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We study the interior spike solutions to a steady state problem of the shadow system
of the Gierer-Meinhardt system arising from biological pattern formation. We first show
that at a nondegenerate peak point the interior spike solution is locally unique and then
we establish the spectrum estimates of the associated linearized operator. We also prove
that the corresponding solution to the shadow system is unstable. Furthermore, the
metastability of such solutions is analyzed.

1 Introduction

In 1957, Turing [25] proposed a mathematical model for morphogenesis, which describes
the development of complex organisms from a single shell. He speculated that localized
peaks in concentration of a chemical substance, known as an inducer or morphogen,
could be responsible for a group of cells developing differently from the surrounding
cells. He then demonstrated, with linear analysis, how a nonlinear reaction diffusion
system could possibly generate such isolated peaks. Later in 1972, Gierer and Meinhardt
[6] demonstrated the existence of such solution numerically for the following (so-called

Gierer-Meinhardt system)

94 — 2ANA—A+ 4 zeQ,t>0,

ot Ha>
(GM) T8 = D,AH - H + 4,0 € 0,t>0,
G4 =21 -0, z €00

Here, the unknowns A = A(z,t) and H = H(z,t) represent the respective concentrations

at point z € Q C R" and at time t of the biochemical called an activator and an inhibitor;

€ > 0,7 > 0 are all positive constants; A = Zjvzl 3%2? is the Laplace operator in R";
J

() is a smooth bounded domain in RY; v(x) is the unit outer normal at 2 € Q. The
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exponents (p, q,r, s) are assumed to satisfy the condition

qr
p-1D(s+1)

Gierer-Meinhardt system was used in [6] to model head formation in the hydra. Hydra,

(A) p>1,¢>0,r>0,s>0, and vy := > 1.

an animal of a few millimeters in length, is made up of approximately 100,000 cells of
about fifteen different types. It consists of a “head” region located at one end along its
length. Typical experiments on hydra involve removing part of the “head” region and
transplanting it to other parts of the body column. Then, a new “head” will form if and
only if the transplanted area is sufficiently far from the (old) head. These observations
have led to the assumption of the existence of two chemical substances-a slowly diffusing
(i.e. € << 1) activator A and a fast diffusing (i.e. Dy >> 1) inhibitor H.

The numerical studied of [6] and more recent those of [11] have revealed that in the limit
€ — 0, the (GM) system seems to have stable stationary solutions with the property that
the activator concentration is localized around a finite number of points in €. Moreover,
as € = 0, the pattern exhibits a “spike layer phenomenon” by which we mean that the
activator concentration is localized in narrower and narrower regions around some points
and eventually shrinks to a certain number of points as € — 0, whereas the maximum
value of the activator concentration diverges to +oo.

If we let Dy, — oo and suppose that the quantity —H + A"/ H® remains bounded, then
AH — 0, %—Ij = 0 on 99, we find that H(x) — &, a constant. To derive the equation for
&, we integrate both sides of the equation for H over ) and observe that [, AHdz = 0
due to the boundary condition. Hence in the limit of D; — oo, we obtain the following
so-called shadow system of (GM)

L Lo (1.1)

TI|% = —|0l¢ + & J, Anda,

{%=62AA—A+£ in Q, 24 =0 on 0Q,
(For the derivation of (1.1) and more details on the Gierer-Meinhardt system as well
as its properties, see the review article [19].)
Let us consider the stationary solution to the shadow system (1.1). Set A(z) =

£9/(p=Dy(z). Then it is easy to see that u satisfies

{ezAu —u+4+uP =0 in Q, (1.2)

u>0 in Q a.nd%:OonOQ.

Throughout this paper, we always assume that

N+2 N+2
N—2)+( N3 when N > 3;= 400 when N =1,2)

(Equation (1.2) is also known as the steady state problem for a chemotactic aggregation

1<p<(

model with logarithmic sensitivity by Keller-Segel [15], see e.g. [18].)
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It is known that equation (1.2) has both boundary and interior spike layer solutions.
See [19] for an overview of (1.2). For boundary spike solutions, please see [2], [3], [8],
[10], [16], [18], [20], [21], [22], [31], [32], [33], and the references therein. (When p = £+2,
please see [7] for the latest results and references.)

The existence of interior spike solutions depends highly on the geometry of the domain.
In [30] and [29], the author first constructed a single interior spike solution. To state the

result, we need to introduce some notations. Let

e_2|z—P0| dz
dup,(2) = 11_{% P (1.3)
Joqe™ T dz

It is easy to see that the support of dup,(z) is contained in By(p,,a0)(Po) N 9.
A point Py is called “nondegenerate peak point” if the followings hold: there exists
a € RN such that

(H1) /8 S (o = Ro)dun (2) = 0 (1.4)

and
H2) / <> Poa> (5 _ Po)i(z — Py);dpup, () = G(Pb) is nonsingular.  (L.5)
o0

Such a vector a is unique. Moreover, G(FPp) is a positive definite matrix. A geometric

characterization of a nondegenerate peak point Py is the following;:
P, € interior (convex hull of support(dup,(z)).

For a proof of the above facts, see Theorem 5.1 of [30].

In [29] and [30], the author proved the following theorem.
Theorem A. Assume that Py is a nondegenerate peak point in . Then for e << 1,
equation (1.2) has a solution w, satisfying the following properties:

(1) u, has a unique local maximum point P, and P, — Py as ¢ — 0,

(2) u. < CePlz=Fl/¢ for some constants C > 0,3 > 0 and u.(P.) — w(0) as € = 0,

where w is the unique solution of the following problem

{Aw—w+w1’:0,w>0inRN; (1.6)

w(0) = max,cpy w(y), w(y) = 0 as |y| = +oo.
Remark: For the existence of multiple interior spike solutions for equations similar to
(1.2) (e.g. the Cahn-Hilliard equation), see [1], [9], [14] and [34].

As far we know, all the previous results on spike layer solutions are mainly concerned
with existence. In this paper, we study various properties of u. constructed in Theorem
A. We first establish the local uniqueness of u. (Theorem 1.1). Then we obtain the
spectrum estimates of the associated linearized operator (Theorem 1.3). Finally we study

the stability, instability and metastability of interior spike solutions for the corresponding
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shadow system (1.1) (Corollaries 1.1 and 1.2). (Here say a solution is (linearly) stable
if all the eigenvalues of the associated linearized operator have negative real part, it is
(linearly) unstable if the associated linearized operator has one eigenvalue with positive
real part, and it is metastable if those eigenvalues of the associated linearized operator
with positive real parts are exponentially small.) The results and techniques in this paper
may be useful in studying properties of multiple boundary and multiple interior spike
solutions, and also in studying the nucleation phenomen in the Cahn-Hilliard equation.

