mn header will be provided by the publisher

Supercritical biharmonic elliptic problems in domains with small
holes

1

Yuxia Guo ! and Juncheng Wei *2

1'Y. Guo - Department of Mathematics, Tsinghua University, Beijing, China. Email:yguo@math.tsinghua.edu.cn
2 J. Wei - Department of Mathematics, Chinese University of Hong Kong, Shatin, Hong Kong. Emuail:
wei@math.cuhk.edu.hk

Key words Supercritical Coron’s problem, biharmonic, domains with holes, resonant exponents
MSC (2000) Primary: 35B40, 35B45; Secondary: 35J40, 92C40

Let D be a bounded, smooth domain in RY, N > 5, P € D. We consider the following biharmonic
elliptic problem in Q = D\ Bs(P),

APy = |ulPu in Q,
u=Vu=0 on 0N
with p supercritical, namely p > %. We find a sequence

prL<p2<py<---

such that if p is given, with p # p; for all j, then for all § > 0 sufficiently small, this problem is
solvable.
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1 Introduction and statement of the main results

In this paper we consider the following supercritical biharmonic problem
A%y = |[ufP 'y in Q, (1.1)
u=Vu=0 ondQ, (1.2)
where (0 is a smooth and bounded domain in RN (N > 5) and p > .

A main characteristic of this problem is the role played by the critical exponent p = % in the
%, a solution can be found as an extremal for the best constant

in the compact embedding of HZ(Q) into LP*1(f2), namely a minimizer of the variational problem

fQ |Au|2
€HF OO} ([ |ulpt) 741

solvability question. When 1 < p <

When p > %, this minimization procedure fails. The existence of a solution in general is quite
difficult. Pucci and Serrin [18] showed that no solution exists in this case if the domain is strictly
star-shaped. Bartsch, Weth and Willem [2] showed that in the case of p = % and the domain Q2
exhibits a small hole, a solution to (1.1) -(1.2) exists, generalizing earlier results of Coron [6]. When
p = {44 and the right hand side is replaced by |u[P~'u + f(z,u), where f(z,u) is a lower order terms,
there are many recent works on extending Brezis-Nirenberg’s results to polyharmonic case, see Bernis-
Grunau [3], Edmunds-Fortunato-Janelli [8], Gazzola-Grunau-Squassina [10], Ge [11], Grunau [12], and

the references therein.
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2 Y.Guo and J.Wei: supercritical biharmonic problems in domains with holes

In the corresponding second order case,
Au+u?P =0,u>0 inQ, u=0 ondN, (1.3)

when p > & J42 | Pohozaev [17] discovered that no solution exists in this case if the domain is strictly
star- shaped. In the classical paper [5], Brezis and Nirenberg considered the critical case p = xfg and
proved that compactness, and hence solvability, is restored by the addition of a suitable linear term.
Coron [6] used a variational approach to prove that (1.3) is solvable for p = N—Jj2 if Q exhibits a small
hole. Rey [19] established existence of multiple solutions if ) exhibits several small holes. Bahri and
Coron [1] established that solvability holds for p = X2 whenever Q2 has a non-trivial topology. Passaseo
[16] constructed examples of domains having non- tr1v1al topology while having no solutions to (1.3) for

N >4and p> {EL

In this paper we consider Problem (1.1)-(1.2) for exponents p above critical in a Coron’s type domain:
one exhibiting a small hole. Thus we assume in what follows that the domain Q has the form

=D\ Bs(Q) (14)

where D is a bounded domain with smooth boundary, Bs(Q) C D and d > 0 is to be taken small. Thus
we consider the problem of finding classical solutions of

A’y = [ulP™'u  in D\ Bs(Q), (1.5)

u=Vu=0 ondDUJIBs(Q). (1.6)
Our main result states that there is a sequence of resonant exponents,

N+4

N 4<p,,|7:1,..., (1.7)

such that if p is supercritical and differs from all elements of this sequence then Problem (1.5)-(1.6) is
solvable whenever ¢ is sufficiently small.

Theorem 1.1 There exists a sequence of the form (1.7) such that if p > N+4 and p # p; for all j,
then there is a 8o > 0 such that for any & < do, Problem (1.5)-(1.6) possesses at least one solution.

