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Abstract
For the Neumann sinh —Gordon equation on the unit ball B C R?

{ “du=xt (- ) N (e -4) B

g—;‘:o on OB

we construct sequence of solutions which exhibit a multiple blow up at
the origin, where A% are positive parameters. It answers partially an open
problem formulated in [7].
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1 Introduction and statement of main results

In this paper, we consider the Neumann sinh —Gordon equation

oot () () e g
g_:jzo on 01

on a smooth domain Q C R?, where v denotes the unit outward normal to 6
and A* are positive parameters.

The analysis of non compact solutions to (1.1) has recently attracted a lot of
interest. Let u, be a sequence of solutions to (1.1) with uniformly bounded
parameters \X. We define the positive/negative blow-up set of {u,} as

Sy ={z€Q: Jz, - Qs.t. ln)\fiun(xn)—ln/ei“" — 400 as n — 400}
Q
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and we can associate (up to a subsequence) to every p € Sy its positive/negative

limiting mass
)‘7# eiun
ma(p) = lim lim %

r—0n—+o0 fﬂ etun

In particular, S is a finite set and

)\:t e:l:u"

- Z m(p)dp
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weakly in the sense of measures, as n — +00. In a recent paper [7], Jost, Wang,
Ye and Zhou proved that a quantization of the limiting masses holds: m4(p)
are multiples of 8. It is the analogue of a result by Li and Shafrir [8] for the
mean field equation.

In view of a relationship in [9]

(m(p) — m_(p))° = 87 (m (p) +m_(p)),

it follows that for any p € S; N S_ the couple (m4(p), m—_(p)), up to the order,

takes the value
& (’“(k;”,k(k;”> , ke IV\ {0}

An open problem raised in [7] concerns whether or not in general k¥ must be 1.
(See Problem 1 of [7].) Let us stress that £k = 1 corresponds to a simple blow
up in p while & > 1 gives rise to a non-simple (multiple) blow up.

In this paper, we will give a negative answer to this question. We consider the
following problem on the unit ball B:

—Au=p*e*—1L [pe")—p* e —L[ze ") inB
{ g—:f =0 on 0B. (1.2)

The result we have is:

Theorem 1.1. There exists pg > 0 small such that for any 0 < p < pg problem
(1.2) has a solution u, such that as p — 0

pletr — 8udy, ple % — 24mby (1.3)

weakly in the sense of measure in B.

The solution u,, is constructed by superposing a positive bubble centered at the

origin and 3 negative bubbles centered at la;, where a; = ehTﬁ, 7 =0,1,2, are
the 3—roots of unity and I = I(p) — 0 as p — 0. Setting AF = p? [, e**, by
(1.3) we have that

elr e U
j—u = 8mdy, A, ——— — 24wy
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weakly in the sense of measure in B, as p — 0. In this way, u, is a sequence of
solutions to (1.1) with parameters )\;t for which 0 € S; NS_ and the limiting
masses satisfy my(0) = 8w, m_(0) = 24x. Hence, in general k¥ = 1 does not
hold.

We can recover an example of non simple blow up for the Dirichlet sinh —Gordon
equation too. Let u) be the solution of

ud =u, on 0B.

{ Aug = éfB(e“P —e %) inB
p

The function v, = u, — u) satisfies
—Av=p*(V;te" =V, e ) inB (1.4)
v, =0 on 0B, )

where the potentials Vpi = ety o VE uniformly as p — 0 for some explicit
functions V*. In fact, V' has a local minimum at the origin while V'~ has a local
maximum at the origin. This suggests that the existence of non-simple blow-up
solutions depends very much on the local structure of V*. Our computations
also suggest that when Vpi = 1, problem (1.4) has only simple blow-ups.

For €, d and I > 0, let us define

862 8e?
Utz)=ln+5—5——>, U; =In ,j=0,1,2,
A e e R P PO

which are solutions of —AU = p?eV in R?. Let us introduce the projection
operator P : C%%(Q2) — C%*(Q), a € (0,1): given u € C**(Q), let Pu be the

solution of
APy = Au — %fBAu in B

8Pu =0 on OB
Jg Pu=0.

For a suitable choice of €, and I, PU := PUT — PU~ is a good approximating
2

solution to (1.2), where U~ = ZUj_. Our solution u, will be in the form
7=0

PU + ¢, where ¢ is a remainder term small in L*°(Q)—norm and I = I(p)
satisfies I(p) — 0 as p — 0. The existence of I(p) will follow by means of a
Lyapunov-Schmidt finite dimensional reduction and crucial will be the property
that 0 is a critical point of the related Green’s function. This procedure has
been used in many other papers. See [1, 3, 4, 5, 6, 10] and the references therein.
The main difficulties here are the estimates of the distance between bubbles.
Theorem 1.1 is the first nontrivial example of non-simple blow up solutions
for sinh-Gordon equations. Previous known examples of non-simple blow up
solutions are for Liouville equation on a disk in [2] (without boundary condition)
or Liouville equation with anisotropic coefficients in [10].



The paper is organized as follows. In Section 2 we describe exactly the ansatz
for the solution we are looking for and we rewrite the problem in term of a
linear operator L (for which a solvability theory is performed in Appendix B).
In Section 3 we solve an auxiliary non linear problem and reduce (1.2) to find
critical points of a function Ep(l). In section 4 we prove Theorem 1.1 and an
aymptotic expansion of E’p (1) for | small has to be performed. A coefficient in
the expansion is given in integral form and its sign is crucial to have critical
points of E,(l) for [ small: Appendix A is devoted to the exact computation of
such an integral.

2 Approximating solutions

First of all, let us introduce the Neumann Green’s function G(z,y) on B, i.e.
the solution of the problem

—A,G(z,y) =6, — in B

%G (z,y) = V,G(z,y) -z =0 on OB
fB G(w,y)dx =0.

3

On B the regular part H(z,y) of G(z,y), defined as H(z,y) = G(z,y)+ 5 In|z—
y|, turns out to be:

1 1
H(z,y)=--In (lzPly|* — 2z -y + 1) + Elml2 + c(y),

where ¢(y) is chosen to have [ G(z,y)dz = 0. Here and in the sequel, the
2
expression z - y will denote both the inner product in R?, z -y = Z z/y’ and
j=1

the inner product in C, z-y = Re (z7), depending on whether z, y are considered
as points in R? or C.

For y = 0 it is easy to compute ¢(0) = —g. Since G(z,y) is a symmetric
function, we can deduce that

_ _ _ P _ P 3

Hence, the expression of H (z,y) becomes

1 : o> +y> 3

Given a; = e¥, 7 =0,1,2, the 3—roots of unity, define

5= ie47rH(0,0)747r >2_0 G(0,ay)

V8
1

€j=—6

V8

drH(laj la;)+4n 32, G(lam,la;)—47G(la;,0) , j=0,1,2.



Since for symmetry €; does not depend on j = 0, 1,2, we will refer to it simply

as €. Since a; - am = —% for j # m, we get that
2 5% -3
°= %63(14 1, e= 69\/§ (=152

We describe asymptotically the action of P on UL in the following Lemma:

Lemma 2.1. Let j =0,1,2. There hold

PUT =U" —1n(86%) + 87 H(z,0) + O(6?p?|1n 6p|)
PU; =U; - In(8¢?) + 87 H (z,la;) + O(e*p*|1n ep))

uniformly in ), as dp,ep — 0. In particular, there hold

PUY = 87G(z,0) + O(6°p*|In 8p| + 6°p*|z|~2)
PU; = 8rG(z,la;) + O(€2p*|1In ep| + €2p*|x — laj| ~2).

Proof. First, let us observe that

8dx
— AUt = 2/6U+=/ T =871+ 0(6%p%) (2.1
/B "/ wi<1/sp AT [2P)2 %) (21)

—/ AU =p2/ eli =p2/ Vi + 0(e2p?) (2.2)
B B \z—la;|<1/2

=871 + O(?p?).

