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MANUEL DEL PINO AND JUNCHENG WEI

ABSTRACT. Let D be a bounded, smooth domain in RN, N >3, P € D. We
consider the boundary value problem in Q@ = D\ Bs(P),

Au+u?P =0, u>0 inQ,

©u=0 on 9oN
with p supercritical, namely p > N +2 . We find a sequence
p1<1’2<p3<'--, with lim pg = 400,
k—+4oc0

such that if p is given, with p # p; for all j, then for all § > 0 sufficiently
small, this problem is solvable.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

A basic model of nonlinear elliptic boundary problem is the Lane-Emden-Fowler
equation,
Au+u?P=0,u>0 inQ, (1.1)
u=0 ondQ, (1.2)
where ) is a domain with smooth boundary in RV and p > 1.

A main characteristic of this problem is the role played by the critical exponent
p= N—Jr? in the solvability question. When 1 < p < & +2, a solution can be found
as an extremal for the best constant in the compact embedding of H}(Q2) into

LP1(Q), namely a minimizer of the variational problem

R 4\
ueHE (Q)\{0} (f |u|p+1) p+1

When p > %, this minimization procedure fails, so does existence in general:
Pohozaev [20] discovered that no solution exists in this case if the domain is strictly
star-shaped. On the other hand Kazdan and Warner [13] observed that if €2 is an
annulus, @ = {z /a < |z| < b}, compactness holds for any p > 1 within the class
of radial functions, and a solution can again be found variationally without any
constraint in p.

In the classical paper [3], Brezis and Nirenberg considered the critical case p =
%Jrg and proved that compactness, and hence solvability, is restored by the addition

of a suitable linear term. Coron [4] used a variational approach to prove that (1.1)-

(1.2) is solvable for p = L2 if Q exhibits a small hole. Rey [22] established

existence of multiple solutions if £ exhibits several small holes. Bahri and Coron
[1] established that solvability holds for p = {2 whenever Q has a non-trivial
topology. The question by Rabinowitz, stated by Brezis in [2], whether the presence
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of non-trivial topology in the domain suffices for solvability in the supercritical case
p > %, was answered negatively by Passaseo [18] by means of an example for
N >4 and p > % If p is supercritical but close to critical, bubbling solutions
are found in domains with small holes, see [8, 9, 14].

Except for results in domains involving symmetries or exponents close to critical,
e.g. [7,8,9, 10,15, 16, 19], solvability of (1.1)-(1.2) in the supercritical case has been
a widely open matter, particularly since variational machinery no longer applies,
at least in its naturally adapted way for subcritical or critical problems.

In this paper we consider Problem (1.1)-(1.2) for exponents p above critical in a
Coron’s type domain: one exhibiting a small hole. Thus we assume in what follows
that the domain 2 has the form

=D\ Bs(@Q) (1.3)

where D is a bounded domain with smooth boundary, Bs(Q)) C D and § > 0 is to
be taken small. Thus we consider the problem of finding classical solutions of

Au+u? =0, u>0 inD\ Bs(Q), (1.4)
u=0 ondDUIB;(Q). (1.5)
Our main result states that there is a sequence of resonant exponents,
N +2 . . _
N_2<p1<p2<p3<---, with kgriloopk—+oo (1.6)

such that if p is supercritical and differs from all elements of this sequence then
Problem (1.4)-(1.5) is solvable whenever ¢ is sufficiently small.

Theorem 1. There exists a sequence of the form (1.6) such that if p > % and
p # pj for all j, then there is a do > 0 such that for any 6 < dg, Problem (1.4)-(1.5)
possesses at least one solution.

While the min-max quantity yielding Coron’s solution [4], see also [22], suggests
that the Morse index of that solution equals N + 1, our method of construction
formally implies that the index for the solutions we find remains N + 1 as p grows
until py, while it grows to infinity as p increases more and more. This may indicate
an obstruction in nature, besides the technical loss of Sobolev’s embedding, in ob-
taining general solvability results via min-max arguments for supercritical powers:
not only geometry and topology of the domain are into play, but also their subtle
interactions with special numerical values of the exponent.