The corresponding second order elliptic problem
Au+u?P=0,u>0 inD\Bs(Q),u=0 ondDUIBsQ) (1.8)

was studied recently by del Pino and the second author [9]. There it was proved that there exist resonant
exponents % < p1 < p2 < ... such that (1.8) admits a solution for § small, provided that p > X +2
and p # p;. Our proof essentlally follows the same procedure of [9]. However some main dlfﬁcultles
arise as in [9] the resonant sequence is produced by the principal eigenvalue only while here the resonant
sequences can be produced by several eigenvalue sequences.

In the background of our result is the problem

A’w=wP, w>0 in RN\ Bi(0), (1.9)
w=0 on 8B;(0), limsup |z|¥ *w(z) < +o0. (1.10)
|z] =400

In Section 2, we shall prove that problem (1.9)-(1.10) admits a unique radially symmetric solution
w(r) whenever p > X+2. (This is of independent interest.) The solutions we find have a profile similar
to w suitably rescaled More precisely, Let us observe that

ws(z) = 6~ 71w |z — Q) (1.11)
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solves uniquely the same problem with B; (0) replaced with Bs(Q). The idea is to consider ws as a first
approximation for a solution of Problem (1.1)-(1.2), provided that & > 0 is chosen small enough. What
we shall prove is that an actual solution of the problem, which differs little from ws does exist. To this
end, it is necessary to understand in rather fine terms the linearized operator around wy.

An interesting question is whether the solutions we constructed are positive. This will depend on the
domain D as for some domains the Green’s function can become negative. (See for example [13].) We
believe that the solutions are positive for domains with positive Green’s functions. Another question is
whether or not the sequence {p;} approaches +occ as in [9].

The result of Theorem 1.1 remains valid, with only minor modifications in the proof, for a problem
of the form

A2 — P — f(z,u) =0, u>0 inD\B;s(Q),

u=Vu=0 ondDUIB;Q).

where f(z,u) ~ u? for some ¢ € [1, 3+2). We can also get existence of multiple solutions in a domain
of the form
m
D\ | Bs(Qs).-
j=1

The question certainly opens on considering a non-spherical hole or, more generally, finding condi-
tions which ensure solvability of rather general supercritical problems. A method beyond variational
arguments or singular perturbations would be needed.

2 Existence and Uniqueness of Solution to (1.9)-(1.10)

In this section, we study the existence and uniqueness of solutions to the exterior domain problem
(1.9)-(1.10).

Our main result in this section is the following:

Theorem 2.1 Problem (1.9)-(1.10) admits a unique radially symmetric solution w = w(r) (with
least energy).

Proof. We first prove ezistence: by Kelvin’s transformation w(r) = r*=Nw (L), the equations (1.9)-
(1.10) are equivalent to the following problem in a ball By

A?w=r%P w>0 in By,
{ w=Vw=0 on 0B; (2.1)
where a = p(N — 4) — (N +4) > 0.
We follow Ni’s proof [15]. First we need the following radial lemma
Lemma 2.2 Assume that u € HZ(B1) and u = u(r). Then we have
C
|U(T’)| < r(N=1)/2 ”AUHLZ(Bl)' (22)

As a consequence, for p < %, the map u — rauffl is a compact map from HZ(Bi) to L'(By).

Proof: Since u, € H3(By), we obtain

T
PNy ()] < / N1 Al < Cr (| Aullp2gs)- (2.3)
0

Copyright line will be provided by the publisher



4 Y.Guo and J.Wei: supercritical biharmonic problems in domains with holes

Hence
! c
W)l < [ Ot <~ Aulioe,.

Using (2.2), the rest of the proof is similar to the compactness lemma in [15]. O
Now we consider the following minimization problem

cp = inf / |Au)? (2.4)
B,

wEHF . (B1),[p, reuftl=1

where Hg .(B1) = H§(B1) N{u = u(r)}. By Lemma 2.2, a standard argument shows that c, can be
attained by some 4 which satisfies

{ A% =@ in By, 25)

t=u =0 on 0B;.

Since the Green function A? under the Dirichlet boundary condition in Bj is positive, (see [4] and
[12]), we deduce that @ > 0 and hence @ satisfies (2.1). This proves the existence with w = @. (Note
that w has the least energy.)

