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APPLICATIONS
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Abstract. We investigate some non local equations in bounded
domains for different kinds of operators with power nonlinearities.
We prove an existence result in the spirit of an earlier work by
W.-M. Ni. As an application, we prove the existence of solutions
to non local supercritical equations in the complement of a ball.
We prove also some regularity results for higher order non local
equations, of independent interest.
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1. Introduction

This paper is devoted to a fractional version of the Henon equation
and some applications. As far as the existence result is concerned, we
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consider two types of operators: the one defined spectrally on the unit
ball B1 ⊂ Rn and the one defined on the whole of Rn but restricted
to functions defined on the bounded domain B1 and vanishing outside
B1. One feature of the present paper is to consider any powers between
0 and n/2. As far as we know, this is rather new in the field and
introduces several new difficulties.

The operators. In this section, we define the two operators under
consideration.
• The spectral Laplacian: We first define the operator As as described
for instance in

capella
[5]. Let {ϕk}∞k=1 be an orthonormal basis of L2(B1)

consisting of eigenfunctions of −∆ in B1 with homogeneous Dirichlet
boundary conditions, associated to the eigenvalues {λk}∞k=1. Namely,
0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λk → +∞,

∫
B1
ϕjϕk dx = δj,k and{

−∆ϕk = λkϕk in B1

ϕk = 0 on ∂B1.

The operator As is defined for any u ∈ C∞c (B1) by

Asu =
∞∑
k=1

λskukϕk, (1.1) def frac lapl

where

u =
∞∑
k=1

ukϕk, and uk =

∫
B1

uϕk dx.

This operator can be extended by density for u in the Hilbert space

Hs(B1) = {u ∈ L2(B1) :
∞∑
k=1

λsk|uk|2 < +∞}. (1.2) defH

Note that the operator As realizes an isomorphism between Hs and
its dual. It happens that the space Hs(B1) can be fully characterized
as it has been done in

capella, BSV
[5, 2]

• The restricted Laplacian: The second operator we consider is the
classical fractional Laplacian (−∆)s defined on all of Rn. This is a
Fourier multiplier of symbol |ξ|2s in S ′(Rn), the space of tempered
distributions. One can define this operator by using the integral rep-
resentation in terms of hypersingular kernels

(−∆Rn)su(x) = cd,s P.V.

∫
Rn

u(x)− u(z)

|x− z|n+2s
dz, (1.3) sLapl.Rd.Kernel

where cd,s > 0 is a normalization constant. In this case we materialize
the zero Dirichlet condition by restricting the operator to act only
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on functions that are zero outside B1. We will denote this operator
(−∆|Ω)s.

Remark 1.1. Note that both operators are different by many ways even
for powers s ∈ (0, 1) as described extensively in

BSV
[2] (see also

servadeiValdinoci
[11] for an

explanation why the spectra of each operators are different).

Problems under consideration. We denote [s] the fractional part
of s so that s = m + [s] where m ∈ N. If s ∈ (0, 1), clearly we have
m = 0. We consider first the following problem n ≥ 2{

Asu = |x|αup inB1,
u = ∆u = .. = ∆m−1u = 0 on ∂B1,

(1.4) PBspectral

with the convention that if s ∈ (0, 1), then the only remaining boundary
condition on ∂B1 is u = 0.

We will also consider the following problem{
(−∆)su = |x|αup inB1,

u = 0 inBc
1

(1.5) PBwhole

Note that here one do not need to assume higher order boundary con-
ditions.

In both cases, we assume that p > 1 and α > 0. We will be more
precise later for the allowed ranges of the power s.