Our first result shows that u. is locally unique and that P, approaches Py along the
direction a (defined by (H1) and (H2)).

Theorem 1.1 Suppose that Py is a nondegenerate peak point. Then for e << 1, if
there are two families of single interior spike solutions u.1 and uca of (1.2) such that
Pl — Py, P? — Py where uc1(P}) = maxpeg te(P), ue2(P2) = maxpeg e 2(P), then
P! = P2 uc 1 = uen. Moreover, P! = P? = Py + €(3d(Po,00)a + o(1)) as € = 0.

The second result concerns the eigenvalue estimates associated with the linearized
operator at ue: Le = €2A — 1+ puP~!. (Here the domain of L. is H%(f2).) We first note

the following result.

Lemma 1.2 The following eigenvalue problem
Ap—¢+pwP~'¢=pe in RV, € H'(RY) (L.7)
admits the following set of eigenvalues:

p1 >0, =...=pun+1 =0, uny2 <0, ... (18)

Moreover, the eigenfunction corresponding to uy is radial and of constant sign.

Proof This follows from Theorem 2.12 of [18] and Lemma 4.2 of [21]. O

Next, as in [29] and [30], we introduce the following definition: for each P € Q, let

we, p be the unique solution of

z—P . ou
. )=01in Q, 5—00n89. (1.9)

Let ¢.,p(z) = w((z—P)/e)—w,,p(z). (It was proved in [29] and [30] that —elog[—y.,p(P)] —
2d(P,00) as €—0.)

Our second result is about the eigenvalue estimates.

e2Au — u + wP(
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Theorem 1.3 The following eigenvalue problem

EAp—d+pul o =1 inQ, % =0 ondQ (1.10)

admits the following set of eigenvalues:
7-16 = U1 +0(1)7T; = (CO + 0(1))(P€,P0 (PO)Aj—laj = 25 5N+ 177-16 = +0(1); l Z N + 25
where \j,j =1,...,N are the eigenvalues of G(Py) and

S 0?0/ (r)
T (22 )2dy

where u.(r) is the unique radial solution of the following problem

co = 2d %(Py,00) <0, (1.11)
Au—u =0,u(0) = 1,u = u(r) in RN. (1.12)

Furthermore, the eigenfunction (suitably normalized) corresponding to 75,J=2,..,N+

1 is given by the following:

N
Ow,
% = D (a-rs + o(1)e g2 |p=r, (L.13)
=1

= t - . .
where @; = (aj,1,..,a;,n)" is the eigenvector corresponding to \;, namely

G(Po)d; = \jéij,j=1,..,N.

Remark: In [26], M. J. Ward used matched asymptotic expansions to analyze single
interior spike solutions for equation (1.2). He obtained similar results to Theorem 1.3.

From Theorem 1.3, we see that except the eigenvalues near 0, all the eigenvalues
of L. are small perturbations of those for Ly := A — 1 4+ pwP~1. Moreover, u, is an
isolated solution with Morse index N + 1 (note that G(Fy) is a positive definite matrix).
Furthermore, L. is invertible. Hence u, is also nondegenerate.

Finally we study the stability and metastability of interior spike solutions to the shadow
system (1.1). Let u. be the solution in Theorem A. Then it is easy to see that (A, &)
defined by the following

A, =€/, ¢ = (ﬁ/ ulde)~(P=1/(ar=(p=1)(s+1) (1.14)
Q

is a solution pair of the stationary problem to the shadow system (1.1). A direct appli-

cation of Theorem 1.3 is the following corollary.
Corollary 1.1 For e << 1, (A, &) is unstable with respect to the shadow system (1.1).

Remark: The fact that (A, ) is unstable follows easily from the fact that 75,2 < j <
N +1, in Theorem 1.3 are positive (by (1.11)). Note that 75 is exponentially small.
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Therefore it is interesting to study the metastability of (A, &.). (Some numerical results
and formal analysis are done in [27]. In one dimensional case, Ni, Takagi and Yanagida

have some partial results, see [23].) We have the following partial results

Corollary 1.2 Assume that either r =2,1<p <1+ % orr=p+1,1<p< (%)Jr
Then, for € << 1 and T small, (A, &) is metastable with respect to the shadow system

(1.1).

Remark: In the original Gierer-Meinhardt system, we have r = 2,p =2,q = 1,5 = 0.
Thus it satisfies the assumption in Corollary 1.2. As far as we know, Corollary 1.2 is the
first result on the metastability of interior spike solutions of (1.1).

In the rest of this section, we introduce the basic idea behind the proofs of Theorems
1.1 and 1.3 and Corollaries 1.1 and 1.2.

To prove Theorems 1.1 and 1.3, we introduce the following energy functional

Je(u)=i/ |Vu|2—+—1/u2—L uPt u e HY(Q).
2 Ja 2 Ja p+1Jg

It is known that u, is a solution of (1.2) if and only if u. is a critical point of J.
The basic idea of our proof is to use the classical Liapunov-Schmidt procedure to re-
duce problem (1.2) into a finite-dimensional problem. (See [9], [10] and [29] for similar

treatments.) We need to introduce some notations first.

Let P € Q. Set
0
Qep = {yley + P € O}, Hy (Qe,p) = {u € H2(Qe,p)la—z =0 on 89 p},
S.(u) = Au—u+uf,u € HX Qe p), 0; = i,
OP;

}CGP = span {aijP'j =1, 7N} c HE(QﬁP):KiP = {U € HE(QE7P)|/ uajwf,P =0,j=1, ---:N}a
Q
and

Ce,p = span {Ojwe,plj =1,..,N} C L2(Q€,p),Ci‘P ={ue L2(QE,P)|/ udjwep =0,j=1,...,N}.
Q

Let Q0 := Py + €1d(Py,00)a and A := Bg,(Q?), where f3 is sufficiently small. (In
Section 2, we will show that for any single interior peak solution u. with the unique local
maximum point P, near Py, then we have P. € A.) For each P € A we can find a unique
Ve,p € Kép such that

Se(we,p + ve,p) € Ce,p.
We then define
K.(P):=¢ NJ.(we,p +vep): A— R. (1.15)



Uniqueness and Stability 7

An important observation is the following fact:

Proposition: u. = we,g. + ve,., @ € A is a critical point of J; if and only if Q). is a
critical point of K, in A.

