INFINITELY MANY POSITIVE SOLUTIONS FOR
NONLINEAR SCHRODINGER SYSTEM WITH
NONSYMMETRIC FIRST ORDER
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ABSTRACT. We consider the following nonlinear Schrodinger system:
—Au+ Au=1u+puv® inQ
—Av+v=0v34+Fvu? inQ
u>0,0v>0 in
u=v=0 on 0}

where Q C R? is a smooth bounded domain, A;,As > 0 and 3 € R is a

coupling number. We prove that for § < —1 this problem has infinitely

many positive solutions.

1. INTRODUCTION

We consider the following nonlinear Schrédinger system:

(1.1)

where Q C R" is a smooth bounded domain (N < 3), A1, Ay, i1, 2 > 0 are

—Au+ A\u = v + Buv?  in Q
—Av + A = v + fou?  in Q
u>0,v>0 in Q
u=v=>0 on 02,

parameters and [ € R is a coupling number.
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This type of system arises in the study of solitary wave solutions of the follow-
ing two component Schrédinger system (also called Gross-Pitaevskii equations):
(1.2) i

_i%‘bl = P AP, - Vi(2)®1 + 11| ®1[*®1 + B P2[*®y, for z € Q,t >0

. 43
—’L%QQ = gh_mA(I)Z — ‘/é(x)(bz + [LQ'@Q‘Z(I)Q + ﬂ‘(b1|2(bg, for z € Q,t >0

®;(z,t) =0, forx € 00,t>0,i=1,2.

The above system models a binary mixture of Bose-Einstein condensate in
two different hyperfine states |1 > and |2 > (see [13]). Physically, ®; and
®, are the corresponding condensate amplitudes, @ C RY is the domain for
condensate dwelling, h is the Planck constant divided by 27, m is atom mass
and Vj is the trapping potential for the j —th hyperfine state. p; and 3 are the
interaction of the states. The sign of 3 determines the interaction of the states
|1 > with |2 > . When ( < 0, it means that the interaction is repulsive and for
B > 0 the interaction is attractive.

System (1.1) has attracted much attraction in recent years. Many results
concerning the existence and multiplicity of solutions are obtained, under the
suitable assumptions on the parameters 3 and \'s. See for example [1, 2, 7, 8,
9,10, 12, 14, 17, 18, 19, 20, 21, 22, 23, 31, 32, 33, 27, 28] and references therein.

In this paper, we assume that pq, s > 0, which implies that the self interac-
tion of the single states |1 > and |2 > are attractive. We also consider the case
of B < 0, which implies that the interaction is repulsive.

When N < 3 and < 0, the existence of at least one least energy solution can
be proved easily ([18]). For the full symmetric case, that is, p; = pg, A1 = g,
the existence of infinitely many positive solutions are obtained by Wei-Weth
[32] (in the radial case) and Dancer-Wei-Weth [12] (in the general domain case).
The basic idea of [12] and [32] is to find suitable Ljusternik-Schnirlman category
theory for obtaining positive solutions for elliptic systems. To this end, they
observed that when \; = Ao and p; = o system (1.1) is invariant under
the reflection (u,v) — o(u,v) = (v,u). (This is called Z; symmetry.) This
invariance is essential for the multiplicity results of [12] and [32]. (Tian and
Wang [29] generalized to Zy symmetry and obtained infinitely many positive
solutions for symmetric N elliptic systems.) On the other hand, when A\; =
A2, and 3 € (—y/fi1fi2,0) system (1.1) admits a special solution of the type
(cru, cou), where ¢; > 0,¢o > 0 and u is a solution of the single scalar equation.
Using this fact and bifurcation theory, Bartsch-Dancer-Wang [7] proved the
existence of infinitely many positive radial solutions to (1.1) when 8 < —, /fi1fia
and €2 is a ball. As far as we know, the question of the existence of infinitely
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many positve solution to system (1.1) when A; # )\, is largely open. In this
paper we partially solve the question by assuming that

(13) M1 = U2, )\1 75 )\2.
In other words, we asssume symmetry in the leading order term but allow non-

symmetry in the lower order term. Thus by rescaling we consider the following
problem

—Au+ Mu=u®+ fuv? inQ
—Av 4+ Xv =02+ Bvu?  in Q)
u>0,v>0 in
u=v=>0 on 0f).