We finally finish this section with the definition of weak solutions for
our problems. We have

weakSpectral Definition 1.2. A solution u ∈ Hs ∩ Lp(B1) such that u = ∆u =
.. = ∆m−1u = 0 on ∂B1 is a weak solution of problem (

PBspectral
1.4) if for any

ϕ ∈ C∞0 (B1) one has∫
B1

As/2uAs/2ϕ =

∫
B1

|x|αupϕ

weakRestricted Definition 1.3. A solution u ∈ Hs(Rn) ∩ Lp(B1) such that u = 0 in
B1
c is a weak solution of problem (

PBwhole
1.5) if for any ϕ ∈ C∞0 (B1) one has∫

Rn

(−∆)s/2u(−∆)s/2ϕ =

∫
B1

|x|αupϕ

Main results. The following result is a consequence of a Pohozaev
argument.

poho Theorem 1.4. Let n ≥ 2 and s ∈ (0, n/2). There is no positive smooth
solution for problems (

PBspectral
1.4) or (

PBwhole
1.5) if p ≥ n+2s+2α

n−2s
.

The following theorem is an existence result and is our main result.
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exist Theorem 1.5. Let n ≥ 2, s ∈ (1/2, n/2) and p < n+2s+2α
n−2s

. There
exists a positive weak solution for problems (

PBspectral
1.4) and (

PBwhole
1.5).

The following result is a regularity result.

reg Theorem 1.6. Let n ≥ 2, s ∈ (1/2, n/2) and p < n+2s+2α
n−2s

. Any weak
solution of problems (

PBspectral
1.4) or (

PBwhole
1.5) for any 1/2 < s < n/2 is C∞loc(B1).

Remark 1.7. Theorem
reg
1.6 is an interior regularity result. The bound-

ary conditions have to be interpreted in the weak sense.

As an application of Theorem
exist
1.5, we have the following result. Let

us consider {
(−∆)su = up inBc

1,
u = 0 inB1.

(1.6) PBexterior

One has

existExt Theorem 1.8. Let n ≥ 2, s ∈ (1/2, n/2) and p > n+2s
n−2s

. There exists
a positive radial smooth solution u of (

PBexterior
1.6).

2. Proof of Theorem
poho
1.4

We follow the argument in
ROS2
[9]. Denote by Ls any of our two operators

and let u be a smooth solution of (
PBspectral
1.4) or (

PBwhole
1.5) in B1. Consider uλ(x) =

u(λx) defined in B1. Then the following identity clearly holds:∫
B1

(x · ∇u)Lsu dx =
d

dλ

∣∣∣
λ=1

∫
B1

uλLsu dx.

Note that since B1 is star-shaped uλ satisfies the desired boundary
conditions for both problems. Now, in the case of problem (

PBspectral
1.4), we

extend the function u by 0 outside of B1 and denote it still u. As a
consequence one has the formula∫

B1

uλLsu dx =

∫
Rn

uλLsu dx.

The function u belongs to the space Hs(B1) in the case of problem
(
PBspectral
1.4) and the Standard Sobolev space Hs(Rn) in the case of problem

(
PBwhole
1.5). Hence it is easy to check by spectral calculus that the integration

by parts formula holds∫
Rn

uλLsu dx =

∫
Rn

Ls/2uλLs/2u dx

By the change of variables y =
√
λx, one gets∫

Rn

uλLsu dx = λ
2s−n

2

∫
Rn

w√λw1/
√
λ dy
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where

w(x) = Ls/2u.
Hence ∫

Rn

(x · ∇u)Lsu dx =
2s− n

2

∫
Rn

uLsu+
1

2

d

dλ

∣∣∣
λ=1

Iλ

where

Iλ =

∫
Rn

wλw1/λ dy.

By Cauchy-Schwarz inequality, one has

d

dλ

∣∣∣
λ=1

Iλ ≤ 0.

Hence one gets

−
∫
Rn

(x · ∇u)Lsu dx ≥
2s− n

2

∫
Rn

uLsu.

Using the equation for u, one deduces easily the desired result.