By the above Proposition, the local uniqueness problem is reduced to counting the
number of critical points of K. in A. Thus we need to compute 9;K(P) and 3};K.(P).
By some lengthy computations, we can relate (9;;K.(P)) with the matrix G(Fp). By
some degree arguments, we prove Theorem 1.1.

Theorem 1.3 is proved by using the results for (83, K.(P)).

To prove Corollaries 1.1 and 1.2, we just need to analyze the following eigenvalue
problem

eAd. — ¢, 4—17%;¢e - qg’;%n = Q. Pe, % =0 on 09,
a1 Jo A:;;m dz — 2y = aen.

By using (1.14), it is easy to see that the eigenvalues of problem (1.16) in H2(Qc p,) X

(1.16)

L*°(Q) are the same as the eigenvalues of the following eigenvalue problem

qr Joui™'¢
s+1+71ac [yur

€2A¢ - ¢ +Puf_1¢ - ’U.f =09, € HE(QG,PE)' (1'17)

Let a, be an eigenvalue of (1.17). Then the following holds. (The proof of it is routine

and thus we leave it to Appendix.)

Lemma A. (1) a. = o(1) if and only if ac = (1 + o(1))75 for some j = 2,...,N +1,
where 75 is given by Theorem 1.3.
(2) If ac — a9 # 0. Then ag is an eigenvalue of the following eigenvalue problem

qr S~ w e
s+1+70a0 [y w"

Ad—¢+puwP~io— wP = agp, ¢ € H*(R™). (1.18)

Since 75, = (co+0(1))pe,p, (Po)A; for some j =1,...,N and ¢y < 0,9 p,(Po) < 0, we
conclude by Lemma A that (1.16) has positive eigenvalues a. = (co+0(1))@e,p, (Po)Aj, j =
1,...,N. Thus (4, ¢&.) is always unstable. This proves Corollary 1.1.

Corollary 1.2 follows from the following Theorem and Lemma A.

Theorem 1.4 Suppose (r,p) satisfy the assumption in Corollary 1.2 and T is small. Let
ag # 0 be an eigenvalue of the problem (1.18). Then we have Re(op) < —c1 for some
c > 0.

Finally we remark that the results of Theorems 1.1 and 1.3 hold true if in equation
(1.2) we replace the term u? by general f(u) where f (0) = f(0) = 0 and f satisfies the

conditions in Section 1 of [29].
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The paper is organized as follows: In Section 2, we use the classical Liapunov-Schmidt
reduction approach to transform the problem (1.2) into a finite dimensional problem and
by computing the derivatives of K (P) we prove Theorem 1.1 in Section 3. In Section
4, we prove Theorem 1.3. We finish the proof of Theorem 1.4 in Section 5 and thus
completes the proof of Corollary 1.2. Some remarks are made in Section 6. Appendix

contains the proof of Lemma, A.

2 Proof of Theorem 1.1: Preliminaries

This section is divided into two parts. In the first part, we analyze the location of the
local maximum point of the single interior spike solution. In the second part, we use
the Liapunov-Schmidt reduction method to reduce the problem into a finite dimensional
problem.

Let u, be a solution of (1.2) with a single local maximum point P, and P, — P;. By
Theorem 1.1 of [29],

Lemma 2.1 We have
2|z —Pe|
Jone = = (z— Ry)dz

_2]z—P|

Joe 5z

lim
e—0

=0. (2.1)

The following important lemma gives the speed of P. approaching Fy.
Lemma 2.2 P. = Py + e(3d(Py,0Q)a + o(1)) where a is given by (H1) and (H2).

Proof Our main tool is the identity (2.1). We first prove that |P, — Py| = O(€). Suppose
not, we have @ — +o00.
Note that

2|z —Pe| _2|z—Fp| z=Pg  Pe—Pg \|Pe—Fp| [Pe—Po|
e T <« =—e < +2<|z—P0|’|P€—P0|) - +o(—= )‘

Let |£:—:11§g_‘ =e € SN (ie. le=1)and Ty = {2z € 6Q|(|§:—£g—‘,ee) >1—26} and

Ty = 0O\I'1, where § > 0 is a very small but fixed number. Then on I'y,

—rel (z — P
/ p-tzzre (2= Posee)
I

|Z — P()l
> (1 26)¢2(-0) e~ g,
{z€89|(‘:+§g—|,ee)>1—6}

2062(1_5)|P€:P0|/ e‘mz_ep()ldz, (2.2)
0
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since (assuming that e — ep)

_ 2[z—Pg|

/ = < dz

{2€00|(Z2R2 ) >1-4}

III(I) S 2[z—Pg| = / P dl'I'PO(z) >0
7 Joq€ ¢ dz {2€09 (25 e0) >1-6}

(because Py € interior(cov(support(dup,))).)

On the other hand, on T'y, we have

/ I EELN <Z_P0’e€)dz _ 0(6(1725)|P€:P0| / e—z‘z_ep()ldz) _ o(/ I EELY (2—Py, e.)dz). (by (2.2))
Ty a0 Ty

|z — Ry
Thus
2|z—Pe| (z Po,ee)d _2|z—P¢| P€| (z Po,ee)d
= fr W z
ey mr . o) 2 G
Joge™ "7 dz frl dz

a contradiction to (2.1)! Hence P. — Py = O(e).
Let P. — Py = eb. and b, — by. Since

|2—Pe| _2[z=Pgl 15 2—Po_ 2[z—Pg|
/ o T (Z_po)dzz/ e +2<\2—Pgl’b5>(z—Po)dz+0(/ e~ dz),
o0 00 00

we have by (2.1)

/ e<27P0aﬁb°>(z — Po)dNPo (z) =0.
oQ

By the proof of Theorem 5.1 in [30], there exists a unique vector a such that

/ e<Z7P07a>(z — Po)dllng (z) =0.
o0

Thus we obtain
2

1
————by = = —d(F,00)a.
d(P(),@Q)bO a,b(] 2d( 0,8 )a

In the rest of this section, we will describe the so-called Liapunov-Schmidt procedure.
Most of the material is from Sections 4,5 and 6 in [29]. See also Sections 3 and 5 in [9)].

We first introduce some notations.

Let QG,P,HE(QE,P),ICG,P,’Cg:P,CGL’P,SE(U) be defined in Section 1.

