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Abstract

Let (Xn+1, g+) be an (n+1)-dimensional asymptotically hyperbolic manifold with a conformal infinity
(Mn, [ĥ]). The fractional Yamabe problem addresses to solve

Pγ[g+, ĥ](u) = cu
n+2γ
n−2γ , u > 0 on M

where c ∈ R and Pγ[g+, ĥ] is the fractional conformal Laplacian whose principal symbol is (−∆)γ. In
this paper, we construct a metric on the half space X = Rn+1

+ , which is conformally equivalent to the unit
ball, for which the solution set of the fractional Yamabe equation is non-compact provided that n ≥ 24
for γ ∈ (0, γ∗) and n ≥ 25 for γ ∈ [γ∗, 1) where γ∗ ∈ (0, 1) is a certain transition exponent. The value of
γ∗ turns out to be approximately 0.940197.
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1 Introduction

Given n ∈ N, let (Xn+1, g+) be an (n + 1)-dimensional asymptotically hyperbolic manifold with a con-
formal infinity (Mn, [ĥ]). In [43], Graham and Zworski introduced the fractional conformal Laplacian
Pγ

ĥ
= Pγ[g+, ĥ] for γ ∈ (0, n/2) whose principal symbol is given as (−∆)γ and which obeys the confor-

mal covariance property:

Pγ
[
g+,w

4
n−2γ ĥ

]
= w−

n+2γ
n−2γ Pγ

[
g+, ĥ

]
(w·) (1.1)

holds for any positive function w on M. If we denote by Qγ

ĥ
= Pγ

ĥ
(1) the associated fractional scalar curvature

and further assume that (X, g+) is a Poincaré-Einstein manifold, then P1
ĥ

and Q1
ĥ

become the conformal
Laplacian and the scalar curvature (up to constant multiples)

P1
ĥ

= −∆ĥ +
n − 2

4(n − 1)
Rĥ, Q1

ĥ
=

n − 2
4(n − 1)

Rĥ

respectively, while P2
ĥ

and Q2
ĥ

coincide the Paneitz operator and Branson’s Q-curvature

P2
ĥ

= ∆2
ĥ

+ divĥ

(
a1nRĥĥ + a2nRicĥ

)
d +

n − 4
2

Q2
ĥ
,

Q2
ĥ

= a3n∆ĥRĥ + a4nR2
ĥ

+ a5n|Ricĥ|
2

where a1n, · · · , a5n ∈ R are constants depending only on n. (Here Rĥ and Ricĥ are the scalar curvature
and the Ricci curvature tensor of the manifold (M, ĥ), respectively.) Therefore, by recalling the Yamabe
problem and the Q-curvature problem, it is natural to ask whether there is a metric h0 ∈ [ĥ] such that the
corresponding curvature Qγ

h0
is a constant. This problem is referred to as the fractional Yamabe problem or

the γ-Yamabe problem, and explored by González-Qing [41] (non-umbilic cases) and González-Wang [42]
(umbilic and non-locally conformally flat cases) in the case of γ ∈ (0, 1). Owing to (1.1), it is equivalent to
find a solution of

Pγ
ĥ
(u) = cu

n+2γ
n−2γ , u > 0 on M (1.2)

for some constant c ∈ R, or to obtain a positive critical point of the γ-Yamabe quotient

Eγ

ĥ
(u) =

∫
M uPγ

ĥ
u dvĥ(∫

M |u|
2n

n−2γ dvĥ

) n−2γ
n

for u ∈ Hγ(M) \ {0}.

The classical Yamabe problem (γ = 1) was completely solved by a series of works, starting from
Yamabe [83]. Trudinger [79] proved existence of a (least energy) solution for the Yamabe problem under
the additional assumption that the metric ĥ has non-positive scalar curvature. Aubin [8] obtained a solution
assuming that n ≥ 6 and that (M, ĥ) is not locally conformally flat. Schoen [72] completed the remaining
cases, using the positive mass theorem. See also Lee-Parker [54] and Bahri [11]. On the other hand,
the variational theory for high Morse index solutions was also actively investigated (see e.g. [73] for the
examples such as S 1 × S n−1, and [70] for general manifolds with n ≥ 3 and positive scalar curvature). In
this point of view, it is natural to take into account the full set of the solutions.