In the background of our result is the problem

Aw+wP =0, w>0 in RV \ B(0), (1.7)
w=0 ondB;(0), limsup |z|>* Nw(z)< 400, (1.8)
z|—+o0

which is known to admit a unique radially symmetric solution w(r) whenever p >
%. The solutions we find have a profile similar to w suitably rescaled. More
precisely, Let us observe that

ws(z) =0 FTw(@ |z - Q) (1.9)
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solves uniquely the same problem with B; (0) replaced with Bs(Q). The idea is to
consider w; as a first approximation for a solution of Problem (1.1)-(1.2), provided
that § > 0 is chosen small enough. What we shall prove is that an actual solution
of the problem, which differs little from ws does exist. To this end, it is necessary
to understand in rather fine terms the linearized operator around wsy.

While we do not intend to express our result in most general forms, it is worth-
while to remark for instance that the result of Theorem 1 remains valid, with only
minor modifications in the proof, for a problem of the form

Au+uvP+Au=0,u>0 inD\ Bs(Q),

u=0 ondDUOIBs(Q).

where A < A\ (D), the first eigenvalue of the Laplacian in D. We can also get
existence of multiple solutions in a domain of the form

D\ |J Bs(Qi) -

i=1

It is interesting to compare our result with one obtained recently in [7], for the
exterior problem

Au4+u?P =0, u>0 inRV\D,

u=0 ondD, lim w(zx) =0
|z| =400
where D is an arbitrary bounded domain, establishing in particular that this prob-
lem admits infinitely many solutions if N > 4 and p > %—fé These solutions
are of a very different type from that of w: they are very small on bounded sets,
while have slow decay, u(z) ~ |:17|71% It is not expected that they can be used
as approximations for an extra Dirichlet boundary condition taking place on the

boundary of a large domain surrounding D.

The question certainly opens on considering a non-spherical hole or, more gener-
ally, finding conditions which ensure solvability of rather general supercritical prob-
lems. A method beyond variational arguments or singular perturbations would be
needed.

2. THE OPERATOR A + pwP~! on RV \ By (0)

The purpose of this section is to establish an invertibility theory for the linearized
operator associated to w. We consider the problem

Ap+pwPtp=h in RN\ B(0), (2.1)

¢ =0 on dB1(0), lim ¢(z) =0, (2.2)

|z| =400
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2.1. Condition for non-resonance. We want to investigate under what condi-
tions the homogeneous problem with A = 0 in (2.1)-(2.2) admits only the trivial
solution. To this end, let us consider the first eigenvalue of the problem

N -1
P+ —— +pwP Y+ 1/% =
r r
This eigenvalue is variationally characterized as
o0 _ oo _ B
v(p) = inf S WP ld;—pfl wP~ |op|>rN Ldr |
vee [ wrrN=3dr

0 (2.3)

(2.5)

with
o
€= (veC o) /v(1) =0, [ P < oo},
1
This quantity is well defined thanks to Hardy’s inequality,

N —2 2 (oS} [e]
( 1 ) / ’1,1127'N73d7' S / |'l/)l|2’f'N71d'f'.
1 1

The number v(p) is negative, since this Rayleigh quotient gets negative when eval-
uated at v = w. Using this fact, Hardy’s embedding and a simple compactness
argument involving the fast decay of wP™! = o(r~%), yields the existence of an
extremal for v(p) which represents a positive solution to problem (2.3)-(2.4) for
v = v(p). Let us consider now Problem (2.1)-(2.2) for h = 0, and assume that we
have a solution ¢. The symmetry of the domain RY \ B;(0) allows us to expand ¢
into spherical harmonics. We write ¢ as

#(z) = im(?‘)@k(ﬁ), r>0,0esN1
k=0

where Oy, k > 0 are the eigenfunctions of the Laplace-Beltrami operator —Agn—1
on the sphere SV ~! normalized so that they constitute an orthonormal system in
L2(SN-1). We take Oq to be a positive constant, associated to the eigenvalue 0 and
0;, 1 <i < N is an appropriate multiple of I%I which has eigenvalue \; = N—1,1 <
1 < N. In general, A\ denotes the eigenvalue associated to O, we repeat eigenvalues
according to their multiplicity and we arrange them in an non-decreasing sequence.

We recall that the set of eigenvalues is given by {j(N — 2+ j)|j > 0}.