For any u,v € H(Q), we define

A 1
< U,V >= C*N/(CZVu-VU—i-u-v), [|ulle =< u,v >2 .
Q

Set

ie,P(‘b) = A¢ - ¢ +pw2}1¢7 Le,P = Te,P © Ee,P:
where 7, p is the projection from L?( p) into Cp.
We recall the following result in [29] (see Propositions 6.1, 6.2 and 6.3 in [29]).
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Lemma 2.3 For e << 1, L. p ICJ-P — C is one-to-one and onto. Moreover, the

inverse of L p exists and bounded.
Next, we have

Lemma 2.4 For any () € (), there exists a unique v g € lCﬁ:Q such that
Se(we,@ +ve,Q) € Ce -

Moreover, v. o is C! in Q and
) aQ

140

loeolle < Cloeo (@)%, (2.3)
1202 1 < 0, 0 (@)1 (2.4)
6Q] e > €,Q ) .

where o = min(1,p — 1).

Proof The existence of ve,q € Ko such that Se(we @ +vc,@) € Ce,q follows from Section

6 in [29]. The C'-smoothness of v, ¢ in @ follows from Lemma 3.5 in [9]. For estimate

(2.3), please see Proposition 6.6 of [29]. It remains to estimate ‘%e 2 and prove (2.4). Set

ov u ow

&Q € &Q L1 L
= a; +v. 0,V 0 € Ko

0Q; ; ik OQk Q2 Ve, Q Q

We first note that by (2.3)

Ove,@ Owe,Q / Pweq -2 (1+0)/2
= — = € €, .
/| el = aggsg = O e @)

Hence

N
Owe,@ Owe,Q —2 (1+0)/2
b —x_ % —(0) ¢ 7 .
e [, Gt e =0l @I)
Owe,@ Owe,Q __

Since erQ 50> 56> = € 2(+0(1))d), where T' > 0, we obtain o, = O(|@e.0(Q)|(1Fo)/2),

Next we observe that

X Ow
Se(weq +veq) = D Bi(@Q 5%

where §5(Q) € C* and B(Q) = O(e™ |¢.,o(Q)])-

Differentiating the above equation by %, we have,

Owe,q 6U€,Q Z B(Q 6 we,Q

S.(we,q + v
(We,@ + ve,Q)( 30, 6Q,



Uniqueness and Stability 11

Hence

ow . Ow,
Si(weq + Q) (viq) + Silweq +veQ) (52 + Z %50

al 0?we,q
- $(Q) s €0,
It is easy to see that

e, © Se(We, +ve,@) 1 Kig = Cio

is invertible for € sufficiently small. Hence (since v/, € K, )

! w 7Q
||UEL,Q||H2(Q€,Q) < C|7e,@ 0 Se(we,q@ +ve,@)( o 4 Z ]k

|||L2(Qe Q)
E 6 weiQ
<Ce” |<Pe,Q(Q)|(1+”)/2-
(2.4) is thus proved. m|

Let K. (P) be defined by (1.15). Then we have (see Section 5 of [29])

Lemma 2.5 u, = we p + v p is a solutions of (1.2) if and only of P is a critical point

of K.(P).

Let u. be a single interior spike solution with the unique local maximum P, — F,. By
Lemma 2.4, we have u. = we,g. + ve,g. for some Q. € A and v, € ICﬁ:Qe.

The next lemma relates P, and Q..
Lemma 2.6 Q. = P, + o(e).

Proof In fact, by Lemma 2.4, we have the decomposition of u, = w, g, + ve,g. With

Q. = Py. Moreover similar arguments as in the proof of Theorem 1.1 of [29] show that

20:-Qe|
- Jone = (z—Qd)dz

=0.
_2[2—Q|
e—0 faQ e < dz

By Lemma 2.1, we have
Qe=Fo+ 6( d(Py,0)a + o(1)).

Hence Q. = P. + o(e). O
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3 Proof of Theorem 1.1: Final proof

In this section, we complete the proof of Theorem 1.1.

Let Q% = Py + G%d(P(], 090)a. Then by Lemma 2.6, all critical points of K (P) near P,
are in Bg,(Q?) for By small.

By Lemma 2.5, to prove Theorem 1.1, we just need to show that K.(P) has only one
critical point in Bg,(QY).

Let us define

2 v <z—Py,a> 0.2
K P = P 0, — P P _ .
(P) e2d2(P0,aQ)‘pf’P°( 0)/896 <z—Po,P—Q;>" dup,(2)

where v := [x pwP~lw u,(r) and u,(r) is the unique radial solution of (1.12).

By assumptions (H1) and (H2), it is easy to see that K,(P) has only one critical point
in Bg,(Q)-

We now compute VK (P). The computation is very complicated. The reader can
refer to Section 7 in [29]. We need one key estimate.

Let w,,p be defined by (1.9). Recall that ¢ p(x) = w((x — P)/€e) — we,p(z).

The following key lemma gives the estimates we need. (See Section 9 in [29].)

Lemma 3.1 Suppose that Py is a nondegenerate peak point. Let P, = Py + €b,, then we

have

z— P z— P
0ep. () = (14 0(1))pe,po (Po) X /8 ) el = W e (=por ) gy p ()

where dup, (z) is defined by (1.3).
By using Lemma 3.1, we obtain

Lemma 3.2 For P € Bg,(Q?), we have

VK. (P) = VEK.(P) + O(B|P — Q°le 2. p,(Po)). (3.1)

Proof Observe that

VjKE(P) =< We,p + 'Ue,p,aj(wf,p =+ ’Ue,p) > —/ (wf,P + ve,p)paj(we,p + ’Uf,p)
Q.. p

= /Q [w? — (we,p)?](0jwe,p) + O(|Lp€,p(P)|1+") (by Lemma 2.4)

2 (P—PQ)>

= (—e 1 (14+0(B0)) e, P, (Po))/ pwp_la—w(/ {Te=ro1 V) {7 Fo. a5y

Qe p 6yj

dppy(2))dy



Uniqueness and Stability 13
(by Lemma 3.1)

z2—F z— P,
— (_6—2(‘06,130 (Po))(27+0(ﬂ0))x/ e<z—Po,a>( 0 )j < 0 ,P—QS > du_po (z)
a0 |z — Pyl |z — Py

O

The next lemma shows that each critical point of K(P) is nondegenerate.