Schoen [75] raised the conjecture that the solution set for the classical Yamabe problem is compact in the
C2-topology, unless the underlying manifold is conformally equivalent to S n with the canonical metric. The
case of the round sphere S n is exceptional since (1.2) is invariant under the action of the conformal group on
S n, which is not compact. Then numerous progress on this direction was achieved by several researchers.
Schoen himself proved compactness of the solution set in the locally conformally flat case [75, 74]. Li
and Zhu proved it in dimension 3 [60], Druet in dimensions 4 and 5 [30], see also [57, 58]. In dimension
n ≥ 6, the analysis is much more subtle and it is related to the so called Weyl Vanishing conjecture which
asserts that the Weyl tensor should vanish at an order greater than [ n−6

2 ] at a blow-up point. Li and Zhang in
[57, 58] proved the Weyl Vanishing conjecture up to dimension 11, which in combination with the positive
mass theorem allow them to show compactness of the solution set for Yamabe problem up to dimension
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11. See also Marques [63] which treated the dimension up to 7. The recent work of Khuri, Marques and
Schoen [52] verified the Weyl Vanishing conjecture up to dimension 24 and revealed that the compactness
of the solution set for the classical Yamabe problem holds when the dimension of the manifold is strictly
less than 25. Somewhat surprisingly, the compactness conjecture is not valid in dimension n ≥ 25: indeed,
in this case it is possible to construct a Riemannian manifold (M, [ĥ]) such that the set of constant scalar
curvature metrics in the conformal class of ĥ fails to be compact. This is shown by Brendle [13], for n ≥ 52,
and Brendle-Marques [15], for n ≥ 25. We also refer to [6, 12] for construction of non-smooth background
metrics.

In 1992, Escobar [32, 33] formulated an analogue of the Yamabe problem for manifolds with boundary,
which is now called the boundary Yamabe problem. This corresponds to the fractional Yamabe problem
with γ = 1/2 as González and Qing observed in [41]. The solvability issue was solved in most of the cases:
in [32] solvability is proved in dimension 2, in dimension is 3 or 4 under the assumption that boundary is
umbilic, in dimension n ≥ 5 if the manifold is locally conformally flat and the boundary is umbilic. We
refer the reader for developments on this issue to [34, 64, 65, 3, 33, 14] and reference therein. The problem
of compactness of the solution set for the 1

2 -fractional Yamabe problem is studied in the conformally flat
case with umbilic boundary in [37], and in the case of dimension 2 in [38]. Related results on compactness
were obtained by Almaraz in [5] and by Han-Li [45]. Notably, compactness is lost for high dimensions, but
this time for dimensions n ≥ 24. Indeed, there are examples of metrics on the unit ball Bn+1, with n ≥ 24,
for which the set of scalar-flat metrics on Bn+1 in the same conformal class with respect to which ∂Bn+1 has
constant mean curvature, is not compact. This construction is done in [4]. Just a remark: In the boundary
Yamabe problem studied by Almaraz [4], the author denoted by n the dimension of the upper-half space.
Since in this paper we assume n to be the dimension of its boundary, the critical dimension in our main
theorem for γ = 1/2 reads to be 24 instead of 25 as in [4]. Thus, when γ = 1/2, compactness of the set of
solutions to the fractional Yamabe problem is lost at least from n ≥ 24. See also Disconzi-Khuri [28].

Interestingly enough, also for the γ = 2 case, it is again from dimension n = 25 that compactness
for the set of solutions to the 2-fractional Yamabe problem (namely, the Q-curvature problem) is lost: in
[82], Wei and Zhao showed the existence of a non-compact set of metrics on the sphere S n for which the
curvature Q2

ĥ
is constant, or equivalently the solution set for problem (1.2), with γ = 2, is non-compact.

Concerning compactness of solutions to the Q-curvature problem, as far as we know, the only available
results are contained in [46, 71, 55, 56], see also [47].

Given these results, one can expect that the starting dimension for non-compactness of the γ-Yamabe
problem depends on γ.

In this paper, we explore precisely this problem. We are interested in non-compactness property for the
fractional Yamabe problem provided that γ ∈ (0, 1) and the background dimension is sufficiently high. We
show that there is a transition of the critical dimension at some γ ∈ (0, 1), which takes into account that the
smaller γ tends to be, the stronger the nonlocal effect becomes. Our result in particular bridges the classical
Yamabe problem and the boundary Yamabe problem.

Our result is the following

Theorem 1.1. There exists a number γ∗ ' 0.940197 such that the following properties hold:

1. There are a C∞ Riemannian metric g+ and a boundary defining function ρ on Rn+1
+ such that (Rn+1

+ , g+)
is an asymptotically hyperbolic manifold with the conformal infinity (Rn, [ĥ]) where ĥ = ρ2g+|Rn . They can
be taken to be independent of the choice of γ.