Let us justify the validity of the expansion for PUT. Since

out 4 0 1 5 o
T ErTl 871'5 (—%ln|x|> + O0(6%p®) on 0B,
the function p = PUT — U+ +1n(8?) — 87 H(z,0) satisfies
Ap = 0(6%p?) in B, g—f = —SW@ + 0(62p?) = 0(6°p?) on OB

in view of (2.1). Since [, ln(% +1) = 0(8%p%| In 8p|), we easily get that
52P2
/Bcp - /B(PU+ — 87G(,0)) + 2/Bln(— +1) = 0(622|In p]).

|2

By the representation formula
1 Op
o) =1 [ o= [ Gareway+ [ GwFEwaw
T JB B dB v

for every z € B, finally we get that ¢ = O(6%p?|In dp|) uniformly in Q, as
dp — 0. Similarly, the expansion of PU~ follows and the proof is done.
|



In order to find solutions we will need a-posteriori that {* has to behave like p,
as p — 0. In order to simplify the estimates and make the argument more clear,
in the sequel we will assume that

JC>1: Clp<it<Cp. (2.3)
Let
1 2 1 -t
(6p)%
W)= | 5557 +
(@) (8292 + |z|2)® Z (e2p? +|;U—la]| )8

Jj=

For any h € L*°(Q), introduce the weighted norm
1Bl = sup [W (z)h()).
zeQ
Let us stress that there are many choices for the exponents in the weight function

W (z) and ours turns out to be satisfactory.

With Lemma 2.1 in hands, we can evaluate how good is the approximating
solution PU in || - [|«:

Proposition 2.2. Assume (2.3). There holds

1 _ 1 _ 3
||APU+p2(ePU—;/BePU)—p2(e PU—;/Be PU)||*:O(lg|lnl|)

as p,l = 0.
Proof. We have that
1 1
R - APU+p2(€PU _ _/ ePU) _pQ(e—PU _ _/ e—PU)
T™JB T™JB

2 2 2

p /( PU Ut P / —PU U-
- eV —e” )+ — [ (e - E e’i)

T™JB T JB =0

2
Let RT = p ( PU _ ¢ +) and R~ = p2(67PU - ZCUJ'_) in order to get R =
7=0

R —R - L[, (R*—R).
Estimate on R*. By the choice of § and Lemma 2.1 we get that
PU-Ut = (PUt-U")-PU"
2
= 8 (H(w,0) — H(0,0)) — 8 Y _ (H(x,la;) — H(0,la;))
j=0
2

+2 Z In(e?172p? + I 2 — a;j|*) + O(e?p?| In €p))
=0



2
uniformly in Q. By Z aj = 0 note that the expansions

=0
2 2 l2
27-2 2 ;-1 2y _ —1 ,
Zln(el p°+ Iz — a4 )—221n|l :c—aj|+0(|l_1$_aj|2) (2.4)
Jj=0 j=0
2
z |=[® =
= -2 (ZCU) - 7 + O(l—2 +l2) = O(l_2 +l2),
7=0
in B;/»(0), and
2
H(z,0) — H(0,0) = Y (H(,la;) — H(0,la;)) (2.5)
j=0
o, 1§
_— —_ 2 2 p— - .
=511 Jz:%ln(l |z|* — 2lz - a; + 1)
LIRS
Y I AW 20,12\ — 2
=5~ 5-(Q_a) -2+ 0@af*) = O(|=)

in © hold. Hence, we get that
2
%V = p? [[(€1720% + 17" — a;*)%eV™ (1 + O(2? + 1| In1]))  (2.6)
=0

uniformly in € and in particular, by (2.4) in By/»(0) there holds
p2efV = p2el" (1+ 00 %z +1%)) . (2.7)
Then, there holds fBl/z(o) |R*| = O(I?) and

(8202 + |2|)3

[W(z)R*(z)| < ———|R*(2)|
(dp)1
lyl? ?
< C (5212;)2 7+ > =0
AT+yP)s  Q+yP)s
in By/5(0), where y = 35 € By/25,(0). Outside B;/5(0), firstly we have that
(9p)%
pPwelt < — T _ osti-ipt) = 0% (2.8)

= @+ i)
in B\ B;/»(0). Secondly, by (2.6) we deduce that

NG 1 N )
o @7+ T 29

(€0 +|z]* +17)* _ 2122 2\ _
o (o) 0@ 1) =0




in B\ B;/»(0) and then

2 2 _ 2\3 z .
pP’WetV =0 <p2 (€*p +(|$)1lao| ) ) =05 =007) (2.10)
€p)4

in B\ By/5(0). Hence, by (2.8) and (2.10) we get that [WR*| = O(I%) in
B\ By/»(0). By (2.9) it is easily seen that

/ \RY| < p? (/ L / eU+> — o).
B\B;,2(0) B\B;,2(0) B\B;,2(0)

Finally, combining the estimates in B;/,(0) and in B\ B;/»(0) we get that
1R+ [ 18 =0 (211)
B

Estimate on R™. Fix j =0,1,2. On Byj/5(la;) we have that

) ) _ 822
S Y L

m#j

As for Rt, we can write in Q:

—-PU-U; = (PUj — + Y PU,-PU"=8r Z (x,lam) — H(laj,lay,))
m#j
—87 (H(x,0) — H(la;,0)) + 21n(52l_2p2 + 17 z)?)

2]-2 2 1, 2
P +7 7 — ap| 2 2
-2 E In o —amP + O(e*p?| In ep)),

by means of by the choice of € and Lemma 2.1. We compute now the Taylor
expansion of

2

Z (2,lam) — H(laj,lay)) — (H(z,0) — H(la;,0))  (2.12)
|5’3|2 - 2
= O(llx —la;|) = O(l|x — laj| + |z — la;|*).

Hence, we get that

2 —PU _ 27-2 2 1 |a, —am|4
pe =p2eVi (82172p% 4 |17 1z|?)? H ((—:2l—2p2—lj—|l—1m—a BE (2.13)
m#j m

x (14 O@* Inl| + |z — laj| + |z — la;]*))




uniformly in €, for any j = 0,1,2. Note that on By/5(la;)

ln(52l72p2 + |l71$| Z In e2l~ 2[)2 + |l Iy — am|2

i — am?
m#] @m|
=2In|I~ 1x|—221 —aaT| +0(@1?)
m#£j m
- (z —lay) _22% dm —laj) + O(® + 1%z — laj|*)
m#j

=0@* +1 2|z —laj|?)

because

Z@:_ ——Zam—aa

m#j m#j
Hence, we deduce that

pre PV = pPels (14 O + 1z —laj| + 17|z — la [*)) (2.14)

in By/s(laj), j =0,1,2, and then

~ _ €2p?
|R|§CﬁfiU2M—Mﬁ+ﬂw—mﬂ+F%HXZ:@%LHm_m|%Q.
m#j "

In turn, we get that fB,/2(1aj) |R=| = O(1?|Inl]) and the estimate

1 _
W (z)R™ (z)| m (€172 |y]* + elply| + 1?)
+C =0o(l%
vy O
does hold in By/»(la;), where y = £1% € By 5,,(0).
2
Setting B := B\ U By/3(laz), we have that
=0
wer < DL _odrihonh) s
P < P = 0T ) = 04 (2.15)
J
in B. Since by Lemma, 2.1
(52 2 2\2
e—PU  _ (0%p” + |z|?) o 8TH(2,0)+87 T3 _ H(z,la;) (1+O(l4|1nl|))
1= (€202 + |z — lay|2)?
2 2 2\2
= 0| O+ Jo]) , (2.16)
[Ti=o(?0® + |2 — la;[?)?



we get that in B

e < o f @ + [~ las + 1)
T (ep)F (202 + |a — lag]?)F [T, (€20 + |z — la [?)?
2 4
rop _ 23 l 7
< 7% (1 = 1z 2.1
< C (ep)d ( + (€2p2+|a:—la1|2)2) 0( ) (217)

7
4

in view of § < e. Then, by (2.15) and (2.17) we get that [WR| = O(l
and by (2.16) it follows easily that

/_|R*| = 0(p2/_H(e2p2+|x—laj|2)2+l2> :0(14/_|x—la2|4+12>
B B

B j#0

-0 <l2/1~|y—a2|_4+l2) —o@2).
I-1B

The estimates on each Bj/5(la;) and in B yield to

)in B

wrmzmﬁx‘émwzmmmm. (2.18)