Lemma 3.3 Let Q. be a critical point of KG(P) over Bgye(Q%). Then we have

O?K.(
6P6P |P Qe

= St B (e B = Ro)ydun, () +0(8). (32)

Proof In fact, we have

aP(‘?P P=Q.
a(weP+ve P) 6(w€P+UE P) 82(weP+Ue P)
— 3 ) ) I € — < € . R ) ) >6 — .
ap; ; ap; > |P=q.+ < We,p +ve,p ~ oPoP, lp=q

O(we,p + Ve p)l O(we,p + Ve,pP) |
6Pz P= Qe 6.P] P:Qe

B / Pwe,q. +veQ.)"
Qe .

(‘32(w€ P+ Ve P)
— We,Q. +V P |p_
,[)e’ae( €,Qe eaQe) 6P16.P] |P Qe

_ Owep +vip) O(wep +vep) |
- 6p. ’ 6P- e |[P=Q.

_/ p(we,Qe + Ve, Q.
Qc,q.

y-t d(we p + v p) | O(we p + v p) |
P; F=R- 5P, F=Q:

Owe,p Owep / 1 ow, p 6'11)e P
= : — >, |p=qQ. — We,Q. +V P~ — | p=
P, P, ¢ |P=0q. - P(we,Q. +ve,q.) oP, lP=q. |P Q.
6w P 61) P _ 6’111 P 81} P
+ < o, o > | peq. —/ P(we,g, +0e,0.)" 55 |P Q. 3p |P Q.
0P, ' 0F; Q. 0.
ow P ov P Bw P 81} P
+ < ==, 52 > p=q. _/ P(Wwe,Q. +ve,q.)" 5 |P Qo |P Q.
ap; ’ oP, oo,
Ove,p Ove p 18v6p Ove, p
3 3 > _ _ w +1) p—
9P’ op; ¢ lP=q. /QQ P(we,Q. +ve,Q.) lP=@. 5~ ap; lP=q.

=L+ 0L+ I3+ 14,
where I;,¢ = 1,2,3,4 are defined at the last equality.
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We first note that by Lemma 2.4,

I = O(e e, (Q)"*7) = o€ *|e,p (Po)])-

Next,
_1 0w 10w, p,0v. p
I = p—177 _ B B p—1 € € -
> /Qe,Qe[Pw P, p(we,p + ve,P) P, ] aP; |P=q.
= 0(e 9e,@. Q') = o(e™?| e,y (Po))
by Lemma 2.4.
Similarly

Iy = O(¢ *19e,.(Q['F7) = o(e™ % [pe,py (Po))-
It remains to estimate I;:

_, Ow ow, p ow,. p
I = P o=, = P(weq. + v ) T 5 = |p=
1 /QQ [pw 6PJ_|P—Q€ P(We,@. + ve,Q.) ap, lP=q.] P, lP=q.

ow P 6’11} P
p— 1 p—1 €,
= [ gplea.—pwea ) el 0 )%

|P Q. +O(€7?|pe,0.(Qe)' ™)

6 6’11]6 P _9 1
= [ D __ P ) +o
— /Qe . ap |P:Qe [w (UJE,Qe) ] aR |P=Q6 =+ 0(6 |(‘0€’Q6 (Q€)| )

ow,
- Pt 1+o
_/Qe,Q ap; a5 |P=q. [PwP ™ ¢ . (Qc + €y)] 6P 2lp—g. + O %|pe 0. (Q)'7)

= (=267)pe,p, (Po) (1 + 0(1))

z— z—Pp 2(Qe—Pp) 2 — P 6w
[ et [ eSS R S g o) (P, G40 o @)
RN a0 |z — Po| " Oy:

(by Lemma 3.1)

= (=267%)e,p, (Po)(1 + O(o))

B . Poa — P, ow _ .
x [t [ SR s e (Eb ) () 5 dy + O 0. (@01
RN a0 |z — Pyl Yi

—2y

- =5 P <z—Fy,a> P P .
2d2(Py, 09) ‘pf,Po( 0)(/(-)9 € (2 0)i(z 0) idpp, (2) + O(Bo))
Combining the estimates for I;,4 = 1,2,3,4, we obtain (3.2). O

The proof of Theorem 1.1 is completed by the following lemma.
Lemma 3.4 There ezists a unique critical point of K (P) over Bgs,(Q?).
Proof As we already know, K(P) has a critical point Q. = Py + (1d(Py,00)a + o(1))

and any other critical point of K(P) is in Bg,(Q?).

We now show that (). is unique.
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First, by Lemma 3.3, there are only finite number of critical points of K (P) in
Bgoe(Q%). Let ke be the number of critical points. At each critical point, we have

by Lemma 3.3,
deg(era Bﬂif(Qi)7 0) = (_1)N
where 3; > 0 are small constants so that Bg,.(Q¢) contains only one critical point (i.e.

Q?) of VK, (P), since G(P,) has N positive eigenvalues.
Hence by the additivity of the degree we have

deg(VK., Bp,.(Po),0) = k.(-1)V.

On the other hand, since K(P) has only one critical point in Bg,(Q°) and by Lemma
3.2, VK. (P) = VK.(P) 4+ O(foe 2¢pc p,(Ps)), by a continuity argument (note that
VK. (P) # 0 and VK (P) # 0 on 8Bp,(Q°)), we obtain

deg(VKeaBﬁoe(Q(e))JO) = deg(VKe(P)aBﬂoe(Q(e))JO) = (_1)N'

Hence k. = 1.

4 Eigenvalue Estimates: Proofs of Theorem 1.3

1

In this section, we shall study eigenvalue estimates for L. := €?A — 1 + p(u.)?~! and

finish the proof of Theorem 1.3.

Proof of Theorem 1.3: Let u, = w,, g, +v,,q.. By Section 3, u, is unique. Let (7€, ¢)
be a pair such that

8¢€
" ov
We may normalize ¢, such that [|@¢|le = 1.
If 7| > @ >0, then as € = 0, 7. = p; for some j & {2,...,N +1}.

Lepe = 7°¢c in Q =0 on 99 (4.1)

We now assume that 7. — 0 as € — 0. Then after a scaling and limiting process (see
[20], [21] and [24]), we have ¢.(y) = ¢c(Q. + €y) = ¢o, where @y is a solution of

Av—v+pwP v =0 in RV,v e HY(RV).

By Lemma 4.2 of [21], there exists s; such that ¢ = Zj\;l sjg—;‘;.