3. Strauss-Ni’s Lemma

The following lemma is due to Cho and Ozawa (see
ozawa
[6]).

strauss1 Lemma 3.1. Let n ≥ 2 and 1/2 < s < n/2. Then

sup
x∈Rn\{0}

|x|n/2−s|u(x)| ≤ C(n, s)‖(−∆)s/2u‖L2

for any u radially symmetric such that ‖(−∆)s/2u‖L2 is finite.

This provides the desired Strauss-Ni’s lemma for problem (
PBwhole
1.5). Note

that the restriction s > 1/2 is due to the convergence of the integrals
involved in the constant C(n, s). Furthermore, as described in

ozawa
[6], the

inequality does not hold for s ∈ (0, 1/2] and s ≥ n/2.
One now turns to the Strauss-Ni’s lemma for problem (

PBspectral
1.4). We have

strauss2 Lemma 3.2. Let n ≥ 2 and 1/2 < s < n/2. Then

sup
x∈B1\{0}

|x|n/2−s|u(x)| ≤ C(n, s)‖As/2u‖L2

for any u radially symmetric such that ‖As/2u‖L2 is finite.

Proof. In the ball, by standard spectral theory, one has the following
expression of

u(x) = r1−n/2
∑
k

uk
Jn/2−1(

√
λkr)

βk
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where

β2
k =

∫ 1

0

r2−n|Jn/2−1(
√
λkr)|2rn−1 dr =

∫ 1

0

r|Jn/2−1(
√
λkr)|2 dr

and Jn/2−1(x) is the standard Bessel function of order n/2− 1.
Hence by Cauchy-Schwarz inequality

|u(x)| ≤ r1−n/2
(∑

k

λsk|uk|2
) 1

2
(∑

k

|Jn/2−1(
√
λkr)|2

λskβ
2
k

) 1
2

Since we have by spectral theory

‖As/2u‖L2 = (
∑
k

λsk|uk|2
) 1

2
,

we have to estimate the quantity∑
k

|Jn/2−1(
√
λkr)|2

λskβ
2
k

.

Setting r̄ =
√
λkr, one gets

β2
k =

1

λk

∫ √λk
0

r̄|Jn/2−1(r̄)|2 dr̄.

The eigenvalues
√
λk are the zeros of Jn/2−1(x) since, by the boundary

condition, we must have Jn/2−1(
√
λk) = 0. It is well-known that one

has the following estimate

λk ∼ k2.

Moreover the following estimate holds (see
abra
[1])

Jn(x) ∼ O(1/
√
x) x→ +∞.

Putting together these two estimates, one has

β2
k ≥

1

λk

∫ √λk
0

dr̄,

hence

βk ∼ 1/
√
k, k → +∞.

Hence we end up estimating the sum∑
k

|Jn/2−1(kr)|2

k2s−1
.
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We split the sum in the following way∑
k

=
∑

k<<1/r

+
∑
k∼1/r

+
∑

k>>1/r

= I1 + I2 + I3.

The sum I2 is easily estimated. Indeed, in this regime Jn/2−1(kr) =
O(1), hence

I2 ≤ Cr2s−1 ≤ C.

For I3, we use the bound close to ∞

Jn(x) ≤ C√
x

to obtain

I2 ≤
C

r

∑
k>>1/r

1

k2s
.

We have ∑
k>>1/r

1

k2s
∼
∫ ∞

1/r

1

x2s
dx = r2s−1.

Hence,

I2 ≤ Cr2s−2.

For I3, we use that (see
abra
[1])

Jn(x) = O(xn) x→ 0.

Hence we have

I3 ≤
∑

k<<1/r

(kr)n−2

k2s−1
≤ rn−2

∑
k<<1/r

kn−1−2s ∼ rn−2rn+2s,

I3 ≤ Cr2n−2+2s ≤ Cr2s−2.

Therefore, we finally have∑
k

|Jn/2−1(kr)|2

k2s−1
≤ C(1 + r2s−2).

