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Abstract. We construct Delaunay-type solutions for the fractional Yamabe problem with an

isolated singularity

(−∆)γw = cn,γw
n+2γ
n−2γ , w > 0 in Rn\{0}.

We follow a variational approach, in which the key is the computation of the fractional Laplacian

in polar coordinates.

1. Introduction and statement of the main result

We consider the problem of finding radial solutions for the fractional Yamabe problem in Rn,
n ≥ 2, with an isolated singularity at the origin. That means that we look for positive, radially
simmetric solutions of

(−∆)γw = cn,γw
n+2γ
n−2γ in Rn \ {0}, for γ ∈ (0, 1), (1.1)

where cn,γ is any positive constant that, without loss of generality, will be normalized as

cn,γ = 22γ

(
Γ( 1

2 (n2 + γ))

Γ( 1
2 (n2 − γ))

)2

> 0. (1.2)

In geometric terms, given the Euclidean metric |dx|2 on Rn, we are looking for a conformal metric

gw = w
4

n−2γ |dx|2, w > 0, (1.3)

with positive constant fractional curvature Qgwγ ≡ cn,γ , that is radially symmetric and has a pre-

scribed singularity at the origin. It is known that w1(r) = r−
n−2γ

2 is an explicit solution for (1.1)
with the normalization constant (1.2).

Because of the well known extension theorem for the fractional Laplacian (−∆)γ [6, 7, 8] we have
that equation (1.1) for the case γ ∈ (0, 1) is equivalent to the boundary reaction problem

−div(ya∇W ) = 0 in Rn+1
+ ,

W = w on Rn \ {0},

−dγ lim
y→0

ya∂yW = cn,γw
n+2γ
n−2γ on Rn \ {0},

(1.4)

for the constant dγ = 22γ−1Γ(γ)
γΓ(−γ) .
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In a recent paper [4] the authors characterize all the nonnegative solutions to (1.4). Indeed, let
W be any nonnegative solution of (1.4) in Rn+1

+ and suppose that the origin is not a removable
singularity. Then, writing r = |x| for the radial variable in Rn, we must have that

W (x, t) = W (r, t) and ∂rW (r, t) < 0 ∀ 0 < r <∞.

In addition, they also provide their asymptotic behavior. More precisely, if w = W (·, 0) denotes the
trace of W , then near the origin

c1r
−n−2γ

2 ≤ w(x) ≤ c2r−
n−2γ

2 , (1.5)

where c1, c2 are positive constants.
We remark that if the singularity at the origin is removable, all the entire solutions to (1.4) have

been completely classified ([18, 9]) and, in particular, they must be the standard “bubbles”

w(x) = c

(
λ

λ2 + |x− x0|2

)n−2γ
2

, c, λ > 0, x0 ∈ Rn. (1.6)

In this paper we study the existence of “Delaunay”-type solutions for (1.1), i.e, solutions of the
form

w(r) = r−
n−2γ

2 v(r) on Rn \ {0}, (1.7)

for some function 0 < c1 ≤ v ≤ c2 that, after the Emden-Fowler change of variable r = et, is periodic
in the variable t. With some abuse of the notation, we write v = v(t).

In the classical case γ = 1, equation (1.1) reduces to a standard second order ODE. However, in
the fractional case (1.1) becomes a fractional order ODE, so classical methods cannot be directly
applied here. Instead, we reformulate the problem into a variational one for the the periodic function
v. The main difficulty is to compute the fractional Laplacian in polar coordinates.

Our approach does not use the extension problem (1.4). Instead we work directly with the
nonlocal operator, after suitable Emden-Fowler transformation. For γ ∈ (0, 1) we know that the
fractional Laplacian can be defined as a singular kernel as

(−∆)γw(x) = κn,γP.V.

∫
Rn

w(x)− w(x+ y)

|y|n+2γ
dy,

where P.V. denotes the principal value, and the constant κn,γ (see [20]) is given by

κn,γ = π−
n
2 22γ Γ(n2 +γ)

Γ(1−γ) γ.

The main idea here is to use the Emden-Fowler change of variable in the singular integral. After
some more changes of variable, equation (1.1) will be written as

Lγv = cn,γv
β , v > 0, (1.8)

where

β = n+2γ
n−2γ

is the critical exponent in dimension n and Lγ is the linear operator defined by

Lγv(t) = κn,γP.V.

∫ ∞
−∞

(v(t)− v(τ))K(t− τ) dτ + cn,γv(t), (1.9)

for K a singular kernel which is precisely written in (2.14). The behaviour of K near the origin
is the same as the kernel of the fractional Laplacian (−4)γ in R and near infinity it presents an
exponential decay. This kind of kernels corresponds to tempered stable process and they have been
studied in [19] and [30], for instance.
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If we take into account just periodic functions v(t+L) = v(t), the operator Lγ can be rewritten
as

L L
γ v(t) = κn,γP.V.

∫ L

0

(v(t)− v(τ))KL(t− τ) dτ + cn,γv(t), (1.10)

where KL is a periodic singular kernel that will be defined in (2.22). For periodic solutions, problem
(1.8) is equivalent to finding a minimizer c(L) for the functional

FL(v) =
κn,γ

∫ L
0

∫ L
0

(v(t)− v(τ))2KL(t− τ) dt dτ + cn,γ
∫ L

0
v(t)2dt

(
∫ L

0
v(t)β+1dt)

2
β+1

. (1.11)

Note that the minimizer always exists as we can check in Lemma 4.1.

Our main result is the following:

Theorem 1.1. There is a unique L0 > 0 such that c(L) is attained by a nonconstant minimizer
when L > L0 and when L ≤ L0 c(L) is attained by the constant only.

In a recent paper [11] the authors study this fractional problem (1.1) from two different points of
view. They carry out an ODE-type study and explain the geometrical interpretation of the problem.
In addition, they give some results towards the description of some kind of generalized phase portrait.
For instance, they prove the existence of periodic radial solutions for the linearized equation around
the equilibrium v1 ≡ 1, with period L0 = L0(γ). For the original non-linear problem they show the
existence of a Hamiltonian quantity conserved along trajectories, which suggests that the non-linear
problem has periodic solutions too, for every period larger than this minimal period L0. Theorem
1.1 proves this conjecture.

The construction of Delaunay solutions allows for many further studies. For instance, as a conse-
quence of our construction one obtains the non-uniqueness of the solutions for the fractional Yamabe
equation (see [16] for an introduction to this problem) in the positive curvature case, since it gives
different conformal metrics on S1(L) × Sn−1 that have constant fractional curvature. This is well
known in the scalar curvature case γ = 1 (see the lecture notes [28] for an excellent review, or the
paper [29]). In addition, this fact gives some examples for the calculation of the total fractional scalar
curvature functional, which maximizes the standard fractional Yamabe quotient across conformal
classes.

From another point of view, Delaunay solutions can be used in gluing problems. Classical refer-
ences are, for instance, [23, 26] for the scalar curvature, and [24, 25] for the construction of constant
mean curvature surfaces with Delaunay ends. We plan to work on this problem elsewhere.

Recently it has been introduced a related notion of nonlocal mean curvature Hγ for the boundary
of a set in Rn (see [5, 33]). Finding Delaunay-type surfaces with constant nonlocal mean curvature
has just been accomplished in [2]. For related nonlocal equations with periodic solutions see also
[17, 3].