This suggests that we should decompose ¢, as ¢, = Ejvzl s5€0jwe,Q. + ée, where

be € Ko, and |s5| < C. Since [|¢c]|c = 1, we have |c||le < C and ¢, satisfies

N N
(Le = 7)¢e + Y _ 5[p(uc)P " edjwe q. — pwP~ ' edjw] = 7Y s5edjweq. - (4.2)
j=1 j=1

Since 7¢ — 0, then by the same argument as in Proposition 6.3 of [29] we have that
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Te. © (Le — 79) : Ko — CLy . is invertible. Since ¢, € K, , we have

||(5€||H2(Q€,Qg) - || Zs e leajwe,Qe _pwp_leajw]”LQ(Qe,Qé))

2

= 0((|¢eQ.(Q0)|7?) Z

Multiplying (4.2

~—

by €0k (we,g.) we obtain

M-

S;/ [p(ue)p_leajwé,Qe —pwp_leajw]eakwe’Qe
Qe,qc

1

J

=7 Z/ 55 5€0jWe, Q. EOKWe,Q.
EQe

+ / [p(0e)P " Becdy(we,) — puP Becdyul. (4.3)
Qe,Qe

We first estimate the right-hand side of (4.3). By some simple computations as in the

proof of the estimate I; in Lemma 3.3, we conclude that

RHS of (4.3)

N N

N
= Tst (465 +0(1)) + O 1551960, (@) + O (D I8 |0e,q. (@) F)/2))

j=1 j=1
where A = [on (& . )2dy.
For the left hand side of (4.3), we have by Estimate C in Appendix A

LHS of (4.3)

N
=2 55'(/ [p(we,0.)" " edjweq. — pu’ ' edjwledrweq.) + O(lpcq. (Q))
i=1 .

Qe,@c

— P, — P,
=/ e<#—Poe> o Y ,8¢ > ( Z 0 )k(pe,PO(PO)(Q’}/—}—O(l))
) |z — Pol

where s¢ = (s5, ..., s%)-

Hence we have

7 = 0(¢c,q.(Qe)) = O(pc,p, (Fo))
and 7¢/ e, p, (Po) — T0,58° — s where (19, s) satisfies
(27)G(Py)s = Ad®*(Py,00)19s.

Ad> (PO,BQ)

Hence To is an eigenvalue of G(FPp). Therefore 7¢/¢, p,(Po) — 7j,8° = @;



Uniqueness and Stability 17

where

%

-~ Ad?(PRy,09)
On the other hand, we can construct a solution (¢,;,7.,;) of (4.1) by putting

Ti A, G(Ro)d; = \;dj,j = 1,...,N.

¢€’j = 6.7 (weaQe + UfiQe) + 62‘1157.7'7 ‘1157]' € ’CiQe’

Tej = Pe,po(Po)(Tj + 0;),05 = o(1).
By using Lemma 2.3 and the implicit function theorem, we can conclude that there

exists (¢e,;, e ;) satisfying equation (4.1). This finishes the proof of Theorem 1.3.

5 Proof of Theorem 1.4

In this section, we prove Theorem 1.4 and thus finish the proof of Corollary 1.2.

We first remark that if (1.18) has an eigenvalue oy # 0 and Re(ag) > 0, then we have
|s +1+7ap| > s+ 1 and thus |ag| < C where C is independent of 7. Hence, to prove
Theorem 1.4 for 7 small, it is enough to show that all nonzero eigenvalues aq of the
following eigenvalue problem

qr fRN wr_1¢

st1 [vwr w? = apg, ¢ € H*(RY) (5.1)
RN

Ap—o+pwP~o—

have negative real part.

To this end, we first introduce some notations and make some preparations. Set

fRN wr—1¢

p H2 N
e wP, ¢ € H(R™)

Lo :=Lop—v(-1)

where v = % >1and Lo := A — 1+ pwP L. Note that L is not selfadjoint if
r#p+1.
Let
ow .
Xo := kernel(Lg) = span{—1j=1,...,N}.
dy;
Then
1
Low = (p— 1)w”,L0(p —Y + ia:Vw) =w (5.2)
and
1 1 1 N
Lylw)yw = — —v:———/ 2 5.3
[ @t = [ wZquegeve) =25 -D [ Wt 63
— 1 1
/RN(L0 Lw)w? :/RN wp(p_1w+ Ewi)
—/ (Lo'w)——Low = —— [ w? (5.4)
N RN 0 p—l 0 _p—l RN ) )

Proof of Theorem 1.4:
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We divide the proof into three cases.

Case 1:r:2,1<p<1+%.

Since L is not self-adjoint, we introduce a new operator as follows:

e _ fRN w¢ fRN fRN + fRN w¢w
Li¢:= Lop— (p— fRN (- fRN w2 w+(p—1) Tovaty " (5.5)

We have the following important lemma.

Lemma 5.1 (1) L, is selfadjoint and the kernel of L, (denoted by X, ) = span {w, 2 e w.oi=
1,..,N}. (2) There exists a positive constant a1 > 0 such that

L1(¢a¢)
2(p— 1) [ W [ WP v wrtt
= [ 9o gy 2O DIl Tt [ g2
> a1 ) (6, X1)

for all ¢ € H'(RN), where dr2 g~y means the distance in L>-norm.
(RN)

Proof By (5.5), Ly is selfadjoint. Next we compute the kernel of L;. It is easy to see
that w, g—;‘;,j =1,...,N, € kernel(L1). On the other hand, if ¢ € kernel(L;), then by
(5.2)

Log = & (6w + ()0 = &1 (@) Lo(—qw + 52Vw) + e2(é)Lo( )
where
a(4) = - fjj;fuf p-ple 7: It )= - ﬁf; i
Hence
¢ - cl(qﬁ)(ﬁw + %wa) — c2(9) ﬁw € kernel(Lo). (5.6)
Note that

= w”(ﬁw + 2zVw)

fRN w?

