?
T
h:/’ 90,Ge — 9. T — 3|1y, 5)] dyds.
t—(T—t) JR?

Let us estimate I;:

1 pt—(T—t)
r-o [ [ e 10402, G — gty — )| dydsdy
0 Jo [y|>X«(s)R(s) | ‘
1 pt—(T—t) A (8)™
T4 / / AL
o Jo (t — )

_lz—yl? |x—y| ‘.’E—y|3 ) 1
' e M + dy dsdv
/y>>\*(s)R(s) <(tv — 5)1/2 (ty — 5)3/2 | 2

where t, = vT + (1 — v)t. Changing variables

|z —y| ey ) 1

e Atv—9) + 5 dy
-/y|2)\*(s)R(s) <(tv =)/ (ty — 5)3/2> ly[?

|z—y|?

- / eiliviz‘2/4(|iv - Z| + ‘jv - Z|3)7 dz
[2|>As(8)R(8)(ty—s)~1/2 2
é C| log(tv - S)‘
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where Z, = z(t, — s)~/2. Then

=T\ ()™ |z —y|2 < |z — y| |z — y|3 ) 1
_x\2) e 1tu—9 + —=dyds
/0 (to — 3)5/2 { /y» (5)R(s) (to = )12 (tu— )32 ) [yl? }
(T—1)
<C/ ))5/2|10g( —s)|ds

()™ log( —1)|
=@
Thus we have found that

tm 10 m m—1i —2m
I <C ()(T|_f)(1/2 >‘:0|1ogT| (T —t)™ 2 |log(T — t)|*~2

A (t)" 1] log(T — 1)
=¢ R()

since R = \;” and § € (0, 3).
We estimate I

t m ® _
I < C/ Av(s) / e — s y*> Yl dyds
(T—1t) (75 = 5)° J1y|>A.(s)R(s) |y/?

)?
Ae(8)™ _li=z | — |
_C/ / e 4(t—s) dzds
(-t ( t—5)3/2 12> A () R(s) (t—s)—1/2 |2|2
(s)
)

z

m 1
- T 32 / e +|2z| dzds,
t—(T— t) - |2|> A (8)R(s) (t—s)—1/2 |2

where & = (t — s)~1/22. We note that the for s € [t — (T —t), ] the inequality (t( 2)152) <1 is equivalent
to s < s* for some s* € (t — (T' —t),t). Then for s < s* we use the estimate

<C

1
/ a2 Lt 1] 4z < Cllog(t — 5|,
|2]>A. (s)R(s)(t—s)—1/2 |22
and hence
/t )\*(S)m / 7|z|2 1 + ‘Z| dad
1ty (= 5032 Jioisn o) () t—s) 172 EE

’ A(s)™
< C/ —————|log ds
t—(T—t) (t— 5)3/2 | (=)l

A(t)" " log(T — 1)
R(t) '
The integral on [s*,1] is estimated by

s* (t - 8)3/2 [2|>Xx(s)R(s)(t—s)—1/2 ‘Z|2

<C

)\*(t)m,—Q 1

<C d
=V TRE? waww2s

)\* (t)m_l
<C—————
- R()

In summary we get
N m—1 1 T —
1 < oM log(T — 1)

R(t)
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Finally, we estimate I3:

T m w—y|? _
kﬁC/‘iiiz/ e~ irtn 2 md@
¢ (T=5 Jiyi>a.(o)R(s) lyl?

T m
<C/—i£i—/ el 2l
T e (T =532 )i sau () R(s)(T—s)- 172 |2|?

T )\*<s>m (T _ 8)1/2
<< | @ 5mnane

)\* (t>m— 1
R(t)

Combining the estimates on I, I and I we deduce (8.15).

<C

15.3. Proof of Lemma 8.3.

Proof of (8.16). Let us show (8.16). We have, using the heat kernel,

—y|2
(z,t)] < C’/ — iy dyds

t—s ]R2
< Ct.

Proof of (8.17). Using the heat kernel we have

[Y(x,t) —Y(x,T)| < I + 12 + I3,
where

~

t—(T—t)
1 / |G(x —y,t —s) — Gz —y, T — s)|dyds
0 R?

fon
Il

¢
/ |Gz —y,t —s) —G(x —y, T — s)| dyds
t—(T—t) JR?

T
I3:/ |G(x —y,t —s) — Gz —y, T — s)| dyds.
t Jr2

We estimate the first integral

1 pt—(T—t)
nsa-o [ [ [ 06yt -9l dydsdo
R?

where t, = vT + (1 —v)(T —t). We have

[ 106Gyt~ )l dy
R2

w2 _ a2
S ¢ / e 4“(%4‘1‘5) 1+ |{E y| dy
(ty — 8)2 Jro ty — 8

1 -2
<C / e 1727 (1 417 — 20?) dz
(tv*S) R2 ( ‘ | )

t—(T—t)
/ / 0,G( — y, to — )| dyds

t(Tt 1
<C/ )ds

Therefore

< C|log(T )|

149
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and hence
I < C(T — )| log(T — #)].
Next we estimate Iy < Iz + Iz 2, where

t
Iy = / G — y,t — )| dyds
—(T—t) JR2

t
Ly = / G(e — y,T — 5)| dyds.
T—t) JR2

Let us compute the first one

t 1 o=y
L,<C e =9 dyds
t—(T—t) L — 8 Jmr2

—C’/ / e~18=217/4 4o ds
t—(T—t) JR2

<C ds
t—(T—1)

<C(T-1)
A similar computation yields the same bound for the second integral and we obtain

I, < O(T —1).

S | lz—y|?
I3 < C/ / e 1T-9 dyds
t T—s R2
T ~ 2
= C/ / e 1721 dyds
t JRr2
<C(T—-1)

We estimate

This finishes the proof of (8.17).

