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ABSTRACT. We consider the elliptic problem Au+uP = 0, 4 > 0 in an exterior

domain, & = RV \ D under zero Dirichlet and vanishing conditions, where D is

smooth and bounded in RN, N > 3, and p is supercritical, namely p > %
We prove that this problem has infinitely many solutions with slow decay

2
O(|z|” »=1) at infinity. In addition, a solution with fast decay O(|z|2~")
exists if p is close enough from above to the critical exponent.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

A basic model of nonlinear elliptic boundary problem is the Lane-Emden-Fowler
equation,

Au+uv? =0, u>0 inQ, (1.1)

u=0 ondf, (1.2)

where (2 is a domain with smooth boundary in RN and p > 1. Introduced in the
mid 19th century by Lane, an astrophysicist, the role of this and related equa-
tions has been broad outside and inside mathematics. While simple looking, the
structure of the solution set of this problem may be surprisingly complex. Much
has been learned over the last decades, particularly thanks to the development of
techniques from the calculus of variations, see [18], but many basic issues remain
far from understood. Among those, solvability above criticality is a paradigm of the
difficulties arising in solving nonlinear elliptic PDEs. An intriguing characteristic
N+2

of this problem is the role played by the critical exponent p = {=5 in the solv-

ability question. When (2 is bounded and 1 < p < %, compactness of Sobolev’s
embedding yields a solution as a minimizer of the variational problem

fQ |VU|2

—Jelf (1.3)
uw€HG (2)\{0} (Jq, lulpt1) 257

When p > %, compactness is lost, and this minimization procedure fails, as

existence does in general: Pohozaev [17] discovered in 1965 that no solution exists
if the domain is strictly star-shaped. In 1975, Kazdan and Warner [12] observed
that in strong contrast, if  is an annulus, Q@ = {a < |z| < b}, compactness holds
for any p > 1 within the class of radial functions, and a solution can again be found
variationally, regardless the value of p. Solvability for critical and supercritical
values of p is thus strongly dependent on special characteristics of the domain
under consideration. The critical case p = % can still be handled by variational
arguments, since the loss of compactness of Sobolev’s embedding is well-understood.
In the classical paper [2], Brezis and Nirenberg proved that for p = % that
compactness of minimizing sequences in problem (1.3), and hence solvability, is
1
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restored by the addition of suitable linear terms in the equation. Coron [4] and Bahri
and Coron [1] established the deep relation between topology and solvability of
(1.1)-(1.2) when p = &£2: solvability holds whenever Q has a non-trivial topology.
Nontrivial topology does not suffice for solvability for large supercritical exponents,

as shown by an example in [15].

Except for results in domains involving symmetries or exponents close to critical,
see for instance [7, 8, 10, 14, 16], solvability of (1.1)-(1.2) in the supercritical case
has been a widely open matter, particularly since variational machinery no longer
applies, at least in its naturally adapted way for subcritical or critical problems.

In this paper we shall concentrate in Problem (1.1)-(1.2) for exponents p above
critical in a special class of domains with nontrivial topology, exterior domains,
continuing a study initiated in [5]. Let D be a bounded open set with smooth
boundary, such that @ = RY \ D is connected. We consider the problem of finding
classical solutions of the problem

Au+uP =0, u>0 inRV\D, (1.4)
u=0 ondD, lim wu(z)=0 (1.5)
|z|—+o0
where p > % The supercritical case is meaningful in this problem since Po-

hozaev’s identity does not pose obstructions for its solvability. To fix ideas, let us
consider the simple case D = B(0,1) and look for radially symmetric solutions to
the problem u = u(r), r = |z|. The equation

Au+u? =0 (1.6)
then corresponds to the ODE

u' + u' +uP =0. (1.7)

This equation can be analyzed through phase plane analysis after a transformation
2

introduced by Fowler [9] in 1931: wv(s) = r»=Tu(r), r = e®, which transforms

equation (1.7) into the autonomous ODE

v +av —Bu+P =0 (1.8)
where
a:N—2—I%, ﬂ:%(N—2—I%). (1.9)
Since a and (3 are positive for p > %, the Hamiltonian energy
E(v) = %1')2 + ]%UP_H - gvz

strictly decreases along trajectories. Using this it is easy to see the existence of
a heteroclinic orbit which connects the equilibria (0,0) and (3 ﬁ70) in the phase
plane (v,v'). These equilibria correspond respectively to a saddle point and an
attractor. A solution v(s) of (1.8) corresponding to this orbit satisfies v(—o0) = 0,
v(+00) = B5=1 and w(r) = rfz%lv(logr) solves (1.7) and is bounded at r = 0.
Then all radial solutions of (1.6) defined in all RV have the form

wy(z) = )\%w()\m), A>0. (1.10)
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We denote in what follows by w(z) the unique positive radial solution
Aw+wP =0 inRY, w(0)=1. (1.11)

Coming back to the analysis for (1.8), we see in phase plane (v,v') the presence of
a continuum of orbits that begin on the axis v = 0 as close to the equilibrium (0, 0)

as we please, which eventually end in the attractor (3 rﬁ,O). If v(s) is a solution
associated to one of these orbits, then a suitable translation makes it defined in
[0, 00) with v(0) = 0. Its associated u(r) then satisfies u(1) = 0 and represents a
positive solution of problem (1.4)-(1.5) with D = B(0,1). The closer the starting
point of the orbit is taken from (0,0), the smaller the associated v(s) gets on
compact subsets of (0,00), at the same time getting close to the heteroclinic, more
precisely the solution u(]z|) is close to some wy for small A > 0. The solutions u
built this way are small in their entire domain and all have the uniform slow decay

u(z) = B7=1[2| 7771 (1 + 0(1)) s |z| - oo,

with 3 given by (1.9). This analysis establishes the existence of a one-parameter,

asymptotically vanishing continuum of radial solutions of problem (1.4)-(1.5) with
D = B(0,1) with slow decay.

We establish in Theorem 1 below that the above mentioned phenomenon is very
robust. In fact, we have, for arbitrary domain D the existence of this continuum of
slow decay solutions, in particular proving that the supercritical exterior problem
(1.4)-(1.5) is always solvable.

Theorem 1. For any p > % there is a continuum of solutions ux, A > 0, to
Problem (1.4)-(1.5), such that

ur(z) = B7T|z| 71 (1 +0(1)) as |z| = oo (1.12)
and ux(z) = 0 as A — 0, uniformly in RN \ D.

This result has been proven in [5] when N > 4 and p > {1, The above
explained analysis of the radial case, makes it natural to seek for a solution wy
in the form of a small perturbation of w,. This naturally leads to construct an
inverse of the linearized operator A + pwff1 in RV \ D under Dirichlet boundary
conditions. Since wy is small on bounded sets for small A, such an inverse can
be found as a small perturbation of an inverse of this operator in entire RV. By
scaling, it suffices to carry out that analysis for A = 1. This inverse indeed exists for
p> %f; and this is the basis of the proof in [5]. However, if % <p< %—Jj; the
linearized operator is not surjective, having a range orthogonal to the generators of
translations.