(1.4)

Regarding (1.4) we prove the following.

Theorem 1.1 Let N < 2 and (1.3) hold.

(a) If B < —1, then system (1.4) admits a sequence (ug,vy)r of solution with
[tk || poe () + [0k | 100 () — 00

(b) For any positive integer k, there exist number B, > —1 and such that for
B < Bk, system (1.4) has at least k pairs (u,v), (v,u) of solutions.

The idea of our proof is by applying the perturbation arguments of single
scalar equations, which was originally due to Bahri-Lions [4] (see also Rabi-
nowitz [24], Bahri-Berestycki [5, 6]).

Let us recall that for single scalar equation

(1.5) —Au = f(z,u) in 2, v =0 on 09

it is known that when f(z,u) = —f(z, —u), problem (1.5) has infinitely many
solutions. A long-standing open question is whether or not there are infinitely
many solutions for general f(z,u). Bahri-Lions [4] showed that it is possible to
obtain infinitely many solutions if f(z,u) = g(z,u) + h(z,u) where g(z,u) is
odd and h(z,u) is lower order terms.

We follow the idea of [4]. To this end we need to make use of some of
properties associated with the symmetric functional corresponding to the full
symmetric system. (Here and throughout the paper, we say that the sys-
tem is full symmetric if the system is invariant under the reflection (u,v) —
o(u,v) = (v,u). We also call the energy functional corresponding to the system
a symmetric functional.) Following the idea of [4] and [5], our proof relies on
appropriate estimates on the growth of some critical values of the unperturbed
problem (full symmetric problem in our situation). These estimates are ob-
tained through a general abstract result which is obtained by the connection
of Morse index and critical values. The restriction N = 2 is needed for these
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estimates. We will show that the critical values Cy of the symmetric functional
are stable in some sense. It means that after the perturbation, the level sets of
the two functionals (symmetric functional and the perturbed functional) are
not too far from each other. As a result, if C}; grows fast enough, one may
hope to get a critical value of the perturbed functional, and therefore to get the
solution of the original problem.

The organization of the paper is as follows: In Section 2, we will derive the
estimates concerning the critical values of symmetric functional on an Nehari
manifold M (see Section 2 for the definition of M). The proof of Theorem 1.1

will be delayed in Section 3.

2. ESTIMATES VIA MORSE INDEX

Based on the idea of Bahari and Lions [4], in this section, we first study the
growth of critical value for the symmetric system. Without loss of generality,
we may assume \; = Ay = 1, u; = ps = 1. We consider the following system:

—Au+u=u+pur? in
—Av+v=0v>4+Bvu? inQ
u>0,v>0 in Q
u=v=>0 on 0S2.

Let H := Hg(Q) x Hy(Q2) be equipped with the norm |[(u, v)|| = [[u||g1() +
|[v]] 13 (). We consider the symmetric functional E' € C?(H,R) defined by:

1 1 3
22) B(w0) = 5l + 0lBigan) — 3 [ (Gl oz = 2 [ avas,
where and in the following of the paper, ||u\|§{é(m = [o(|Vul* + |v?|)dz,u €

H}(Q). Moreover, for a function u € L*(Q2), we denote by |u|s the usual L*
norm of w.

(2.1)

We first define an Nehari type manifold:
M: ={(u,v) € Hyu,v#0|E,(u,v)u =0, E,(u,v)v =0}
= {(u,0) € H,u,0 £ 0lfulfyey = 8 [ wvido = [ Jul‘da,

Q
lollzge — 8 [ wteido = [ Joftda).
Q Q

Then it is easy to see that all nontrivial critical points (u,v) of E are contained
in M. Moreover by Lemma 4.2 in [12], we deduce that
(i) M is a C* submanifold of H with codimension two.
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(ii) If (u,v) is a critical point of the restriction of the functional E to M,
then (u,v) is a nontrivial critical point of E in H.

() B0, 0) = 31l By + 0l5y0) For (u,0) € M.

(iv) Ey := E|ym : M — R satisfies the Palais-Smale condition ((P.S) condi-
tion in short).

We denote by E*(u,v) := E|y, K. := {(u,v) € M|E*(u,v) = ¢, (E*) (u,v) =
0}, and Ef := {(u,v) € M|E*(u,v) < c}. Note that for every ¢ € R the
functional E* and the sets M, K., E; are invariant with respect to the reflection
c:H — H,o(u,v) = (v,u).