Proof of (8.20). Let 0 < t; < to < T. Using the heat kernel we have
‘8x1w(‘r7t2) - awbz/)(l‘vtlﬂ S Il + IQ + I?,,

where
t1—(t2—t1)
Il :/ / ‘6a:lG('r_y7t1 _S) —8$1G(x—y,t2 _8)|dyd8
2
Ot1 R
tlf(tzftl) R2

to
I3 =/ |02, G(x — y,ta — )| dyds.
t, JR2

For the first integral, we have

1 t1—(t2—t1)
n<-n | | [ 101026t = vt — 5)| dydsi
0 0 R2
1 tlf(tzftl) 1
< (ta—t —
_(2 1)/0 /0 (ty_3)5/2{

e O et | jz —y/*
dz—u® d }d d
/Rz ‘ <<tv ZoE T (t, — sz ) WIEW

where t, = vta + (1 — v)(ta — t1).
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Changing variables

e Ot | |z —y[?
FY gy d
/RQ ‘ <<tv o ) W
— (- s)/ e~E— /(5 — 2| + |50 — 2IP) d2
R2

where #, = (t, — s)~'/2. We then need to estimate

t1—(ta—t1) 1 ) - \
/0 (t_s)?)/z/R e T (|7, — 2| + |7y — 2)*) dzds

t1—(ta—t1) 1
<C —d
= / (b — 52"

< Oty — 1)~V
This yields
I < C(tg —t1)V/2.
To estimate I it suffices to bound separately the terms:

ty
/ 102, G e — g, t1 — )| dyds
t

1—(ta—t1) JR2

t1
/ [ 100Ga = ota = )] s
t1—(ta—t1) JR?

We have
ty
/ 00, Glx — y,t1 — )| dyds
tlf(t27t1) R2
t 1 _ o=yl
<C 72/ e 19|z — y|dyds
t1—(ta—t1) (t1 — 8)? Jge
t 1
<C ———ds
t1—(ta—t1) (t1 — 5)1/2
< Oty — t1)V2.
In a similar way we find that
ty
/ 100, Gz — g ta — 5)] < Clts — 1)/,
tl—(tg—tl) R2

and we obtain
Iy < C(ty — )Y

Finally

I <C/t2 1 / 74|(a;—y\) |d d
—_— e b2=s) | — S
=Y (=92 Jre v

b1 2|
AN — 2| dyd
" (t275)1/2 /RQG |x Z| yas

< Oty —t1)V2.

IN

C

This proves (8.20).
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Proof of (8.19). Using the heat kernel we have
|ax1w(xat) - azﬂ;[](xaT” S Il + I2 + -[3,

where

t—(T—1)
11:/ / 100, — y,t — 5) — 00, Gl — 5. T — )| | (y, 5)| dyds
) R2

(

t
I, = / |02, G(x —y,t — 8) — 02, G(x — y, T — 8)| | f(y, )| dyds
t

—(T—t) JR2

T
I3:/ /]R |6w‘G(x_y’T_s)||f(y75>|dyds
t 2

Let us estimate I:

1 pt—(T—1)
ne@-0[ [ [ 100,66 -yt -5l dydsde
0 0 R2

1 pt—(T—t)
ser-of [ Gt

o= o~y |z —yf®
Je—ul® d}dd
/R? ‘ <<tv —oi2 T g, — sz ) W

where t, = vT + (1 —v)(T —t). Changing variables

A | |z —yf? 1
4(ty —s) d
/ (<tv—s>l/2+<tv—s>3/2 PEENOR

:@va/‘aﬁfﬂ”%ﬁw74+uvf4%w
R2

where Z, = z(t, — s)~'/2. We then need to estimate

e 1 —|&y—z*/4(| 5 - 3
L g L o) s

t—(T—t) 1
< ——d
<o gt
< CO(T —t)~1/?

Therefore
L <C(T—t)Y/?

To estimate I, it is sufficient to bound the terms

t
I, = / |V.G(z —y,t — s)| dyds,
t—(T—t) JR2
t
Lo = / |V.G(z —y, T — s)| dyds.
t—(T—t) JR2
Let us start with:
L, <C t ! / -l | dyd
2,1 > Y PEEREY) e t=s)|x —y|ayds
t—(T—t) (t— 3)2 R2

cf i ¢ e - sl dad
= —_— e =9 |T — z| dzds
t—(T—t) (t—5)12 Jpo

< C(T —t)'/2.
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We obtain similarly I < C(T — t)1/2 and therefore
I, < C(T —t)'/2.
Finally, let us handle I3:

T 1 le—y|?
I3§C’/ 72/ e T3 |z — y| dyds
<C/ 1/2/ e ‘i_z‘2/4|§c—z|dzds
T—5)

< C )1/2

This concludes the proof of (8.19). O

16. DERIVATIVE OF THE EXTERIOR PROBLEM
Let f(y,t) be a function satisfying
[y, O] <A@V R(E) ™ “XBr1)»
and let Y[\, €] be the solution of

—¢ 1) in R? x (0,7)

¢: x¢+ ()
P(z,0) =0 ze€R?

2f(

given by Duhamel’s formula.
Let

DNy, ) = INEED) + Ay 1)
We consider the directional derivative with respect to A of 121 in the direction of A1, defined by

- 1/ -
DadA €] = lim — (BIA + 57, €] = [, €])
and also the directional derivative with respect to & of ¢ in the direction of &, defined by
- o 1- -
Debin,gllé] = lim ~ (0 +s61] = D0 g])
In the rest of the section we always assume the following conditions:
€nl<C, i (0,7)

M) <C, in (0,T)
Cih (1) < A(t) < CoA,(t), in (0,T)

1
R(t)=\(1t)"?, B< >
where C,Cy,Cs > 0.

16.1. Derivative with respect to A\. The proofs of the estimates below are based on Duhamel’s formula

for the solution:
.’I)/|2

(z, exp(— ff(t ) f()s o ds
2 // e gy s

We change variables writing x = £(t) + A(t)y and =’ = £(s) + A(s)y’. Then

[€@) =E(s)+A( )y A(s)y'?

exp(— ) )
g




154 J. DAVILA, M. DEL PINO, AND J. WEI

and we obtain the following formula for the directional derivative:

Dyip[Mi](y,t)
_lE@®)—=£€(s) +>\(t)u M)y )

e
N Rz t*S)

—&(5) + Aty = As)y) - (M )y — M()y) (Y, 5) dy'ds.