Finally, by (2.11) and (2.18) we get that

_ 1 _ 3
uRmsanme|u+—(/WRﬂ+y/R|)@wwnzoaﬂmm
™ B B B

because

supW <
B (ep)

=0@?). (2.19)

N

Remark 2.3. Let us observe that (2.7) implies p?eP’U < Cp?eV" in By /5(0)
and (2.9) yields to

2 2.2
p2efU <C'p? < C P <C cp
- T (@ + [z —laxf?)? T (2% + |z — lazf?)?

in B\ By/»(0). Similarly, (2.14) gives p*e~PU < CpeYi in Byjy(laj) and by
(2.16) we deduce that in B there holds

1" 5 52 2 _l 2 l2 2 I 2l74
PPV < sz(2pf|$ al|+A) < 229 -
[Tj=o(€2p? + |z —la;|?)? (e2p? + |z — laz|?)
€22

< .
S O T laP)y

10



In conclusion, the global estimate

2
p2(ePU + e PU)y < Dy [ V" + Z elUi (2.20)
=0

does hold in B, for some constant Dy > 0. Moreover, (2.7) and (2.14) give that

3p* (e + e V) (0py) —

8
1xTul2)2
62p4(€PU+€_PU)( 2+ 8 (221)

uniformly on compact set of R2 as | —= 0.

We will look for a solution u of problem (1.2) in the form v = PU + ¢, with ¢
a remainder term small in || - ||, which is 2F —periodic (in the angular variable)
and even in the second variable. Identifying z = (z1,22) € R? and z; +izs € C,

let us introduce

2mi

5 ) =u(z), u(Z) =u(z) ae. in B}

S={ueL'(B): ule
as the space of %’r—periodic functions on B which are even in 2. We have that

2
U+ and Z eYi arein S. Then
=0

2 2
_ o vt _ 1 U+t vr 1 Ur
—apr =g (7 =2 [ o) - g_;g/B

2w

is invariant under ZF —rotation and conjugation. Since G(e’3 z,y) = G(z,e™ 5 y)
and G(Z,y) = G(z,7), by the representation formula for PU:

PU(z) = /B G(z,y)(~APU)(y)dy, Vz € B,

simple changes of variable yield to PU € S.

We take the remainder term ¢ in W22(B) NS with [ ¢ = 0. In terms of ¢,
equation (1.2) becomes

(10

v

—[R+ N(¢)] in B,
on 0B,

o |l

where



Recall that

™

2
R:APU+p2(ePU—e_PU)—p—/(ePU—e_PU).
B

Let us stress that R, L(¢) and N(¢) are in S and there holds:

[ r=[ ro= [ vo=

3 The finite dimensional reduction

Let us introduce the functions

2 _ 52,2 Clasl? — €22
O L A et A TR R
62P2+|-'L'|2 ’ €2p2+|-'1f—laj|2
and 5 ( la))
pT ep(z —la; .
=4—"_ . =4——" 7 =0,1,2.
S e A P 7
Define

2

—laj) - aqj

Z=3 Zj-a;= 246% 2 1 |z — la; 2
=0 7=0

and observe that Z € S. Setting So = SN {[zu = 0}, we are interested in
solving the following linear problem associated to L: given h € L*®(B) N Sy,
find a function ¢ € W22(B) NSy such that

L(¢) =h+c¢APZ inB
%2 =0 on OB (3.1)
fB APZ¢ =0,

for some coefficient ¢ € R.

We will follow the approach in [3] as re-formulated in [5, 6], developed there
for a Dirichlet linear problem (see also [4]). Asymptotically the kernel of L
is composed by linear combinations of Yy, Zg ;, Yy, (Z;) for j = 0,1,2 and
k = 1,2. The elements 2—”—penodlc in the kernel of L are forced to be linear
2
combinations of Yy, Z Zy,j, Re Z Z;a3 | and Im Z Zja5 |, where a3 is
7=0 7=0 j

the complex square. Note that

12



2
and then the kernel of L in S is spanned by Yjp, Z Zy,; and
=0

2 2
Z = Re ZZ]'G? :ZZj-aj.
j=0 7=0

Among them, only Z has “asymptotically null average on B”, and then, we
expect that asymptotically the kernel of L in Sy should be generated simply by
Z. In Appendix B we will show that the picture above is correct:

Proposition 3.1. Assume (2.3). There exist ly > 0 and C > 0 such that, for
any h € L®(B)NSy and 0 < I < ly, there is a unique solution ¢ € W*2(B)NSy
to (3.1) with

I9llco < ClInd[[[Rll, I¢llmys) < C((I6lleo + lIAll4) - (3-2)

Based on it, we solve now the following nonlinear auxiliary problem:

—A(PU + ¢) = p*(ePU+¢ —e~PU=%) in B
—é [(ePUT0 —e=PU=0) + cAPZ

% =0 on 0B
[n APZ¢ =0,

(3.3)

for some ¢ € W22(B)N Sy and a coefficient ¢ € R. The following result holds:

Proposition 3.2. Assume (2.3). There exist C > 0 and ly > 0 such that for
any 0 <1 < ly problem (3.3) has a unique solution ¢,(1) € W*%(B) NSy which
satisfies ||pp()|loc < C13 In%1. Furthermore, the function | — ¢p(1) is a C*

function in L>°(B) and in H'(B).
Proof. We can rewrite (3.3) in the following way
L(¢) =—(R+ N(¢)) — cAPZ.

Let us denote by £ the function space Ly := L®(B) N Sy endowed with the
norm || - ||« instead of || - ||o. Proposition 3.1 ensures that the unique solution
¢ = T(h) of (3.1) defines a continuous linear map from the Banach space £§ into
Lo, with a norm bounded by a multiple of |Inl|. Then, problem (3.3) becomes

¢ = A(¢) .= -T[R+ N(9)].

Let B, := {d) € Lo : ||f]loo < 7% In? l} , for some r > 0. Since

[p2ePV (e — e — g1+ do)| = [(p%eV" + RY) (e —e? — 1 + )|
¢ (max | g1lloc) 61 — oo (P + B,

IA

13



by (2.11) we get that

%7 (€% — %2 — g1 + a)ll < C(maxt [|illoo) 161 — S2lleo

and

(L
v

[ e et — o+ )l < C1 a6l =l

in view of (2.19). Combining with the similar estimates for p%e YU(e %1 —
e %2 + ¢1 — ), we get that

[N (¢1) = N(¢2)ll« < Cl_%(gg [#illoc )61 = b2 llco-

Since N(0) = 0, in particular we have that

IN(¢)]l. < CI™%||]|%. (3.4)

Hence, by Propositions 2.2 and 3.1 we get that

MA@l < ClInl|(|R]l« + [IN()]]+) < C13In? 1+ C"13|1n® 1| < % In®1
I A(¢1) — A(h2) oo < ClInI||N(¢1) — N ()|« < 110> 1]|| 1 — o]

for all ¢, 1, P2 € B,., with r = 2C" and I small enough. Since A is a contraction
mapping of B,., a unique fixed point of A exists in B,.. The regularity of the map
I = ¢, (1) follows using standard arguments (see for example [5]). n

After problem (3.3) has been solved, we find a solution to problem (1.2), if we
are able to find I > 0 small such that the coefficients ¢(!) in (3.3) vanish. Let us
introduce the energy functional E, : Hy — R given by

1
By(w) =5 [ [Vup =g [ e e),

where Hy = H'(B)NS,. A critical point u of E, on Hp yields to a 3*—periodic
and zz—even solution of

—Au=p*(e*—e %) -\ inB
% = on 0B,

for some Lagrange multiplier A\. Integrating the equation on B, we get that
A=1[,(e* —e ™) and we recover a solution to (1.2).

We introduce the finite dimensional restriction E, : (0,1g) — R given by
E,(1) := E,(PU + ¢,(1)). (3.5)

Since the map I — ¢,(I) is a C* function in H'(B), we have that E,(I) is a
C'—function and the following result is standard:

14



Lemma 3.3. Assume (2.3). Let | be a critical point of Ep. If | is small, then
PU + ¢,(1) is a critical point of E, in Hoy, namely a solution to problem (1.2).