Obviously (2.1) is invariant under the reflection (u,v) — o(u,v) = (v,u).
This invariance is essential for the multiplicity result of [12] which relies on
an invariant of Lyusternik-Schirelman theory on the Nehari manifold M. The
importance of this manifold is that it contains all solutions of (2.1). Moreover,
it is invariant under the reflection o, and ¢ has no fixed points in M if § < —1.

Definition 2.1 For any closed o— invariant subset A C M, we define the genus
v(A) = inf{k € N| there ezists a continuous map h : A — RE\{0} with h(o(u,v)) =
—h(u,v) for all (u,v) € A}. If no such map h exists, we set y(A) = oo; In
particular, if A contains a fized point of o,7(A) = oo, and clearly, we have
7(®) = 0.

For reader’s convenience, we list some properties of the genus 7 (see [12]).

Lemma 2.2 Let A, B C M be closed and o—1invariant. It holds that:

(i) If A C B, then v(A) < y(B).

(ii) y(AU B) < v(A) +v(B). o

(15i) If h : A — M is continuous and o equivariant, then v(A) < v(h(A)).

(iv) If A is compact and does not contain the fized point of 0. Then v(A) <
oo, and there exists a relative open o—invariant neighborhood N of A in M
such that v(A) = v(N).

(v) If S is the boundary of a bounded symmetric neighborhood of zero in
k—dimensional normal vector space and v : S — M 1is a continuous map

satisfying Y(—u) = o(ip(u)), then 7(1p(5)) > k.
Now let us define the nondecreasing sequence of Lyustermik-Schnirelmann
type critical levels associated to the genus 7y by:
(2.3) Cy :=inf{c e R|y(E}) > k,k € N}.
Set
¢(B) := inf{E(u,v)|(u,v) € M is a fixed point of o}.
Then it follows from [12] that :
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(1) e(B) = oo for § < —1;
(2)For every k € N, Cy, < oo is bounded independent of § < 0;
(3)Cy, — ¢ as k — oo with ¢(f8) < ¢ < o0
(4) If C), < oo, then K¢, # 0 and E¢, contains at least & pairs (u,v), (v, u)
of critical points of E.

In order to establish a connection between Morse indices and min-max critical
value, we introduce the following:

Definition 2.3 Let (ug,vo) be a solution of the full symmetric system (2.1).
Set

— —-A, 0 N 1+ 3u? + BvE, 2Bugvy
A T 2 Buyvy, 1+ 3vg + fud,

We define the general Morse index of the functional E at (ug,vy) to be the
dimension of the negative and null eigenspace of the operator da acting on the
space L*(Q2) x L*(2). We denote this finite integer by u(uq, vo)-

Remark 2.4 Note that the Hession D?*E(u,v) of the functional E with (u,v)
being a critical point of E is Fredholm type (Id + K) with K is a compact
operator. Therefore, the general Morse index p(u,v) at (u,v) is finite and this
s remains true after small perturbation of the functional.

Definition 2.5 We say (u,v) is a non-degenerate critical point of E if the
operator Oa 1is invertible.

As we mentioned in the introduction, in order to use the perturbation argu-
ments, one of the key points is the appropriate estimate on the growth of some
of the critical values for the full symmetric problem (or unperturbed problem).
The following proposition provides a lower bound on the Morse index p(u,v)
of the critical point (u,v).

Proposition 2.6 For any k € N, there exists a critical point (uy,vy) of E*
such that E*(ug,vx) = Cy and pu(ug,vg) > k, where Cy is defined as in (2.3).

To prove Proposition 2.6, we need the following invariant deformation lemma
due to [12].

Lemma A Let c € R, and let N C M be a relative open o— invariant neigh-
borhood of the critical set K,. Then there exists € > 0 and a C' deformation
n:[0,1] x Mt\ N — M€ such that for all (u,v) € M°t*\ N and s € [0, 1],
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it holds:
(2.4)
(0, (u,v)) = (u,v), (1, (u,v)) € M and o[n(s, (u,v))] = n(s, o (u,v))

Proof of Proposition 2.6. We may first assume that all the critical points of
E* at the energy level C} are non-degenerate (this can be completed through
an application of Sard-Smale’s theorem to E* to be considered as a functional
on M /Z,, the quotient space of M under the map o(u,v) = (v, u) (see [3] and
5))-