The paper will be structured as follows: in Section 2 we will introduce the problem. In particular
we will recall some known results for the classical case and we will present the formulation of the
problem through some properties of the singular kernel. In section 3 we will show some technical
results that we will need in the last Section; where we will use the variational method to prove the
main result in this paper, this is, Theorem 1.1.
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2. Set up of the problem

2.1. Classical case γ = 1. We recall first some well known results. Consider the classical Yamabe
problem

(−∆)w = cn,1w
n+2
n−2 , w > 0 in Rn\{0}. (2.1)

Because of the asymptotic behavior in (1.5) we look at radially symmetric solutions of the form

w(r) = r−
n−2
2 v(r),

where r = |x|. Then, applying the Emden-Fowler change of variable et = r, equation (2.1) reads

− v̈ + (n−2)2

4 v = (n−2)2

4 v
n+2
n−2 , v > 0. (2.2)

This equation is easily integrated and the analysis of its phase portrait gives that all bounded
solutions must be periodic (see, for instance, the lecture notes [28]). More precisely, the Hamiltonian

H1(v, v̇) := 1
2 v̇

2 + (n−2)2

4

(
(n−2)

2n v
2n
n−2 − 1

2v
2
)

(2.3)

is preserved along trajectories. Thus, looking at its level sets we conclude that there exists a family
of periodic solutions {vL} of periods L ∈ (L0,∞). Here

L0 = 2π√
n−2

(2.4)

is the minimal period and it can be calculated from the linearization at the equilibrium solution
v1 ≡ 1. These {vL} are known as the Fowler or Delaunay solutions for the scalar curvature.

2.2. Formulation of the problem. We now consider the singular Yamabe problem

(−∆)γw = cn,γw
β in Rn\{0}, w > 0 (2.5)

for γ ∈ (0, 1), n ≥ 2, β the critical exponent given by

β =
n+ 2γ

n− 2γ
(2.6)

and

(−∆)γw(x) = κn,γP.V.

∫
Rn

w(x)− w(x+ y)

|y|n+2γ
dy,

where P.V. denotes the principal value, and the constant κn,γ (see [20]) is given by

κn,γ = π−
n
2 22γ Γ(n2 +γ)

Γ(1−γ) γ.

Because of (1.5) we only consider radially symmetric solutions of the form

w(x) = |x|−
n−2γ

2 v(|x|), (2.7)

where v is some function 0 < c1 ≤ v ≤ c2. In radial coordinates (r = |x|, θ ∈ Sn−1 and s = |y|, σ ∈
Sn−1), we can express the fractional Laplacian as

(−∆)γu = κn,γP.V.

∫ ∞
0

∫
Sn−1

r−
n−2γ

2 v(r)− s−
n−2γ

2 v(s)

|r2 + s2 − 2rs〈θ, σ〉|n+2γ
2

sn−1dσds.

Inspired in the computations by Ferrari and Verbitsky in [15], we write

s = rs̄, (2.8)

so the radial function v can be expressed as

v(r) = (1− s̄−
n−2γ

2 )v(r) + s̄−
n−2γ

2 v(r).
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Thus the equation (2.5) for v becomes

κn,γP.V.

∫ ∞
0

∫
Sn−1

s̄n−1−n−2γ
2 (v(r)− v(rs̄))

|1 + s̄2 − 2s̄〈θ, σ〉|n+2γ
2

dσds̄+Av = cn,γv
β(r), (2.9)

where

A = κn,γP.V.

∫ ∞
0

∫
Sn−1

(1− s̄−
n−2γ

2 )s̄n−1

|1 + s̄2 − 2s̄〈θ, σ〉|n+2γ
2

dσds̄. (2.10)

Remark 2.1. The constant A is strictly positive. Indeed, from (2.9) we have

A = cn,γ > 0,

since cn,γ is normalized such that v1 ≡ 1 is a solution for the singular Yamabe problem (see Propo-
sition 2.7 in [11]).

Finally we do the Emden-Fowler changes of variable r = et and s = eτ in (2.9) to obtain

Lγv = cn,γv
β , (2.11)

where the operator Lγ is defined as

Lγv = κn,γP.V.

∫ ∞
−∞

(v(t)− v(τ))K(t− τ) dτ + cn,γv, (2.12)

for a function v = v(t) and the kernel K (up to constant) is given by

K(ξ, θ) =

∫
Sn−1

1

| cosh(ξ)− 〈θ, σ〉|n+2γ
2

dσ, (2.13)

which can be written as

K(ξ) =

∫
Sn−1

e
n+2γ

2 ξ

|1 + e2ξ − 2eξ〈θ, σ〉|n+2γ
2

dσ

= e
n+2γ

2 ξ

∫ π

0

(sinφ1)n−2

(1 + e2ξ − 2eξ cosφ1)
n+2γ

2

dφ1

= 2−
n+2γ

2

∫ 1

0

(sinφ1)n−2

(cosh(ξ)− cos(φ1))
n+2γ

2

dφ1,

(2.14)

where φ1 is the angle between θ and σ.

Remark 2.2. K is rotationally invariant, so we will write K(ξ) := K(ξ, θ). Indeed if we define

J(θ) :=

∫
Sn−1

e
n+2γ

2 ξ

|1 + e2ξ − 2eξ〈θ, σ〉|n+2γ
2

dσ,

it is easy to check that J(θ) = J(θ|e1|). The proof is trivial using the first equality in (2.14) and the
change of variable σ̃ = R>σ, where R is any rotation such that R(|θ|e1) = θ.

Remark 2.3. The expression (2.14) implies that K(ξ) is an even function. Moreover, since φ1 ∈
(0, π) and cosh(x) ≥ 1, ∀x ∈ R, K is strictly positive.

Lemma 2.4. The kernel K can be expressed in terms of a hypergeometric function as

K(ξ) = cn(sinh ξ)−1−2γ(cosh ξ)
2−n+2γ

2 2F1

(
a+1

2 − b,
a
2 − b+ 1; a− b+ 1; (sech ξ)2

)
, (2.15)

where cn =
√
πΓ(n−1

2 )

Γ(n2 ) , and 2F1 is the hypergeometric function defined in Lemma 2.8.
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Proof. Because of the parity of the kernel K it is enough to study its behavior for ξ > 0. Using the
property (2.30) given in Lemma 2.8, with t = φ1, b̃ = n−1

2 , ã = n+2γ
2 and z = −e−ξ, we can assert

that, if ξ > 0,

K(ξ) =

√
πΓ(n−1

2 )

Γ(n2 )
e−

n+2γ
2 ξ

2F1(a, b; c; e−2ξ), (2.16)

where
a = n+2γ

2 , b = 1 + γ, c = n
2 . (2.17)

An important observation is that
a− b+ 1 = c, (2.18)

which, using property (2.31) in Lemma 2.8, yields (2.15). �

Lemma 2.5. The asymptotic expansion of the kernel K is given by

• K(ξ) ∼ |ξ|−1−2γ if |ξ| → 0,

• K(ξ) ∼ e−|ξ|
n+2γ

2 if |ξ| → ∞.

Proof. Expression (2.15) for K(ξ) and the parity of the function K give, for |ξ| small enough,

K(ξ) ∼ | sinh ξ|−1−2γ ∼ |ξ|−1−2γ . (2.19)

Moreover, this expression (2.15), the behaviour of the hyperbolic secant function at infinity and
the hypergeometric function property (2.29) given in Lemma 2.8 show the exponential decay of the
kernel at infinity:

K(ξ) ∼ cn(sinh ξ)−1−2γ(cosh ξ)
2−n+2γ

2 ∼ ce−|ξ|
n+2γ

2 . (2.20)

where c is a positive constant. �

Remark 2.6. The asymptotic behaviour of this kernel near the origin and near infinity given in
Lemma 2.5 correspond to a tempered stable process.