We will prove that a further adjustment of the location of the origin, taking as
a first approximation )\ﬁw()\m + &) and then choosing &, indeed produces, after
adding a lower order correction, a family of solutions as predicted in Theorem 1. In
summary, the structure difference between the cases p > x—f; and % <p< %—Jjé
is that in the former case, the solutions found constitute (N 4+ 1)—paramters family
parametrized by a small scaling parameter and a point in RY, while in the latter

it is an one-parameter family only dependent on the small scaling value .

The analysis in [5] has a strong resemblance with that in [13] in the construction

of singular solutions with prescribed singularities for % <p< % in bounded
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domains. At the radial level, supercritical and subcritical in this range are com-
pletely dual: In equation (1.8) B remains positive but a becomes negative. The
effect of this is basically to make the phase portraits equivalent, just with arrows
inverted in the orbits, with obvious dual consequences. For instance, the inner-
subcritical problem in a ball has a classical solution, which in the phase diagram is
represented by the unstable manifold of (0,0). Correspondingly, in the supercritical
case, the orbit representing the stable manifold of (0,0) corresponds to the unique
solution w, to the exterior problem with fast decay, namely w, satisfies

Aw, +wP =0, w, >0 in RV \ B(0), (1.13)
w, =0 on dB;(0), limsup |z|> Nw,(r) < +oc. (1.14)
|z| =400

Since the general inner-subcritical problem always has a solution, obtained by the
minimization problem (1.3), it is natural to ask whether existence of a fast decay
solution remains true for the domain RY \ D. This may be in general a difficult
question which we are able to answer for supercritical powers sufficiently close to
critical.

Theorem 2. There exists a number pg > % such that for any % < p < po,

problem (1.4)-(1.5) has a fast decay solution u, u(x) = O(|z|*~N) as |z| = +o0.

The idea in the proof of Theorem 2 is to consider as an initial approximation
. N-2
the function A7 2w, (Az + &) where

Wan(r) = (#> B (1.15)

14+ cyr?

is the unique positive radial solution of the problem

N+42

A + w2 =0 inRY, w,.(0)=1

These scalings will constitute good approximations for small A if p is sufficiently
close to % We prove then that adjusting both £ and A, produces a solution as

desired after addition of a lower order term.

2. THE SET UP FOR THEOREM 1

In what follows of this paper we will assume % <p< % since the case

p > Lt has already been covered in [5].

By the change of variables

i(z) o= A ()
and the maximum principle, problem (1.4)-(1.5) becomes equivalent to
Ad+aP =0, a0 inRY \Dyg, (2.1)
%@=0 on dDy¢, ‘w‘li)rriooﬁ(x) =0 (2.2)

where A > 0 is small and D) ¢ is the shrinking domain

’D)\7§:{/\.CL'+€/£U€ID}.
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We want to consider the function w(z) in (1.11) as an approximation of a solution
of this problem. We need of course a correction so that the boundary condition is
satisfied. Thus we let ¢, (z) be the unique solution of the problem

Apy =0in RV \Dy¢, pa(z) = w(z) on Dy, lim ¢x(z) =0 (2.3)
|| =400
and consider w — ¢y as a first approximation to a solution of problem (2.1)-(2.2).
It is easy to see that

m [—

or(@) = (&) + OW)eo (215 v € BY \ Dy (2.4)

where ¢y is the unique solution of
Ao =0in RV \ D, o(z) =1 on dD, | |lim wo(z) =0. (2.5)

T|—+00
We also note that
1

li N-2 = ::—/ Vol?, 2.6
|z|i)n—|l-oo|$| 900(“7“) f0 (N—2)|5N71| RN\’Dl (Pol ( )

which in particular implies
loa(@)] < CAN 2|z — €27V for all z € RN \ Dy .

The number fRN\D |[Vo|? is by definition the Newtonian capacity of D. The latter
estimate tells us in particular that the correction is small compared with w as soon
as we get away from £. Thus we look for a solution to problem (2.1)-(2.2) of the
form

U=w— "2 + ¢7
which yields the following equation for ¢

A¢+pwP~l¢=N(¢) + Ex in RV \D,g,

¢ =0 on 8'D,\,§, lim ¢($) = 0,

|z|—=+o0

where
E\x=puwPtpy, N(¢)=—|w+¢— ol +wP +pwPt¢—pwP ey,  (2.8)

Thus a solution of problem (2.7) for which ¢ is small compared with w — ¢ yields
one of (1.4)-(1.5) as predicted by Theorem 1.

Problem (2.7) may not be solvable in the required range for p unless £ is chosen
in a very special way. Regardless of the value of £, we consider instead the following
projected problem,

N
Ap+puw'¢ =N(¢)+Ex+ Y ciZiin RV \ Dyg, 09)
i=1 2.9

¢ =0 on 61))"5, lim ¢(.CL') = 0,
|| =400
where the ¢;’s are constants, which are part of the unknown, and
ow ,
Z,(m)za—wl(m), Zzl,...,N.
Through an application of the Banach fixed point theorem in a suitable L> weighted
space, we shall prove in §5 that (2.9) is indeed solvable, within a class of ¢’s which
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are small compared with w, in the form ¢ = ¢(A, &), ¢; = ¢;(\, £) where the depen-
dence on the parameters is continuous. We then obtain a solution of problem (2.7)
if

ci(A€) =0 foralli=1,...,N.

We will show in §6 that for each sufficiently small A there is indeed a point £ such
that this system of equations is satisfied.

The use of contraction mapping principle in §5 for solving problem (2.9) is based
on the construction of a bounded (right) inverse for the linear problem

N
A¢ —|—pwp_1¢= h—l—ZCzZz in RV \'Zj,\,g
= (2.10)
lim d)(a:) =0, ¢ =0 on 6’D>\75,
|z| =400

for norms on functions ¢ and h defined on RV \ D, ¢ given as follows. We consider,
for a given number o with

0<o<N-=-2
the norms
2
lgllcc = sup |z —E|°|p(z)| + sup |z —¢&|»=1|d(z)] (2.11)
lz—gl<1 |lz—€|>1
2
[Bllawg = sup |z —EPT|A()| + sup |z —&PF o1 |h(a)|. (2.12)
lz—€[<1 lz—€|>1

We have the validity of the following result.

Proposition 2.1. Assume ¥+2 < p < N£L

N5 N3 Let us consider a number A > 0.
Then there exist constants C and Ao such that for any |£| < A and any 0 < X < Ag
the following holds: For any h with ||h||««¢ < 0o, there exists a solution of problem

(2.10)
(¢7017“ .,CN) = ﬁ(h)

which defines a linear operator of h, such that
I19lle + e, el < Ol

This is proven in §4, on the basis of the analysis of the same problem in the
entire space, carried out in §3.