Proof. If | > 0 is a critical point of Ep, we have that
/ V(PU + ¢,)V(0,PU +d,¢,) — p* / (ePUT9r —e=PU=90) (5, PU + §;¢,) = 0.
B B

Since 9;PU and 0;¢, have zero average on B, by (3.3) we can rewrite this
condition as

o) /B APZ(B:PU + 8id,) = c(l) /B AZ(PU + 8idy) = 0.

Differentiating [, APZ¢, = [, AZ¢$, =0 in [, we get that

2
/ AZdyo, = —/ W(AZ)¢, = p22/ i (Z;0U; +0,Z;) - ajd,.
B B i=0/B

Since

o0 0 1
QU =Yo—, oU; = Zo,z'i6 +—Z;-a;, (3.6)
1) € €p
we get easily that

1
Zj@lUji +0,Z; = 0(5)

Hence, by Proposition 3.2 we have that

(ol (12101
|/BAPZ6l¢,,|_O<:—p) _o< = ) (3.7)

By (3.6) we deduce the expression for ;U

a8 o~ Oe 1
=Yy =N Zo, = - 2.
aU =Y, 5 Z % T
=0
Arguing as in Lemma 2.1, it is easy to establish the following expansions:

PYo=Yo+2+0(0p), PZy;=2Zp;+2+O(ep), PZ =72+ O(epl) (3.8)

uniformly in Q as I — 0. As far as (3.8), let us simply observe that

8z 8 2
5 =~ Py (a: . ZaJ) + O(epl) = O(epl) on OB
/ 7= 3€p/ L"IOZ - ag + O(epl) = O(epl)

B B |z —lao|

a

15



2
because z aj = 0. Then, we get that
=0

1 1
8 PU = P(§,U) = —52 +0(3)

uniformly in Q as [ — 0. First, let us compute the following expansion:

/B (APZ)(PZ) /B (AZ)(PZ) = /B (AZ)Z + O(epl /B IAZ|) (3.9)

2
= 7Y / €Y (Z; - 0;)(Zum - am) + O(epl)
jm=0"8
2

- / 128(y - ;)
= wi<i/er A+ [y
_ / 128(y - a;) (y +1e'p" (a4 — am)) - am
o yi<iye (L 1912)° 1+ Jy + et p~H(a; — am)?
+O0(epl)

128y3
_ —3/ 12 L a
o A Tyiyr oW

as [ — 0, by means of the Lebesgue’s theorem. By the expansion of 0, PU and
(3.9) we deduce that

/ (APZ)(9,PU) / (AZ)(8,PU) (3.10)
B B

_é/B(AZ)Z-i-O(%/BmZD

as [ — 0. Combining (3.7) and (3.10), finally we get that

3¢() 128y?
0=c(l /APZ PU +8¢,) = 2= (/ e FR——G]
() B ( 1 1 p) p R2 (1+|y|2)4 ( )
as I — 0. It implies that ¢(I) = 0 for [ small enough. m

4 Energy expansion

In view of Lemma 3.3, it is crucial to write down the expansion of Ep as p,l — 0.
We have that

16



Theorem 4.1. Assume (2.3). It holds
E,(l) = —64x1n p + Dy — 9671 — 3272172 p? + o(1?)

as | — 0, where Do = 9671n2 — 167 + 487 In 3.

512 -3

Since € = £ ——(1 — 16)=21=2, by (2.3) we can further write the expansion of
Ep(l) as

~ . 4

E,(I) = —64nInp + Dy — 9672 — 81—7;61*%2 +o(1?)
as | — 0. The non-constant main order term P,(l) = —96ml* — ;7% ®p” has a

strict maximum point at (648¢%) % pi. It is now easy to see that

1

P,((647¢%) 75 p1) , P((649¢°) % p7) < P((648¢%) 5 p7).

Since at these points the values of P, are of order /p and o(l?) = o(\/p), we

get that for p small the above inequalities still hold true for E,:
E,((647¢%)73p3) , E,((649¢°) 5 p%) < E,((648¢%) 73 p%).

Hence, E, has a maximum point I, € ((647¢%)~%pi, (649¢5) % pi) (which is

consistent with the assumption (2.3) for C' > 0 large). Lemma 3.3 now yields

to the existence part in Theorem 1.1. The verification of (1.3) follows by con-

struction of the approximating solutions PU and (2.3).
Proof (of Theorem 4.1).  The function ¢ = ¢,(l) satisfies

L(¢) = - (R+ N(¢)) —c(hAPZ

as observed in the proof of Proposition 3.2. Multiply it by ¢ and integrate on
B in order to get

2 _ 2 PU —PU 2
/B|V¢| =p /B(e +e P +/<R+N(¢))¢-

B

Recall that [ ¢ = [ APZ¢ = 0. By (2.20), (3.4) and Propositions 2.2, 3.2,
we get that

/B|V¢|2 < Cllgli% + (IRl + IN(@)l)lIlloe < C'PI*l. (41)

Since

/BVPUV¢=/B (—AU—{—%/BAU>¢=p2/B(eU+ —ge”f)d)

in view of [ ¢ =0, we get that
/ VPUVé — p2/ (ePU —e PV = —/ (Rt —R7)¢.
B B B

17



In view of (2.20) we can write now Ep (1) in the form:

E,(1)

BO) = [ (R =R)o+5 [ (V0P + 067 [ @7+ e )

B0 +0 (1ol [ (71 +1R7D+ [ 1962 + 101 ).

where 1
E() = —/ |VPU|? - p2/ (ePV +e V).
2/B B
By (2.11), (2.18), (4.1) and Proposition 3.2 finally we get:

E, (1) = E(l) + o(I) (4.2)

as | — 0.

We are led now to expand the functional E(l). First, we consider the gradient
term:

2
[vpup=p [ @ -3 enru
B B iz

:p2/eU+
B

+0(1*|In1)]
2

+p22/ eli
j=0"8

+0(1*In1))]

2
+2p? Z/ eV In(E172p + |17 'z — a %)
=078

U™ +8n (H(x,0) — H(0,0)) — 87 Y _ (H(x,la;) — H(0,la;))
§=0

U —8n (H(z,0) — H(la;,0)) + 87 Y (H(x,lam) — H(laj,lam))

m=0

2
-2p° Z/ eVi (—2ln3 + Z In(2172p? + I 'z — an|?) — In(6%172p” + |l_1x|2))
j=0"B m#j
=I+I1I+1II+1V
by means of Lemma, 2.1.
As far as I, by (2.5) we get that
I = / %(—4lnp—ln£—21n(l+|y|2)> +O(I*|1Inl])
Bl/Jp(O) (]‘ + |y| ) 8
= —32nlnp— 967 Inl + (487 In2 — 64x) + 487> + O(1*|Inl|)

18



in view of 6 = %63(1712”6, where

/ In(1 + |y|?) /+°° In(1 + s) In(1+5) ;o /+°°
722 =T - = +7T
r2 (1+[y?) 0 0

1+s)2 " 1+s
Similarly, by (2.12) we deduce that

2

8e2p? ]2
7= / n o)
=By ey (€07 + ]z —1aj?)? (€29 + |z — la;[?)?
2 3 2
= T (e~ 24P + o)
,-Z:;,/Bl/m(m (1+[y[?)? ( 8

= —967lnp+ 967Inl + 3(4871n2 + 327 + 327 In 3) — 240712 + O(13)

2
e5l -3

in view of € = £—=(1 —1°)"21"2. As far as III, let us expand the following
integrals:

86%p* 27-2 2 -1 2
1/2lta;

852122
— 1 2l—2 2 _ 12
.éwmnwnﬂﬁ+WPVn& oty = o)

= 862l_2p2/ ly|*In(e?172p* + |y — a;|*) + O(5*1~*p*)
Bi2(a;)
= 852l*2p2/3 ly| *1n |y — a;|* + o(6%12p?)
1/2\aj

852p? . .
_ e — gy + (622
/B,/z(zaj) (62p% + |z[?)? !

because of 2Inly — a;| < In(e?l72p? + |y — a;]?) < 0, (82172p* + |y*)~2 =
ly|= + O(6%172p?) in By 5(a;) and the Lebesgue’s theorem;

862p2
R W TR S BN T R DR
/B\Bt/z(laj) (02p2 + |z|?)? n(e Pl aJ| )

842 p? ( €212p?
= — lnllm—a-2+7+064l44)
.@wwwﬂwwﬁﬂmaz | i g g TOETT)

852p2
= S — ) Tk
~/B\Bl/2(laj) (6%p* + |z|?)? | i

8
+ezl‘2p2/ 501 py — a1 + O(M 1Y)
B1/sp\Biy25,(1/0p aj) (1 + |y|2)2 !