2.3. Periodic solutions. We are looking for periodic solutions of (2.11). Assume that v(t+ L) =
v(t): in this case equation (2.11) becomes

L L
γ v = κn,γP.V.

∫ L

0

(v(t)− v(τ))KL(t− τ)dτ + cn,γv = cn,γv
β , where β =

n+ 2γ

n− 2γ
, (2.21)

and
KL(t− τ) =

∑
j∈Z

K(t− τ − jL), (2.22)

for K the kernel given in (2.14). Note that the argument in the integral above has a finite number
of poles, but KL is still well defined.

Lemma 2.7. The periodic kernel KL satisfies the following inequality:

L

L1
KL

(
L

L1
(t− τ)

)
< KL1(t− τ), ∀L > L1 > 0. (2.23)

Proof. By evenness we just need to show that the function ξK(ξ) is decreasing for ξ > 0. By (2.15),
up to positive constant,

ξK(ξ) =ξ(sinh ξ)−1−2γ(cosh ξ)
2−n+2γ

2

· 2F1(a+1
2 − b,

a
2 − b+ 1; a− b+ 1; (sech ξ)2),

(2.24)

where a, b, c are given in (2.17).
Observe that

2F1(a+1
2 − b,

a
2 − b+ 1; a− b+ 1; (sech ξ)2) > 0, (2.25)
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and
a+1

2 − b+ 1 > 0, a
2 − b+ 2 > 0, a− b+ 1 = c > 0. (2.26)

This yields that (2.25) is decreasing, since

d

dξ

[
2F1(a+1

2 − b,
a
2 − b+ 1; a− b+ 1; (sech ξ)2)

]
=− 2

(
a+1

2 −b)(
a
2−b+1)

c (sech ξ)2 tanh ξ

· 2F1(a+1
2 − b+ 1, a2 − b+ 2; a− b+ 2; (sech ξ)2) < 0.

(2.27)

Thus we just need to show that the function ξ(sinh ξ)−1−2γ(cosh ξ)
2−n+2γ

2 in (2.24) is decreasing in
ξ. In fact by writing

ξ(sinh ξ)−1−2γ(cosh ξ)
2−n+2γ

2 = ξ
sinh ξ (tanh ξ)−γ(sinh ξ)−γ(cosh ξ)

2−n
2 ,

we have that ξK(ξ) is a product of decreasing functions.
Finally, inequality (2.23) follows from the definition of KL(ξ) given in (2.22):

L

L1
KL

(
L

L1
(t− τ)

)
=

+∞∑
j=−∞

L

L1
K

(
L

L1
(t− τ − jL1)

)
<

+∞∑
j=−∞

K(t−τ−jL1) = KL1(t−τ). (2.28)

�

Lemma 2.8. [1, 32, 22] Let z ∈ C. The hypergeometric function is defined for |z| < 1 by the power
series

2F1(ã, b̃; c̃; z̃) =
Γ(c̃)

Γ(ã)Γ(b̃)

∞∑
n=0

Γ(ã+ n)Γ(b̃+ n)

Γ(c̃+ n)

zn

n!
.

It is undefined (or infinite) if c̃ equals a non-positive integer. Some properties of this function are

(1) The hypergeometric function evaluated at z = 0 satisfies

2F1(ã+ j, b̃− j; c; 0) = 1; j = ±1,±2, ... (2.29)

(2) ([22], pag 55) If Re b̃ > 0, |z| < 1,

2F1(ã, ã− b̃+ 1
2 ; b̃+ 1

2 ; z2) =
Γ(b̃+ 1

2 )
√
πΓ(b̃)

∫ π

0

(sin t)2b̃−1

(1 + 2z cos t+ z2)ã
dt. (2.30)

(3) If ã− b̃+ 1 = c̃, the following identity holds

2F1(ã, b̃; ã− b̃+1;x) = (1−x)1−2b̃(1+x)2b̃−ã−1
2F1

(
ã+1

2 − b̃,
ã
2 − b̃+ 1; ã− b̃+ 1; 4x

(x+1)2

)
. (2.31)

2.4. Extension problem. The boundary reaction problem given in (1.4) defines the conformal
fractional Laplacian in Rn for the Euclidean metric |dx|2 as

P |dx|
2

γ w = −d̃γ lim
y→0

ya∂yW = (−∆)γw.

In the curved case one may define the conformal fractional Laplacian P gγ with respect to a metric
g on a n−dimensional manifold M . P gγ a pseudo-differential operator of order 2γ (see [8],[7]). It
satisfies that, for any conformal metric

gw := w
4

n−2γ g, w > 0,

we have

P gwγ f = w−
n+2γ
n−2γ P gγ (wf), ∀f ∈ C∞(M). (2.32)
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This conformal property allows to formulate an equivalent extension problem to (1.4) for the
function v defined as in (1.7). In particular, in [11] the authors consider the geometric interpre-
tation of problem (1.8). They choose M = R × Sn−1 with the metric g0 = dt2 + gSn−1 and they
extend the problem with the new positive variable ρ, that we will call defining function, to an
(n+ 1)−dimensional manifold Xn+1 = M × (0, 2), with the extended metric

ḡ = dρ2 +
(

1 + ρ2

4

)2

dt2 +
(

1− ρ2

4

)2

gSn−1 , (2.33)

for ρ ∈ (0, 2) and t ∈ R. Then (1.4) is equivalent to
−divḡ(ρ

a∇ḡV ) + E(ρ)V = 0 in (Xn+1, ḡ),

V = v on {ρ = 0},

−d̃γ lim
ρ→0

ρa∂ρV = cn,γv
β on {ρ = 0},

(2.34)

Finally it is known (see [8]) that there exists a new defining function ρ∗ = ρ∗(ρ) such that the
problem (2.34) can be rewritten on the extension X∗ = M × (0, ρ∗0), as

−divg∗((ρ
∗)a∇g∗V ) = 0 in (X∗, g∗),

V = v on {ρ∗ = 0},

−d̃γ lim
ρ∗→0

(ρ∗)a∂ρ∗V + cn,γv = cn,γv
β on {ρ∗ = 0},

(2.35)

where g∗ = (ρ∗)2

ρ2 ḡ. We look for radially symmetric solutions v = v(t), V = V (t, ρ) of (2.35). For

such solutions we have that Lγ is the Dirichlet-to-Neumann operator for this problem, i.e.,

Lγ(v) = −d̃γ lim
ρ∗→0

(ρ∗)a∂ρ∗V + cn,γv.

3. Technical results

3.1. Function Spaces.

Definition 3.1. We shall work with the following functional space

Hγ
L = {v : R→ R; v(t+ L) = v(t) and∫ L

0

∫ L

0

(v(t)− v(τ))2KL(t− τ)dτdt+

∫ L

0

v(t)2dt < +∞

}
(3.1)

with the norm given by

‖v‖HγL =

(∫ L

0

v(t)2 dt+

∫ L

0

∫ L

0

|v(t)− v(τ)|2KL(t− τ) dt dτ

)1/2

. (3.2)

Note that we will denote

W γ,p
L = {v : R→ R; v(t+ L) = v(t) and

‖v‖pLp(0,L) +

∫ L

0

∫ L

0

|v(t)− v(τ)|p

|t− τ |1+γp
dt dτ <∞},

(3.3)

with the norm given by

‖v‖Wγ,p
L

=

(
‖v‖pLp(0,L) +

∫ L

0

∫ L

0

|v(t)− v(τ)|p

|t− τ |1+γp
dt dτ

)1/p

, (3.4)
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which is equivalent to the norm

‖v‖W̃γ,p
L

=

(
‖v‖pLp(0,L) +

∫ L

0

∫ L

0

|v(t)− v(τ)|pK(t− τ) dt dτ

)1/p

,

for the kernel K given in (2.14).