If p= %f; the proof Theorem 1 is based on a result similar to Proposition 2.1
but for slightly different norms, see Remark 6.1.

A very similar scheme is followed for the proof of Theorem 2, having as its basic
cell the function w. in (1.15) rather than w in (1.11). In this case, the relevant
projected problem must also involve the generator of dilations, and both the point
¢ and the number A must be determined as functions of the small parameter given
by the difference p — % This is done in §7.
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3. THE OPERATOR A + pwP~! IN RV

We will keep the notation of the previous section. In particular we assume N > 3,
N +2 <p< N+1
N -2 N-3
and consider the norms in (2.11), (2.12) now for functions defined in entire RY. We
consider the version of problem (2.7) in entire space,

O<o<N-=-2

N
Ap+pw'¢=h+> ciZ inRY
i=1 (3.1)
lim ¢(z) =0.

|z| —=+o00
The main result in this section is
Proposition 3.1. Let us consider a number A > 0. Then there exists a C > 0
such that for any |£] < A the following holds: For any h with ||h||..¢ < oo, there
exists a solution of problem (3.1)
(¢,Cl,...,CN) = T(h)
which defines a linear operator of h, such that

* il < *%,€ - -
61l + mase lei] < Cllhlleg (52)

We observe that the numbers ¢; above are explicit functions of h. Indeed, since

p < NAL, we see that if ¢ solves (3.1) with the bound (3.2) then two integrations

by parts against Z; = w,, yield

hZ;
¢ = —Jr i (33)
fRN 1 Zi
Observe that these quantities are well defined since ||h||.x,e < +o0o and p < .

To prove the above result we consider first the situation £ = 0. We denote the
corresponding norms simply by || ||« and || ||««- Although the proposition in this
case is proven in [5, 6] we summarize the main points of the argument.

By virtue of formula (3.3), it suffices to construct the solution ¢ to problem (3.1)
for h with
hZ;=0 foralli=1,...,N, (3.4)
RN
so that all numbers ¢; are automatically zero.

Let Ok, k > 0 be the eigenfunctions of the Laplace-Beltrami operator —Agn-1
on the sphere SV~! with eigenvalues A, repeated according to their multiplicity,
normalized so that they constitute an othonormal system in L2(SV~1). We let ©q
be a positive constant, associated to the eigenvalue 0 and ©;, 1 < ¢ < N is an

€

appropriate multiple of W which has eigenvalue \; = N — 1,1 <¢ < N. We write
h as

h(z) = i hi(r)Ok(®), r>0,60€ SN ! (3.5)
k=0
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and look for a solution ¢ to (3.1) in the form
oo
9(x) =Y _ dr(r)Ok(6).
k=0
Then

W+

N-1
" &, + (pwp_1 — %) ¢ = hg, forallr >0, forallk>0. (3.6)

Equation (3.6) can be solved for each k separately:

e Ifk=0andp> % then equation (3.6) has a solution ¢¢ which depends

linearly on hg and satisfies

llgollx < Cllholl«x- (3.7)
o If N>3and f22 <p< XL (p> FE2 if N =3), ||h/|+x < +00 and
/Ooo hi(r)w' (r)rN =t dr =0 (3.8)
then (3.6) has a solution ¢; depending linearly on h; and satisfying
1]+ < Cllhallax- (3.9)

e Letk > 2andp > YE2. If || g« < 00 equation (3.6) has a unique solution

or with ||¢g||« < 0o and there exists Cy, > 0 such that
lorlle < Crllhl|«x- (3.10)

For the case k = 0 this solution is defined using the variation of parameters formula
T T
¢0(T) = 21’0(7') / 2270h08N71 ds — 22,0(7‘) / 21,0h08N71 ds,
1 0

where 21 g, 22 o are two special linearly independent solutions to (3.6) with k = 0 and

ho = 0. More precisely, we take 21,9 = rw' + —2_w and 22,0 a linearly independent

p—1
solution. Linearization shows that z;0(r) = O(r‘¥) asr — +00, j = 1,2, while

22,0(r) ~ r>~N near r = 0. Using this definition of ¢o, we easily get estimate (3.7).

When k = 1, we have that the positive function 2z, := —w'(r) solves (3.6) with
k =1 and hy = 0. Using this, we then define ¢;(r) as

¢1(r) = —z1(r) /IT 21(s) 728 Nds /Os 21 (T)ha (1)L dr. (3.11)

Using this formula and the fact that [;° z1(7)hy ()TN =1 dr = 0, estimate (3.9) is
readily found to hold true.

The case k > 2 is simpler because the operator satisfies the maximum principle
since the function z; above is a positive supersolution for the operator corresponding
to any such k.

The previous construction and (3.7), (3.9)and (3.10) imply that given an integer
m > 0, if |||+« < 0o satisfies (3.4) and hy = 0 Vk > m then there exists a solution
¢ to (3.1) that depends linearly with respect to h and moreover
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where C), may depend only on m. Then it is possible to show that C,, can be
chosen independently of m using a blow up argument that has been used before in
[3, 5, 6, 13].

The above steps then yield:

Lemma 3.1. There exists a number C > 0 such that the for any h with ||h||« < 0o,
there exists a solution of problem (3.1)

((]5,01,.. .,CN) = T(h)
which defines a linear operator of h, such that

lloll 1I<niaéxl‘, |ei| < CllAl| (3.12)
The numbers C; are given by formula (33)

Proof of Proposition 3.1. Let i be a smooth cut-off function such that
n(xz) =0for all |z —&| <4, n(z)=1forall |z —&| > 26,
where ¢ > 0 is small. Then solve

—Ad¢o —{—pw”_l(l —n)p2 =(1—n)h in RV, lim ¢y(z) = 0.

|z|—=+o0

Remark that for § > 0 sufficiently small but fixed the operator —A — pw?~1(1 —n)
is coercive and hence there exists a solution to this problem. Moreover we have

|$2(2)] < CllAllang |z — €7 forall |z —¢| <1, (3.13)
|62(2)| < Clihllase (L +|2)*™N  for all |z — ¢ > 1. (3.14)
By Lemma 3.1 the equation
N
A¢y + pwP ¢y = —pwP gy + nh + ZCiZi in RV, lim ¢1(z) =0, (3.15)
= |z| =400

has a solution provided the right hand side has finite || ||«+ norm. But since g2 = 0
for |z — &| < 0 we see, using (3.13) and (3.14), that

WP~ 02 llex < CllAl|as,e-
Thus by Lemma 3.1

N
galls + D leil < Cllllen - (3.16)

i=1
This estimate implies that
161(2)] < Cllhllaeg for all [a] = . (3.17)

Since the right hand side of (3.15) is bounded, from (3.17) and (3.15), using stan-
dard estimates for elliptic equations, we deduce that

61l o= (B5) < CllAllaxg- (3.18)

Define ¢ = ¢1 + ¢, which is a solution to (3.1). Then from (3.13), (3.14), (3.16)
and (3.18) we see that (3.12) holds. This finishes the proof. O
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4. THE PROOF OF PROPOSITION 2.1
We will use the result of the previous section in order to prove Proposition 2.1.