The components ¢ then satisfy the differential equations
N -1
r

A
fr P (- 2 =0, re (o), (2.6

¢r(1) =0, ¢x(+00) =0.
Let us consider first the radial mode k& = 0, namely A\;, = 0. We observe that the
function

2
Zi(r) = r' _c
1(r) =rw'(r) + P T
satisfies
N -1

ZII +
L r

Z, +pwP™'Z, =0, forallr>1,
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but Z;(1) # 0. We notice that Z; is one-signed for all large r. It follows then that a
second generator of the solutions of this ODE is given, for large r, by the reduction
of order formula,

Todr
Zo=7 o
2 1(r) /R FN-12

but since at main order Z;(r) ~ cr? N we see that Zs(+00) # 0. Since ¢y is a
linear combination of Z; and Z it follows that the only possibility is ¢ = 0. Let
us consider now mode 1, namely £k =1,..., N — 1, for which Ay, = (N — 1). In this
case we also have an explicit solution which does not vanish at » = 1 but it does
at r = +oo. Simply Z;(r) = w'(r). But the same argument as above gives us a
second generator Zs(r) ~ r as r — +00, hence again, the only possibility is that
¢or=0forall k=1,...,N.

Let us consider now modes 2 or higher. Here unfortunately life is harder. Not
only we do not have an explicit solution to the ODE to rely on, but it could be
the case that a non-trivial solution exists. Let us assume this is the case for an
arbitrary mode k£ > N. We claim that ¢ cannot change sign in (1,00). In fact if
it did, we begin by observing that it can only do it a finite number of times, since
its behavior at infinity must be like eventually that of a decaying solution of the
Euler’s ODE

N-1 Ak

z" + Z'- k7 =0
r

r
namely, at main order we must have
N-2 1

Z(r) = er (14 o(1)), p=——5— 5 (N —2)24+4X;.

Let 7o > 1 be the last zero of ¢y, and let us assume that ¢ > 0 on (rg,00) We
observe now that since Aw < 0, w'(r) has exactly one zero in (1,00). Thanks to
Sturm’s theorem this zero must be less than 7. Hence w' < 0 in (ro,00). Let us
observe now that
W(r) =N (w' ¢, — w" ér)
satisfies in (r, 00)
W,(T) = TN_3()‘k - )\l)wl¢k <0 in ('I“(),OO),

while W (rg) < 0 and W (4+o00) = 0, which is impossible. This shows that ¢; must
be one-signed. Thus the only possibility for equation (2.6) to have a nontrivial
solution for a given k > N is that A\, = —v(p). Thus we have proven the following
result

Lemma 2.1. Assume that p is such that
v(p) #—j(N—2+75) forallj=23,... (2.7)

where v(p) is the principal eigenvalue defined by (2.5). Then Problem (2.3)-(2.4)
with h = 0 admits only the solution ¢ = 0.

We will prove later that this non-resonance condition produces a good solvability
theory for equation (2.1)-(2.2). Before doing so we will describe the set of exponents
p for which condition (2.7) fails. We will prove
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Proposition 2.1.
For each j > 2 the set of numbers p for which v(p) = —j(N — 2 + j) is non-empty
and finite. In particular, there exists a sequence of the form

N+2
N -2
such that condition (2.7) holds if and only if p#p; for all j =1,2,....

<p1<p2<p3<---; pj—=>+00 asj— 400, (2.8)

For the proof we need the following result, which contains elements of indepen-
dent interest.

Lemma 2.2. (a) Asp | &£2, we have that v(p) - —A\; = —(N — 1).

(b) There exists a positive constant ¢y such that

v(p) = —cop? (1 + o(1)) asp— +oo. (2.9)
(¢) The function p — v(p) is real-analytic.

Proposition 2.1 is a direct consequence of this result. In fact, combining parts (a)
and (b) we see that for each j > 2 the set of numbers p for which v(p) = —j(N—2+j)
is non-empty. Since v(p) is a non-constant analytic function of p, this set can at
most be finite. We actually believe that this set is a single point but have no proof
of this.