Now we are going to introduce some fractional inequalities, continuity and compactness results
whose proofs for an extension domain can be found in [12]. Here we are working with periodic
functions, which avoids the technicalities of extension domains but the same proofs as in [12] are
valid.

Proposition 3.2. (Fractional Sobolev inequalities.) (Theorems 6.7 and 6.10, [12]) Let γ ∈ (0, 1)
and p ∈ [1,+∞) such that γp ≤ 1. Then there exists a positive constant C = C(p, γ) such that, for
any v ∈W γ,p

L , we have

‖v‖Lq(0,L) ≤ C‖v‖Wγ,p
L
, (3.5)

for any q ∈ [1, p∗); i.e., the space W γ,p
L is continuously embedded in Lq(0, L) for any q ∈ [1, p∗).

Proposition 3.3. (Compact embeddings) (Theorem 7.1 and Corollary 7.2, [12].) Let γ ∈ (0, 1) and
p ∈ [1,+∞), q ∈ [1, p], and J be a bounded subset of Lp(0, L). Suppose

sup
f∈J

∫
[0,L]

∫
[0,L]

|f(x)− f(y)|p

|x− y|n+γp
dx dy < +∞. (3.6)

Then J is pre-compact in Lq(0, L).
Moreover, if γp < 1, then J is pre-compact in Lq(0, L), for all q ∈ [1, p∗].

Remark 3.4. If γ = 1/2, we have the compact embedding

W
1/2,2
L ⊂⊂ Lq(0, L), for q ∈ (1,∞).

Indeed, a consequence of Proposition 3.2 is W
1/2,2
L ⊂W γ,2

L , ∀γ < 1/2, thus Proposition 3.3 provides

W
1/2,2
L ⊂W γ,2

L ⊂⊂ Lq(0, L), ∀q ∈ (1, 2
1−2γ ), γ < 1/2.

We conclude by letting γ → 1/2.

Proposition 3.5. (Hölder fractional regularity.) (Theorem 8.2 in [12].) Let p ∈ [1,+∞), γ ∈ (0, 1)
such that γp > 1. Then there exists C > 0, depending on γ and p, such that

‖v‖C0,α([0,L]) ≤ C

(
‖v‖pLp(0,L) +

∫ L

0

∫ L

0

|v(t)−v(τ)|p
|t−τ |1+γp dt dτ

)1/p

(3.7)

for any L-periodic function v ∈ Lp(0, L), with α = γ − 1/p.

Note that with the equi-continuity given in Proposition 3.5 we can apply Ascoli-Arzelá to show
the compactness

W γ,2
L ⊂⊂ Lq(0, L) ∀q ∈ (1,∞) with γ > 1/2. (3.8)

Remark 3.6. We have the compact embedding

Hγ
L ⊂⊂ L

q(0, L), ∀γ ∈ (0, 1), (3.9)

where

q ∈ (1, 2
1−2γ ) if γ ≤ 1

2 and q ≥ 1 if γ > 1
2 . (3.10)
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Indeed, Proposition 3.3, Remark 3.4 and Proposition 3.5 with provide W γ,2
L ⊂⊂ Lq(0, L) for all

γ ∈ (0, 1) and q as in (3.10). But from the definition of KL given in (2.22) and the positivity of the
function K, we have the following inequality between norms

‖v‖Wγ,2
L
≤ ‖v‖HγL .

Proposition 3.7. (Poincare’s fractional inequality.) Let v ∈ Hγ
L with zero average (i.e.

∫ L
0
v(t) dt =

0), then there exists c > 0 such that

‖v‖2L2(0,L) ≤ c
∫ L

0

∫ L

0

(v(t)− v(τ))2

|t− τ |1+2γ
dt dτ. (3.11)

Proof. Inspired on the proof of the classical Poincare’s inequality given in Theorem 7.16 in [27], we
prove (3.11). By contradiction assume that, ∀j ≥ 1, there exists vj ∈ Hγ

L satisfying

‖vj‖2L2(0,L) > j

∫ L

0

∫ L

0

(vj(t)− vj(τ))2

|t− τ |1+2γ
dt dτ. (3.12)

On the one hand, we normalize vj in L2(0, L) by wj :=
vj

‖vj‖L2(0,L)
, so ‖wj‖L2(0,L) = 1. Because of

(3.12) it follows that ∫ L

0

∫ L

0

(wj(t)− wj(τ))2

|t− τ |1+2γ
dt dτ < 1

j ≤ 1, (3.13)

that is, {wj} is bounded in the Hγ
L norm. By the compactness from Remark 3.6, we obtain a

subsequence {wi} that converges strongly in L2(0, L), i.e, there exists w ∈ L2(0, L) such that wi →
w in L2(0, L). Thus,

‖w‖L2(0,L) = lim
j→∞

‖wj‖L2(0,L) = 1.

On the other hand, also by the compactness given in Remark 3.6, we have weak semiconvergence in
Hγ
L. Thus the following inequality follows∫ L

0

∫ L

0

(w(t)− w(τ))2

|t− τ |1+2γ
dt dτ ≤ lim inf

j→∞

∫ L

0

∫ L

0

(wj(t)− wj(τ))2

|t− τ |1+2γ
dt dτ. (3.14)

Thanks to (3.13), this gives ∫ L

0

∫ L

0

(w(t)− w(τ))2

|t− τ |1+2γ
dt dτ = 0,

that is, w must be constant and, since has zero average, it has to be the zero function. �

3.2. Maximum principles.

Proposition 3.8. (Strong maximum principle). Let v ∈ Hγ,2
L ∩ C(R) with v ≥ 0 be a solution of

Lγv = f(v), in R,
where f satisfies f(v) ≥ 0 if v ≥ 0. Then v > 0 or v ≡ 0.

Proof. Since v ≥ 0, we have that
Lγv = f(v) ≥ 0. (3.15)

Suppose that there exists a point t0 ∈ R with v(t0) = 0, then

Lγv(t0) = κn,γP.V

∫ +∞

−∞
(v(t0)− v(τ))K(t0 − τ) dτ + cn,γv(t0)

= κn,γP.V

∫ +∞

−∞
(−v(τ))K(t0 − τ) dτ ≤ 0

satisfies (3.15) only in the case v ≡ 0. �
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3.3. Regularity. In the following Proposition 3.9 we concentrate on the local regularity, using the
equivalent characterization for Lγ as a Dirichlet-to-Neumann operator for problem (2.35). First, we
fix some notation that we will use here. Let 0 < R < ρ∗0, we denote

B+
R = {(t, ρ∗) ∈ R2 : ρ∗ > 0, |(t, ρ∗)| < R},

Γ0
R = {(t, 0) ∈ ∂R2

+ : |t| < R}.