We shall fix A > 0 large and work with |£] < A. Again the estimates will depend
on £ only through A. As mentioned above, we assume that 0 € D. Let 0 < Ry < R;
be fixed such that 3Ry < R; and D C Bpg,. Let p € C*°(RV), 0 < p < 1 be such
that

p(z)=0 for |z| <1, p(z)=1 for|z|>2

and set
n@ =o(555) a@=s(555):

We look for a solution to (2.10) of the form

¢ =np+ .

We need then to solve the system of equations

N
Ap+pwPto = —puP 1O+ Gh+ Y (i Z in RY
i=1 (41)
lim ¢(z)=0

|| =400
AY +p(1 — O)wP tp = =2V Ve — oAy + (1 = ()b

N
+) a(1—0)Z nRY\Dye  (4.2)
i=1
=0 on 0Dy, lim ¢(z)=0.
|| =400

where ¢, ¢ are the unknowns. We assume [|hl|4x,¢ < 00. Let

E\ = Baxno(€) \ Bar,(§)
and consider the Banach space

X ={(p,c1,...,en) [ ¢ : RY — R is Lipschitz continuous in Ey with [|¢||s¢ < 0o
andc; € R, 1<i< N}

with the norm

N
1@ c1s . mem)llx = llgllsg + AVl Lo (my) + D leil.
i=1
Given (¢, c1,...,cn) € X we first note that (4.2) has a solution for suitably small
A because [|p(1—C)w? ™ ||pn/2wmp, ) = 0as A = 0. Let ¢(p,c1, - - -, cn) denote
this solution, which is clearly linear in ¢. Then (3¢ is well defined in RV and
ly] < Izl% for large |z|, which implies that the right hand side of (4.1) has a finite
|| [|«x,e norm. Then by Proposition 3.1 equation (4.1) has a solution (@,¢1,...,¢n)
such that ||@]|«,e < +00. Set F(p,c1,...,¢n) = (@,C1,...,CN).
Proposition 2.1 will be proved by showing that F' has a fixed point in X.
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For (p,c1,...,en) € X we will first establish a pointwise estimate for the solution
Y(p,c1,...,cn) of (4.2), namely
[W(@)| < CAXNT2([[Allase + 1@y cas -y en) )|z — PN (4.3)

for all z € RY \ Dy .
Indeed, let 9(z) = ¥(€ + Az), z € RN \ D. Then

AY +pX*(1 = p(z/Ri))wP (€ +62) =g inRY\D
lim  $(z) = 0 (4.4)

|z| =400

where
9= =22V p(/ Ro)Viple + 62) — =x Aple/ Bo)il€ +02)
0 0
N
+ A2 (1= p(z/Ra)h(€+82) + XD ei(1 = p(2/Ry) Zi(€ + 62).

Then the support of g is contained in the ball Byg, and we can estimate for all
2 € RN\ D, |z| < 2R;:

2Rio|Vp<z/Ro)W(s +62)| < CA°Il(@yeny -y en)x (4.5)

|Ap(z/Ro) (€ + A2)| < CAT7|(¢,c1, - -5 en)llx |27 (4.6)
N2|(1 = p(2/Ru)h(§ + A2)] < A7 Allus,el2[ 7277

X2 Z lei(1 = p(2/R1) Zi(€ + X2)| < OX||(,c1s - en) I x (4.8)

=
Since 0 € D we see from (4.5)—(4.8) that
l9(2)| < CA™([lellx + [|hllex,)XBag, -
This estimate and equation (4.4) then yield
(B < Clhllne + ko)A |21~V for all 2 € BY \ D

which implies (4.3).
Let (p,c1,...,en) € X, ¥ = ¥(p,c1,...,cn) be the solution to (4.2) and
(¢,¢1,...,en) = F(p,c1,...,cn). By Proposition 3.1 we have

N
@l + Y 12| < Clpw? Catbllensg + 1G3Plx ) (4.9)
i=1
Using (4.3) we estimate ||w?™*{\9)||«x,e. We have
sup |z — TP G ) < OV (([hlesg + (05 c1s - en)lIx)

lz—€|<1
NN
< ON (Wllag + l(pscr,--ren)llx)  (4.10)
where

v =min(2,N =2 —0) > 0.
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On the other hand

_2 2 g
i S o = €T PTGl < OANT27 ([[hflas g + (€1, - - - en)llx)
z—§|>1

sup |z — g5 N

lz—§|>1
<O ([[Bllase + (@, et em)llx). (411)
We see from (4.10) and (4.11) that
[P~ Capbllane < ONV([[Bllsse + (05 c15 - - en)l1x)- (4.12)
Since [|(ah|xx,e < ||Alxx,e from (4.9) and (4.12) we deduce
8llse < CXI(@sc1, - sen)llx + [1Blls,e)-
But from elliptic estimates we can prove

sup [Vo| < CA 7|9l e
E

and hence

I1E(p;c1,- -5 en)llx < CAT(p,en, -5 en)llx + [l e)-

Since F is affine, this estimate shows that F' has a unique fixed point (¢, c1,...,cN)
in X for A > 0 suitably small, and that this fixed point satisfies

”(507 C1,-- '7CN)||X < C”h”**,ﬁ

O
Finally we make a remark on how to recognize when ¢; = 0 in equation (2.10).

Lemma 4.1. Assume % <p< %—f; There is 9 > 0 small such that if A < g

and ¢ is a solution to (2.10) such that ||@||«¢ < +00, ||hl|sxx,e < 400, then ¢; =0
for all 1 <4 < N if and only if

/ @8w+/ W% 0 foralll<i<N.
] RN\Dj,¢

Di.e on Ox; ox;
Proof. Since % satisfies the linear homogeneous equation in RN, multiplying
7

(2.10) by gT“; and integrating by parts in Bg(0) \ Da¢, where R is large, yields

N
/ (5_¢3_w _ ¢i‘9_“’) =/ h+ Zc,.z,.> 2w (g13)
H(Br(0)\Dxrc) \ONOz; ~On Oz, Br(0)\Ds¢ = Oz;

Since ||@||xx,e < +00 we have
|6(2)] < Cla] ™77 for all |z| > R’
and elliptic estimates show that
[Vo(z)| < C’|ac|_P%1_1 for all |z| > R
where R' > 0 is a large fixed number. Thus

0¢ Ow 0 Ow _ 4 5 y
— ———| < p—1 f 11 >
On O ¢6n Ozj| — Clal or all [z = R
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N+1
-3

w [ (20,2 0m)
9Br(0)

R—+00 On Ox; On Ox;

and hence, since p <

Letting R — +o00 in (4.13) yields

/ / ow / ¢ Ow
Z . __ pv _ [ 900w
N\'D)\ ¢ RN\DA,E 6.%3 BDA,Q 6” 6.%'1
For A > 0 sufficiently small the matrix with entries fRN\'D ae Z; g;’; is close to
fRN f 8“’ which is invertible. This implies the desired conclusion. O

5. THE NONLINEAR PROJECTED PROBLEM (2.9)

Lemma 5.1. Let 822 < p < X+ and A > 0. Then there are positive numbers
Xo, C such that for |§| <A and 0 < A < Xo there exist ¢x(£), c1(N€),...,en(N€)
solution to problem (2.9) such that

16 (©lleg + max (L& <CX forall0<A<do, [€ <A,  (51)

where

v =min(2+o0,N —2).