Proof of Lemma 2.2 part (a). Let us set pg = % An alternative way of
writing equation (1.7)-(1.8) and the eigenvalue problem (2.3)-(2.4) is by means of
the so-called Emden-Fowler transformation,

w(s) = rﬁw(r) . (s) = rﬁw(r), where r = €°. (2.10)
Then equation (1.7)-(1.8) is converted into
@ +aw —pH+d" =0, @(0)=1w(o)=0,se[0,00) (2.11)
where 4 5 5
—N-2- > g="2 (N-2--°).
: B (N —2- 2

The eigenvalue problem (2.3)-(2.4) becomes

3 +al = (B-v)d+pi* =0, B(0)=(c0) =0, s €[0,00). (2.12)

2
It is easy to see that as p — po,a — 0,8 — % and

W =wo(s — Ry) + lower order terms, (2.13)

where wg is the unique homoclinic solution of the limiting equation,

" N_2 2
wy — %wo +wi® =0, we(0)= r?ealgz(wO(t)’ wg (o) =0
and R, ~ logl}T‘ — +00 as @ = 0. Therefore v(p) - —(IN — 1) as p — po, as

desired. 0

In order to analyze the behavior of v(p) for large p we need to understand the
asymptotic behavior of wp, the solution of (1.7)-(1.8), where dependence on p is
now emphasized. This can be done in exactly the same way as it was done in [11]
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in a fixed annulus a < |z| < b. In fact, by taking a = 1, b = 400 in [11], we can
gather the following information.

Lemma 2.3. As p = +o00, we have the validity of the following assertions.
1

(1) wy(z) = w(z) in CO([1,+00)), where setting ro = 27-2,
w(z) =2(1 = [zPN)  for 1< a[ <ro,  w(la]) =2[z>~N  for x| > mo.

(2) [lwpllpe =1+ 1%5)—” +1+ o(%), where 7y is a generic constant.

3)
4eV2r

(1+ev2r)?

P
l[wp| Lo

locally C'-uniformly in R. Here

(wp(epr +1p) = [[wpllz=) = U(r) = log

wy(rp) = rfzaf( wpy(r).

Proof of Lemma 2.2 part (b). We shall split the proof into several steps:
Step 1. We have the following upper bound on v(p).

(0~ 255 o wlr

Q p
. . (2.14)
fQ w§+
p+1

In fact, testing the function w,> in (2.5) and testing equation (1.7)-(1.8) against
wP, we obtain (2.14).

Step 2. The following lower bound on v(p) holds:

(0= 1) [ wirr¥+idr

v(p) < —

v(p) > — 2.15
)2 - i, (2.15)
In fact, since w, is a minimizer for the radial energy functional
o0, 112,,N—1
u'|*r dr
Qlu =~ 1] (2.16)

N (f1°° wptipN-1gy) TEn
we obtain, by computing Q[w, + t¢] — Qw,], that

(Ji whr™ " 1dr)?
I wht P N=1dy
(2.15) then follows from (2.17) and Schwartz’s inequality.

> 0,for allgp € £. (2.17)

/1 (V2 —put L 1N L+ (p—1)

Combining estimates (2.14) and (2.15), we get
Step 3. There exist two positive constants C; and Cs such that
C1p* < —vp, < Cop? (2.18)

In fact, by (3) of Lemma 2.3 and a similar argument as that of (4.13) of [11], we
obtain

o0 (o]
/ wg"'er_ldr ~ 1,/ wf,prN_ldr ~p (2.19)
1 1

from which, (2.18) follows.
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Finally, we can prove (2.9): Let us suppose for a subsequence p,, — 00, % — Cp-
Let hyp, be the corresponding eigenfunction. Without loss of generality, we may
assume that hy(rp,) = 1. Scaling

2 p 7
=——— hy(r)=nh r4+ry).
€pn [wp. Iz n(T) n(€p, n)

By the same argument as in the proof of Theorem 1.5 of [11], we obtain a limiting
equation for ho, = lim,,_, oo byt

" 1
hoy — Aoohoo + sech?(—=7)h = 0, hoo (0) = 1, hoe < 1 2.20
- (757 (0) = Lhoe < (220)
where A, is defined by
. € Up,
Ao = lim 5. (2.21)
nee Tp,

Thus A is a principal eigenvalue of (2.20) and co = Asorg limp 0 I#. (In fact,

P
according to formula (5.8) of [23], we have Ao = 3.) This concludes the proof of
part (b) of the lemma. O

Next we will prove analyticity of v(p). For this and also later purposes, it
is convenient to carry out Kelvin’s transform to restate Problem (1.7)-(1.8)as an
interior one in B (0). Thus we set

w(r) =r2 N (%)

and find that w solves (1.7)-(1.8) if and only if w is a classical, positive solution of

Aw + |gPN=2D=(N+2)gp =0 in B,(0), (2.22)
w=0 on dB1(0). (2.23)
Setting a = p(IN — 2) — (N +2), we observe that since p > ¥+2, then
N +2+2a
N-2

a radial subcriticality condition which, by the way, ensures existence of a unique
radial solution of (2.22)-(2.23), and hence of (1.7)-(1.8), see [17].