862p2 -1 2 2,_9 9 2,_9 9
Y (la)mln“ z — a;|* + 8’172 p? + o(*1 7% p?)
172(la;
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because of 617 py — a;|™2 < 4 in Byys, \ Bijas,(1/0p a;) = R* as 6l 'p — 0
and the Lebesgue’ theorem.
Summing up the previous expansions, we get that

ﬂ In(e?l%p* + |l 'z — aj|?) (4.3)
5 (020 + [2?)? P ! '

852[)2 -1 2 27-2 2 27—-2 2 27—2 2
= Jo @ ey Il A ST ol T

Let us note that (4.3) holds whenever 3l 1p, el 'p — 0. Then, by (4.3) we get
for IIT and IV:

2
III = 2p22/eU+ln(62l72p2+|l71x—aj|2)
— /B
82 p? 3.3 2 272 2 2
— 2/BWIH|I x° — 17 + 48we“l ™ p* + o(I*)

and

(217202 + Itz — am|?)

[y
I = 1 2 1 =7
|4 967 In3 — Z/ @7 T |x—la3| B (n 821-2p2 + |I-1z|?

+0(1Y
2172p% + |l 'z + a;|?

= 1 2 1

967 In 3 + 2/ €2p +|$|2 (nnm#j(ezl_ng+|l—1$+aj_am|2)
+0(1*|In1))

8€2p2

7( 32 1 a])? In|l—%z® + 1

= 967r1n3+2/
_22/ T +|$| ~In[I=20? + 31~ 2a; + 32[> — 967212 + o(1%)

= 96rln3+ 2/ ey, 17323 + 1)

B W

862p2 ‘

‘2/ @y I+ 2T 96720 o),
B

where 22, z3and 28 denote powers of a complex number z € C. By the change

20



of variable t = [~3r3, we compute now

862p2 1 (52,02T'd7' 2 .
2 [ ———=1 l_33—12:32/ 7/ In|i=3r3e%? — 1|dg
I e B ) AR

25212 p2 1/1% 2 )
_3 P / : dt 3 / In [te®? — 1|df
3 o t5(821-2p2 + 3)2 Jo

28212 2 1/13 27 '
= 3%/ t—%dt/ In [te®® — 1|d6 + o(6%12p?)
0 0

/18 s 2m )
=202 [ AT tdr / In [te¥ — 1|d6 + o(8°12p?)
0 0

- 2452l_2p2/B Az ) In |z — 1] + o(621-2p?)

1/18

because fozw In |te? — 1|df = O(t) as t — 0 and the Lebesgue’s theorem. Since

Oug z—1
/QAugln|a:—1| —/89 (Eln|m—1|—uom-u> + 2mug(1)

for any domain 2 containing the singularity 1, we get

2/ ﬂ In|i7323 — 1) = 4876%172p* + 0(6%17%p?) (4-4)
2 527 1 [aP)? | |

Similarly, it is straightforward to see that

fB (e p —Hz| )2 1n|l 3.’173 + 1|2 = 487T62l 2p2 —|—O( 2l 2 2)

4.5
2IBWIH|1 6$6 +27|2 —967rln3+327re2l 2p2+0( Zl -2 2) ( )

By (4.4)-(4.5) we get the expansions for I1] and IV:
IIT = 487€*172p? + o(I?), IV = —80mwe’l™2p* + o(I?).
By the estimates on I, II, I1I and IV finally we get for the gradient term:
1
3 / |VPU|? = —64n1np + Dy — 9671% — 16me*l 2p? + o(1%) (4.6)
B

where D; = 967 1n 2 + 167 + 487 1n 3.

To conclude the asymptotic expansion of E(l), we need to consider the nonlinear
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term p? [;(ePV +e7PV). By (2.6) we can write
p2/ eV (4.7)
B

2
- p2/ L7207 + 172 — ;)%™ (1 + O(Jof? + 1% In1]))
B2

2
= p2/ <|l_391:3 —1* 4 262172 p? Z [1732° — 1217222 + apltz + afn|2) V"
B

m=0
+e'14pt0 (p2/ VT + |£|8)>
B l
+0 (i [ & @151 ol + 1))
B
=2 (1 +6e212p? +O(|£|3 + ‘E‘lz +e2l*2p2|£| +62l*2p2|£|10)) U™
B l l l l
O(I*|Inl]) = 87 + 487l 2p* + o(1?).

Splitting the integral on each B;/5(la;) and B, by (2.13) and (2.16) we can write

2

pz/ eV = 812/ 87y (821 2p% + [y[*)?
B =5 Byyatay) (17207 4 |y — ag]?)?
X H (1720 + |y — am|®) ™2 (1 + O(* Inl| + PPy — a;] + 1P|y — aj|?))
—y
2 2
+p / (5 p°+ |~75| ) 6787rH(w 0)+87 32, _o H(z,lam) (1 +O(l4|lnl|))
oo (€20 + |z — lam|?)?

27122
—0Y [ e W b b
= Buyatay) (17707 + |y —a5?)

219 o 8e21—2p? 6
321 2/ 31yl (ol +a; - + DIy + agy + a2

By a(ay) (€21720% + [y — aj]?)?
(821 2p° + [y]?)?

+p2l 6/ > e—87rH(ly,0)+87ern=OH(ly,lam)+O(l3)
-1 T (1202 + ly — as )

2 27-2 2
=812/ Byt gl ly? + Bay + 302
2 J J J
By/2(0) (

T2+ )
_ 27—2 2 2;—-2 2 ly|* 2
32me*l *p® + 648€“l “p 3 + o(1%),
Ry
where R = R? \U?ZOBl/Q(aJ-), because

e—STrH(0,0)+87r Ei:o H(O,lam)l—4 — 64862(1 + 0(1))
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as | = 0.
Adding (4.7) and (4.8) we obtain the expansion:

4
0 /( PU+6*PU) = 87 + 16me’l 2 p? + 648€%1 2 2/ % (4.9)
B
8e21=2p?
+81/ (@122 1 )2 y+a;[*|y” + 3azy + 3a3| 7" | +o(?).
By 5(0) (€2172p% + [y[?)? J:ZO| il ! /! "

In polar coordinates with respect to 0, letting a = el~!p the following term
rewrites as

8’12 p? 2 4, 2 2|4
B r S g+ oty + Basy + 32
S @ Lo 3y

120 gpdp zm 0 2,2 ,2if i0
_ (2 2 7 —
_/0 m/o E lare +a]| laZr + 3araje +3aJ| do

27r2|:

2|arei9—|—aj|4|a2 2 2‘0+3am1 za+3a2|—4 1/2a
Tr

1/2a 4o

mfj (OéT, G)dr

do

2
3
i 2i0 i 2
- 22 ( e N o e’+2aje’+3a| )-}-27

j=0

1/2

a2+r2 Zf]rﬁ dr| df,

=),
)
:/02” 160>
)

where

fi(r,0) = 4re? + a;*|r?e*” + 3raje + 3a2-|*4(rei9 +a;) - e”
—4lre? + a;|*|r?e*® + 3raje + 3a3|~%(r%e 20 4 3raje” + 3a’ i) (2re*™ + 3a;

2

2

Set f(r,0) = ij(r, ). Recalling that Za? =0, it is tedious but straight-
=0 =0

forward to show that

eia)‘



Since |f(r,8)] < Cr? in (0, §) x [0,27], we get that

- ly + a;|*|y” + 3a;y + 3aj|”
Ba(0) (17207 + |y?)? \ = ! ! !