Assume (ug, vg) is a non-degenerate critical point of E* at the energy level C.
For the sake of simplicity, we may assume that (ug, vp) is the only critical point
at the energy level E*(ug,vp) (In the case when there are other critical points
please see Remark 2.7 below). By definition 2.5, the Hession of E* at (uo, vo)
is invertiable, i. e. the operator da defines an isomorphism between 1{y )M,
the tangent space to M at (ug,vp) and its dual. At the same time, by Remark
2.4, we may assume that (ug,vo) has finite Morse index p := p(ug,vo). Thus,
by Morse theory there exists a coordinate chart ¢ around (ug,vg) descried by
(U, V) with U = ((u1,v1), .., (uu, v,)) such that the functional

E*(u,v) = E*(ug, vo) + [[VI[]* = [|U|]%,
where ¢((u,v)) = (U, V), o((ug,v0)) = (0, 0), ||U||*+||V||? is the norm in the
Hilbert space H. For simplicity, we may assume E*((ug,vo)) = 0. Let H, be

the subspace of H such that H, = span{F}, ..., E,}, and Hj is its orthogonal
completes , (Ey,...,E,) is the first p orthogonal basis of the space H with
coordinates (U, U).

Let D¢ := {(u,v) € Hy|[|(u,v)|]* < €} and 9D := {(u,v) € Hy, ||(u,v)|]* =
e¢}. Then by using the invariant Morse lemma A, we have a local deformation of
the set EE*( onto the set EE*( U D7, U dD;,. Moreover, we have

EE‘* (

(uo,v0))+e (uo,v0))—€

N DS = dD;,

(u0,v0))—€
and
E*(u,v) < E*(ug,vp) for any (u,v) € Dj,.

Note that in our case the critical points appear in pairs ((ug, vo), o (ug, vg)), the
retraction by deformation can be take to be o—invariant. More precisely, for
€ > 0 small enough, we have a continuous deformation retractor n : [0, 1] x
E¢, e = E¢, 1 such that

(1) n(0,z) = ;

(i) o (n(s, (u,v))) = n(s, o (u,v));

(iii) n(s, (u,v)) = (u,v), for all (u,v) € EE,_ U DS;
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(iv) n(1, (u,v)) € Eg, U Dy,

Recall that Cy := inf{c € R|y(E¥) > k,k € N}, we may choose ¢y with
v(E}) > k such that

E*(u,v) < Ck +e.

Let B :=n(1, E}), then by (iv), we have B C E, _ U Dj, and since ¢y < Cy,
v¥(B) > k. Set B := B\ Dg U 0Dy, it follows from the definition of Cy, we
have (B) < k. As a result, there is a continuous map h : B — RF-1\ {0} with
h(o(u,v)) = —h(u,v).

In the following we proceed using a contradiction argument. Assume that the
Morse index u < k. Note that the R¥=! \ {0} = S*~!  the spheres of R*~!, and
the homotopy groups of S*~! of order strictly less than k — 1 are zero. Hence
the map h can be extended from dDj to Dj. Thus we obtain a continuous
map h : B U DS U DS — S*' (with h(o(u,v)) = —h(u,v)). So we have a
map h from B to S¥~! with h(o(u,v)) = —h(u, v), whis is a contradiction with
v(B) > k. Therefore we have u > k. O

Remark 2.7 In the case when there are other critical points, which are all non-
degenerate, hence of finite number since the functional E* satisfies the (P.S.)
condition, without loss of generality, we may assume that there are m critical
points (U1, 1), .., (Um, V) with Morse index iy, ..., pb. We then have a retrac-
tion by deformation of E¢, .. onto E¢, _ U D7 U..UD; = satisfying

E¢,_.ND, =0D;,i=12,..,m
and
E*(u,v) < Cy, for all (u,v) € D, ,;i=1,2,...,m,

where the definition of the sets Dy, is the same as Dj,. Then by repeating same
arguments as we did in the proof of Proposition 2.6 , we obtain sup p; > k,i =
1,2, ..., k, which again tmplies that the desired result. U

Proposition 2.8 Let (u,v) € H be the critical point of the functional E*, and

i(u,v) be the dimension of the negative and null eigenspace of the operator Oa
with domain H?*(Q) N Hy () x H*(Q) N Hy(Q). Then we have

(2.5) f(u,v) < C(/Q(|u|q + |v|q)dx)%, for any q € (2,00),v > 1.

where C' is a constant independent of (u,v).