Naturally, Kelvin’s transform produces correspondence between linearized prob-
lems: If ¢ solves (2.1)-(2.2) for a given h then setting

30) = 1o (7). o) = o0 (), (224

we get the problem
A + |xPN=D=(N+2)pur=15 — ), in B(0), (2.25)
=0 on dB;(0). (2.26)

Proof of Lemma 2.2 part (c). We will show that the principal eigenvalue v(p)
in (2.5) is a real-analytic function.

We then need to analyze real-analyticity with respect to p > 1 of the radial
solution w(p). Of course this is not entirely obvious since the function y — yP is
not analytic if p is not an integer. Let ¢; be a first positive eigenfunction of the
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Laplacian in B, (0) and consider the space C; of all radially symmetric continuous
functions in By (0) for which ||¢; 'u||ec < +0c. It was proven by Dancer [5] that if
po and wug are such that there exists a p > 0 for which ug > p¢ then the map

(pa U) ERxCy (_A)—l(up) e Cy

is analytic in a neighborhood of (po,uo) (actually in a general domain). Dancer’s
proof applies with no significant changes to establish that the same is true for the
map

(p,u) € R x Cg = (—A)L(|z|PN D= WN+2ypy € ¢y .
The bottom line, is the fact that the application v > 0 — |z|” defines a real analytic
map into C(B;(0)). Indeed We can expand

) k
|| log™ || k
PR DE L L TR
k=0
Taking into account that for sufficiently large k,
sup [2]°|log" |z]| < 75 *k*e
|z|<1
we see that the above power series is uniformly convergent on |y — | sufficiently
small, thanks to Stirling’s formula. This fact is also in the background of Dancer’s
proof to deal with the vanishing of u at the boundary in the proof of analyticity
with respect to p. For analyticity with respect to u, we observe that

(uo + )P = ug(1 + (h/uo))"
and a uniform convergent Taylor’s series can then be written for ||h||c, small. See
Proposition 1 in [5] for the complete argument.
Now, w = w(p) is the only solution of the problem
F(w,p) = w— (=A) 7" (|2PN=2=(N+2)yp)) = 0.

From what has been said, for each py > 1 the map F(u,p) is analytic into C; in
a neighborhood of (w(pg),po) Besides, the map F,(w(pg),po) is an isomorphism of
C} since the linearized equation

A+ |g|PN=D= N+ pup=ly, — 0 in By(0),

’(b =0 on 831(0) .
admits only the trivial radial solution, as it follows from Lemma 2.1. From the
implicit function theorem in analytic version that the map p — w(p) is analytic into
Cy. The same is the case with p — |2[P(N=2)=(N+2)pup—1_ Finally, we observe that
Kelvin’s transform implies that v(p) can also be characterized as the first eigenvalue
inside the class of radially symmetric functions of the problem

A4 P20t By — 0 in B(0),
¢ =0 on 831(0) .
Either a lengthy computation by hand or an application of the standard theory
of eigenvalues for families of operators depending analytically on a parameter, as

in [21, 12] which can be adapted to our situation, yields that v(p) is an analytic
function. This finishes the proof. O
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2.2. Solvability of (2.1)-(2.2). We consider now the full problem (2.1)-(2.2),
namely
Ap+pwP~lp=h in RN\ B(0),
¢ =0 on dB:(0), lim ¢(z)=0.
|z| =400
Our main result in this subsection concerns with solvability of this equation and

estimates for the solution in appropriate norms. Let us fix a small number ¢ > 0
and consider the norms

6]l = sup |z|N7*77|¢(x)| + sup ||V V(x)| (2:27)
|z|>1 |z|>1
and
IAlles = s o1~ h(2). (2.28)

Proposition 2.2. Assume that p satisfies condition (2.7). Then for any h with
[|h]|4+x < +00, Problem (2.1)-(2.2) has a unique solution ¢ = T'(h) with ||¢||« < +o0.
Besides, there ezists a constant C(p) > 0 such that

IT (R« < CllA]lxs-
Proof. The proof makes use of duality via Kelvin’s transform. Consider ¢ and h
transformed into ¢ and h through the rule (2.24) into (2.25)-(2.26),
A + |x[PN=D=(NF2) pup=1g — ) in By(0),
=0 on dB;(0).
Then we have