To prove the uniqueness of the least energy solution given in (2.4), we note first that ¢, only depends
on p and hence [, B, r®wP+! also depends on p only. Now by Pohozaev’s identity

N N -4 1
(pj:la - T)/B rowPtl = 5/8]3 <z, v > |Awf (2.6)
1 1

which implies that w (1) also depends on p only. Thus w (1) is a fixed value (depending on p only).
Next we prove the uniqueness: Let us suppose ¢ = wy — ws, where w; and ws are two solutions to

"

(1.9)-(1.10). By the above arguments, we may assume that ¢(1) = ¢ (1) = ¢ (1) = 0. Note that ¢
satisfies

A2 = (w2 + ¢)P — wh. (2.7)

Now we use an idea of Swanson [20] to derive a contradiction. We first show that ¢ can not change
sign. Note that ¢ can not have an infinite order of zeroes and ¢ is non-oscillatory at infinity. Suppose
¢ has k zeroes in (1,4+00). Then <;$I has at least k + 1 zeroes and 7V ’1¢I has at least k + 2 zeroes in
[0,400). Hence A¢ has at least k + 1 zeroes in (0,+00) and k + 2 zeroes in [0, +00). This implies that
A(A¢) have at least k + 1 zeroes in (0, +00). But A%¢ and ¢ has the same number of zeroes. This gives
a contradiction. Hence we may assume that ¢ > 0.

But multiplying (2.7) by wy and integrating, we obtain

BC[(wQ + ¢)Pwy —whtt —wle] =0 (2.8)

which is impossible since ¢ > 0. Thus wy = ws.

Remark 2.3 For the original problem, the energy functional becomes

/ |Aw|? :/ |Aw|2,/ wPt! :/ rowbtt, (2.9)
RN\B1 (0) B1(0) RN\B;(0) B1(0)

Finally, we state the following important lemma.
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Lemma 2.4 Let @, be the first positive eigenfunction of A? in By, under the Dirichlet boundary
condition. Then the map

p—w(p)er” (2.10)

is an analytic map.

Proof. Let ¢1 be a first positive eigenfunction of A% in B;(0) and consider the space C3 of all
radially symmetric continuous functions in B; (0) for which ||¢; 'u||s < +oc. Following Dancer’s proof
in [7], we obtain that if po and wg are such that there exists a p > 0 for which ug > pu¢ then the map

(p,u) € R x C3 = (=A)7*(uP) € Cs

is analytic in a neighborhood of (pg,ug) (actually in a general domain). Dancer’s proof applies with no
significant changes to establish that the same is true for the map

(p,u) € R x Cg > (—A)"2(|z|PN-H-N+)ypy € 0y .

The bottom line is the fact that the application v > 0 ~ |z|7 defines a real analytic map into C(By(0)).
Indeed we can expand

X || logk T
7 = 30 I 1y
k=0 ’
Taking into account that for sufficiently large k,

sup 2] log” Jol] < 7 *h¥e?,
lz|<1

we see that the above power series is uniformly convergent on |y — | sufficiently small, thanks to
Stirling’s formula. This fact is also in the background of Dancer’s proof to deal with the vanishing of
u at the boundary in the proof of analyticity with respect to p. For analyticity with respect to u, we
observe that

(uo + h)” = ug(1 + (h/uo))”

and a uniformly convergent Taylor’s series can then be written for ||h||c, small. See Proposition 1 in
[7] for the complete argument.

Now, w = w(p) is the only solution of the problem
F(w,p) = w— (=A)72(|z[PN=9=(NH9gp)) = 0.

From what has been said, for each pp > 1 the map F(u,p) is analytic into C3 in a neighborhood of
(w(po), po). Besides, the map F,(w(po), po) is an isomorphism of C3 since the linearized equation

A% — |gPN=2D=N+2)pup—Lyy = 0 in B (0),

Y =1"=0 on 8B;(0)

admits only the trivial radial solution, as it follows from the previous uniqueness argument. (Note
that we consider w(p) as the unique least energy solution.) From the implicit function theorem in
analytic version we have that the map p — w(p) is analytic into C5. The same is the true with
P |w|p(N—4)—(N+4)pwp—1_ n
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6 Y.Guo and J.Wei: supercritical biharmonic problems in domains with holes

3 The invertibility of linearized operator and conditions for non-resonance

In this section, we study the invertibility property for the linearized operator associated to w. That is,
we consider the problem

A% —pwP '¢=h in RN\ B(0), (3.1)
$=V¢=0 ondB(0), | llirri #(z) =0, (3.2)

In this section, we investigate under what conditions the homogeneous problem with A = 0 in (3.1)-
(3.2) admits only the trivial solution.