Proof.
Claim. For any fixed 0 < 0 < N — 2 we have

1B llowe < CAmIn(r+2.8-2), (5.2)
We assume 0 € D and let 6 > 0 be such that B;(0) C D. Then

sup |z — &7 pa(z)w? ™ ()
|x_£‘515 -WE,DA,E

< C”wp—1||Loo)\N—2 sup |£L' _ €|2+<7—(N—2)

SAL|z—g[<1
< C)\min(a+2,N—2). (53)
Also
sup |z — £ T ox (2)w? (@) < OAV? sup |z — g7 N
lz—€|>1 |z—€|>1
< ONN—2 (5.4)

and collecting (5.3) and (5.4) yields (5.2).

Claim. Next we estimate ||N(¢)||«+,e. We shall show that for any fixed 0 < ¢ <
min(2 and for ||¢||«,e <1 we have

IN@llexe < OIS e + 19117 ¢ + X™REFT2N=2), (5.5)

,=20)

Case p > 2. Assuming 0 < o < -%; and using
IN(@)| < CwP~2(19]” + [oal*) + C(IIP + lalP) (5.6)
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we have
sup |z — €GP < Cllgllle  sup |z — &7 < Cloll3 e (5.7)
|z—€|<1 IA<|z—£|<1
sup |z — &GP <ClloIL,  sup  fa—€PTOPTD <9l
lz—¢g[<1 SA<|z—£|<1
< Oll4l e (5.8)
since we work with [|@||«,¢ < 1. Similarly to the calculation in (5.3)
sup |l’ _ €|2+U|90/\‘2 < C/\min(a+2,N72) (5‘9)
|z—£|<1
sup |z — E[2T|pa P < CAmIn(e+2N=2) (5.10)
lz—¢€|<1
The inequalities (5.6)-(5.10) yield, for p > 2,0 <o < %7 and [|¢|l.¢ <1,
Jsup [z = EPHIN@)] < Olglf ¢ +Ame 2 2). (5.11)
r— -_

Now we consider |z — &| > 1. By the definition of || ||«¢ and the assumption
[|#l«,e <1 we have that

|op(z)| < w(z) forall |z—¢ >1.
Also, for A > 0 small
oa(@) SCAN2|z — €PN < Cw(z) for all z € RN \ Dyp. (5.12)
Thus instead of (5.6) we can estimate N(¢) by
IN(9)] < CwP=2(4” + ¢3).
Using this inequality and the estimate w(z) < C(1 + |.’L'|)_P%1 we obtain

2
sup |z — £ P 2|gl” < Cllgll: ¢ (5.13)
lz—¢|>1
and
sup |x — §|2+1%w”_2|g0,\|2 < ONN=D), (5.14)
lz—§|>1

Thus, (5.13), (5.14) yield

| Slé|p>1 |fL' - €|2+‘7|N(¢)| S C(||¢||z,£ + Amin(0-+27N_2))7

and this estimate together with (5.11) prove (5.5) in the case p > 2.
Case 1 < p < 2. For 0 < ¢ <2 a similar calculation using

IN(@)] < CUI6P + eal?)
implies

o |z — €PN ()] < C(lI@lIE ¢ + Amintr2N=2)), (5.15)

To estimate |z — £|?>T7|N(¢)| for |z — £ > 1 we write
—N(@) = [w+ ¢ —palP —w” —pwP™ (¢ — pr) = N1 + No +pwP~ oy (5.16)
where
Ni=lw+¢—oaf —w+¢°, No=lw+ [P —w’ —puwP~'e. (5.17)
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We note that since we assume ||¢||,e < 1 we have |¢(z)] < Cw(z) for |z — & > 1
which, together with (5.12) means that we can estimate

INi| = ||w+ ¢ — prlP — |w + @[ | < CwP~ iy

Then
2 2
sup |z — &N = sup |z — €T | jw + ¢ — @alP — |w + ¢f7 |
lz—g|>1 lz—€|>1
<C sup |z-— §|2+P_Elwp*1cp,\ < oAmin(o+2,N=2) (5.18)
lz—€[>1

as (5.4) shows. Next we can estimate N» as follows

sup |o— €PN [Ny = sup |z — €50 | |w + ¢ — wP — puP |
|z—¢|>1 |z—€|>1
<C sup |z—gFtaiiglP (5.19)
|z—¢g[>1
< Cl9lI% - (5.20)

Thus, by (5.17)—(5.20) and (5.4) for the last term in (5.16) we deduce
2 min —
sup | — [ p71|N () < C(II1F ¢ + AmREERN=),
lz—€|>1
This inequality and (5.15) prove (5.5) in the case 1 < p < 2.

Fixed point argument. We fix 0 < ¢ < min(2, %) and define for small p > 0

F={¢:RV\Drg = R [|d]l¢ < p}
and the operator ¢ = A(¢) where ¢,c1,...,cx is the solution of Proposition 2.1 to
B . N
Ag+pw” '¢=N(¢)+Ex+ ) c:iZ in RNV \Dyg
i=1

$=0 ondDye, lim |p(z) =0,
|z —+00

where N, Ey are given by (2.8).
We prove that A has a fixed point in F. From Proposition 2.1 we have the
estimate,

A@)l+e < CUIN (D)6 + [IEX]lxx6)
and by (5.2) and (5.5)

IA@) g < CUIBIE ¢ + DI ¢ +NmCHEN=D) < O(pP 4 pP 4 NPIRCHENT2)) <

if p > 0 s fixed suitably small and then one considers A — 0. This proves A(F) C F.
Now we show that A is a contraction mapping in F. Let us take ¢1, ¢2 in F.
Then
lA(¢1) — A(g2)ll«g < CIIN(p1) = N(@2)lan s - (5.21)
Write