Proof. Suppose that (ug, vo) is a critical point of E*. Recall that the Morse in-
dex of the (ug, vp) is defined as the dimension of the negative and null eigenspace
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of the operator da = —0a + P(ug, vy) acting on the space H = [H?(Q) N
H; ()] x [H*(Q) N Hy ()], where

~A 0
=" %)

o 1—=3ui — Bvg 2Bugvy
P (uo, vo) = ( 2Bugvg 1— 30— pud |-

Since we are working in the space H := H{(Q2) x H}(Q), and 2 is a bounded
domain, the operator da is of Fredholm type, and the operator P(ug,vq) is
compact. Therefore, the desired result in Proposition 2.8 is an easy consequence
of the celebrated semi-classical inequality due to Simon [26] for the case of
N = 2 (see also Cwickel [11], Lieb [16] and Rosenbljum [25] for N > 3). It
states that for N = 2, if V has bounded support satisfying V' € LY(R") for
any v > 1, then the number of negative or zero eigenvalues (counted with their
multiplicity) of the Schrodinger operator (—A + V') on L%(RY) is bounded by

Co( Jan \V_|7da:)% for some constant Cy dependent on 7 and on the measure
of the support of V. Applying the above result, we obtain that there exist a

constant C such that
filuo, ) < C [ (Juaf" +|uu[ "), for any g =27,V € (1,00).
Q

O
By using Proposition 2.6 and Proposition 2.8, we are ready to prove the
following:

Proposition 2.9 There exists a positive constant Cy such that, for all k € N,
it holds that

Cy > C1k>.

Proof. By Proposition 2.6, we may assume (ug, vg) is the critical point of E*
at the energy level Cy such that the Morse index u(uyg, vg) of the critical point
(ug,vg) satisfying p(ug,vg) > k. On the other hand, by Proposition 2.8, we
have

(u, vi) < O / (a2 + 04 2)dz) 3, for any 7 € (1, 00),
Q
and hence

k<O / ([ux" + [ve?")da)?, for any 7 € (1, 00).
Q
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It follows from Holder inequality,
28 k<C(([ (ualt+ ] )da) )3, for any 7€ (1,00).
0
On the other hand, we observe that Cy, = E*(ug, vg) = 3(||uk||*+||ve|[?). Hence,

we deduces from (2.6) that there exists a constant C such that
Cy > C1k*.

3. PERTURBATION FUNCTIONAL AND PROOF OF THEOREM 1.1

We consider the following perturbed system

—Au+u=ud+pv*u+Iu inQ
—Av+v=v+putv— v inQ
u>0,v>0 in
u=v=20 on 0f),

(3.1)

where A > 0 is considered as a perturbation parameter. We use the same
notation as in the previous section and define the perturbed functional on H :=

H; () x Hg(2) by

1
(3.2) E*=E+ 5)\2/(142 —v?)dz,
Q
where F is the symmetric functional corresponding to the full symmetric sys-

tem.

Remark 3.1 It is easy to check that the functional E* is of class C?. Moreover,
by using the similar arguments as in [12], we can see that the restriction of the
functional EX to M satisfies the (P.S) condition.

Motivated by the idea of [6], in order to find the critical points of the func-
tional E*, we need to establish the criteria of non-contractibility properties
of the level sets of the functionals E* and the symmetric one E. For the
symmetric functional E, such a criterion is provided by using Kransnosel’skii’s
theory (see [15], Cha.VI). For the perturbed functional E*, by using the Palais—
Smale condition and the fact that M is a CY! manifold, we have the following
invariant criteria. Since the proof is just an easy modification of Theorem 2.5
in [6], we omit it.

Lemma 3.2 Let E, E* € C°(M,R) be two functions such that E € C'(E,,R),E* €
CY(E!,R),E, E* satisfy (P.S), and (P.S). conditions, respectively. Assume
further that E* s bounded from below on M and is symmetric in the sense
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that the functional is o invariant, i.e. E*(o(u,v)) = E*(u,v). Let Cy, be defined
n (2.3). If there exist k € Nye > 0 and a € R such that ¢ < Cy and

Eac-l-e C Eq C Eqye C Eék+1—€’
then E has at least one critical value in [a, +0c). Here E, := {(u,v) € M|E(u,v)
a}, B :={(u,v) € M|E*(u,v) > c}.