Sy 0P [y w(pTllw + zzVw)

(Jpw w?)?

c1(9) = (p—1)ec1(9) —(Pp—1)ec1(9)

1 N [pn wPt!
=) - @Gy~ P
by (5.3) and (5.4). This implies that ¢;(¢) = 0. By (5.6) and Lemma 1.2, this proves
(1).
It remains to prove (2). Suppose (2) is not true, then by (1) there exists (a, ¢) such

that (i) « is real and positive, (ii) ¢ L w, ¢ L g;” ,j=1,...,N, and (iii) L1¢ = ag.
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We show that this is impossible. From (ii) and (iii), we have

(Lo - ) = (p—1 ff” i (5.7
RN

We first claim that [,y w?¢ # 0. In fact if [,y wP$ =0, then a > 0 is an eigenvalue of
Ly. By Lemma 1.2, a = p; and ¢ has constant sign. This contradicts with the fact that
¢ L w. Therefore a # 1,0, and hence Lo — a is invertible in Xg-. So (5.7) implies

fRNw ¢

= Lo — Lw.
¢ (p fRN ( 0 Oé) w
Thus
B f N _
/RN wre = (p fRRN w2 RN ((LO B a) lw)wp’
[ == (L= wr,
/ w? = / (Lo — @) ~'w)((Lo — a)w + aw),
RN RN
0= Lo—a)™t . 5.8
/ N(( 0= 0) M wpw (589)
Let hi (@) = [pn (Lo—a) " 'w)w, then hy (0) = [pn (Lg Lw)w _fRN Lw+izr-Vww =
(ﬁ— fRNw >Osmce1<p<1+N Moreover h; (o fRN (Lo — o) 2w)w =

S~ (Lo—a)'w)? > 0. This implies hy(a) > Oforall a € (0,u1). Clearly, also hy(a) < 0
for a € (u1,00) (since limy—s oo h1(a) = 0). This is a contradiction to (5.8)!
0O

We now finish the proof of Theorem 1.4 in Case 1. Let ap = ag+iay and ¢ = ¢g+id;.

Since ag # 0, we can choose ¢ L kernel(Lg). Then we obtain two equations

Logr — (p— 1) ffN e w? = ardr — ar¢r, (5.9)
RN

 Jry wor

Lodr — (p— 1)~ w” = agrdr + arog. (5.10)
P Jan 0

Multiplying (5.9) by ¢r and (5.10) by ¢; and adding them together, we obtain

—aR /RN (6% + ¢7) = L1(¢r, ¢r) + L1 (1, ¢1)

fRN w¢RfRNw ¢R+fRN w¢IfRNw ér

fRN w?

+ -1 -

fRN ians

— 1)L - 2 2
o= DIl won? ([ worr)
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Multiplying (5.9) by w and (5.10) by w we obtain

(P—l)/RN wPor —vo(p — fRN wWoR /RN wh ! :aR/RN quR—aI/RN wor, (5.11)

fRN w?

(p-1) /RN wPér —vo(p - fj?N wd)l/ wPt! =aR/R w¢1+a1/R wogr. (5.12)
RN N N

Multiplying (5.11) by [,~ w¢r and (5.12) by [, wé; and adding them together, we

obtain
(p—1)/RNw¢R/Nw’”¢R+(p—l)/Rchzﬁz/RNw%z

fRN wPt1

T won ([ o)

= (ar +70(p—1)

Therefore we have

—an [ @+ 6 = Ia(on.dn) + La61.61)

fR wPt1

+(p—1)(70—2)(p110‘R+70 ] )(f v Won)" 4 (Jpw wo1)”
RN

Jrv w?

wPH! A
o= I o ([ wo

(fan w?)?

Set

bR = crw + ¢%, ¢% L X1,¢01 = ciw + o1, é7 L Xi.

2 2
/ w¢R=CR/ w,/ 7~U¢I=CI/ w”,
RN RN RN RN

B oy (B X1) = 95122, A oy (61, K1) = [|6F [

By some simple computations we have

Then

Li(¢r,dr) + L1(é1, é1)
+(0-Dar(G+c) / w?+(p—1)(0—1)2(ch+c3) / wtan(|exl3a+ 6t 13:) = 0.
RN RN
By Lemma 5.1 (2)

(7o — Vag(ck + C%)/ w?
RN

+(p =10 = 1)*(ck +¢i) /RN w' + (ar + an)(I6gll72 + 67 1172) <0

Since v9 > 1, we must have ar < 0, which proves Theorem 1.4 in Case 1.

Case 2: r=2,p=1+%.
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In this case we have

1 1
/ (Ly'w)w = / w(——w + zzVw) = 0. (5.13)
RN RN p— 1 2
Set
S + L \Y (5.14)
wy = - Tw+ 5V .

We will follow the proof in Case 1. We just need to take care of wg. We first have the

following lemma which is similar to Lemma 5.1. The proof is omitted.

Lemma 5.2 (1) The kernel of Ly is given by X; = span {w,wo, g_;‘}J =1,...,N}. (2)

There exists a positive constant as > 0 such that

L8.0) = [ (99 + 6 = pur~1 g7

+

20Dl 09 i 06,y ] gy
RN

fRN w2 (fRN w?)?

> azds gvy(¢, X1), Vo € H'(RY).

Now we can finish the proof of Theorem 1.4 in Case 2.

Suppose that ag # 0 is an eigenvalue of L. Let ag = ag+iay and ¢ = ¢r+i¢;. Since
ag # 0, we can choose ¢ L kernel(Lg). Then similar to Case 1, we obtain two equations
(5.9) and (5.10). We now decompose

¢r = crw + brwo + ¢%, o5 L X1,é1 = cyw + bywo + é7, 67 L Xi.

Similar to Case 1, we obtain

Li(¢r, ¢r) + L1(¢1, ¢1)

+(v0 = Dar(c + &) / W + (0= D)o — 12 + &) / WPt
RN RN

+anOh([ wh? B[ udf 10k + 19t <0

By Lemma 5.2 (2)

(0 = Dar(ch + &) /

LGV DA+ ) [ urt
R

RN

vanGh([ wdP+ ([ wh?)+ (an+ @)kl + o) <0

If ag > 0, then necessarily we have

cr=rcr=0,¢5 = 0,67 = 0.
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Hence ¢r = brwy, 1 = bywg. This implies that

brLowe = (br — br)wo, brLowoe = (br + br)wo,
which is impossible unless by = by = 0. A contradiction !

Case 3: r=p+1,1<p< ().
Let r =p+ 1. L becomes

qr fRN wP-
541 [pn wptt

L:LO— wP.

We will follow the proof of Case 1. We need to define another operator.

L3p = Lop— (p— 1)%% (5.15)
RN

We have the following lemma.