R(@)] < [|Bllas |22 (2:29)
It follows in particular that, if o is fixed small, h € L4(B;(0)) for some ¢ > ]\2,—12,

hence h € H~'(B1(0)). From Lemma 2.1, it follows that only the trivial Hg-solution

is present for 0 right hand side. Existence of a unique weak solution ¢ € Hg (B(0,1)

whose norm is controlled by a multiple of ||A||... Let us now observe that
~Alz| 7 =o(N —2~0)z[ >,

hence, fixed o we can find a p(p, N,o) > 0 such that as well

1
—Alz|77 — p|a|pOV =D - (N+2)gp=1|p=0 > EU(N —2-0)r 277, |z| < p. (2.30)

Since h is bounded by a o-dependent multiple of ||h||. on, say, £ < |z| < 1, elliptic
estimates yield that

Il zoo(z/>p) < CllIAllxx
with C depending on N, p,o. Then from (2.29), (2.30) and maximum principle in
|z| < p, we deduce that

|6(@)] < Clz| =7 ||l |2 < 1.

Hence N

21¥ 277 lloo = [l2]"Gllco < CllAllcx-
The conclusion desired for V¢ follows by scaling: consider a ball radius R centered
at a point Z with |Z| = 2R, for R > 5. Set

¢(y) = R* V*7¢(z + Ry)
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Then
Ad + pR2wP ¢ = RNk, ye B(0,1).
Clearly in this ball
IRNhlloo < CllAllee,  R*0P™" = O(R™?), [|§loo < Cl|h|xx-
Elliptic estimates then imply
IV$(0)] < Cl|hl|.
or
IVo(@)| < Cllhllwlz]* .

Since Z is arbitrary with |Z| > 5, the desired conclusions follow. This finishes the
proof. |

3. THE OPERATOR A + pwP~! 1N §71D\ B;(0)

In this section and in what follows we shall assume that Q = 0, and consider the
large expanded domain Ds = §~1D. We shall carry out a gluing procedure that will
permit to establish the same conclusion of Proposition 2.2 in this domain, provided
that d is taken sufficiently small. Thus we consider now the linear problem

Aj+puPlg=h inDy\Bi(0), (3.1)
¢ =0 on dB1(0) U 9D;. (3.2)

We consider the same norms as in (2.27), (2.28) restricted to this domain.

Proposition 3.1. Assume that p satisfies condition (2.7). Then there is a number
0o such that for all § < &y and any h with ||h||« < +o00, Problem (3.1)-(3.2) has
a unique solution ¢ = T5(h) with ||¢|l« < +oo. Besides, there exists a constant
C(p,D) > 0 such that

IT5(R)[« < Cl[R]xx-

Proof. We assume with no loss of generality that the domain D contains the ball
B3(0). Let us consider a smooth, radial cut off (|y|) which equals one on |y| < 2
and vanishes identically for |y| > 3. We consider also a second cut-off {(|y|) which
equals 1 on |y| <1 and it is O for |y| > 2. In particular we have of course n¢ = (.
Correspondingly, we also write

ns(z) =n(dlz(), Cs(x) = C(8]x]).
We look for a solution ¢ to Problem (3.1)-(2.26) in the form

p=nsp+¢.
where ¢ and 1 are required to satisfy the following system.

Ap +pwP~hp = —pGuPTlP + (sh in RV \ By (0)
¢=0 on dB;(0) (3.3)
p(z) =0 as|z| = 400,
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A +p(1 = G)wP™"p = —2Vns Ve — pAns + (1 — (5)h in D
=0 on 0Ds U 8B;(0).
(3.4)

We shall solve equation (3.4) for 9 in terms of ¢ and h. To do so, let us consider
the linear problem

{ AY +p(1 = (s)wP~tp =g in Ds\ By (0)

=0 on 8DsUIB;(0). (3:5)

for g € L (Ds U 0B1(0)). Scaling back § by setting for any function p, p(z) =
p(671z), we see that problem (3.5) is equivalent to
A +p(1— )6 2P =625 inD\Bs(0)
{ P=0 on 0D U 0Bs(0).
We see that
p(1 =)0~ ™! = 0(6%) < M (D) < Au(D\ Bs(0)),

if 8 is taken sufficiently small. Hence this problem can be solved uniquely for ¢. In
terms of ¢ we get in addition the estimate