Lemma 16.1. We have
DA O 0] < O(| 5]+ Iulle= ) A RO,

and

[DAGIN EJ(A) () = Dad A EJ(A) (y, 7))

<o) 5], -+ 1l )20 By,
for |yl < R(t), t € (0,T).
Proof. One of the terms is
exp(— EO=EE) A Wy=A6)y'?
n / i — R T
< On R L énes / (t— )" A (5) B(s)
— S) '|? !
/ -~ exp(—lg() e >4—’(—t)\(t3$ Ay ) dy'ds
< 0RO, 1€l [ 097 R
t—s weo,
/yfgms) (FT—em o —ewE) @ weoD)
A1 : ¢ —14p v—2p —a N=2p g,/
< O ORO|| ], - 1El / (t— )" A (s) 2 R(s) /|y,|<R<s>y' dyds
A1

t
oo 1602 / (t — )AL (s)V "2 R(s) 22 s
* 0

ﬁ
A L

eIz () T R() T2

£()—€(8)+A )y =A(s)y’ |2)

[

(&) = E(s) + Aty — A(s)y') - (Ma(t)y — M(s)y') f(y', 5) dy'ds.

O
Lemma 16.2. For any o > 0 there is C' such that
Al \ v—1-0o l1—a
<o(||5] .+ Wl )an =Ry, (16.1)

for |yl < R(t), t € (0,T).
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Proof. We compute

9y, Dxtb[M](y, t) = Dy + Dy + D (16.2)
where
E(B)—E(s) Ay —A(9)y'|?
exp(— )
Diy,1) =~ Al / / — (€(1) ~ &ls) + A ~ A(s)of)
]R2 - 5)
(€t )+ Ay = As)y) - (Mt)y — M)y ) (' s) dy'ds
S S 2
exp(— 1€()—&( )-*-()\(t)§4 A(s)y'] ) / / /
R2 -
Datyt) — )\ / / exp(— IE(t) f(s)-i(-:\(i))y A(s)y’ |2)
1 R2 t - 8)2
§i(8) + A()yi — Ms)yi) f(y', 5) dy'ds.
Since
~ T — 1 ~ T —
0, DA 1) = 0, DA 1),
A A A
to obtain (16.1) it is sufficient to prove that the functions
(4.0) = 4= Di(5,1)
g1\y,t) = )\(t) 1Y,
1
92(y,t) = —2sz(y7t) (16.3)
1
t)y=—-2——D t
93y, t) NG 3(y.t)
satisfy the estimate
19, (9.8) = ;4. T < C (H L+ mnm) AR (16.4)
for |y] < R(t) and j = 1,2,3. We will do the computation in detail for
exp(— EDZEINOIA ) o
/ / (M ()ys = M(s)yi) f (', s) dy' ds.
R2 t - S)

The corresponding inequalities for g; and g3 are similar and we omit their proof.
To prove (16.4) for j = 2, let us write

92(y t)*ga(y,T)
EB)—E(s)FADY—A(s)y’ \2)

//R exp(— 74;3;) M)y — A(s)yi) f(y', 5) dy'ds

2
|5(T) E()HAMTM)y—A(s)y'?
exp(— 2 )
[/ o h (D) = M) S ) dy'ds
=Ao+ A1 + Ay + Az,
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where

t—(T—t) exp(— l€(t)—¢(s )I/\(t)y Ay’ |2)
(t—s) ’ /
= ( dy'd
Ao = M / /R2 e [y, s)dy'ds
/t (T— t)/ exp(— &) — (S)Zr(i\(tg A)y'? ) exp(i\ﬁ(T)*E(S)ZE;gQ))y*A(S)y/\2)
Rz (t—s)? (T —s)?
M)y f(y',s) dy'ds
E(t)—E(s)+A () y—X(s)y'|?
4 exp(— |£(t)—¢&( )4(t(2§J ()y'] ) / / /
2 = 5 (M@B)yi = M(8)yi) [y, 5) dy'ds
t—(T—t) JR? (t—s)
[E(T)—£(s)+ A (D) y=A(s)y']?
exp(— I(T—s )
/ / T ()i — M () (Y 5) dyds
t—(T—t) JR2 T —s)

Estimate of Ay. We claim that

| Ao| < 0H7H Y LR()- (16.5)
Indeed, we have
t—(T—1) o exp(—E® E(S)Jr/\(tzy A(s)y" |2)
L = (' 9)] dy'ds
(r-t) 4 ,
< N 14 —a
< C/o 7(T—s)2)\ (s)"R(s)*"“ds
1 u _
(Tit)A*(t) R(t)*™® (16.6)

and therefore, for |y| < R(t),

|Ao|<CH H Y LR(ON (B R(1)?

< CH L)Y LR()

HL“’

Estimate of A;. We claim that

r] < O3] Ao R [ + ||A||Lw|y|>W
N M].

T (16.7)
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We express

exp(- EO=EHAAN L) (AL AT N
(t—s)? (T —s)?
g exp(— €M A
= @ i s)? dv, (ty =vt+ (1 —v)T)
_ td €(tn) = £(s) + Alto)y — A(s)y' |
_—(T—t)/0 %exp(— Aty —3) )
o (E(ty) = &(s) + Aty — A(s)y') - (£(ty) + Ato)y)
4(t, — s)3
|€(tv) — 5(5) + )‘(tv)y - /\(S)y/|2 2
+2 o -~ | (16.8)
So
A=A+ Aig + Asgs
where
- £(5) + Altu)y — M)y
A =2 ‘t/ . et S )
€)= 60+ My j<5)3> )M | it
_ o [€(to) = () + Altu)y — Als)y'|?
iz =2 ‘t/ /Rz/e"p At~ ) :
/2
T t) E(ts) = £(s) + Ato)y — A(s)y'|?
A =20 ‘t/ //oeXp it —9) )
HA 1(8)yif (', s) dudy'ds.
To estimate Ay; we use e 12174 < C and get
t—(T—t) 14 S
anl<ca—o [ [ [ ) deaya
< O = )Wl + IM=h]| 2]
t—(T—t) o /
| / / i@,, " [ ) s
But
[ Wit sldy < xre [ ylay
R? |y’ |<R(s)
= C\(s)"R(s)>™°. (16.9)
Therefore
=T ) e e < [0 ARG
/0 W/sz'if(yvs”dydsﬁ/o W

)\(t)v—l-lR(t)B—a

<
ST T e
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and then

u+1R( )

An] < O + 1A= ]| 2] 2 W

For A5 we have, using (16.9),

(T
|A12| < (T —t) H HLOO/ / 8)3)\(5)/ lyif(y', s)| dy' dsdv

T —t) H HLoo/ / o )\ UHRS?) dsdv

)1/+1R

<CH =
Lo T—1t

Let us estimate Ajs:

t—(T—t)
a0 [T [ [ G el s
R

t—(T— t) v+1 3—a
—tH H // )\S R(S) dsdv
Lee C (ty—s)3

( 1/+1R

<CH '
L T—t

Combining (16.10), (16.11), and (16.12) we obtain (16.7).