N(¢1) — N(¢2) = DgN($)(¢1 — ¢2)

where ¢ lies in the segment joining ¢, and ¢s. Then, for |z — &| < 1,

|z — €T IN(g1) = N(¢2)| < |o =€ DN ()] lld1 — ¢2

[
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while, for |z — £] > 1,
_2 —
| = €T [N (1) = N(¢2) | < |z =€ [DGN () |l1¢1 — ol -
Then we have

[ N(¢1) = N(¢2) llswg < C sup (|2’ IDGN(@)) [ d1 — P2 llse.  (5.22)
zERN\Dj ¢

Directly from the definition of N, we compute

DyN(¢) = —p[(w+d— )"t —w?'].
Ifp>2and 0 < o < -2 we can use |DyN(§)| < C(wP 2(|g]+px) +[BP ' +¢87")
to estimate

sup |z — & |DgN(§)| < Cla — €7 (wP~*(|§(2)] + 92) + [@(@) P~ + 5 )

lz—¢€|<1
< C (1l + 12l + AN =2))
< C(p + AP N=2)y, (5.23)
In the region |z — £| > 1 we can use [DyN(¢)| < CwP~2(|¢| + ¢») and we obtain
P |z — & [DgN(§)| < C(p + A=), (5.24)

Similarly, if 1 < p < 2 and 0 < ¢ < ;%7 then for all z € RV \ Dy

z?| [IDgN(§)| < Claf(|(@)[P~" + 5 1)
S OA2(l4allo" + llgallZg! +X%) < C(p P+ A7), (5.25)
Estimates (5.23)-(5.25) show that

sup (|2 [DgN(P)]) < C(p+ pP~" 4 AminN=2)), (5.26)
TzERN\Dj ¢
Gathering relations (5.21), (5.22) and (5.26) we conclude that A is a contraction
mapping in F provided p > 0 is fixed suitably small, and hence it has unique fixed
point in this set.

Claim. Let ¢, € F denote the fixed point of A found in the previous step. For
any fixed 0 < o0 < N — 2 we have

[Ballxg,e < CAmIREFN=2) (5.27)

where for convenience, we emphasize the dependence on ¢ in the notation of the
norm || |-

From the previous step we see that ||¢x|ls.¢,0 < CAMPCHEN=2) for 5 > 0 small.
Actually we will fix 0 < o < % for the rest of the proof. In order to improve the
estimate of the fixed point ¢ we need to estimate better N(¢,). First we observe
that ¢, is uniformly bounded. Indeed, the function uy = w — ) + ¢, solves

N
Auy + uf = Ci()\, f)Zz in RV \ﬁ)\é
’ ; (5.28)

lim wux(z) =0, ux=0 on JDy..
|| —+o00
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For z with |z — £| = 1 ux(z) remains bounded because |¢y(z)| < C for |z — | = 1.
Then a uniform upper bound for uy follows from (5.28) and by observing that
luf |l La (B, (€)\ Dy <) remains bounded as A — 0 for ¢ > & In fact

/ uf\q SC/ wPl 4 P! <C+C |z| 7P dx < C
B1(§)\Da¢ By B1(§)\Dx ¢

for some ¢ > & if we choose o < %, as we have done . Hence
lua(z)] < C forall |z — & <1. (5.29)
It follows from (5.29) that
|pa(z)| < C for all z € RY \ Dy . (5.30)

We shall estimate ||¢x||«,¢,0 for a § > o. Since ¢, is a fixed point of A, if 0 < 6 <
N — 2 we have, by (5.2)

I#all«,e.6 = A(DA) lls,e,0 < CUIN(D2)lwx,6,6 + [ EAllwx,6,0)
< CIIN(¢2) |lsx,e,0 + CAPREFON=2), (5.31)

Since ¢, is uniformly bounded, when p > 2
IN(@)] < CIgal” +¢3)- (5.32)
Take 0 < # < N — 2 such that 2 + 6 > 20. Then by (5.27) we have

sup |z =& pa(x)| < CligallZe, sup  |w— g
IAL|z—¢€[<1 A< |z—¢|<1
< C)\Z min(2+a,N—2)‘ (533)
On the other hand
2 min o,N—
| S‘g;l'f” — EPTFTIN (9 (@)] < Cllgallg,r < CNPREHRNT2 0 (5.34)
LS

Thus, from (5.32)-(5.34), (5.9) and (5.14) we see that
IN(92) || enc,0 < CAZInEHEN=2)

This and (5.31) imply

g < C)\min(2+0,2(2+0'),N—2)‘

[l

provided 0 < 8 < N — 2, § > 20 — 2. Repeating this argument a finite number of
times we deduce the validity of (5.1) in the case p > 2.
If p < 2 instead of (5.32), using

IN(oa)| < Cloal?

3

we obtain
”N(¢A)||**,§,9 < C/\min(2+0,p(2+a),N—2)

and the same argument as before yields the conclusion. |
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6. THE PROOF OF THEOREM 1

We will present in what follows the detailed proof in under the assumption
N +2 N+1

N_2 P<nN_3

M+l see Remark 6.1.

-3

We have found a solution ¢y (&), c1(N\€),-..,en(N\€) to (2.9). By Lemma 4.1
the solution constructed satisfies for all 1 < j < N:

N
ow 6¢,\ ow

Ex+N(#\) + ) ciZ; —+/ =
‘/RN\(DA,E) ( g A ; Oz 6n dxr;

Thus, for all A small, we need to find £ = &) so that ¢; = 0, 1< i< N, that is

/ (Bx+ N($2)) 6w+/ 900w _y vi<j<N (1)
RN\(D ¢) 9z Jo

Die on Ox;
Let us define

. — Ow 6(]5,\ ow
G;(§) = /RN\(DM) (EA +N(¢,\)> oz, + /BDH B 3% (6.2)

The functions G; are continuous, as it follows from local uniqueness, the fixed point
characterization of ¢, and elliptic estimates. We claim that

Gi(© = 1A [ la—e Y Puay @ oY) (63)

Zj

For the case p =

uniformly for £ on compact sets of RV . This fact follows observing first that

/ N(gy) 2 Ow =o(AV"2) asA—0 (6.4)
RN\(Dx,¢)

Oz,

uniformly for £ on compact sets of RV . Indeed,

/ Nonge = [ + [
A)— | = . .
RN\(Da,¢) dz; B1(§)\(Dx¢) RN\B1(£)

In the case p > 2, by (5 1) we have for o < N/2

/ N g | < ol [ [z — €727 < A2 min(ztoN=2)
B1(§)\(Daxe) B1(§)\(Dxe)

and recalling that |N(¢,\)| < CwP—2|¢a|?