[¥lloc < C3 29l

where C does not depend on §. 1 defines of course a linear operator. Let us now
go back to equation (3.4). Then this problem can be solved uniquely, as a linear
operator of the pair (y, h), which we simply call 1(p, h). Setting
9 ==2Vn;Ve — pAns + (1= G)h
we easily obtain that
llglloe < C LN =7 lllx + 8N~ [|Allws ],
and hence
[9(0: )lloo < CLEN 27Nl + V277 || ] - (3.6)
Let us replaced this v into equation (3.3). We have thus a solution of the full
system if we solve the fixed point problem
¢ = T(—pCuw” " ¢(p,h) + (5h) 3.7)
where T is the linear operator defined by Proposition 3.1. We make now the
observation that, assuming also o < (N — 2)(p —1) — 4,
2N wP ™ (e, B)| < Ja NI IN TR N2 o), 4[| <

2N 201N 2ol + (|hllan] < [2] 726710l + (1Rl
so that
PGP~ (0, 1) [law < CElll0lle + [1Blls] -

From here and contraction mapping principle, we get then that if § is chosen suf-
ficiently small, then (3.7) can be solved uniquely in the form ¢ = T5(h) where the
bounds for Ts are the same as those for T', independent of §. This concludes the
proof. a
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4. PROOF OF THEOREM 1

Let us assume the validity of condition of condition (2.7) or, equivalently, that
p # p; for all j, with p; the sequence in (2.8). Problem (1.4)-(1.5) is, after setting

v(z) = 57T u(dx), equivalent to
Av+v? =0 in Ds\ B1(0), (4.1)
v=0 on 0B;(0) U 8Ds. (4.2)
Let us consider the smooth cut-off function 7, introduced in the previous section,

which equals 1 in B(0,26!) and 0 outside B(0,35 ). We search for a solution v
to problem (4.1)-(4.2) of the form

v =nsw + ¢,
which is equivalent to the following problem for ¢:
A¢p+pwP ¢ =N(¢p)+E inD;\ Bi(0), (4.3)
¢ =0 on dB;(0) U 9Ds.

where
N(¢) = Ni(¢) + Na(9),
Ni(¢) = —(nsw + )P + (nsw)” + p(nsw)?~" ¢,
N2(¢) = p(1 —nf~HuwP™'g,
and

E = —A(nsw) — (nsw)?.

According to Proposition 3.1 we thus have a solution to (4.1)-(4.2) if ¢ solves the
fixed point problem

¢ =T5(N(¢) + E). (4.5)
Let us estimate E. We have, explicitly,

—E =n(n? " = Dw? + 2VnsVw + wAns
We clearly have, globally, |E(z)| < C§" and hence
|E]|e < CO7. (4.6)
Let us measure now N(¢). We observe that

IN2() e = llp(1 =75~ )wP ™l < Cl sup |2V =T w(2)P~ ()]

< Co?||gll.. (4.7)
Next we shall now estimate ||N1(¢)||««. Let us assume first p < 2. Then we estimate
2N 7N ()| < Clz[N o) [P < [N 7|z N2l < Cllellz,

so that
(IN1(B) |+ < CllDIIE -

Let us assume now p > 2. In this case we have
IN1(9)] < C(wP2¢? + [P ).
Now, we directly check that
2V Tw 2 < Cla| @ DE NN g2,
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The power of |z| in the last expression is always negative. In fact, this is obvious if
N > 5, while if N = 3,4 supercriticality implies p > 3. On the other hand,

|2Vl < ClafN TP TEEO Ig)IE < o D 1g)2

We conclude from these estimates that, for any p > %,
N1 (@)l < C (N2 + Nl011Z) - (4.8)

Let us consider now the operator
T(¢) =T5(N(¢) + E)
defined in the region
B={¢e€C"(Ds\Bi(0) / llgll- <% }.

Using estimates (4.6), (4.8), (4.7) we immediately get that 7(B) C B, provided
that ¢ is sufficiently small. We observe that, in the bounded domain Ds \ By (0),

T5 = (A + pwP 1)1

applies boundedly C° into C'+®, hence compactly into C*. It follows that the map
T is actually compact on the closed, bounded set of C* given by B. The existence
of a fixed point of 7 on B thus follows from Schauder’s theorem. This concludes
the proof of the theorem. O
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