Estimate of A;. We claim that
el < (|| 3]+ Il ) Ao Ry, for ol < R0

Indeed, let us make the dependence on the variables more explicit by writing

€t —£() FABy—=A(s)y’ |2)

exp(— A(t—s) /
A(t)y; — A ;
0= [ ol = O = A (s)3)

f/,s)dy'ds.
Let us define

) w=y)I* )

t—s

exp(— S
2(y,t / / A0 TN () (i — v £ 5) dy ds.
t—(T—t) JR2

We claim that

sl < a3

()T R()

and

s, 1) — Anl, 0] < € (|52 + Il ) Ao Ry

(16.10)

(16.11)

(16.12)

(16.13)

(16.14)

(16.15)
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Let us prove (16.14). Let p € (1,2) be fixed. Then

A < [ G R

X _M v — o 'ds
/Iy |<R( )e p( 4(t — s) AL () (yi — ;)| dy'd

<CH HLOQ/ " t)(t—ls)QA*(s)VHR(S)a

L (5 ) i
s N s
wi<re \AS) @y —y)) T

<CH HLm /t o t)(t*s)”*Q)\*(S)lHHquR(S)fa

/ ly — /| dy'ds
ly/|<R(s)

t
<C ﬁ / (t _ 8)”72>\*(S)V+172HR(S)372M7adS
Al Loee (T—-1)
<cC % (T () R
<C % 5 A (B)7TIR(E) TN () TR R(E)? P
AL -1 1— -
< - A ()Y B TN
<c|3] Ao RE A0

where o = (1 — p)(1 — 23). This proves (16.14).

To prove (16.15) we define

M) (w=y)I*
exp(— 0 )
= [ [ IR - ao)
t—(T—t) JR? —5)
f,s)dy'ds,
and show that
R e Irel i P WO Ok

and

|Aa(y, 1) = Az(y. 1)] < CllAs| o= Ae(t) T R(1)™

To prove (16.16) we write

As(y,t) — As(y,t)
[£(t)— (s)+A(t)yfA(s)y’|2)

/ / exp(— A(t—s)
(T— t) R? (t—s)?

1)y — M)y fF(Y, 8) dy'ds.

s a2
— exp(— [A( 4)((51_87; )] )

159

(16.16)

(16.17)
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Note that

[£() — &(s) + Ay — A(s)y'[?
exp(= 4(t — s) )=

) / 2 p(— 6O = £0) + ) M) + M)y =08

4(t — s)
1 ' |T(£(t) = &(s) + (A(t) = A(8))y) + A(s)(y — ¥
20t — s) /0 exp(= At —s) )
[T(E() = &(s) + (A1) = A(8))y) + A(s)(y — y)] - [6(t) — &(s) + (A(t) — A(s))y] dT.

Fix any p € (1, %) Then

|As(y,t) — As(y, t )|
£(s) + (A(t) = A()y) + A(s)(y — )
/t(T 0 t*S)B /R2/0 exp(- 4(t — ) )
[T (E(t) = &(s) + (A(t) = A(8)y) + A(s)(y — )] - [€(t) — E(s) + (A(t) — A(s))y] dm
Ay = M)y f (Y, s) dy'ds

<o), [ [e-amnorne

[ D =€)+ 0 = 6D + Xy =

(€l + I zo= [y D@yl + A(s)ly']) dy'drds
<O 5[, el + XL R()) /tt . t)(t — )20 (8) " R(s) " Au(s) T R(s)
A R(E) + Als) R(s)) ds
<O 5[ el + I REO)(T = ) A () 272 R ()2

<C|Z= A @)VTIER(E)S 2
< P (t) (t)

<C||5|, M () TR TN (1) HR(E) A2

< L v—1 l—a
<o||5, Ao R

and we obtain (16.16).
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Finally we show the validity of (16.17). We have

[Az(y, ) = As(y.1)
MG (y=y)I?
/ / eXp 4(t—s) )()\1(5) — Al(t))yzf(yla 8) dyldS
(T—t) JR?

(t—s)?
. t
< Clliu] o~ R() / (t— sy / Ay — )2 F () dy'ds
t—(T—t) ly'|<R(s)

t
< ClAl[pe~R(?) / (t— )" TAL(s)"R(s)"*A(s) " R(s)> " ds
t—(T—t)
< O A 1] Lo RE)(T — ) A(£)Y 21 R(t) 0+ =21
< Ol Ar |z A (D) T R AL () T R(H)2
< Ol M= Ac(t) T R(E)
where we have chosen p € (0,1). This is (16.17).

Estimate of Aj3. Finally we have
A .
45l < C (H;Hm + |A1||Loo) (7R for [y] < R().

The proof is similar to that of (16.13) and we omit it.

Combining (16.5), (16.7), (16.13) and (16.19) we obtain the validity of (16.4) for j = 2.

Lemma 16.3. For any o > 0 and v € (0,1) there is C such that
VD[N, (M) (y1,t) = VaDad[X, €](A) (g2, 1)

SC(‘ZA—%) (H H +H/\1||Loo) (TR

for [yil, ly2] < R(t), t € (0, 7).

161

(16.19)

Proof. Using formula (16.2), it is sufficient to show that the functions g;, g» and g3 defined in (16.3)

satisfy

050n.0) — g < (LN (5] e )Ry

R(t)

for |y1], ly2| < R(t), t € (0,T).
We do the computations in detail for gs. The functions gi, g3 are treated similarly.
Let t € (0,7), |yal, ly2| < R(t) and define

_ Yot
L=3yi—wyl, y= 5

Let us write

t
92(y7t> = / G?(y7ylvtas) dy/d87
0 JR2

where

—&(8)+A —A(s)y'|?
exp(— EOZEINOIA L)

(t—s)2 (M ()i — M)y fY ).