Let us consider now Problem (3.1)-(3.2) for h = 0, and assume that we have a solution ¢. The
symmetry of the domain RY \ B;(0) allows us to expand ¢ into spherical harmonics. We write ¢ as

P(z) = i%(?‘)@kw), r>0,60e8N!
k=0

where Oy, k > 0 are the eigenfunctions of the Laplace-Beltrami operator —Ag~—1 on the sphere SNV —1,

normalized so that they constitute an orthonormal system in L2(S™V~1). We take ©g to be a positive

constant, associated to the eigenvalue 0 and ©;, 1 < i < N is an appropriate multiple of I%I which has

eigenvalue \; = N — 1, 1 <4 < N. In general, \; denotes the eigenvalue associated to Oy, we repeat
eigenvalues according to their multiplicity and we arrange them in an non-decreasing sequence. We
recall that the set of eigenvalues is given by {j(N — 2+ j)|j > 0}.

The components ¢ then satisfy the differential equations
A
(A - ,’,._2> Pk = pwp71¢ka¢k = d)k(r) re (].,OO), (33)

de(1) = ¢ (1) =0, @p(+00) = 0.

Let us consider first the radial mode k = 0, namely A = 0. In this case, ¢g satisfies

A%¢o = pwP ' go, do = do(r), > 1, do(1) = po(1) =0 (3.4)

We observe that the function

satisfies

A’Z, =pwP™1Z;, forallr>1, (3.5)

”

but Z;(1) =w" (1) =w (1) # 0. See (2.6).
Multiplying (3.4) by Z; and (3.5) by ¢o, and integrating by parts, we obtain

Z(1)Ago(1) =0, (3.6)

and hence ¢, (1) = 0. Similar to the uniqueness proof in Section 2, we obtain that ¢q = 0.

Let us consider now mode 1, namely k¥ = 1,..., N — 1, for which Ay = (N — 1). In this case we also
have an explicit solution whose derivative does not vanish at » = 1 but it does at »r = +o00. Simply
Zy(r) = w'(r). Similar to (3.6), we may also assume that ¢, (1) = 0.

It is remarkable to note that

_)\k 62 N+2k—1g]r7k

_— = k _ _
r2 " [8r2 r or

(3.7)
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Thus equation (3.3) becomes

2

2 _ N
(6 N+ 2k 12) Be = pur 1 (3.8)

W+ r or

where r¥y, = ¢y.
When k = 1, we have

A1 Arr

$1(1) =9 (1) =1, (1) = 0. (3.9)

Using (3.8) and (3.9), similar arguments as those of case k = 0 give ¢); = 0 and hence again, the only
possibility is that ¢ =0 for all k=1,..., N.

Let us consider now modes 2 or higher. Here unfortunately it is more complicated. Not only we do
not have an explicit solution to the ODE to rely on, but it could be the case that a non-trivial solution
exists. Let us assume this is the case for an arbitrary mode & > N.

Fixing each k, we consider the following new eigenvalue problem

2
(A - %) ¢ = vl g, 1€ (1,00), ¢ = r(r) (3.10)
k(1) = (1) =0, i(+00) = 0.

Using (3.7), (3.10) is equivalent to

2 . 2 ) i .
(% + %%) ¢ =vwP g, forr >1, p(1)=¢ (1)=0 (3.11)

where ¢ = r*¢.
By Kelvin’s transform in dimension N + 2k, (3.11) is equivalent to

A1

2
( 802 N+2k-1 2) ¢A5= Vrawp—1¢§’ for r < 1, (;“5(1) =¢(1)=0 (3.12)

W-'_ r or

where ¢ = r4_(N+2’“)g5(%).
The new eigenvalue problem (3.12) admits a variational structure: in fact it can be rewritten as

(Ar)?¢ = vrowPé in B, ¢=¢(r) € Hy(Bf) (3.13)

where Ay is the Laplace operator in RN+2¥ and BY is the unit ball in RV+2*. By standard spectrum
theory, (3.12) admits an infinite sequence of eigenvalues

Vg < Vo < oo <V < oo (3.14)

Thus we have arrived at the following key result.
Lemma 3.1 Assume that p is such that

Vem(D) #p forallk=2,3,....m=1,..,... (3.15)

where Vg (p) is an eigenvalue defined by (3.10). Then Problem (3.1)-(3.2) with h = 0 admits only the
solution ¢ = 0.