Proposition 3.9. Fix γ < 1/2 and let V = V (t, ρ∗) be a solution of the extension problem −divg∗((ρ
∗)a∇g∗V ) = 0 in (B+

2R, g
∗),

−d̃γ lim
ρ∗→0

(ρ∗)a∂ρ∗V + cn,γv = cn,γv
β on Γ0

2R.
(3.16)

If ∫
Γ0
2R

|v|
2

1−2γ dt =: ζ <∞,

then for each p > 1, there exists a constant Cp = C(p, ζ) > 0 such that

sup
B+
R

|V |+ sup
Γ0
R

|v| ≤ Cp
[(

1
Rn+1+a

)1/p ‖V ‖Lp(B+
2R) +

(
1
Rn

)1/p ‖v‖Lp(Γ0
2R)

]
. (3.17)

Proof. This L∞ bound is proven for linear right hand side in Theorem 2.3.1 in [14]. A generalization
for the nonlinear subcritical case is given in Theorem 3.4 in [16]. Here we can follow the same proof
as in [16] because we have reduced our problem to one-dimensional problem for t ∈ ∂R2

+ and thus,

β = n+2γ
n−2γ is a subcritical exponent. �

The following two propositions could be also proved using the extension problem (3.16). However,
they can be phrased in terms of a general convolution kernel, as we explain here. Thus we fix
K : R→ [0,∞) a measurable kernel satisfying:

a) ν ≤ K(t)|t|1+
γ
2 ≤ ν−1 a.e t ∈ R with |t| ≤ 1,

b) K(t) ≤M |t|−n−η a.e. t ∈ R with |t| > 1,

for some γ ∈ (0, 1), ν ∈ (0, 1), η > 0, M ≥ 1. Consider the functional defined in (2.12) by

(Lγv)(t) = κn,γP.V

∫ +∞

−∞
(v(t)− v(τ))K(t− τ) dτ + cn,γv,

for v ∈ Lp(R). We study the regularity of solutions to

Lγv = f. (3.18)

Proposition 3.10. Let α ∈ (0, 1), and f ∈ Lq for some q > n, there exists c > 0 such that for any
t0 ∈ R and R ∈ (0, 1), if v is solution of (3.18) in BR(x0), then

|v(t)− v(τ)| ≤ c|t− τ |α
(
R−α‖v‖L∞ + ‖f‖Lq

)
. (3.19)

The constants α and c depend on n, ν, M , η, γ, q and A, and remain positive as γ → 1.

Proof. Since our kernel corresponds to a tempered stable process, this regularity was given by
Kassmann in his article [19]. See Theorem 1.1 and Extension 5. We could also follow the same steps
as for Theorem 5.1 in [30] since Lemma 4.1 and Remark 4.3 in this paper [30] hold for K (note the
expansion in Lemma 2.5). �

Proposition 3.11. Let α ∈ (0, 1). Assume f ∈ Cα(R), and let v ∈ L∞(R) be a solution of (3.18)
in Rn. Then there exists c > 0 depending on n, α, γ such that

‖v‖Cα+2γ ≤ c (‖v‖Cα + ‖f‖Cα) . (3.20)
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Proof. Under our assumptions, on the one hand, Dong and Kim proved in Theorem 1.2 from [13]
that (−∆)γv ∈ Cα and moreover the following estimate holds:

‖(−∆)γv‖Cα ≤ c (‖v‖Cα + ‖f‖Cα) . (3.21)

On the other hand, Silvestre in Proposition 2.8 in [31], showed that

• If α+ 2γ ≤ 1, then v ∈ Cα+2γ and

‖v‖Cα+2γ(R) ≤ c(‖v‖L∞ + ‖(−∆)γv‖Cα). (3.22)

• If α+ 2γ > 1, then v ∈ C1,α+2γ−1 and

‖v‖C1,α+2γ−1(R) ≤ c(‖v‖L∞ + ‖(−∆)γv‖Cα). (3.23)

Thus, combining (3.21) with (3.22) and (3.23) we have the claimed regularity. �

Remark 3.12. The previous Propositions 3.9, 3.10, 3.11 imply that for γ < 1/2 any v ∈ Lβ+1

solution of equation (2.11) satisfies v ∈ C∞. A standard argument yields the same conclusion for
γ = 1/2 too. Finally, if γ > 1/2 Proposition 3.5 automatically implies that any function v ∈ Hγ

L

also satisfies v ∈ C∞.

3.4. Subcritical case. Note that the following Lemma 3.13 has been studied by different authors
if N > 2γ, even for 1 < p < N+2γ

N−2γ (see [10, 9, 21]), but in this paper we need this result also for

2γ ≥ N since we have reduced our problem to dimension N = 1 for any γ ∈ (0, 1). We will use it
for p = n+2γ

n−2γ .

Lemma 3.13. Let w be solution for

(−∆)γw = wp, 0 ≤ w ≤ 1, p > 1, (N − 2γ)p < N. (3.24)

Then w ≡ 0.

Proof. Let η be a smooth function. In fact we may choose

η = (1 + |x|)−m, where m = N + 2γ. (3.25)

Then multiplying (3.24) by the test function η, integrating over RN and using integration by parts
in the right hand side of (3.24) we obtain the following inequality∣∣∣∣∫

RN
wpη dx

∣∣∣∣ =

∣∣∣∣∫
RN

(
w(x)

∫
RN

η(x)− η(y)

|x− y|N+2γ
dy

)
dx

∣∣∣∣
≤
∣∣∣∣∫

RN

(
(w(x)η1/p(x))η(x)−1/p

∫
RN

η(x)− η(y)

|x− y|N+2γ
dy

)
dx

∣∣∣∣
≤ c

∣∣∣∣∫
RN

wp(x)η(x) dx

∣∣∣∣1/p(∫
RN

∣∣∣(η(x)−1/p(−∆)γη(x))p/(p−1)
∣∣∣ dx)(p−1)/p

.

(3.26)

We just need to compute the second term in the right hand side. Firstly we can check that it is
bounded. Since

η(x)−
1
p−1 |(−∆)γη(x)|

p
p−1 ≤ c(1 + |x|)(N+2γ) 1

p−1 (1 + |x|)−
p
p−1 (N+2γ) ≤ (1 + |x|)−(N+2γ), (3.27)

we have ∫
RN

η(x)−
1
p−1 |(−∆)γη(x)|

p
p−1 dx <∞. (3.28)

Note that for inequality (3.27) we have used the definition of the test function given in (3.25) and
the following bound

|(−∆)γη| ≤ c(1 + |x|)−(N+2γ), for x large enough; (3.29)
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which is proven at the end of the proof of this Lemma. Now we chose

ηR(x) = η(x/R).

Performing a similar analysis, we obtain∫
RN

wp(x)ηR(x) ≤

(∫
RN

ηR(x)−1/p

∣∣∣∣∫
RN

η(x)− η(y)

|x− y|N+2γ
dy

∣∣∣∣p/(p−1)

dx

)(p−1)/p

. (3.30)

Then, by scaling,∫
|x|≤R

wp(x) ≤ c

(∫
RN

ηR(x)−1/p

∣∣∣∣∫
RN

η(x)− η(y)

|x− y|N+2γ
dy

∣∣∣∣p/(p−1)

dx

)(p−1)/p

≤ cRN−
2pγ
p−1

(∫
RN

ηR(x)−1/p

∣∣∣∣∫
RN

η(x)− η(y)

|x− y|N+2γ
dy

∣∣∣∣p/(p−1)

dx

)(p−1)/p

.

(3.31)

Note that N − 2pγ
p−1 < 0 by hypothesis. Then, letting R tend to infinity, we obtain∫

|x|≤R
wp(x) dx→ 0 as R→ +∞.

Therefore, we have w ≡ 0.