27 2
3 .
_" — 160" / ( "+ ayl* | Wt Sage’ + 3a§|—4) do

+40? /27r dé /1/2 f(r,0)dr + o(a?)

as a — 0. Since
Z |7"e’9 +a; | |r2 26 4 3rajew + 3(1?|_4 ,
we can write

) i i 29— 1) 12
/0 d6/0 T—2f(r,0) :/ Z'Tew +a| |,,.2 2’9+3mje’9+3aj| 4_2_7 0/

1/2 g 2 ) io , e 1
-3 W4 3ra;e? +3a27 = = | dr| do
+/0 3 j:20|re +a| |re*" + 3ra;e® + aJ| 57 -

2m
1 3 32
=16/ E 3¢ e’ + a;|* | e 4 544€ e’ +3a3| dz9——2,;T

1
1 Z|y+ag| |y +3a]y+3a2| 4—2—7

So, we get that

8e212p? 2 41 o 5 4
STy +a; +3a;y+3a;|7" | = o — €l
/Bm(o) (€2172p% + [y[?)? ;0“’ il 3y + 341 27" 21

2

o, 8 _ 1
+e’l 292/B L > ly+ag*ly® + 3a;y + 3a3| - 5 |+ o(1%).
1/2 jZO

Finally, by (4.9) the following expansion does hold:

4
0’ / (ePV + e~PV) = 32 — 80me?1™2p? + 648€%17%p? / " 3|y| T (4.10)
- _

_ 8 1
+81€%1 2p2/B W Z|y+a1| ly* + 3ajy + 3a3|~ 4—2—7 + o(1%).
1/2 =0
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Combining (4.6), (4.10) and the following Lemma
Lemma 4.2. There holds
ly[* 1 & 49,2 -4 1 4
/|y 51 /BWW ;|y+aj| [y + 3a;y + 3aj| 3 | =
we obtain that
E(l) = —64rlnp + Dy — 9671% — 32me®l 2 p* + o(I?),

where Dy = 967 1n2 — 167 + 487 1n 3. With the aid of (4.2), the proof is done.

5 Appendix A

In this Appendix we will establish the validity of Lemma 4.2. We need to
compute the value of

2
|Z/|4 / 1 4,2 2|—4 1
[T ly +a;[*|y® + 3ajy +3a3| ™ — o= |,
o= [y, (Sl s s

where R = R? \ U?_( By /»(a;). Since

2
1 4,2 2|1—4 1
— | Doy + a5l ly® + Bajy + 3a3| * —
/Bl/2 |y|4 = |y J| |y Y ]| 27

2 4
- - Y
:Z/ <|y+aj|4|y| Yy? + 3a;y + 3a’| a_ W™ ;1 )
purd

—4
_a-
—Z/ (1ot = a2 + gy + a2+ = L= )
Bi/2(a;)

2 _
ZZ/ ( wl* vy —al 4)
j:0 B1/2 a]) |y - 1|4 81

let us rewrite Iy in a more useful way:

o [ R (e,
R |y3 - 1|4 j=0 Bi2(a;)\Ce,; |y3 - 1|4 81

2

lyl* 1 / —4
g ly —aj|* +o(1)
/RQ\U?=OCE,J- |y3 - 1|4 81 Z B1/2(a;)\C¢,; ’
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1
as € = 0, where in complex notations C¢ ; = a; (B(1))® and

(Be(1))® ={y € Bio(1) : y* € B(1)}.

Setting C = {y = pe? € C: p >0, § € [-%F, 2]}, by the change of variable
y — a;jy we get that

W=

2 2

ly|* 1

T
; a;\B.0¥) [¥° =1 8L & o 8, n0\BaD) )

ly — a;1™* + o(1)

3/ 1 3|y|4 . 1 =1 +o(1).
co\B.m} ¥ =1 27 /g, ,anB. 1)}

Under the change of variable z = y3, the volume element is dz = 9|y|*dy and I
becomes

1 dz 1
I:_/ lze—1]* 27 —1"* 401
8 e -1 2 st ly =17+ oll)

as e — 0.

It is crucial now to understand the asymptotic shape of Be(l)% around 1 for €
small. In polar coordinates let us remark that pe? + 1 € B.(1)3 is equivalent
to:

(e +1)° — 1] = [3pe™ + 3p%*" + p*e** |2 = g(p,0) < €,
where
a(p,8) = 9p? + 18p° cos§ + 3p* (1 + 4cos®6) + 6p° cos§ + p°.

Observe that for §p small

g—i:18p+0(p2) >0 VO0<p<do, 8e€]0,2n].

Since g(0,0) = 0 and g.(do,0) > 62 for any 6 € [—m, 7] and Jp small, we get that
for any 0 < € < do and @ € [0, 2] there exists an unique p. = pe(6) so that

{p €[0,00] : ge(p,0) < €’} = [0, pe(9)]-
We need to identify the asymptotic of p. as € = 0. To this aim, introduce

11cos?0 —1 .

€ €
= =—-[(1-2 T T T4l
p+ = p+(6) 3( 3cosl9+ = € e)

and compute

8 4
— 2 5 + -~ 3pg_ * 6
ge(p+,0) =€ +e€ ( 2+ 57 C08 0 81 COSG) + O(e®)
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uniformly for 6 € [0, 2x]. Since |3= cos® 6 — g cosf| < 23, we get that for € small

+[ge(p+,0) — €2] > 0 for any 6 € [0,7]. Therefore, for € small p_ < p. < p4 or
equivalently

1lcos?6—1 ,

pe(6) = § (1 - §COSO e 0(63)) (5.11)

does hold uniformly on 6 € [0,27] as € — 0.

We are now in position to determine the value of Ij:

) [} 1 27 1/2
Iy = il r3dr — — d0/ r3dr + o(1)

3 Je 27 Jo pe(0)

= T2y L (4—p2(0)) db + o(1)
3 54 J, ¢
Ar 1 2 € 11cos?6 — 1 -

= o7 + 56_2 — 66_2/0 (1 ~3 cosf + T€2 + 0(63)) df + o(1)
dr o, 1 _, [*T 2cosf  2cos?f-1 , 3

= 4 e2_C 1 - 1
27+3e &€ /0 + 3 € o7 e+ 0(€) ) df +o(1)
A7 1 [ a7 dr

= 5 + @/0 cos(20)dd + o(1) = > +o(1) = o

as € = 0, by means of (5.11). The validity of Lemma 4.2 is completely estab-
lished.

6 Appendix B

Let us recall the definition of the operator L:

2
L@) = A+ 9™ +e P9 2 [ (Ve g,
B

which acts on ¢ € Sy. Our final aim is to show the validity of Proposition
3.1 and we will follow the approach in [3, 5, 6]. It makes a crucial use of
comparison arguments for the linearized operator and the first main difficulty
is that L in general does not satisfy the Maximum Principle. Indeed, L is the
sum of a differential operator L = A + p?(eP’V + ¢~FV) and an integral term

o(g) = -2 [5(ePV + e PU)¢. According to [3, 5, 6], the operator L will satisfy

™
the Maximum Principle and by comparison some a-priori estimates will hold.

The main goal will be to get rid of the presence of the term ¢(¢).
Letting ¥r = Brs,(0) U U?:o Brep(laj), we have the following:

Proposition 6.1. Assume (2.3). There exist C >0 and R > 0 large such that
every solution ¢ of L¢ = h in By, \ Er satisfies

[8lloc.B1/2\2r < C (Al + [|6lloc,08, 2005 k) (6.12)
for 1 >0 small.
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Proof. The proof is adapted from [5] and only minor changes take place. For
reader’s convenience, we recall the basic steps and refer to [5] for all the details.

1st Step. The operator L satisfies the Maximum Principle in B; 2\ Zg, for R
large independent on [ small:

E(w) S 0in B1/2\ER and'(ﬁ 2 0 on 831/2 UaER = '(p Z 0in B1/2\ER-

It is sufficient to construct a strictly positive super-solution M as a comparison
function. The function

2|2 _ 52,2 22—l-2—22
M(SL’) :Za |iI?| 14 +22a |$ aJl €°p

02p% + a?|x|? — €2p? + a®|z — la;|?
satisfies B
L(M)<0 inBl/2\ER
%SMS8 inBl/2\ER
for0<a< \/2;—[)0 and R > ‘/75, where Dy is the constant in (2.20).