G2(y7yl7t7 S) =

We the compute
92(y1,t) — g2(y2,t) = B1 + Ba + Bs

(16.20)
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where

t—(T—t
Bl = / / (GQ(ylay/7t73) _G2(90>y/,t75))dy’ds
0 R2
t
= :/ / Ga(y1,y',t,s)dy'ds
t—(T—t) /|y’ —g|<L
t
_/ / Ga(yo,y'st,5) dy'ds
t—(T—t) J|y'—g|<L
t
B3 - / / (G2(yl7y'7t,8) _GQ(y()’y/atvS))dy/ds,
t—(T—t) —g|>L

Estimate of B;. We claim that for ¢ € (0,7) and |y1| lyo| < R(t) we have

|Bﬂ<(7” H yd (8T R

To prove this, let us set

[E(t)—¢&(s )+/\(t)y As)y'|?
. , exp(— —s) ) . ,
Ga(y, 2,y t,8) = = S) (M (@)zi = M (s)yi) (', 5),
so that
t—(T—t) ~ ~
Bl - / /2(02<y17y17yl7t7 S) - GQ(y07y07ylvta S)) dy/dS
0 R
= By,1 + B2,
where

t—(T—t ~ ~
Bl,l = / / (GQ(yhylvy,vta S) - GQ(yhy()vy,vta S)) dy/ds
0 R2

t—(T—t) 5 B
Bl,2 - / /2(G2(y1>y0ay/7ta S) - GQ(y0>y07y/ata 8)) dylds
0 R
We claim that
Bl <o oWl e rey-

and that
y1 — Yol v—1 1—
B <CH d [ = w0l 1yt Rry-e
| 1 2| [0 R(t) ( ) ( )
From these two estimates we get (16.21).
To prove (16.23) we note that

(T—t) exp(— l€@)— E(S)Z(At(t)lgl A(s)y'|?
By = M)y — . ' s) dy'ds.
1,1 1) (1 yo/ /R2 (t—5)2 ', s)dy'ds
We have already have obtained in (16.6) the estimate
t—(T—t) exp(— 136 E(S)Ik(t)y A(s)y’ |2)
(t—s) / ’
dy'd
/ /]R2 (t —s)2 |f (Y, )| dy'ds
<C ————\(t)"R(t)*°
(T t)

< CA() T R()*
and (16.23) follows.

(16.21)

(16.22)

(16.23)

(16.24)
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To prove (16.24) we write

Big=DB121+ B2

where
5 A /t (T—t) / exp(— E(t)— 5(8)1&@)8131 O )7eXp(f\E(t)*i(S)Zé(f)ss;ofA(S)y\ )
1,2,1 1 yO o (t — 5)2
f(y'ss)dy'ds
£(t $)+A()y1 —A(s t)—E(s)+A(t)y2—A(s)y’|?
. B t—(T—t) exp(— E(t)— 5()4(]&()5 ()yl)_exp(_\ﬁ() 5()4@(_)5 ()y\)
1,22 = t—sp
Rz
M(s)yif(y',s) dy'ds.
We have
£(t) = £(s) + AMt)yr — A(s)y'|? IE(t) = &(s) + At)yo — A(s)y'[?
exp( 4(t — ) ) —exp( At — s) )
£(t) = €(s) + ABDy- — As)y')? _
/ dT 4(t . S) )dTa Yr = TY1 + (1 T)yO
_ £(t) = &(s) + Ay — A(s)y'[?
0 / esp( T )
(£(t) — £() + Ay~ ASW) - (1 —w0)
t—s
Then we get
£(t s)+A(t)y1—A(s 2 ) —E(8)+AE)yo—N(s)y' |2
‘/t (T— t)/ exp(— () —&( )4(15( )Sy) ()y'] )—exp(—‘g() &( )4(t(_)sy) ()y'] )
R2 (t—s)?
1 s) dy'ds|
t—(T— t)
< Cly —yol/ / )72 0 (s)" T R(s)* dsdr
=Cly1 —yol(T — 1)~ 3/2>\*( H)" T R(t)*
Therefore
1B12a| < Clyr — ol A ()] lyol (T — £) /2N (1) T R(2)*
A _ v _
< |3, Lt = sl ol (T — )220+ Rty
Similarly
1Braal < Clyr — ol | 2] / &R
1,22 = Uy — Yo I oo (T — 572"
_ v+2 3—
<l =l |3 .. =0 2RO
Therefore,
A1 ly1 — ol —1 - 3/2 3
Bio| < C|| 2] LN (1) N () ?R(t
Bual < || S|, P 0" RO A0 R
A ly1 — o v—1 1—
< —_ 0 x
T

This proves (16.24).
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Estimate of B;. We claim that for any o > 0 and v € (0, 1) there is C such that for t € (0,T") and |y1],
lyo| < R(t) we have

ol < (B (2Y) s Yrn @ r R (16.25)
Let us recall that L = 3|y; — yo|. Let us define
\E(t)—E(S)-ﬁ-)\(t)y—)\(S)y'\2)
4(t

exp(— — N {
/t (T—t) /y —g|<L (t — s)2 (A1(t)zi = Au(s)y;)
fy',s)dy'ds,

so that
By = I(y1,y1) — I(¥0 Yo)-
We claim that for any o > 0 and v € (0,1) there is C' such that for ¢ € (0,T), |y|, |2| < R(t) we have

1 < C(5) ([ 3H], . +Islles ) A0 a0 Ry, (16.26)
To prove (16.26) we define two quantities:

|A<s><y y)>\2

I(y) _/ / M) (i — Y (Y 5) dy'ds
—(r—t) Jjy—gi<e (E—5)?

_ DG ><y y))\Z

iw=[ oo T O N5 s

We claim that for any o > 0 and v € (0,1) there is C such that for ¢ € (0,T), |y| < R(t) we have

1i(y)] ( ) H HLW “I\ ()R, (16.27)
and that
11(y) — I(y)| < Cll}u||Lw%)\*(t)”_13(t)1_“ (16.28)
11(y,2) — I(y)| RH H ) TLR(t) (16.29)
for |z| < R(¢).