It remains to show that the set {v,m(p) = p} is only finite. The key point is the following analyticity
of vj,m. But first we show that m and k are finite if p is also finite. That is we have

Lemma 3.2 Suppose po + 17 < p < po + M where py = N4 Then if vgm(p) = p, it holds

4
N—4
k+m < Ky, where Ky depends only on M.
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8 Y.Guo and J.Wei: supercritical biharmonic problems in domains with holes

Proof. We show that w < Cps when p € [pg + ﬁ,po + M]. In fact, using a fixed test function, we
first have

cp < CM,l, for p <po+ M. (3.16)
By the same proof as in Lemma 2.2,
w(r) < Cur' =

and hence

_ (p=1)(4=N)
a(r) := rowP™t < Opyror— 2

Since p > {1 + 17, it is easy to check that there exists €o > 0 such that

/B (a(r)) ¥+ < Oy (3.17)

Since w satisfies
A%y = a(r)w,w € H2(B1),a(r) € L5+ (By)

by the regularity for biharmonic equations (see [21]), we obtain that w < Cjy.
Using variational arguments and comparison of eigenvalues, we have

1
m > —Jkm .1
where jj ., is the m—th eigenvalue of
(Ax)*¢=vé in Bf, ¢=g¢(r) € Hj(B}). (3.19)

Since jg,m — +00 as k +m — 400, we deduce that k +m < Ky if v m(p) = p.

The next lemma shows that the map v, (p) is analytic in p.

Lemma 3.3 The eigenvalues vy ., are simple and analytic in p.

Proof. Let ¢p,m be the corresponding eigenfunction to (3.13) with v = v, . We show that ¢y,
must be simple and unique. In fact, if there are two such ¢ m,1, Pr,m,2. We may combine them to
obtain a new ¢y, such that d)',;,m(l) = 0. The same argument leading ¢1 = 0 shows that ¢p ,m = 0.
This implies that the eigenvalues vy, if exists, must be simple.

Since vy, is simple and problem (3.13) is self-adjoint and the function r*w? is analytic in p, by
standard theory in analytic perturbation of eigenvalues (see, e.g. Theorem 3.9 of [14]), we deduce that
Vg,m (p) is analytic in p.

O

Our next result will show that for p close to %, Vi,m (D) # p.
Lemma 3.4 If p is close to %, then vg,m(p) —p # 0.
Proof. We shall prove first that as p — {3, after some rescaling the solution to (1.9)-(1.10)

approaches a standard bubble in R, i.e., solution to

A2 =UN=,U > 0. (3.20)
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Note that all solutions to (3.20) are given by Uy, = A" 2 Up(A|lz — a|) for some A > 0,a € RY, where
Uy = CN(1+| P)(N /2,

To achieve this, we use an ODE argument. An alternative way of writing equation (1.9)-(1.10) and
the eigenvalue problem (3.10) is by means of the so-called Emden-Fowler transformation,

w(s) = rﬁw(r) . (s) = rﬁw(r), where r = €°. (3.21)
Then equation (1.9)-(1.10) is converted into
D +ai® 4+ 0"+ +&d = @*, B(0) =1 (0) = w(co) = b (00) =0, s € [0,00) (3.22)

where

10+ 6p

=2(N -1
a=2N-1)+=—"5

11p2 +50p+35 (9+3p)2(N —1)

gtk D+ (- -3),
_ 6p® +70p* +130p+ 50 | 2p® + 20p + 26 3 6+2p), . B
1-p)3 (1-p)2 2(N-1)+ 1-p (N =1)(N =3),
‘= 4B+p)(2+2p)(1+3p) 8N -1)(3+p)(2+2p)
(1-p)* (1-p)?
AN-1DIN-=-3)3+p) 4N -1V -3)
(1—-p)? 1-p '
The eigenvalue problem (3.10) becomes
GO 1 af® 4 BF 445 + (€~ M) = v 15, (3.23)
$(0) = ¢ (0) = ¥(00) =1 (00) = 0, s € [0,00). (3.24)

We first note that since w is the least energy solution, by (2.9), we see that we have the following
energy bound:

/R g, W IRy <€ (3.25)
1

where C is independent of p, for p close to X2

that

. Translating the bound (3.25) in terms of w, we obtain

/ T Nt < (3.26)
0
Since N > 4(” 1) we see that [°@P+'ds < C. This implies that
[z < C, / s < C. (3.27)
0

By direct computation we see that as p — pg,a = 0,8 — Gp =

Y Yo =
& = NT4 - % + 711 P4 UN HN — 6. Moreover, since w is uniformly bounded, using (3.27), standard reg-

ularity theory shows there ex1sts R, — 400 such that

N2—4N+8 N3_N2_4N-—56
I #,5 -

@ = wo(s — Rq) + lower order terms, (3.28)
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10 Y.Guo and J.Wei: supercritical biharmonic problems in domains with holes

where wy is the unique homoclinic solution of the limiting equation,

w(()4) + Bowy + Yowy + Eowlh = wh®,  we(0) = I?Eaj%cwo(t), wo(o0) = 0.