Hence

|u(x)| ≤ Cr1−n/2(1 + rs−1)‖As/2u‖L2 ,

which gives the desired bound. �
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4. Proof of Theorem
exist
1.5

The proof follows the ideas of
Ni
[8]. The proof uses the following

mountain pass lemma due to Ambrosetti and Rabinowitz (see
Ni
[8] and

references therein).

mountain Theorem 4.1. Let E be a Banach space and let J ∈ C1(E,R) satisfy
the Palais-Smale condition. Suppose:

• J(0) = 0 and J(e) = 0 for some e 6= 0 in E.
• there exists ρ ∈ (0, ‖e‖), α > 0 such that J ≥ α on Sρ =
{u ∈ E : ‖u‖ = ρ} .

Then J has a positive critical value

c = inf
h∈Γ

max
t∈[0,1]

J(h(t)) ≥ α > 0

where
Γ = {h ∈ C([0, 1], E) : h(0) = 0, h(1) = e} .

We now come to the proof of Theorem
exist
1.5.

The case of the spectral Laplacian. We consider first the case of
equation (

PBspectral
1.4). Let E be the completion of radially symmetric C∞0

functions under the norm

‖u‖2
E =

∫
B1

|As/2u|2.

Let

J(u) =
1

2

∫
B1

|As/2u|2 −
∫
B1

|x|αF (u)

where

F (u) =

∫ u

0

|t|p dt.

Clearly, any critical point of J is a weak solution of problem (
PBspectral
1.4).

The case of the restricted Laplacian. We consider now case of
equation (

PBwhole
1.5). Let E be the completion of radially symmetric C∞0 (B1)

functions defined on Rn under the norm

‖u‖2
E = ‖(−∆)s/2u‖L2(Rn).

Notice that functions in E vanish (with all derivatives if necessary)
outside of B1.

Let

J(u) =
1

2
‖(−∆)s/2u‖2

L2(Rn) −
∫
B1

|x|αF (u).

F (u) =

∫ u

0

|t|p dt.
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Clearly, any critical point of J is a weak solution of problem (
PBwhole
1.5).

Now the only thing to check to apply Ni’s argument is the following
compactness lemma (see

Ni
[8]).

Lemma 4.2. Let n ≥ 1 and s ∈ (1/2, n/2). The map u→ |x|αu from
E into Lp(B1) is compact for p ∈ [1, p̃s) where

p̃s =

{
2n

n−2s−2α
ifα < n−2s

2
,

+∞ otherwise.
(4.1)

As in
Ni
[8], one has

Lemma 4.3. The functional J satisfies the Palais-Smale condition.

The previous two lemmata just need: the compactness of E into
L1(B1) and the Sobolev embedding for E. These are proved in the
appendix of

BSV
[2].

5. Proof of Theorem
reg
1.6

The case s = 1 is a well known result. We treat in a unified way
both problems and operators.

5.1. The case s ∈ (1/2, 1). First, by Prop. 4.2 in
tan
[12], weak solutions

of (
PBspectral
1.4) are L∞(B1). The very same argument gives L∞ bounds for

weak solutions of (
PBwhole
1.5). By Prop. 3.2 in

tan
[12], solutions are C1,α and

hence by a standard bootstrap argument, smooth. For problem (
PBwhole
1.5),

this is enough to invoke
CabSire1
[3], Lemma 4.4 to have the desired result.

Remark 5.1. Regularity results in elliptic theory for integro-differential
equations have also been obtained in

ROS2
[9],

CS
[4] for this range range of pow-

ers.

5.2. The case s ∈ (1, n/2). The main difficulty now is considering
higher order operators. To do so, we follow the strategy of van der
Vorst in

van
[13] for the bilaplacian.

Since u is a weak solution of any of the problems (
PBspectral
1.4) or (

PBwhole
1.5), we

have, by the Sobolev embedding that

u ∈ L2n/n−2s(B1).