To prove (16.27) let p € (1,2) be fixed. Then

1y |<CH HLOC /tt(T , A (8)YFIR(s) (1 — 5) 2

/ (t_sy ly =yl dy'ds
ly'—g1<L, ly'|<R(s) \|A(S)(y —¥)?

t
<X / Mo (s)7 12 R(s) =0 (1 — )02 / ly—y/|' " dy'ds
Al Ji (4 ly'=gI<L, |y'|<R(s)
t
< oM LH#/ Au(8) T2 R(5) ™ (t — )M 2 ds
A llLee t—(T—t)
<C % LT @TTER(E (T =
<C % B L3720, ("' RN () R() !
AL L 3=2n -1 1- 1- 2-2
< L — v a H K.
<c||5 Lw( R) M) LR ()R ()

This proves (16.27

~—

with y =3—2p € (0,1) and o = (. — 1)(1 — 25).
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Next we prove (16.28). For this, let u € (0, 1) be fixed. Then

A () (y—y )|2)

~ eXp 4(t—s) / /
[(y) — i (A(t) = M) f (', s) dy'ds
—(T—t) J|y'—g|<L —5)?
< Iyl s / (t = 5)" "\ (5)" R(s)
t—(T—t)
t—s “
— =" ) ayds.
/y'—y|gL, ly/|<R(s) (/\(S)(y - y’)IQ)
Thus we get

t
() — T(9)] < [ylllAa] / o T R )L
t—(T—t

< Clyll|As ]| = (T — t)P AL () 72 R(t)~*L> 2
2—2p

. L ~ Y B
< ClylllAflz= M) TR TN ()

C L

< CllAillz= A" T R A () TR
: L

< Ol A R

and we obtain (16.28).

We prove next (16.29). Let p € (0,1) be fixed and estimate:

11(y,2) — 1(y)|
_ /t / exp(— |§(t)*5(5);r(;\9234*>\(5)y'|2) — exp(— |A(SZ((t?J;y)’)|2)
t—(1—t) Jly'—gI<L (t—s)?
M)z — M ()Y FY,s) dy’ds‘
— ) oxc —&(5) + (A(t) = A(3)yl + A(s)(y — )P
<C/ (T— t)t /y y<L/ p(= 4t — s) )
[T[E(t) — &(5) + (A(t) = A(s))y] + A(s)(y — ¥ [€(t) — &(s) + (A(t) — A(s))y

|(A1(t)2i — Al(s)yi) (y', )| drdy'ds
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Hence

[y, ) — 1(y)|
C s+ [|All o R(t (s R
< O 32, e~ + 1Al //t(mt .
/ <o IT[E(t) — £(s) + (A(t) — A(8))y] + A(s)(y — y)|* "2 dyf
(A(DR() + A (s)R(s) dsdr

|, < e + 13~ RN ORE) [ oy A RG) e s

—(T—1)

< C«LB—Q/L

< Or | 5 (e + IRl RUDA DR — 1 A1) 2 R(t)

- 1/ u+1R 5—a—2u
Al ®

Ml
T Rp——
1 by PR Ok

This proves (16.29).
Combining (16.27), (16.28) and (16.29) we deduce (16.26).

Estimate of B;. Let us recall that L = |y; — yo|- We claim that for any ¢ > 0 and v € (0,1) there is C
such that for ¢t € (0,T) and |y1], |yo| < R(t) we have

|Bs| < O( ) (H H A ) A (B A (0 R (16.30)
‘We decompose
B3 =DB3 1+ B3

where

t
B371 - / / (G2<y17y17ylatas) _G2<y07y17ylata5)) dy/dS
T—t —y|>L

t
Bas — / / (Ga(Wor 1,91, 5) — Gy, o, o' 1, 5)) dy s
T—t y' —y|>L

and Gy is defined in (16.22).
We claim that

B3| < ) TIR(E) (16.31)

a3,
Baal < 0(5) (|3 H +||A1||Loo) L7 TR (16.32)

From the two above estimates we obtain (16.30).
To prove (16.31), we note that

—£(s — (s 712 _£(s — (s 2
[€@) =E(8)+A Dy =A(s)y’] ) exp(—lé(t) &( )Jga(j)sy)o M)y’ )

exp(— A(t—s) -
B =
> / Tt)/yy|>L (t—s)?
(A ()2 = M(s)yi) f (Y, 5) dy'ds.
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Let p € (1,2) and estimate

—g(Ss — S ‘|2 S S 2
SO MO N _ g [SO=EIEX 02 I

t exp(—
\B&ﬂﬁ’/ / p( (t=s) 5
t—(1—t) J|y'—g|>L (t—s)

(A (t)zi = M(s)yi) [(Y'ss) dl/ds’
(t—s)nt

/y ostiients VED €6 + Ay, AT
(M ()] + A ()l drdy/ds

1 t
<Cln=wl [ [ (= A R
o Ji—(r-1)

/'|>L ‘f(t) - 5(8) -+ )\(t)y,,_ — )\(s)ylp,gu
(1AL ()] + (A1 (s)yl]) drdyds

t

< Clyn = sl 3] A OR@ [ =R ds
t—(T—t)

< Clyn — yol 223 HL (O FHR) (T — 1)

_ 4=2p
Y1 — Yo - a - _
_C| T 2|u H H 1R )1 )\*(t)2 “R(t)4 2p
el mlj)

This proves (16.31).
We prove the estimate (16.32) for Bz 5. For a fixed p > 1 we have

—£(8)+A —~A(s)y'|?
[l S —
t—(T—t) Jjy'—gI>L (t—s)? ’

<c / L A R

/Iy’—yzL (lﬁ(t) —&(s) Jf;(j)y - )\(S)yl|2)u dy'ds

t
<o / (t — 8)" 27 (5)"~2*R(s)~" ds
t—(T—t)

< CLP (T — )" I\ () 2*R(t)
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so that
[E(H) —E(8)+A (B yo—A(s)y'|?
i exp 4(t—s) / /
|Bso| = [AM () (yh — v / / fy',s)dy'ds
0 (T—t) J|y'—g|>L (t —s)?
< Clyr — yo> A () HR(t) ™
— C|y1 — yO‘S 2“)\ (t)u—lR(t)l—a)\ (t)l—,uR(t)Q—Qp,
Rd 20 * *

lyr — o>~ vl _

= O M) OR()!

Lemma 16.4. For any o >0 and v € (0,1) there is C such that

Vo DABIA, EJ(M) (g, t2) = Ve Dt A, £l (A1) (y: 1))
<C..

Jor |yl ly2| < R(t), t € (0,T).

Proof. Using formula (16.2), it is sufficient to show that the functions g1, g2 and g3 defined in (16.3)
satisfy

l9;(y,t2) — g (y, t1)| < C...

for [y1], [y2] < R(t), t € (0,T).
We do the computations in detail for go. The functions g1, g3 are treated similarly.