/. \N | SO [ om0 < oamintasn),
RM\ By (€) N\B1(¢)

Choosing Y22 < ¢ < mm(N —2,N/2) we obtain (6.4) in the case p > 2.
Slmllarly, if p <2 we have for 0 < o < N/p
0 .
/ N(fﬁ,\)—w = QAP+ N=2)) 55 X 0,
RN awj

and taking (N — 2)/p < 0 < min(N — 2, N/p) we still obtain (6.4).
Next we need to estimate the boundary integral of (6.2). We claim that

991 (4

o = O(Amin(LN=3=9))  yniformly for z € 9Dy ¢. (6.5)
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Let
da(2) = pr(E+ Az)  forall z € RV \ D.
Note that by (5.1),for 0 <o < N —2

3] < llpallgA™712]77 < ONPREN=220) 2177 for all 2] <

>| =

Moreover we have already observed that ¢, is uniformly bounded (c.f. (5.30)) and
this implies, using (2.9) that |[A¢y| < C in RN \ Dy . It follows that ¢, satisfies
|Ady| < CA2 in RN\ D.
By elliptic estimates
sup [V | < CAminN=20),
oD

which proves (6.5). Using this inequality we derive

/ 992 0w _ iy ymin(N.2(N=2)-0)y
8Dy ¢ on 6.7;']'

This fact together with (6.4) prove the claim made in (6.3).
Let us consider the vector field

G(&) = (G1(§),---,GN(E))-

G is then continuous and, thanks to (6.3),
G&)-&£€<0 forall (=R

for any fixed small R > 0. Using this and degree theory we obtain the existence of
& such that ¢; =0, 1 < i < N. This concludes the proof. O

Remark 6.1. The proof of Theorem 1 in the case p = {£L follows exactly the
same lines with the following modified norms:

-2 a
4lleg = sup |z —£&7|p(x)|+ sup |z —&7=TT|¢(x)]
lo—g[<1 o—¢[>1

[Bllsse = sup |z =€ |h(z)| + sup |z — &P 7T |R()]
|lz—€|<1 |z—€|>1

where @ > 0 is a small fixed number. With this slightly stronger norms Proposi-
tion 2.1 remains valid. Indeed, the stronger decay of h assures that the orthogonality
condition (3.4) makes sense and one can verify that the estimates derived in §3 and
the proof in §4 carry on. Moreover even with the modified norms the error ||E |[.x,¢
converges to zero. For this observe that following the calculation starting at (5.2):

sup |z — EPPTFTO0 (@)wP N (z) < OAN2 sup |z — g|rmrm (N2t
o—€>1 le—g[>1

S CAN_2

provided0<a<N—2—1%.
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7. THE PROOF OF THEOREM 2

In this section we construct fast decay solutions to problem (1.1)-(1.2) when the
exponent p is close to the Sobolev critical exponent % In this case, we denote

N+2

p=gq+e¢, qzm

where € > 0 is small.

The proof of Theorem 2 is similar to that of Theorem 1, except that we need to
adjust also the parameter .

The basic cell to construct a fast decay solution is the function w.. given by
(1.15). For simplicity, but with slight abuse of notation, we will denote in what
follows this function simply by w.

The main difference with the case treated in the previous sections, when p was a
fixed exponent strictly above %, arises in the linearized problem. More precisely,
in order to construct a proper inverse at mode 0 when the exponent is exactly the
critical Sobolev exponent, an extra orthogonality condition is needed. The right
hand side is now required to be orthogonal also to the generator of dilation, the

function
N -2
20(r) = rw'(r) + —

We will denote now Z; = nw,,,i=1,...,N,forn € C(RY),0<n<1
n(z) =1 for |z] <Ry, n(z)=0 for|z|> Ry+1,
with Ry > 0 fixed large enough. We define
Zo = nZop-

For given £ € R and A small, we first study existence and estimates for solutions
(¢,¢o,c1,---,¢n) to the problem

Ap+qui=tp = N(¢) + E+ coZo + il ciZi in RN \ Dy ¢ )
¢ =0o0n 9Dyg, \wlli{r—}l—oo ¢(z) =0. -
Here
N() = =|w = px + ¢|"*" + 0™ + (¢ + )w™ 1 (¢ — v2) (7.2)
~[(g +e)w ™ — qui™¢ — [qui™" — (¢ + )w?T gy
and

E = —w™™ + w? + quwi ;. (7.3)

Appropriate norms in this case are

[lleg = sup |o—¢[7[p()|+ sup |z —&N?|g(),
le—€/<1 le—€>1

[Bllag = sup |o =€ |h(@)| + sup |z — &N [h(x)].
le—€I<1 lz—¢|>1

We will need to estimate the || - ||.«,e-norm of N(¢) and E.
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Claim. If 0 < ¢ < min(2, %) there exists a positive constant C such that, if

v =min(N — 2,0 + 2), !
IN(@)leve < C (Il

2+ 19112 + 2" +ellgle +2°) (7.4)

and
[|1E||sx,e < C (AN +e¢). (7.5)
Taking into account (5.5), in order to get (7.4) we are left to estimate the terms
which appear in the second line of formula (7.2).
We write first
[(¢ + &)™t —qui™']¢p = A+ B,

with
A=cw? "¢ and B =quw? '(w® —1)¢.
Then
sup |z — £P*7A < Ce|4|.e
|z—§|<1
and

sup |z —ENTTA< Celllee sup o — VTN < Ce|gfu e
|z—€|>1 |[z—€[>1

Observe now that

sup |z — &7 B < Celllle,
ja—g|<1

and

sup |z — ¢V TB < Cel|llve sup
o—€[>1 o—€]>1

These facts give the third term in the right hand side of (7.4).
The last term in (7.2) can be decomposed

[qwi™" = (¢ +e)w™ o= A+ B

|z = €NVt log w] < Cel|ge-

with
A=—cwilpy and B=(g+e)w? (1 —w)p,.
So we have
sup |z — AL Cellw oAV 2 sup |z — PN < Qe
|lz—€|<1 Ao<|z—€|<1
and
sup |z —ENTTA < CeAV"2 sup |z — VTN < OeaNV2,
lz—£|>1 lz—¢1>1

In a very analogous way, we obtain
[ Bll+x.e < CeX",

from which (7.4) follows.
We next show (7.5). We have

sup |z — &P witt —wi| < Ce
lz—£|<1

and

sup |z — &N wit —wi| < Ce sup |z — &N w|logw| < Ce.
lz—€|>1 lz—€|>1
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Estimate (7.5) thus follows from an appropriate modification of the argument that
leads to (5.2).
We are now ready to solve problem (7.1).