The following lemma can be proved in exactly the same way as
Lemma B.2 in

van
[13].

crucial Lemma 5.2. For every ε > 0, there are functions qε ∈ Ln/2s(B1),
fε ∈ L∞(B1) and a constant Kε such that

u
n+2s
n−2s = qε(x)u+ fε
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and
‖qε‖Ln/2s < ε ‖fε‖∞ ≤ Kε

Now we prove

crucial2 Lemma 5.3. Let u be a weak solution of any of the problems (
PBspectral
1.4) or

(
PBwhole
1.5). Then u ∈ Lp(B1) for any 1 ≤ p <∞.

Proof. Following
van
[13], we rewrite our problems as

u−Fεu = hε

where Fεu = (Ls)−1(qεu) and hε = (Ls)−1fε where Ls is any of our two
operators. Now one has (see

BSV
[2] for s ∈ (0, 1) but the arguments there

can be easily adapted )

(Ls)−1u(x) =

∫
B1

Ks(x, y)u(y) dy,

and one has

|Ks(x, y)| ≤ C

|x− y|n−2s
.

Hence using the Hardy-Littlewood-Sobolev inequality one has

‖Fεu‖Lp ≤ C‖qεu‖Lr

with
1

r
=

1

p
+

2s

n
.

Since qε ∈ Ln/2s(B1), one gets by Hölder inequality that

‖Fεu‖Lp ≤ C‖qε‖Ln/2s‖u‖Lp .

The rest of the proof then goes as in
van
[13]. �

To finish the proof of Theorem
reg
1.6, we invoke the regularity results

in
grubb
[7], Theorem 7.4 to go from Lp to a Sobolev-type space and then,

by Morrey embeddings, to conclude to the desired regularity.

6. Proof of Theorem
existExt
1.8

We will use the following Kelvin transform for x ∈ B1:

u∗(x) =
1

|x|n−2s
u(

x

|x|2
).

Denote
x∗ =

x

|x|2
∈ Bc

1

and define

u∗(x∗) =
1

|x∗|n−2s
u(

x∗

|x∗|2
).
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Notice that u∗(x∗) is of course defined on Bc
1. Now by a well-known

properties of the Kelvin transform, one has

(−∆)su∗(x∗) =
1

|x∗|n+2s

(
(−∆)su

)
(
x∗

|x∗|2
).

Since x∗

|x∗|2 ∈ B1, one can use Equation (
PBwhole
1.5) to get

(−∆)su∗(x∗) = |x∗|p(n−2s)−n−2s−αu∗(x∗)p.

Take now α = p(n − 2s) − n − 2s. Then α > 0 if and only p > n+2s
n−2s

.
Hence we have produced a solution of (

existExt
1.8) and the Theorem is proved.

Remark 6.1. By the construction of the solution in Theorem
existExt
1.8, the

solution u∗ has decay at infinity. More precisely, we have

u∗(x∗) = O(
1

|x∗|n−2s
), x∗ → +∞

7. Several Open Questions

We pose several open questions in line with the standard s = 1 case.

• Is the solution obtained in Theorem
exist
1.5 unique or nondegener-

ate? This is trivial when s = 1, by a standard scaling and ODE
argument. The case of non local equations is not clear at all.
• It is natural to consider the associated critical or supercritical

Bahri-Coron problem

Lsu = up in Ω (7.1) BC

together with suitable boundary conditions depending on Ls,
any of our operators, p ≥ n+2s

n−2s
and Ω exhibits nontrivial topol-

ogy. We conjecture that there exists a solution to (
BC
7.1) when

Ω either has nontrivial topology or Ω has a spherical hole. For
powers s ∈ (0, 1) and when the operator is (−∆|Ω)s, the Coron
problem has been studied in

squassina
[10].
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[3] Xavier Cabré and Yannick Sire. Nonlinear equations for fractional Laplacians,
I: Regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. H.
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