In order to conclude we just need to check inequality (3.29) before. It follows from standard
potential analysis. In fact for |x| ≥ 1 we have that

|(−∆)γη(x)| =
∣∣∣∣P.V.

∫
RN

η(x)− η(y)

|x− y|N+2γ
dy

∣∣∣∣ ≤ |I1|+ |I2|+ |I3|+ |I4|,
where these integrals can be bounded as follows: for the first integral we use that |x − y| is small
enough to check that

|I1| =

∣∣∣∣∣P.V.

∫
|x−y|<1

η(x)− η(y)

|x− y|N+2γ
dy

∣∣∣∣∣ =

∣∣∣∣∣
∫
|x−y|<1

η(x)− η(y)− η′(x)|x− y|
|x− y|N+2γ

dy

∣∣∣∣∣
≤ c

∫
|x−y|<1

|η′′(x)||x− y|2

|x− y|N+2γ
dy ≤ C

(1 + |x|)N+2
≤ C

(1 + |x|)N+2γ
.

(3.32)

For the second one, we have that |x− y| < |x|
2 , then, we can use that

|η(x)− η(y)| ≤ |η′(ξ)||x− y| ≤ c(1 + |x|)−(N/2+2γ−1)|x− y|,

and bound the integral as follows

|I2| =

∣∣∣∣∣
∫

1<|x−y|< |x|2

η(x)− η(y)

|x− y|N+2γ
dy

∣∣∣∣∣
≤ |x|1−2γc(1 + |x|)−(N/2+2γ−1) ≤ C

(1 + |x|)N+2γ
,

(3.33)

since x is large enough and |x| ∼ |y|, indeed |y| ≥ |x| − |x− y| ≥ |x|2 and |y| ≤ 3
2 |x|.
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The third one is directly bounded,

|I3| =

∣∣∣∣∣
∫
|x|
2 <|x−y|<2|x|

η(x)− η(y)

|x− y|N+2γ
dy

∣∣∣∣∣ ≤ 2N+2γ

|x|N+2γ

∣∣∣∣∣
∫
|x|
2 <|x−y|<2|x|

(η(x)− η(y)) dy

∣∣∣∣∣
≤ 2N+2γ

|x|N+2γ

∣∣∣∣∣η(x)|x|−N −
∫
|x|
2 <|x−y|<2|x|

η(y) dy

∣∣∣∣∣ ≤ C

|x|N+2γ
∼ C

(1 + |x|)N+2γ
,

(3.34)

using that |x| is large enough.
For the forth and last one, we use that |y| ≥ |x− y| − |x| ≥ |x|, then

|I4| =

∣∣∣∣∣
∫
|x−y|>2|x|

(
η(x)− η(y)

|x− y|N+2γ

)
dy

∣∣∣∣∣ ≤ c
(∫
|x−y|>2|x|

1

|x− y|N+2γ
dy

)
(1 + |x|)−(N+2γ)

≤c(1 + |x|)−(N+2γ).

(3.35)

Here c always denotes a positive constant. �

4. Proof of Theorem 1.1

4.1. Variational Formulation. We consider the following minimization problem

c(L) = inf
v∈HγL,v 6≡0

FL(v), (4.1)

where

FL(v) =
κn,γ

∫ L
0

∫ L
0

(v(t)− v(τ))2KL(t− τ) dt dτ + cn,γ
∫ L

0
v(t)2 dt

(
∫ L

0
v(t)β+1dt)

2
β+1

. (4.2)

Our first lemma shows that

Lemma 4.1. For any L > 0, c(L) is achieved by a positive function vL ∈ C∞ which solves

L L
γ v = κn,γP.V.

∫ L

0

(v(t)− v(τ))KL(t− τ)dτ + cn,γv = cn,γv
β , where β = n+2γ

n−2γ . (4.3)

Proof. Without loss of generality we may assume that cn,γ = 1 and κn,γ = 1.
Since c(L) is invariant by rescaling we can assume that∫ L

0

vβ+1 dt = 1; (4.4)

thus FL[v] = ‖v‖2
HγL

.

First note that if c(L) is achieved by a function vL, then this function solves (4.3) because this is
the Euler-Lagrange equation for the functional (4.2).

By construction, the functional FL(v) is non-negative and therefore it is bounded from below,
so the infimum is finite. Next we show that a minimizer exists. Let {vi} be a minimizing sequence
normalized to satisfy (4.4), such that FL(vi) ≤ c(L) + 1. Because of Remark 3.6, for all γ ∈ (0, 1)
we have the compact embedding of Hγ

L in Lq, with q ∈ (1, 2
1−2γ ) if γ ≤ 1

2 and q ≥ 1 if γ > 1
2 . In

particular, for q = β + 1. Moreover, there exists vL ∈ Hγ
L such that vi ⇀ vL. This implies

‖vL‖HγL ≤ lim inf
j
‖vj‖HγL . (4.5)

Since {vi} is a minimizing sequence, lim inf ‖vj‖HγL = c(L), and (4.5) implies that we have a mini-

mizer vL ∈ Hγ
L. The compact embedding assures that convergence is strong in Lβ+1, i.e.,

1 = lim
j
‖vj‖Lβ+1 = ‖vL‖Lβ+1 .
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Now we apply Remark 3.12 to obtain vL ∈ C∞.
Finally we observe that the minimizer vL ∈ Hγ

L must be positive. If vL is not non-negative we
take w = |vL| ∈ Hγ

L and the following inequality holds

FL(w) ≤ FL(vL), (4.6)

obtaining a contradiction. Indeed if sign(v(t)) = sign(v(τ)), equality holds in (4.6) and if sign(v(t)) 6=
sign(v(τ)), (4.6) holds because:

(w(t)− w(τ))2 = (vL(t) + vL(τ))2 ≤ (max{vL(t), vL(τ)})2

< (|vL(t)|+ |vL(τ)|)2 = (vL(t)− vL(τ))2.

Once we have the non-negativity of the minimizer, since ‖vL‖Lβ = 1, the maximum principle given
in Proposition 3.8 applied to equation (4.3) assures that vL > 0.
Therefore we conclude the proof of the Lemma 4.1. �

We now introduce the weak formulation of the problem. We will say that v ∈ Hγ
L is weak solution

of (4.3) if it satisfies

〈L L
γ v, φ〉 = cn,γ

∫ L

0

vβ(t)φ(t) dt, ∀φ ∈ Hγ
L (4.7)

where 〈 , 〉 is defined by

〈L L
γ v, φ〉 = κn,γP.V.

∫ L

0

∫ L

0

(v(t)− v(τ))(φ(t)− φ(τ))KL(t− τ) dt dτ + cn,γ

∫ L

0

v(t)φ(t) dt. (4.8)

4.2. Proof of Theorem 1.1: At this moment it is unclear if the minimizer vL for (4.2) is the
constant solution. Let

c∗(L) = cn,γL
β+1
β−1 (4.9)

be the energy of the constant solution. The next key lemma provides a criteria:

Lemma 4.2. Assume that c(L1) is attained by a nonconstant function vL1
. Then c(L) < c∗(L) for

all L > L1.