So after a translation, the eigenvalue problem (3.23) becomes

PO + 80" + 708 + (o = M) = vwp® M), —00 <5 < +oo, (3.29)
Wh(—00) = ¢ (—00) = P(00) = ' (00) = 0, 5 € (—00,00) . (3.30)
By Theorem 2.1 of [2], (see (2.13) of [2]), the following eigenvalue problem
A —
(A - r_2)2¢ =pU ™' (3.31)

is Ag or A1. Observe that wq(s) = rro-T Uo(r),r = e€*. Thus, the only )\ satisfying

DD + agp® + Bt + 100 + (o — M)P = pow ™4,

is A\g or A;. But as we already know, vy m(p) # p and vi n(p) # p. Thus we conclude that for k > 2,

Vk,m(P) —p # 0 as p = po.
0

Combining Lemma 3.1, Lemma 3.2, Lemma 3.3 and Lemma 3.4, we have the following

Proposition 3.5 For each pair (k,m) the set of numbers p for which v ,(p) = p is finite (maybe

empty). In particular, there exist countably many supercritical exponents {p1, ..., p;, ...} with p; > %

such that condition (3.15) holds if and only if p#p; for all j=1,2,....

Proof. By Lemma 3.2, we have

1
Urom=1 {Vk,m(p) = p} C UN=1 Uktm<Kun {Vk,m(p) =p,p€[po+ Pt M]}-

where each set of the right hand side contains only finite number of points (possibly empty), by Lemma
3.3. The proposition is thus proved.
O

Remark 3.6 We don’t claim that p; - 400 as j — +oo. Neither do we claim the set {p;} is
nonempty. These are not needed for our late construction. To prove these claims, one has to study the
asymptotic behavior of w as p — +o0.

4 The operator A? — pw?~' on R\ B;(0)
Let p # p; as in Proposition 3.5. In this section we solve the full problem (3.1)-(3.2), namely
A2 —pwPlp=h in RN\ Bi(0),
¢=V¢o=0 ondBi(0), lim ¢(z) =0,
|| =400

Our main result in this section concerns with solvability of this equation and estimates for the solution
in appropriate norms. Following [9], let us fix a small number o > 0 and consider the norms

pll« = sup || 77|V g()] (4.1)
j<s >t
and
|Allas = sup |z[V=7|h(z)]. (4.2)
|z|>1
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Proposition 4.1 Assume that p satisfies condition (3.15). Then for any h with ||hll« < 400,
Problem (3.1)-(3.2) has a unique solution ¢ = T'(h) with ||§||« < +o0o. Besides, there exists a constant
C(p) > 0 such that

TRl < Cllle.

Proof. The proof makes use of duality via Kelvin’s transform. Let ¢, h be the Kelvin’s transform
of ¢, h respectively, namely

$(z) = [a* N ¢(5), h(z) = |2~ N (), (4.3)

T Z
|z[> |z[>

we get the problem B ..
A2 — [zPN=0=INHDpur=td =, in By(0),

$=Vé=0 ondBy(0).

Then we have
(@) < (Bl 2] 47 (4.4)

It follows in particular that, if o is fixed small, h € L?(B;(0)) for some g > 1\2{—14, hence h € H=2(B;(0)).
From Lemma 3.1, it follows that only the trivial HZ-solution is present for 0 right hand side. Hence
there exists a unique weak solution ¢ € HZ(B(0,1) whose norm is controlled by a multiple of ||h||.x.