Lemma 7.1. Let A > 0. Then there is €g > such that for 0 < e < eq, |{| < A and
A < g9 there exist ¢, cq,-..,cn solution to

N
Ap+qui™'¢=N($)+E+coZo+ ) ciZi in RV \ Dyg

i=1 (7.6)
¢ =0 on 8’D,\7§, lim (;5(:12) =0.

|z|—+o00
We have in addition

llollse + Ofsnz.aéXN|Ci| =0 asA+e—0,

and
|9l <CA" +¢), forall0< X<y (7.7)

where
0<o<N-2, v=min(2+0,N -2). (7.8)

Proof. A first step is to solve the linear problem in RY. We have
Fact 1. Let || < A, ¢ = 822 and 0 < 0 < N —2. There is a linear map
(p,c1,...,en) =T (h) defined whenever ||h||.x,e < oo such that

N
A¢ + qwq_1¢ =h+ C()Z() + Z CiZi m ]RN

i=1 (7.9)
lim ¢(z)=0
|z| =400
and
N
11l + Y lesl < Cllhllaxse (7.10)
i=1
Moreover, ¢; =0 for all 0 < i < N if and only if h satisfies
hzo = 0, W% —0 vi<i<n. (7.11)
RN RN ZX;

The proof of this fact follows exactly the steps to prove Proposition 3.1, except for
the fact that the inverse in mode 0 exists under the extra orthogonality condition
with respect to Zg. Write ¢ and h in Fourier series as in Section 3, so that (7.9)
yields

N-1

"
+
k r

oy + (pwq_1 — %) ¢r = hg, forallr >0, forall k>0. (7.12)

If k=0, ||h]|l+ < 400 and
/ ho(r)zo(r)rN =1 dr =0 (7.13)
0

then equation (7.12) has a solution ¢¢ which depends linearly on hy and satisfies
60ll < CllAolls, (7.14)
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where in this case

lI¢oll« = sup |z|”|¢(z)| + sup |z|¥?|¢(x)|
lz[<1 lz[>1

and

[lholls = sup |z**7|h(z)| + sup | |h(z)].
lz|<1 lz[>1

Indeed, since |zo(r)| < Cr~ (V=2 we have that [ ho(r)zo(r)r™ ! < o0, so that

$o(r) = = z0(r) /ITZO_Q(S)SI_N /00 20(T)ho (1) "drds

solves (7.12) for k = 0 and satisfies (7.14).

Furthermore, observe that the construction of the inverse for mode 1 with the
orthogonality condition with respect to Z;, for ¢ = 1,..., N, is still valid and that
the corresponding estimate (3.9) holds true in the new norms. Indeed, taking into
account that z1(r)hi (r)r¥ 1 is integrable in (0, 00), where z; = —w’, and that the
orthogonality condition holds true, we have that

411 = ~w') [ @) 25N [ w o) drds
1 s
solves (7.12) for k =1 and satisfies, in the new norms (see (7.14))

lo1]ls« < Cllhg||sx- (7.15)

Fact 2. Assume ¢ =12, 0 <o <N —2 and let |¢| < A. Suppose ||h]|sxe < co.

Then for A > 0 sufficiently small the problem

N
Ap+qu' ¢ =h+coZo+ Y ciZi inRY\Dyg
i=1 (7.16)
lim ¢(z) =0, ¢ =0 o0ndDx;

|z| —=+o00

has a solution (¢,co,c1,...,cn) = T(h) that depends linearly on h and there is C
such that

I¢lle + max, lei < Clhlloe.
The constant C is independent of \.
To prove this fact, we argue as in the proof of Proposition 2.1.

Fact 3. Solving (7.1) reduces now to a fixed point problem. Namely, we need to
find a fixed point for the map A(¢) = T(N(¢) + E). Define

F={¢:RV\Dre > R: |gllse <M +2)}
for some M > 0 large and v = min(N — 2,0 + 2). Since

4@l < C(IN(@)[lsxg + [ Ellex,)

and taking into account (7.4)-(7.5), we easily get that A(F) C Fif 0 < ¢ <
min(2 4+ o, N — 2). To show that A is a contraction, we argue as in the proof of
Proposition (5.1), taking into account that, in our case,

D3N (¢) = (q+¢) [(w—px+ o)t — w1 4 [(g 4+ e)wt — quw? ] ¢
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and that
sup  [2|DN(3)]
z€RN\D; ¢
is infinitesimal as A + & — 0. In order to prove estimate (7.7) in the range 0 < o <
N — 2 we proceed as in the proof of Lemma 5.1. O

Proof of Theorem 2. Let ¢,cq,c1,...cn be solution to problem (7.1). To prove
the result contained in Theorem 2 it suffices to show that the parameter A and the
point £ can be adjusted so that the constants cg, ..., cy are all contemporarily equal
to zero. Under the assumption that the point £ is bounded, fact that a posteriori
will be true, it is just sufficient to show that

/ (E+N(¢))a—w+/ 000w _§ vi<i<N
RN\(Da ¢) Oz Es}

D¢ % 8117]
0
/ (E+N(q§))zo+/ —¢zo=0.
RN\(Dax,¢)

Define, for 1 < j < N,

and

_ ow ¢ ow
GeN=[  ENegie [ g
and 06
Go(f, /\) = /RN\(’DA,E) (E + N(¢)) 20 + /31)A!E %Zo. (718)

Arguing as in (6.3) and taking into account that, by symmetry,

/ w¥ 3 0gwd™ —0 Vj=1,... N,
RN 61']
we obtain
N +
Gi(§, ) =w(&)fo

N —

ow
63&']'

() + oAV "2 +¢)

(7.19)
Observe that, again using symmetry, for £ = 0 the above integral is zero. Since the
above integral depends smoothly on &, given & > 0 small, for all A and £ small we
can find £ € B(0,0), depending on A and ¢, so that all ¢; =0, for j =1,...,N.
We are now left to show that also ¢ = 0. In order to get this fact, we need to
adjust the parameter X. Let us thus go to (7.18). Using the estimates obtained on
¢, we first observe that

A2 [ e Y D)t
RN

Gol£,N) = / Fzo+oAN"2 4 ).
RN\(Di¢)
A direct computation now yields that
/ Ezg= —as+ AN 2+ oAV 72 +¢) (7.20)
RN\(Dx,¢)
where
a= / w%(logw)zo
RN
and N42
AQ = wOF 5o [l N Purtaz,
_ -
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First we observe that the constant a is positive. Indeed, if we define

1 1
§) = ——— witl - —— wit log w,,
9(s) (p+1)2/RNs P fon UF l0BWs
where w;(z) = (m)¥, then a change of variables in the integrals gives
that
g(s) =an — bylogs

for some constants ay and by > 0, depending on N. Observing that a = —g'(1),
the conclusion thus follows.

We need now to prove that A(§) > 0, for £ the point previously found. To do
S0, it is enough showing that

_(N— 1 1—|z?
I:/ z|~ V-2 dz >0,
e AT P G )

since £ is close to 0. Now, writing wy for the volume of the N — 1 dimensional unit
sphere, we have

o0 1 > 1
I :wN(/ ———rdr —/ 7Nr3dr)
0o (1+r2)z+2 o (1+r2)2+2

- w & > 0
~ NNV +2)
since N > 2. )
From (7.20) we can find A of order e¥-2 so that ¢ = 0. This concludes the
proof of the Theorem. a
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