28d Gtep. Let R > 0 be given and 0 < 7 < - Letting

4n. 1 32 1
A"—32(3)4, BWZ(E—A")—<O,

e
define
03 il
Un(x) = =32
|| 3 3
a solution of
l
—Agp, = W% for Rp < |z| < 2
xz
Yp=0 for || = Rn and |z| = 2

so that 0 < vy, < T . The function

T(x) = sp(x) + Z Yep(x — lay)

then satisfies
256

1
1

L(T)<-W™ inByy\Zr, 0<T<

for any R > D24t

ard Step. Estimate (6.12) does hold for R > 0 large. Indeed, introduce the
comparison function 2||||lcc,58, ,,uax, M + [|h[|.T. We have that

L (31¢lloc,6B, 0085 M + [|1l[.T) < —||h[l,W = < —|h| in By»\Zr
218lloo,08,/suosn M + [T > |4] on 0B, /5 UOXR
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and, by the Maximum Principle,

|9l(z) < C(l|9lloc,0B, 208k + [Ihll«) in Bijs \ L
for R large, where C' depends on R. [

We want to extend now (6.12) to solutions of L(¢) = h. Letting as before
2 ~

o(¢) = =L [5(ePV + e PU)g, the operator L rewrites as L = L+ ¢(-). We can

introduce the function ¢ = ¢ + @ |z|? in order to get that

L) = h+ Dlaprer + o)

We can apply (6.12) to ¢ and, taking into account p2W (eP’V 4+ e FU) < 8Dy in
view of (2.20), it follows:

Corollary 6.2. Assume (2.3). There exist C > 0 and R > 0 large such that
every solution ¢ of L = h in Bys \ X g satisfies

6lloo,,/\5x < C (Ihlls + 1¢lloo,08, 2085k + 1c(4)]) (6.13)
for 1 >0 small.

We consider now the problem (3.1) when ¢ = 0:

L(¢)=h in B
%% =0 on OB (6.14)
[sAPZ¢ =0,

with h € Sg. We are now in position to show:

Proposition 6.3. Assume (2.8). There exists C > 0 such that for every solu-
tion ¢ € So of (6.14) there holds

1¢llec < ClInd][|Al] (6.15)

for1 >0 small.

Proof. By contradiction, assume the existence of sequences py, I, ¢n € So
and h,, € Sp so that ¢, is a solution of (6.14) associated to p, and Ay, ||dn||cc =
1,1, = 0 and |Inl,|||hy||« = 0 as n — +oo. We will denote by €,pn, dnpn the
concentration parameters associated to I, and by U, = (Up)y+ — Z?:o(Un)j—
the corresponding approximating solution.

15t Claim. There hold

én — 0 weakly in H'(B) and strongly in Clloc (B\ {0}) (6.16)

c(pn) = —%pi/B(ePU" +e PUg, =0 (6.17)

as n — +0o0.
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Multiply (6.14) by ¢,, and integrate on B:

L 19l =2 [ @+~ [ b

in view of [ ¢, = 0. By (2.20) we get that

2
P / (e"V" +ePUn)g < Dop, / (@ 43 ™) <
B B =0

Since
| / | < / ] < 1l / Wit < Ol
B B B

we get that sup / |Vén|? < +o0. Since Jg ¢n = 0, the sequence ¢, is bounded
nelN JB

in H'(B). Moreover, by elliptic regularity theory ||¢,|lcc = 1 implies that ¢, is
bounded in Cll(’)‘é (B\ {0}), a € (0,1).

By Ascoli-Arzeld Theorem, let us consider a subsequence of ¢, (still denoted
by ¢,) so that ¢, — ¢o weakly in H*(B), strongly in C¥ (B \ {0}) and

loc
c(pn) = —Lp2 [(ePUn + e PUn)py — o as n — +00. Since hy, — p?(e”Vn +
e PU)¢, = 0in Cpy (B\{0}), we get that ¢o € H'(B) is a weak solution of
A¢0:—CoinB\{0}, %z@on@B

so that ||¢o|| < 1. Hence, the origin is a removable singularity and the equation
holds in the whole B. By —mcy = fB Agg = 0 we get that ¢g = 0 and then,
¢o = 0. Since it holds along any convergent subsequence of ¢,,, it is true for all
the sequence ¢,, and the claim is established.

98d Claim. There exist R > 0 large and 7 > 0 so that

l¢nlloo,zr =1 (6.18)

for n large.

Let us note that (6.16) implies
|¢nllco,B\B,,, = 0 asn — +oo. (6.19)

Fix now R > 0 large. If ||¢p||co,xr = 0 as n = +o00 (up to a subsequence), we
can use (6.16), (6.17) and ||h,||« = 0 in (6.13) to get

||¢"||OO,Bl/2\ER — 0

as n — +o0o. Hence, we get that ||¢,||cc — 0, in contradiction with ||, || = 1.
Hence, (6.18) holds and the claim is proved.
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Introduce now ®,,(y) = ¢pn(dnpny) in B, = Bys,,, and @;,(y) = ¢n(enpny +
lhaj) in B, = Bl/enpn(—ﬁaj), j =0,1,2. The function ®,, satisfies

AP, + 5npn( Un 4 C_PU")(‘snPny)q’n - 53/)%0(‘%) = 5121Pihn(5npny) in Bp.
Note that for every M > 0

A

15207 h0 (o) lloo.Bar - < Snppllenll W (8npnt)lloo, Bar

(1 +0<62p2(%’”> lhalls < 2l = 0

n

IA

and B, — R? as n — 400 (to estimate ||W,, " (6,pny)|lco,Br, We are using that
the distance among 0, [,,a9, a1, a2 is of order l,, and is much bigger than €, p,
and 0,p,). Since ||®,]loc < 1, up to a subsequence and a diagonal process, by
elliptic regularity theory ®, — ® in C,. (R?), where ® is a bounded solution
of

8

— =% =0,
(1+1y*)?
by means of (2.21). According to [1], the function ® is a linear combination of

AD + (6.20)

1—|y| Y1 Y2
1+|y|2 14 [yl2 14 y?

Since ¢, € S, the function ® is 2F —periodic and then

1— |y

B(y) = B— 2
W= Er e

for some coefficient E € R. Similarly, the function ®;, — &; in C),. (R?),
where ®; is a bounded solution of (6.20).

We use now the assumption [ 5 APZ, ¢, = 0, which rewrites by symmetries as
(x — ajz)

2
0 = > / eV GnZ; - a; = 3p2 / elU)0 ¢, Zo - ag
=078 B

8 4y - ag
- 3/ 3
Bo. (L2 1+ "

By Lebesgue’s Theorem, letting n — +o0o we get that

Y1
U s —o. 21
/Rz<1+|y|2>3 0=0 (6.21)

Since ¢, (x) = ¢, (Z), the function ¥ ,, is also invariant by conjugation in By .
In the limit, ®¢(y) = ®¢(7) in R? and the following relation follows

Y2 .
/’]]22 W@O —_ 0- (6.22)
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Since ¢y, is =X —periodic, observe that

(I)O,n(y) = ¢n(€npny +lnag) = ¢n(€npnajy + lnaj) = (I)j,n(ajy)a

which gives in the limit ®¢(y) = ®;(a;jy) in R?. Using this relation in (6.21)-
(6.22), by the change of variable y — a;y we get that

y-a; _/ y - (iaj) _
Y e = [ LV g .
/]RZ T+ y2)? 7 Jre A+ y?)?

These two relations are linearly independent and lead to

U1 Y2
L. A+ PP L T+ PP (6.23)

By (6.21)-(6.23) we get that &; = Fji-

]1+| ‘2 Since ®o(y) = ®;(a;y), we have
that Fy = F1 = F5 and hence

1—Jy]?

q’j(y) = FW’

for some coefficient F' € R. By the second claim as stated in (6.18) we get that
®, ®; can’t be both trivial and a contradiction would arise if £ = F' = 0. Based
on the assumption |Inl,|||hn||« — 0, this will be the content of next claim.