Let t1, t2 € (0,T), |y| < R(t) with t; < ¢ and t5 < t1 — 15(T — t1). Let us write

t
QQ(y,t) = / GQ(yvylvtvs) dy/dS,
0 JR2

where G is defined in (16.20).
We the compute

92(y,t2) — g2(y,t1) = B1 + Ba + Bs

where

By

t1—(t2—t1)
/ / (G2(yay/7t278) - G2(y7y/7t178))dy/ds
0 R2

to
By :/ Ga(y,y' ta,s) dy'ds
t1—(t2—t1)
ty
BS - _/ GQ(y7yl7t17 8) dyldS
t1—(ta—t1) JR2
Estimate of B;. We claim that for ¢t € (0,7") and |y1], |yo| < R(t) we have
ty —t1)7
B <C(,\ - H H ) (-1 R@y—e 2=t 16.33

To prove this, let us write
By =By1+ B2+ B3,

where
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—£&(s —\(s ’2 _&(s ~ (s 72
1€(t2) —€(s)+A(t2)y—A(s)y'| ) exp(f‘g(tl) &( )4+(t>\2(j18))y As)y'| )

t1—(ta—t1) exp(— 4(t2—s) _
Ba= [0 |
1,1 0 R2 (t2 a 5)2

(M (t2)yi — M(8)yi) f(Y',8) dy'ds
|§(t1)*6(5)+>\(t1)y*>\(5)y/\2) |€(t)—E(8)+A(t)y—A(s)y'|?

B t1—(t2—t1) exp(— s exp(— =5 )
Bra = /0 /R< (2 — 5)2 - (t; — 5)2 )
(M (t2)yi — M (8)yi) f (Y, 5) dy'ds

_E@® &) HA ) y=A(8)y'|

t1—(ta—t1) ( t)
B = Oa(t) = Mty | | 7 s) dy/ds.
We estimate By 1:
t1—(ta—t1) 1
|B1,1] < C/ (QT/ Hf(tz) —&(8) + AMt2)y — M)V — [€(t1) — &(s) + At)y — Ms)y'|? ’
(A (E2)yl + (M ()Y ) £, 8)| dy'ds

t1—(ta—t1)
<c| ooy L (602 = €05)+ Aty = A P +1€(01) = €6 + Mty = Ms)y )
(

&(t2) — (tl)\ + [At2) = Alt1)] |yl)
“(M(t2)yl + M)y DYy 8)] dy'ds

A(s)YR(s)™“

] . t1—(t2—t1) 1
< Clta = )l + I~ (o) | o

. / o )(|§<t2>—s<s>+x(t2>y—x(s)yf|+m)_g(s) A= M)

“(IAa(t2)yl + A (s)y/]) dy'ds
Let us estimate B; 3. Using (16.6) we get
|[Brsl < CX()" T R(6)*| M (t2) — M (th)]
< Ol Ml A(®)” T RE)TOR(E)* (b2 — 1)

< Ol M (0 RO
U
16.2. Derivative with respect to &.
Lemma 16.5. Assume that
€O <C, in(0,T)
A< C, in (0,7)
CiA(t) S A(t) < CaA(t), in (0,T)
RO =\ f<3,
where C,C1,Cy > 0. Then there is C such that
Ve Ded A, (&) (1) = VaDed[N, €] (1) (y, 7))
(v R I NCER Ui (1630

for |yl < R(t), t € (0,T).
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Proof. By Duhamel’s formula

exp(~ 4(t s)) 1, 2 —¢&(s) /
V(1) //Rz t—s )\(s)2f( As) ,8)dx'ds.

We change variables writing x = £(t) + A\(t)y and =’ = £(s) + A(s)y’. Then
€ —E()+A Dy —=A(s)y'|?

exp 4(t—s) ) / ’
//Rz — [y s)dy'ds,

and

EB)—E(8)FADY—A(s)Y \2)
4

w[fl ya
t—s)

exp {
o _7/ /]Rz t78)2

—&(5) + Aty = As)y) - (&1(t) = & () (Y, 5) dy'ds.

We compute
0y, Detp[&1](y,t) = D1 + Dy (16.35)

where

€)= () +AB)y—A(s)y’ |2)

Diy, A—WAU/Afm — (&:(1) — &(5) + AB)i = A(5)y)

)+ Ay = A3)Y) - (M ()y — M(s)y) f(y'ss) dy'ds
£ —£(8)+ABDy=A(s)y’ IZ)

— _ = exp 4(t—s) i _ ¢i(s /s 'ds
Daly, 1) = 5\ (/L42 = (€5(6) — €L(5)) 7 ) o/ ds.

To obtain (16.34) it is sufficient to prove that the functions

g1(y,t) = —4ﬁD1(y,t)

m@iﬁrﬁi%Dﬂ%ﬂ

(16.36)

satisfy the estimate

’uHLW ’ EHLOO)A*(t)”’lR(t)P“, (16.37)

193(6:1) — 950, )| < €|
for ly| < R(t), t € (0,T) and j = 1,2,3. We will do the computation in detail for
€ —E()FABy—A(s)y’ |2)

/ /R2 eXp 4(t—s) (ﬂ(t) _ 61(5)).}0(3/73) dy'ds

(t—s)?

To prove (16.37) for j = 2, let us write

g2 (ya 792(y7T)
€@ —E()+ABy—A(s)y’ \2)

e p S - . ’ ,
// - = (€1(t) — (), 5) dy'ds
R2 s)
|§(T) )+ y—A(s)y'|?
© p —s . . , ,
j/ [.= T (E(T) — E(s) (o) dy/ds

= Ao+ A1 + Ay + A3,
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where
t—(T—t) exp(— O E(S)Z/\(tzy A(s)y'|? )
Ao = 51 gl / /R2 t—st) : f(ylys) dy/ds
P e B e s
P — Ty
(D) — &) (Y 5) dy'ds
exp(— E0= s)ﬁ(t%f 'y ‘
Ax = / / 28 (&) = &) (Y, s) dy'ds
(T—t) JR? (t—s)
|E(T)—£(5)+AMD)y=A()y |
eXp 4(T—s ) i i
/ / — )2 : (E(T) =& (), s) dy'ds
t—(T—t) JR2 s)

Estimate of Ag. We claim that

Ao < CH€1(-) —&(T)

= HLOC A (D) IR(E)O (16.38)

Indeed, thanks to (16.6) we get

0] = € B D Ry O REP)