Proof. Let vL1 be the minimizer for L1, then vL1 is the solution to

L L1
γ (vL1) := κn,γ

∫ L1

0

(vL1(t)− vL1(τ))KL1(t− τ)dτ + cn,γvL1 = cn,γv
β
L1
. (4.10)

By assumption vL1
6≡ 1. Now let

t =
L1

L
t̄ and v(t̄) = vL1

(
L1

L
t̄

)
,

which is an L−periodic function. By definition it is clear that

c(L) ≤
κn,γ

∫ L
0

∫ L
0

(v(t̄)− v(τ̄))2KL(t̄− τ̄) dt̄ dτ̄ + cn,γ
∫ L

0
v2(t̄) dt̄

(
∫ L

0
vβ+1(t̄) dt̄)

2
β+1

=
(
L
L1

)1− 2
β+1 κn,γ

∫ L1

0

∫ L1

0
(vL1(t)− vL1(τ))2 L

L1
KL( LL1

(t− τ)) dt dτ + cn,γ
∫ L1

0
v2
L1

(t) dt

(
∫ L1

0
vβ+1
L1

(t) dt)
2

β+1

<
(
L
L1

)1− 2
β+1 κn,γ

∫ L1

0

∫ L1

0
(vL1(t)− vL1(τ))2(KL1(t− τ)) dt dτ + cn,γ

∫ L1

0
v2
L1

(t) dt

(
∫ L1

0
vβ+1
L1

(t) dt)
2

β+1

≤
(
L
L1

)1− 2
β+1

c(L1) ≤
(
L
L1

)1− 2
β+1

c∗(L1) = c∗(L).
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The second inequality above follows from Lemma 2.7.
Thus we conclude that c(L) < c∗(L1) for all L > L1 and hence c(L) is attained by a nonconstant

minimizer. �

Lemma 4.3. If the period L is small enough, then c(L) is attained by the constant only.

Proof. This Lemma can be proved by the following steps: 1) We first claim that, for L ≤ 1,
the minimizer vL is uniformly bounded. This follows from a standard Gidas-Spruck type blow-up
argument. In fact, suppose not, we may assume that there exist sequences {Li}, {vLi} and {ti} with
ti ∈ [0, Li] such that

max
0≤t≤Li

vLi(t) = max
t∈R

vLi(t) = vLi(ti) = Mi → +∞.

Note that vLi satisfies (4.3). Now rescale

t̃ = ε−1
i (t− ti), ṽLi(t̃) = ε

2γ
β−1

i vLi(εit̃), (4.11)

where

Mi = ε
−2γ
β−1

i .

With this change of variable, (4.3) reads

κn,γ

∫
R
εi(ṽLi(t̃)− ṽLi(τ̃))K(εi(t̃− τ̃)) dτ̃ + cn,γ ṽLi(t̃) = ε−2γ

i cn,γv
β
Li

(t̃). (4.12)

Because of (2.19)∫
R
εi(ṽLi(t̃)− ṽLi(τ̃))K(εi(t̃− τ̃)) dτ̃ ∼ 1

ε2γi

∫
R

ṽLi(t̃)− ṽLi(τ̃)

|t̃− τ̃ |1+2γ
dτ̃ ∼ 1

ε2γi κn,γ
(−∆)γ ṽLi .

Therefore ṽLi satisfies

(−∆)γ ṽLi + cn,γε
2γ ṽLi(t̃) = cn,γ ṽ

β
Li

(t̃) + o(1) as i→∞. (4.13)

Remark 3.12 assures that all the derivatives of vLi are equi-continuous functions, thus we can apply
Ascoli-Arzelá theorem to find v∞ ∈ C∞ such that ṽLi → v∞ as i→ +∞ and which satisfies

(−∆)γv∞ = cn,γv
β
∞ in R. (4.14)

Note that v∞ is positive. By the result given in Lemma 3.13 we derive that v∞ ≡ 0, which contradicts
with the assumption that v∞(0) = 1.
2) We then use Poincare’s inequality given in (3.11) to show that vL ≡ Constant. In fact we observe
that φ = ∂vL

∂t satisfies

L L
γ φ− cn,γβv

β−1
L φ = 0, (4.15)

where L L
γ is defined as in (1.10). The weak formulation for the problem from (4.7) and equation

(4.15) give ∫ L

0

∫ L

0

(φ(t)− φ(τ))2KL(t− τ)dtdτ ≤ C
∫ L

0

φ2.

Rescaling t = Lt̃, φ̃ = φ(Lt̃) and using the expansion (2.15) and the fact that v is bounded we obtain
that ∫ 1

0

∫ 1

0

(φ̃(t̃)− φ̃(τ̃))2

|t̃− τ̃ |1+2γ
dt̃dτ̃ ≤ CL2γ

∫ 1

0

φ̃2.

By Poincare’s inequality (3.11) (since φ has average zero) there exists C0 > 0 for which

C0

∫ 1

0

φ̃2 ≤
∫ 1

0

∫ 1

0

(φ̃(t̃)− φ̃(τ̃))2

|t̃− τ̃ |1+2γ
dt̃dτ̃ ≤ CL2γ

∫ 1

0

φ̃2,
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which yields that ∫ 1

0

φ̃2 = 0

for L small. �

Lemma 4.4. If the period L is large enough, then

c(L) < c∗(L), (4.16)

and therefore, we have a non constant positive solution for (1.8).

Proof. Let

b(t) :=

(
et

e2t + 1

)n−2γ
2

, (4.17)

which is a ground state solution for (1.8). This follows because the “bubble”

ω(x) =

(
1

|x|2 + 1

)n−2γ
2

, (4.18)

is a solution of (1.1) that is regular at the origin. Note that b(t) > 0 and b(±∞) = 0.
Now we take a cutt-off function ηL which is identically 1 in the ball of radius L/4 and null outside

the ball of radius L/2. We define a new function

vL(t) = b(t)ηL(t). (4.19)

We will denote ṽL(t) ∈ Hγ
L the L−periodic extension of vL. The definitions of c(L) and KL, given

in (4.1) and (2.22) respectively, give us the following equality:

c(L) = inf
v∈HγL,v 6≡0

κn,γ
∫ L

0

∫
R(v(s+ τ)− v(τ))2K(s) dsdτ + cn,γ

∫ L
0
v(t)2dt

(
∫ L

0
v(t)β+1 dt)

2
β+1

= inf
v∈HγL,v 6≡0

κn,γ
∫ L/2
−L/2

∫
R(v(s+ τ)− v(τ))2K(s) dsdτ + cn,γ

∫ L/2
−L/2 v(t)2 dt

(
∫ L/2
−L/2 v(t)β+1 dt)

2
β+1

,

(4.20)

where s := t− τ and we have used the L−periodicity of any v ∈ Hγ
L.

We use ṽL as a test function in the functional (4.20). Taking the limit L→∞,

lim
L→∞

c(L) ≤ lim
L→∞

κn,γ
∫ L/2
−L/2

∫
R(ṽL(s+ τ)− ṽL(τ))2K(s) dsdτ + cn,γ

∫ L/2
−L/2 ṽL(t)2 dt

(
∫ L/2
−L/2 ṽL(t)β+1 dt)

2
β+1

=
κn,γ

∫
R
∫
R(b(t)− b(τ))2K(t− τ) dtdτ + cn,γ

∫
R b(t)

2 dt

(
∫
R b(t)

β+1 dt)
2

β+1

<∞,

(4.21)

since the “bubble” (4.18) has finite energy. Let us check that all the integrals above are uniformly

bounded in order to use the Dominated convergence theorem. First, both integrals
∫ L/2
−L/2 ṽ

2
L(t) dt and∫ L/2

−L/2 ṽ
β+1
L (t) dt are uniformly bounded since b(t) ∼ e−

n−2γ
2 |t|. Finally, recalling that b(t), ηL ∈ L∞

and the behaviour of the kernel (2.20)∫ L/2

−L/2

∫
R

(ṽL(s+ τ)− ṽL(τ))2K(s) dsdτ = I1 + I2,
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where

I1 ∼
∫ L/2

−L/2

∫
R\[−ε,ε]

(ṽL(s+ τ)− ṽL(τ))2e−|s|
n+2γ

2 dsdτ

∼
∫
R\[−ε,ε]

e−|s|
n+2γ

2

∫ L/2

−L/2
ṽL(s+ τ)2 dτds+

∫ L/2

−L/2
ṽL(τ)2 dτ

∫
R\[−ε,ε]

e−|s|
n+2γ

2 ds <∞.