3rd Claim. E=F =0

We will us an idea developed first in [4] and then exploited in [5, 6]. We construct
suitable test functions to recover the additional orthogonality relation:

1—y|? 1—y|?
/ yI° 5 _ / ] y—,
re (1+ [y[*)? rz (1+[y*)?
which clearly would imply £ = F =0 as claimed.
Let us perform the following construction with respect to the origin. Define

4 nPn — |zl
’Ll)n(flf) (52 2 +| | ) npn+|m|2

5apn
2p2 + |z

8
36

2 2
and t,(z) = —2%. They solve —Aw, — p2eU) w, = p2eW)7(Yp )

and —At,, — p2e@) Tt = p2e(U»)7 respectively.
The good test function in the origin will be Pz,, where z,, = w,, —2t,,. Observe
that

0 167
£ (Pzn — Zn — TH( 0)) O(62p2) on OB

/B (Pzn — Zp — 16Tﬂ-H(,O)) (0] (ann In® (5npn)) .
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Since it holds

16 1 16 1 Oz, 16
—A(Pzn—zn—TwH(-,O))=—/Azn+—=— @_Z,/_}_E
OB

16 OH(-,0) 16 22 / 2 2
= + O(0;p7) = AH(- — 4+ 0(6
3 % aw T3 + + (67,0)
by the representation’s formula we get that
167
P2y — 2y — 3 ——H(-,0) = O (6292 1n*(6,.p,)) (6.24)

uniformly in . Hence, we have that
16
APz, + pie(U")Jern = Az, + 3 + p2 (Un)* Pz, +0 (6npn (5npn))
16
= —pnel")" (Yo + pre")" (Pon = 20 +2) + 5 + 0 (892 10° (Bupn))
Since [z Pz, = [g ¢n = 0, multiply (6.14) by Pz, and integrate on B to get:
/ hnPzy, = / bn (APzn + pie(U")+Pzn) (6.25)
B B
+pfb/ (ePU" + e FPUn _ e(U")+) On Pz
B
— =5 [ e (Yo + 5 [ O (P = 2+ 2) 6
B B
+pi/ (ePU" +e Pl — e(Un)+) ¢nPzp + O (6,05 In* (5npn))
B

As for the L.H.S., by (6.24) we get that Pz, = 2, + O(1) = O(|In 62p2|) =
O(|1Inl,|) and then

[ RaPaal = O [ [ha) = O 10 Ly llall) =

as n — +00, by our assumption by contradiction on h,. As for the first term
in the R.H.S., we can write now

2 212

o [y, _2/ 8 1-pPy 8(1—[y[*)*
2 [, _ — 2F

p /B nYo,n - (1 T |y|2)2 1+ |y|2 n R2 (1 + |y|2)4

as n — 400, by means of Lebesgue Theorem and &, — E% in Cigc (R?).
By (6.24) the second term in the R.H.S. gives a contribution

+ 16m +
Pn /B )T (P — 2n +2) b = 1, /B ") (H(z,0) — H(0,0)) ¢n

+0 (62p2I0%(8npn)) = O(6npn) =0 asn — +oo.

33



Since Pz, = O(|Inl,]|), for the third term in the R.H.S. by (2.11), (2.18) and
(6.24) we get that

2
pi/ (epun + e=PUs _e<Un)+) 6n Pz =Pi2/ U5 b P + O(2 2 I,)
B i=0/B

2
_° I a:
Z/BJ,I 1+ |y| ) ],nzn(enpny"‘ naJ)

=0

<.

2

67
T Z/ 1+ |y|2)2 H(enpny + lna;,0) + O(12 In®1,)
() R
=8FInl, —6FH(0,0 L 4+0(1) =0
g L+ g~ OFHOO) | Gy
as n — 400, by means of Lebesgue Theorem and ®;, — F1+|‘ |\2 in Clye (R?).
2
We have used that / i” = 0. In conclusion, (6.25) leads to £ = 0.
r2 (1+y[?)

A similar argument can be carried out by using the test function Pz; ,, where
Zjn = Wjn + 5 H(lnaj,1na;5)t;,,. Here, the functions wj,, and ¢, are defined
as follows:

enpn — |z —lnaj|* 8 P

2p2 + |z — a2 3€2p2 + |z — lna,?

4
win(@) = (A2 + |o = lnay )

2 2
. =9 aPn
and t]:n('r) - Zeﬁpﬁwalnaj\2 ’ .

It is now easy to include a term ¢cAPZ in the R.H.S. of L(¢) = h and obtain:

Corollary 6.4. Assume (2.3). There exists C > 0 such that for every solution
¢ € So of (3.1) there holds

ll¢llec < ClInl[[R]]. (6.26)
for1 >0 small.

Proof. We need an estimate on the value of ¢. To this aim, multiply (3.1) by
PZ and integrate on B:

/ hPZ + ¢ / APZPZ = p? / PV + e PVYpPZ, (6.27)
B B B

because [, A¢PZ = [, APZd) = 0 and f PZ = 0. By (3.8) we get that
PZ =0(1) and | [ hPZ| = O([|h|) = O(||h||+). Moreover, by (2.11), (2.18)
and (2.20) we deduce that

P /B (U + e PUYSPZ = p? /B (€PU + e=PV)$Z + O(epl]|oo)
2

:pz/B(eU+ +Y ez + 0| Inl|l|4l0)

=0
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in view of (3.8). We have that for any j =0,1,2

2 [ Ut 8 ey — 10" p ay
p/e 6Z;-a;=0 ¢oo/ i L
5 J a5 Il Wl<1/5p 1+ Y2262+ y—161p laj?

8 8
( Pl ly|<i% /5p 1+ |y|2)2) (el v/ 212 /3o (1+ |y|2)2)
= O(ll|4ll)
and for any k # j

: - 8 ly +1le'p~ " (a; — ay)|
2 U ]
P/61¢Zk'ak:0 ||¢||00/ 1
B wi<i/ep L+ Y22 1+ |y +letp~t(a; — ax)|?

8
FO(E2p?|¢]l) = O 6pl71¢w/ 1+ y2)2
(@R 16) L P e

+0(€p%[|¢llso) = O(ll|¢ll0)

8
Ol / o TP

as | — 0, uniformly on ¢. In conclusion, we have that
2
¢ [ ez = Y [ 67,0+ 0lll¢l)
j=0’8

- /B APZ¢ + O(ll|$ll0) = OUIlIs0)

as ! — 0. By (3.9) and (6.27) we deduce that
128y?
¢ | ———57 +o(l)lc|] =O0(h|« +|¢]|loo
| s + o0l = Ol + 1))

as I — 0. Then the following estimate on ¢ does hold

lel = O([|Rll+ + U 8ll0),

as I — 0. By Proposition 6.3 and the estimate on ¢ we get that
[ ¢lloe < ClInl|||h+ cAPZ|. < C'[In]|hll. + O n1][|llo0)

and then, the validity of (6.26) easily follows because O(l|In|) is small indipen-
dently on ¢. [

Corollary 6.4 now yields easily to the validity of Proposition 3.1. Indeed, let
us introduce the operator (A)~! with Neumann boundary condition: given
f € LP(B) for some p > 1, the function u = (A)~1(f) € H'(B) is the unique

solution of
Au=f-1f f inB
du —( on OB
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By uniqueness, observe that v € S whenever f € S. Thanks to (A)~! we
can rewrite problem (3.1) as ¢ + K(¢) = (A)~1(h) + cPZ, where by elliptic
regularity

K(¢) = (&) (*(e" + e ")9)

is a compact operator from H'(B) N &, into itself. In the space H'(B) N Sy,
define IT and I+ = Id — II as the projection operators onto PZ and {PZ}*
respectively. Problem (3.1) can be further rewritten in an equivalent way as

¢+ I K (¢) = ITH(A) 7 (h).

Observe that, by Corollary 6.4, Id + I o K is injective in H'(B) N Sy, where
T+ o K is a compact operator. For any h € L>(B) N Sy, Fredholm alternative
then provides the existence of a unique solution ¢ € H'(B)NS, of (3.1) satisfying
the bound ||¢]lec < C|Inl|||h||« for I small. Moreover, by elliptic regularity
theory ¢ € W22(B) and there holds:

/ Vo = — / hé + 0 / PV + e PUYE < C(l6loo + IIHI1L)?,
B B

(
B
by Young inequality and (2.20). Proposition 3.1 is completely established.
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