<0H751) 51(T)H (6T R

LOO
Estimate of A;. We claim that

i< ofSOZEM)

)\*(t)QR(t)Q}
T—t '

A0 R [+ 1AL ) 3

(16.39)

Indeed, using (16.8) we find that
Ay = Ay + App + Agg

where
(T—1t) 1€(ty) — £(8) + Aty — A(s)y'|?
Au =2 "“‘/ fo ) et it ) )
(1) Z 8 EAIy =MW EL LXMW ) i) 100 '

Ay = —2(T — 1) / o )// exp(- L) €0+ £8>) AP
~ ¢(s)

|§(tv) + /\( )y |2
A(t, —5)4 (51( ) — 51( NS, s)dvdy'ds

Ay —2(T 1t / [ expl S0 00 £ Ny Mo

(tv 5)3 (E(T) = () f (Y, 5) dvdy'ds.
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To estimate A1; we use e~ 1274 < C and get

t—(T—t) ‘
anf<o—o [ [ [ END 60y g iyl avaya

< O — (€l + M| DY

t—(T—1)
/ / 5/2/ |f (', 8)| dy'dsdv

But
[l sy’ < OxRGs (16.40)
R2
Therefore
t—(T—t) )\ t—(T—t) )\ V+1R )
/0 = Q/Q/Ify SIdydsg/ t—55/2
()" R()*
<o
and then
: - GO) &)  AW"TRE)
< oo oo .
[Aul < CQEl~ + Al |55 | S F e (16.41)
For Ay we have, using (16.40),
51 t—(T—t) 1 , ,
<
|A12] H Lm/ / CRSE] A(s)R(s /R2 |f(y',8)| dy’dsdv
(T—t) l/+1
H& H / / Als R(S) dsdv
L= C (ty—s)3
51 gl l/+1R
< .
CH ), (16.42)
Let us estimate Aqs:
t—(T—1)
anl<a-n [ [ i - @l o) s
R2 ty, —
t— (T D \(s)V
Hfl —a(r H / / R( ) dsdv
Lo  (ty—s)3
€i(+) (t)" 1 R(t)
< .
CH 0, (16.43

Combining (16.41), (16.42), and (16.43) we obtain (16.39).

Estimate of A;. We claim that

|A2|<CH H Y LR(E) (16.44)
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Indeed, taking p € (0,1), we find that
[E(®)—E()+A D y=A(s)y’ \2)

exp(— A(t—s) i i / '
THEY 2 €1(6) = E105)1 10/ 5)| dy'ds
t—(T—t) Jr2 (t—s)
€ —E()+ABy—=A(s)y'|?
_ exp(— I(t—s)
< YR(s)* a/ dy'ds
H "Lw[ (T—t) ( ) ( ) R2 (t—S)
& /t v 1— —1/ t—s B
<Cl|= M) R(s) "%t —s dy'ds
Al gy RO e my )
. t
<C % Loc/ A(8)Y T2 R(s) T (t — ) TR R(s)2 T2 ds
t—(T—t)
<C % L (T =A@ R
<C % L ABTTIR( TN R
él v—1 1—
< >
C 7 Loo)\(t) R(t)
Estimate of A3. Finally we have
|As| < cH&H YLR(H) (16.45)

The proof is similar to that of (16.44) and we omit it.
Combining (16.38), (16.39), (16.44) and (16.45) we obtain the validity of (16.37) for j = 2.

O
17. THE FORMULA FOR &
We look for an approximate solution of
29(¢ 6
Do — Ay — 22U [e }
r 0
We take ®q of the form _
_ [wo(r,t)e’
Do = [ .
and then find that
1 2p(t
Orpo = Do — ol —pr( ). (17.1)
First we construct a solution ¢ to
1 1
We look for ¢ in self-similar form
r
o(r,t) =t%q(—=).
Vit

Then (17.2) is equivalent to
1 1 Vi r
el (aq — —&q'(& ) =¢>1 <q +=q — Q> - £=—.
280 et Ty
Then we take a = % and look for ¢ solving

1 1
qu”—&—fq’ —q—

o <q—sq'<f>>+§ (17.3)
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Note that ¢1(§) = £ is in the kernel of the homogeneous operator. The other element in the kernel is
given by

72(§) = th(f)/(h(ir)ﬂe’f“ dx

where
1 1
so that
e o= feigz.

Then we can choose
a(§) = 5/ Lot
e 1" dx.
? ¢ a3

This function decays as £ — oo and g2(&) ~ % as £ — 0.
A solution of equation (17.3) is given by

q(§) = *Ql(é)/ql(x)’ze’“/ief“(h(y) dydz
Then
1) = ¢ [ et [yetr dyda

We want a solution bounded as £ — 0 and ¢(§) — 0 as £ — oo. We choose

3
=2 h %67%12(6im2 —1)dx
13 X
—9¢ /OO et (17.4)
¢ @’

Note that

1 & — 0.

26~ {—;510g5 ¢ 0%,
3

‘We have then

plr,t) = ﬁq(%)-
A solution to (17.1) is given by
eo(rit) = [ a(s)plrnt = 5) ds-+ g(0)p(r.1), (17.5)
where g(t) = —2p(t). Indeed,
O =00 = 10— )0 = [ 90— 00y = 10— (it =) ds
= Lg(t) — 9(0)) + 9(0)



SINGULARITY FORMATION IN THE TWO-DIMENSIONAL HARMONIC MAP FLOW

Let us integrate (17.5) by parts

polrt) = g(s)p(rt—s)|'_ + / o(8)0hp(rt — ) ds + g(0)p(r, )

s S
t
/ 9(8)0cp(r,t — 8) ds.
0

We now compute, using (17.4)

11
Opp(r,t) = Vi (q(&) — &4'(6))
11—e i€
SVt €
_ 1—e™ j
o r
Therefore
2
L 1—eTo
wo(r,t) = 72/ p(s)T ds
0
2
t 1 _ o9
= _27"/ f&g) i2 dS
0 § t—s
t 2
:—r/ B(s) E( ! )ds
o t—s t—s
where
Ko =2t
- ¢
t 2 0
p(s) r re
d t) = — k d .
o(r:?) /Ot—s (t—s) 8[0}

We regularize this function by modifying the definition of ®( as follows:

Bo(r, ) = — /ot Bs) A [rew} |

t—s t—s 0
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