I2 ∼
∫ L/2

−L/2

∫ ε

−ε

(ṽL(s+ τ)− ṽL(τ))2

|s|1+2γ
dsdτ ∼

∫ L/2

−L/2

∫ ε

−ε
ṽ′L(τ)2|s|1−2γ dsdτ + o(ε) <∞.

In this second integral, we have used the Taylor expansion of ṽL.

On the other hand, c∗(L) = cn,γL
β−1
β+1 → +∞ as L→ +∞. This proves (4.16).

�

Proposition 4.5. When L→∞, the minimizer vL for the functional given in (4.2) satisfies that

vL → v∞ ≡ b,
where b(t) is defined as in (4.17) up to multiplicative constant.

Proof. The above argument (proof of Lemma 4.4) assures that c(vL) is uniformly bounded. Then,
we can take limits when L → +∞ and we obtain that the minimizer v∞ is a positive solution of

(1.8). Then w∞ = e−
n−2γ

2 tv∞ is a solution for

(−∆)γw∞ = cn,γw
β
∞. (4.22)

Note that the compactness from Remark 3.6 assures the existence of a limit v∞ ∈ Hγ
∞ for {vL}.

Moreover this v∞ is smooth thanks to Remark 3.12. Then by the characterization given by Caffarelli,
Jin, Sire and Xiong for all the nonnegative solutions to (1.4) in [4], we can assert that the singularity
must be removable and thus w∞ is smooth. But from [9] we know that equation (4.22) has a unique
smooth solution (up to dilations and translations), which implies the uniqueness of solution for (1.8)
and thus, the equality v∞ ≡ b. �

Let v be a L-periodic solution of equation (1.8), i.e.,

κn,γP.V.

∫ L

0

(v(t)− v(τ))KL(t− τ) dτ + cn,γv(t) = cn,γv(t)β . (4.23)

The linearization of this equation around the constant solution v1 ≡ 1 is:

κn,γ

∫ L

0

(v(t)− v(τ))KL(t− τ) dτ − cn,γ(β − 1)v(t) = 0.

We consider the eigenvalue problem for this linearized operator:

κn,γ

∫ L

0

(v(t)− v(τ))KL(t− τ) dτ − cn,γ(β − 1)v(t) = δLv(t). (4.24)

Lemma 4.6. There exists L̃0 > 0 such that

δL < 0 if L > L̃0, δL > 0 if L < L̃0, and δL̃0
= 0. (4.25)

Proof. Following the computations in [11] we get that the first eigenvalue δL is given by the implicit
expression ∣∣∣Γ(n4 + γ

2 +
√
λ

2 i)
∣∣∣2∣∣∣Γ(n4 −

γ
2 +

√
λ

2 i)
∣∣∣2 =

n+ 2γ

n− 2γ

∣∣Γ ( 1
2

(
n
2 + γ

))∣∣2∣∣Γ ( 1
2

(
n
2 − γ

))∣∣2 + δL. (4.26)
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Here λ is univocally related with the period by L = 2π√
λ

. δL is a strictly decreasing function on L.

We now define L̃0 as the period corresponding to the zero eigenvalue. �

We are now ready to conclude the proof of Theorem 1.1. Let

L0 = sup{L | c(l) = c∗(l) for l ∈ (0, L)}. (4.27)

By Lemma 4.3 we see that L0 > 0. By Lemma 4.4, also L0 < +∞. Then we are left to check that
if L = L0 we just have the constant solution.

Let v ∈ Hγ
L and EL be the energy functional defined by

EL(v) := κn,γ

∫ L

0

∫ L

0

(v(t)− v(τ))2KL(t− τ) dτ dt− cn,γ(β − 1)

∫ L

0

v2(t) dt

then,

EL(v) ≥ 0 for all L ≤ L̃0. (4.28)

Indeed, from the variational formulation of the first eigenvalue δL (Rayleygh quotient), the following
Poincaré inequality holds

κn,γ

∫ L

0

∫ L

0

(v(t)− v(τ))2KL(t− τ) dτ dt− cn,γ(β − 1)

∫ L

0

v2(t) dt ≥ δL
∫ L

0

v2(t) dt. (4.29)

Let v > 0 and v1 :≡ 1 be both L-periodic solutions of (4.23). We define

w = v − 1. (4.30)

Note that w > −1 since v > 0, and it satisfies

κn,γP.V.

∫ L

0

(w(t)− w(τ))KL(t− τ) dτ = cn,γ
[
−(w(t) + 1) + (w(t) + 1)β

]
, (4.31)

which is equivalent to

κn,γP.V.

∫ L

0

(w(t)− w(τ))KL(t− τ) dτ − cn,γ(β − 1)w(t) = f(w(t)) (4.32)

for
f(z) := cn,γ

[
−(βz + 1) + (z + 1)β

]
. (4.33)

Note that if L ≤ L̃0, inequality (4.28) assures that f(w) ≥ 0.

Proposition 4.7. If L = L̃0 the unique solution for (4.23) is the constant solution, i.e, w ≡ 0.

Proof. Step 1: If L ≤ L̃0, then the function w defined as in (4.30) must satisfy w ≥ 0. This just
follows by sketching the plot of f(w) ≥ 0.

Step 2: Let v any L−periodic smooth solution for (4.23), then there exists t1 ∈ [0, L] where v
intersects the constant solution v1 ≡ 1, i.e., w(t1) = 0. In fact, let a, b ∈ [0, L] satisfy w(a) =
maxt∈[0,L] w(t) and w(b) = mint∈[0,L] w(t), where w is he function defined in (4.30). Then because
w satisfies (4.31) we have

−w(a)− 1 + (w(a) + 1)β(t) ≥ 0

and
−w(b)− 1 + (w(b) + 1)β(t) ≤ 0.

Thus we can assert that w(a) ≥ 0 and w(b) ∈ [−1, 0], and therefore there exists a point t1 ∈ [0, L]
with w(t1) = 0.

Step 3: Applying the maximum principle given in Proposition 3.8 to equation (4.31) we get w > 0
or w ≡ 0. Then step 2 assures that w is the zero function.

�
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Proposition 4.8. The period L0 defined in (4.27) is the period L̃0 given by the zero eigenvalue in
equation (4.24).

Proof. Because of definition of L0, it is trivial that L0 ≥ L̃0. We now are going to check the opposite
inequality. We have defined L̃0 as the period where the constant solution v1 ≡ 1 loses stability. Thus
for Lε = L̃0 + ε with ε > 0, we have inestability for the constant solution and thus c(Lε) < c∗(Lε),

The definition of L0 implies L0 ≤ L̃0 + ε. Taking limit as ε goes to zero we have the claimed equality
L0 = L̃0. �

This proves Theorem 1.1.
�
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Universitat Politècnica de Catalunya,
ETSEIB-MA1, Av. Diagonal 647, 08028 Barcelona, Spain

E-mail address: azahara.de.la.torre@upc.edu

Manuel del Pino

Universidad de Chile,
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