We can write

() = /B . G(,y)[JaPN =N+ pur =14 + h] (4.5)

where G(z,y) is the Green’s function of A? in B;(0). Note that G(z,y) > 0. (See [13].)
To obtain pointwise estimates, we use Maximum Principle. Let us now observe that

A*(|2]77) = (N =2~ 0)o(2+0)(N — 4 = 0)|z| 77,

hence, fixed o we can find a p(p, N, o) > 0 such that for |z| < p,
1
A%(|z|77) — pla[PN -~ N+ gp=1|g)=0 > SV =2-0)0(2+0)(N -4 - o)r~47. (4.6)

Since h is bounded by a o-dependent multiple of [|Al[.« on, say, & < |z| < 1, using (4.5), elliptic
estimates yield that

Bl Lo (j2)>p) + 1A Lo (2|>p) < ClIA]4x

with C depending on N,p,o. Then from (4.4), (4.6) and maximum principle for A¢ in |z| < p, we
deduce that ~
[Ad(@)| < Cla| 7 fIhlle |2 <1

and B
lp(z)| < Clz| 7 [|hllw |2 < 1.

Hence B
z[Y 7 blloo = [l[£]Glloc < Clikllans [[[2]¥ 277 Alloc < ClIh]]ux

The desired conclusion for VA¢ follows by scaling: consider a ball radius R centered at a point Z with
|Z]| = 2R, for R > 5. Set

$(y) = RN™""7¢(z + Ry)
Then A A R
A?p — pR*wP1p=RN"h, ye B(0,1).
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12 Y.Guo and J.Wei: supercritical biharmonic problems in domains with holes

Clearly in this ball

IBY =l < Cllhll, B9~ = OR™), [[#loc < Ol

Elliptic estimates then imply X
IVAG(0)] < Clihl]«x

or
IVAG()| < Cllhllslz PN

Since Z is arbitrary with |Z| > 5, the desired conclusions follow. This finishes the proof.

5 The operator A2 — pw?~! in 6 1D\ B(0)

In this section and in what follows we shall assume that ¢ = 0, and consider the large expanded domain
Ds = 6 1D. We shall carry out a gluing procedure that will permit to establish the same conclusion of
Proposition 4.1 in this domain, provided that ¢ is taken sufficiently small. Thus we consider now the
linear problem

A2 —pwPtp=h inD;\ Byi(0), (5.1)

¢=V¢=0 ondB;1(0) U dDs. (5.2)
We consider the same norms as in (4.1), (4.2) restricted to this domain.

Proposition 5.1 Assume that p satisfies condition (3.15). Then there is a number & such that for
all § < do and any h with ||h]|« < 400, Problem (5.1)-(5.2) has a unique solution ¢ = T5(h) with
[|¢|l« < +o00. Besides, there exists a constant C(p,D) > 0 such that

ITs(h)|lx < CllA]|xx-

Proof. We assume with no loss of generality that the domain D contains the ball B3(0). Let us
consider a smooth, radial cut off n(]y|) which equals one on |y| < 2 and vanishes identically for |y| > 3.
We consider also a second cut-off {(|y|) which equals 1 on |y| < 1 and it is 0 for |y| > 2. In particular
we have of course ¢ = (. Correspondingly, we also write

ns(z) =n(dlzl), Cs(z) = ¢(0]]).
We look for a solution ¢ to Problem (5.1)-(5.2) in the form

¢ =nsp+1

where ¢ and 1) are required to satisfy the following system:

A% —pwP~tp = plswP ™ + Gh in RN\ B1(0)
p=Vyp=0 on dB1(0) (5.3)
p(z) =0 as|z| = oo,

(5.4)

A% —p(1 — G)wP " = G(p,m5) + (1 — ()b in Ds
=V =0 on 0DsUIB;(0),

where G(p,n5) = —A(pAns +2Vns V) — 2VnsV(Ap) — ApAn;.
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We shall solve equation (5.4) for 9 in terms of ¢ and h. To do so, let us consider the linear problem

{ A% —p(l = ()wP™p =g in Dy \ B1(0) 55)

v=Vi=0 on 0Ds U 8B1(0).

for g € L>®(Ds U 0B;1(0)). Scaling back & by setting for any function p, p(z) = p(d 1z), we see that
problem (5.5) is equivalent to

(A)? — p(1 = ()0~ *@P~ ey = 67*§ in D\ Bs(0)
b=V =0 on 8D U 8B;(0).