Lemma 5.3 (1) L3 is selfadjoint and the kernel of L3 (denoted by X3) consists of

ow

w, Oy,

j=1,..,N. (2) There exists a positive constant az > 0 such that

(P — 1) ([pn wP9)?

fRN wpt+1

Z a3d%2(RN)(¢7 X3)7 v¢ € Hl(RN)

L@d) = [ (V67 +6* —pur6) +

Proof The proof of (1) is similar to that of Lemma 5.1. We omit the details. It remains
to prove (2). Suppose (2) is not true, then by (1) there exists (a, ¢) such that (i) « is
real and positive, (ii) ¢ L w,¢ L 3713 j=1,...,N,and (iii) L3p = as.

We show that this is impossible. From (ii) and (iii), we have

(p_ ]-) fRN wp¢ D
—fRN WPt we.

Similar to the proof of Lemma 5.1, we have that fRN wPp # 0, # p1,0, and hence

(Lo — ) = (5.16)

Lo — a is invertible in Xg-. So (5.16) implies

—1) [0 wP
¢= = S ){fwrf) </J)—(LO —a) .
RN

Thus

LN wPe = (p— 1)% RN((LO — 04)—111)1’)11)177

/ wPt = (p— 1)/ (Lo — @) wP)w”. (5.17)
Let h3(e) = (p—1) [un (Lo—) " wP)wP— [ wP!, then h3(0) = (p—1) [ (Ly ' wP)wP—
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fRN wPtl = 0. Moreover h;,(a) =(@p-1 fRN((LO —a) 2wP)w? = (p—1) fRN((LO -
a)"twP)? > 0. This implies hz(a) > 0 for all a € (0, ). Clearly, also hz(a) < 0 for

€ (p1,00). A contradiction to (5.17)!
O

We now finish the proof of Theorem 1.4 in Case 3.
Let ap = ag +iar and ¢ = ¢ + idr. Since oy # 0, we can choose ¢ L kernel(Lyg).

Then similarly we obtain two equations

Lodr — (p— 1)y {fRN ﬁ}f w? = arpr — ar¢r, (5.18)
RN

Lo¢r — (p— 1) “}RN pffw = ardr + arPg. (5.19)
RN

Multiplying (5.18) by ¢r and (5.19) by ¢; and adding them together, we obtain

~an [ (@h+60) = La(én.én) + Lalor, 1)

fRN wp¢R fRN wp¢I) ‘

fRN wl’+1

+p—1)(0 -
By Lemma 5.3 (2)

fRN wp¢R fRN wp¢1_
fRN wpt1

an [ (Gh+ )+ (6.5 + (0= )00 -

which implies ap < 0 since vy > 1.

Theorem 1.4 in Case 3 is thus proved.

6 Conclusions and Remarks

In this paper, we have established the uniqueness and metastability of single interior
spike solutions to the shadow system of Gierer-Meinhardt system. Both the uniqueness
and stability result depend on the geometry of the domain (in contrast to the 1-D case
[23]).

For the uniqueness, a key fact is the estimate of the speed of the spike P, approaching
the limit Py (Lemma 2.2). It turns out at a nondegenerate peak point, we must have
P, — Py = O(e). (This is not true in degenerate peak case.) For the stability, it can be
reduced to the study of a nonlocal eigenvalue problem. In Theorem 1.4, this nonlocal
eigenvalue problem is analyzed in the two cases r = 2 and r = p+ 1. It is well-known
that for the scalar equation, there will always be one eigenvalue bounded above from

zero, which eliminates the possibility of metastablity. For the non-local system, we have



24 Juncheng Wei

established that the non-local term pushes this positive eigenvalue into the left half plane,
and thus making the single interior peak metastable.

It remains a difficult question whether or not uniqueness holds at a degenerate peak
point. (Single interior peak solutions exist at degenerate peak points, see [4].) For the
stability, it would be an interesting question to see what happens when 2 < r < p+ 1.
(It is clear that when r is close to 2 or p + 1, Theorem 1.4 still holds true.)

Although the analysis in this paper was carried out for the Gierer-Meinhardt system,
the results can certainly be generalized to a much wide class of non-local reaction diffusion
systems that have localized spike solutions. We remark that even for the (GM) system,
some important and interesting questions have not been solved, such as the dynamics of
interior spikes, the stability of boundary spikes, the strong coupling case (i.e. Dy < +00),
the role of 7 on the stability, the stability of multiple-spike solutions, etc. Some recent

progress has been made in [5], [13] and [12].

Appendix
In this appendix, we prove Lemma A in Section 1.
We first note that (2) can be proved by an easy perturbation argument. We just need

to prove (1).

Proof of (1) of Lemma A: The proof is similar to that in Section 4. Let (a., ¢.)
satisfy

qr fQ u:*1¢€

P = ePes eeHZQe 3 6.1
i = e b € B0, ()

62A¢e - ¢e + pufil(ﬁe -

where ae — 0 and ||¢¢||c = 1. Then we have

Le(¢e) — n(de)u? = acge,

where

_ qr r—1 T
160 = s [t/ ).
Let ¢ = ¢ — ﬁn(@)ue. Then by a simple computation we have

Le(¢e) = ae((ge + Cele /Q uzilée); (62)

where
qr 1
(P—1D(s+1+7ac) —qr [qul

Ce =
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Let ¢S, be the eigenfunction of 75, ; in Theorem 1.3. Set
Ce := span{¢§,,,j =1,...N} C L*(Qc.p.),

’Ce = Span{¢;+17j = 17 JN} C H3(967P€)'

We decompose @, as
— N —
d)e = Z b;¢;+1 + ¢é_7
=1

where b5 — b9, and ¢ L K. We first obtain that ¢} satisfies

N
Le((ii) = Z(ae_T;+1)b;¢§‘+1+ae($§_+aeuece/ Ue¢ +aece Zb /Qued);'-{—l)ue- (63)
j=1 j=1
By Lemma 7.1 of [29],
| utin = 0@ ein(P). e [ udhin =0 (P).

Then by a similar argument as in the proof of Propositions 6.1 and 6.2 in [29], we
obtain that

LG:IC;L—>C€J‘

is an invertible map if € > 0 is small enough. Hence
161l = Olpe, . ( MZW

Next we multiple both sides of (6.3) by ¢, and integrate over €2, we obtain

N N
(@ =)t [ G5 = O (Placl Y- )
Jj=1 $2 j=1
Hence we have
N N
(e =)t = Olper. (P + D Iria) D 05D, 5 =1, -
j=1 j=1

This shows that

N
Qe — 7';4—1 = 0(1)(2 |T;+1 )
j=1

for some j = 1,..., N. By Theorem 1.3, this proves (1) of Lemma A.
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