According to Lemma 3.2, to prove Theorem 1.1, it will be sufficient to show
that there are infinitely many distinct values of £ € N and ¢, > 0,a; € R such
that B¢, . C E) C E¢, .~ We first have:

Lemma 3.3 There exist Cy > 1, § > 0 such that for any C > Cy, it holds that
E}. C E} C Ef,,

where Cy = C +6C%,Cy = Cy + 6C2.

Proof. By the definition of the functionals E* and E*, we observe that for
any sequence (un,v,) € M, E*(un,vp,) — +00 & E*up,v,) — +0o. Hence,
there exists a constant Cy > 1 such that for any (u,v) € M if E*(u,v) > Cy
then E*(u,v) > 1. Similarly we have if E*(u,v) > Cj for some Cy > 1, then
E*(u,v) > 1. On the other hand, by the definition of E* and E*, clearly, for
any (u,v) € M with E*(u,v) > 1 and E*(u,v) > 1, it holds that

1 1
|E*(u,v) — E*(u,v)| = 5)\| /Q(u2 —v?)dz| < 6,[E*(u,v)]2, for some &§; > 0.

On the other hand, for E* > Cj for some Cy > 1, we can deduce from the
above inequality that there exists some constant dy (related to ) such that

| (u,v) = B (u,0)] < 8[E*(w))?
Thus for any C > Cy, one has the desired inclusions with ¢ := maxz(d1,d2). O

Proof of Theorem 1.1 (a) Let (ug,vg)r be a sequence of critical points with
critical value by satisfying Cy + € < by, < Cry1 — € and such that E*(ug, vy) —
+00. By the proof of Lemma 3.3, we see that E*(u, vy) — +00 < E* (ug, vp) —
+00. On the other hand, it is easy to check that E*(uy,vy) = ||ug||* + ||v][*? —
400, which yields that

[ (ko + [vrloe) = uly + lvels > [luel[* + [|vg]
which implies that ||ug||e + ||vk||co = 00 as & — oo.
(b) By Lemma 3.3, we have for any C' > 1,
E} C E}, C Ef,,

v
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1
where C, = C + (505,02 = C1 +dC7,6 > 0is a constant. Since C' > 1, we
have C > C 2 and it turns out that
Cy < C +6C7 with § := 6+ 6(1 +6)2.
In view of the results of Lemma 3.2, in order to show the existence of infinitely
many solutions of (1.4), it will sufﬁce to prove that for infinitely many distinct

values of k, we have Cy, > C’k+(5C4 Indeed, once Cyyq > Ck+(5C = v(Cy),
we can choose €x > 0 small enough so that Ck+1 —ex > v(C +€x) and we write
ar := v(Ck + €) to obtain that

E¢ .. CE) CE: CE}

k+1—€x"

Thus, for any such k, there exists a critical value of E* in (ay, +00). Note that
ap > Cj and limy_,, C}, = oo. The existence of infinitely many such £ € N
implies the existence of infinitely many distinct critical values of E* which
converges to oo.

Now we return to the proof of the existence of infinitely many distinct values

~ 1
of k such that Cy1 > Cy + 6C;. We prove this by contradiction arguments.
Suppose that there exists kg € N such that for any k > kq one has Cyy1 < v(Cy),
that is

Chi1 < Cp +6C2 Yk > k.
In the following we will show that

Cri1 < CK:LVE > 1.

Indeed, this follows from the results in [5]. For reader’s convience, we give the
sketch of the proof. Let 0y, := k™2C). Note that for ¢ > 0, (1 +¢)? > 1+ 2t, it

1
follows from 0 < Cy 41 — C, < 0C7 that

W1k~ + s — O < 087k,

There are two cases to be considered

(1) Ory1 < 6g; )

(ii) O < dpp1 < 3607.

Each of these two case implies that 6 < [$6]%. Thus we have

1
5k+1 S maX{ék, 152},\V]k Z k().

As a result we obtain that the sequence d; is bounded which implies that

(3.3) Cri1 < CK* Yk > 1.
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But by Proposition 2.9, we know that
Cy > Ck?

which contraction with (3.3). This completes the proof of Theorem 1.1.
[l
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