We see that
p(1 = G)d~*P~" = 0(6%) < M (D) < M (D \ Bs(0)),

if 4 is taken sufficiently small, by the decaying property of w. Hence this problem can be solved uniquely
for ¢. In terms of 1) we get in addition the estimate

9]l < C*lglloo

where C' does not depend on . The map g — 1 defines of course a linear operator. Let us now go back
to equation (5.4). Then this problem can be solved uniquely, as a linear operator of the pair (¢, h),
which we simply call (i, h). Setting

9= —A(pAns +2VnsV) — 2VnsV(Ap) — ApAns + (1 — (5)h

By the definition of ||p]||., we easily obtain that

lgllee < CTEYlleplls + 6 [IAllx ],

and hence
[4(0, D)lloo < C LN Il + 8% 4| |Blan ] - (5.6)

Let us replaced this 1 into equation (5.3). We have thus a solution of the full system if we solve the
fixed point problem

¢ = T(pGw” (e, h) + (sh) (5.7)

where T is the linear operator defined by Proposition 4.1. We make now the observation that, assuming
alsoc < (N —4)(p—1) -8,

2|V wP (g, h)| < N NTHETY SN || [A]] <

2N 273N gl (Ihllan] < |21 74670l + (1Rl aa]
so that
IpGsw? ™ (0, 1) [law < CE[ll0lle + [1Blls] -

From here and contraction mapping principle, we get then that if § is chosen sufficiently small, then
(5.7) can be solved uniquely in the form ¢ = Ts5(h) where the bounds for T are the same as those for
T, independent of §. This concludes the proof.

O
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14 Y.Guo and J.Wei: supercritical biharmonic problems in domains with holes

6 Proof of Theorem 1.1

Let us assume the validity of condition of condition (3.15) or, equivalently, that p # p; for all j, with
pj the sequence in (3.5). Problem (1.5)-(1.6) is, after setting v(z) = 571 u(dzx), equivalent to

A%y =oP  in D; \ B;(0), (6.1)

v=Vv =0 ondB;(0) U IDs. (6.2)

Let us consider the smooth cut-off function 7, introduced in the previous section, which equals 1 in
B(0,2571) and 0 outside B(0,35~1). We search for a solution v to problem (6.1)-(6.2) of the form

U:U6w+¢7

which is equivalent to the following problem for ¢:

A2+ pwPtp=N(¢)+E inDs\ B1(0), (6.3)
$=V¢=0 on dB;(0) U dD;. (6.4)
where
N(¢) = Ni(¢) + Na(9),
Ni(¢) = —(nsw + ¢)P + (nsw)” + p(nsw)?~" ¢,
Na(¢) = p(1 —nf wP™'¢,
and

E = —A%(nsw) — (nsw)?.
According to Proposition 5.1 we thus have a solution to (6.1)-(6.2) if ¢ solves the fixed point problem
¢=T5(N(¢)+ E). (6.5)
Let us estimate E. We have, explicitly,
—E = ;27" = Dw? + AnsAw + 2VnsV(Vw) + A2V Vw + wAn;)
We clearly have, globally, |E(z)| < C§" and hence
|1 E||sx < CO7. (6.6)
Let us measure now N(¢). We observe that

IN2() [l = [lp(L = 75~ w9l < Cl sup 2| 7w ()P é(2)]

< CY|¢- (6.7)
Next we shall now estimate ||N1(¢)||««. Let us assume first p < 2. Then we estimate
IN1(¢)| < C|g|”,
NN (9)] < Cle[M 7 p(@)P < [N [al MM IglE < CliglE

so that
IN1()[]+x < Cll#]I7 .

Let us assume now p > 2. In this case we have

IN1(@)] < C(wP™?6" + [¢IP).
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Now, we directly check that

N— — — —N)-N
|z|N " wP2¢? < Ola| PN g2,
The power of |z| in the last expression is always negative provided p > %. On the other hand,

e[V < O NI PN gl < e DT g2

N+4

We conclude from these estimates that, for any p > 77,

N1 (@) [ < C(lIBIIZ + 116112 - (6.8)

Let us consider now the operator

T(¢) =T5(N(¢) + E)

defined in the region

B={¢eC*Ds\Bi1(0)) / lI4ll- <% }.

Using estimates (6.6), (6.8), (6.7) we immediately get that T (B) C B, provided that § is sufficiently
small. We observe that, in the bounded domain Ds \ B;(0),

Ts = (A% —pw? 1)t

applies boundedly C' into C*®, hence compactly into C'. It follows that the map 7T is actually compact
on the closed, bounded set of C2 given by B. The existence of a fixed point of 7 on B thus follows from
Schauder’s theorem. This concludes the proof of the theorem. O
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