2. Fix any γ ∈ (0, 1) and suppose that n ≥ 24 if γ ∈ (0, γ∗) and n ≥ 25 if γ ∈ [γ∗, 1). Then one has
a sequence of positive solutions {uγm}m∈N to the fractional Yamabe equation (1.2) with the constant c = 1,
satisfying ‖uγm‖L∞(Rn) → ∞ as m→ ∞.

3. The smooth metric ḡ = ρ2g+ on Rn+1
+ is not conformally flat and the boundary (Rn, ĥ) is umbilic (in fact,

totally geodesic) with respect to ḡ. Moreover, if Yγ(Rn, [gc]) is the γ-Yamabe energy of the flat metric in Rn,
then

Eγ

ĥ
(uγm) < Yγ(Rn, [gc]) and Eγ

ĥ
(uγm)→ Yγ(Rn, [gc]) as m→ ∞.
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Recently numerous results on nonlocal conformal operators have been established. This includes [71]
for the higher-order fractional Yamabe problem, [40] for the fractional singular Yamabe problem, [51] for
the fractional Yamabe flow and [1, 21, 48, 49, 50] for the fractional Nirenberg problem. Furthermore, Druet
[29], Druet-Hebey [31], Micheletti-Pistoia-Vétois [67], Esposito-Pistoia-Vétois [35] (for γ = 1), Deng-
Pistoia [27], Pistoia-Vaira [69] (for γ = 2) and Choi-Kim [22] (for γ ∈ (0, 1)) dealt with compactness issue
of lower order perturbations of Eq. (1.2).

Structure of this paper. In the next section, we will describe the setting of our problem. Whilst our
program is adopted from [13], [15] and [4], we need to recall two more ingredients to handle the nonlocal
conformal operators - the singular Yamabe problem (refer to [7] and [9]) and the Caffarelli-Silvestre type
extension result ([16]) for the fractional conformal Laplacian obtained in [20]. To be more precise, we first
define a Riemannian metric ḡ on the closure of the half space RN

+ , slightly perturbing the canonical metric
gc. Then we select a suitable boundary defining function ρ by imposing the scalar curvature of (RN

+ , g
+)

where g+ = ρ−2ḡ to be −n(n + 1) and solving the associated singular Yamabe problem (see Appendix A.1).
Because the precise information of ρ near the origin will be required, we will also achieve it in Appendix
A.2. Now (RN

+ , g
+) becomes an asymptotically hyperbolic manifold, and the fractional conformal Laplacian

is well defined. Instead of treating it directly, we consider its localization due to Chang-González [20].
In Section 3, the finite dimensional Lyapunov-Schmidt reduction method is applied to show that our

desired solution will be attained once we find a critical point of a certain functional Jγ0 (in (3.39)). At this
point, it is necessary to understand the global behavior of ρ and the spectral property of −∆g+ to establish
the linear theory and to ensure the positivity of solutions. This will be touched in Appendix A.3.

An important property is that Jγ0 can be approximated at main order by a polynomial P (in (4.31)) as it
will be shown in Section 4. To do so, we have to calculate a number of integrals regarding the bubbles Wλ,σ

in (2.17). In the local case (γ = 1/2, 1 or 2), the formulae of the bubbles are explicit, so it is relatively plain
to obtain the value of the integrals (refer to [13, Proposition 27]). However, in the non-local case, only the
representation formula is available for the bubbles. In order to get over this difficulty, we further develop the
approach of González-Qing [41] where they utilized the Fourier transform. Finally, Section 5 is devoted to
search a critical point of P, thereby proving our main theorem.

Notation.

- Throughout the paper, we use the Einstein convention. The indices a, b, c and d always run from 1 to n + 1,
while i, j, k, k̃, l, p, q, s and s̃ run from 1 to n.

- We denote N = n + 1. Also, for x = (x1, · · · , xN) ∈ RN
+ = {(x1, · · · , xN) ∈ RN : xN > 0}, we use

x̄ = (x1, · · · , xn, 0) ∈ ∂RN
+ ' R

n and r = |x̄| ≥ 0.

- For any % > 0, we write BN
+ (0, %) to denote the upper-half open ball in RN

+ centered at the origin whose
radius is %. Also, Bn(0, %) and S n−1(0, %) are the n-dimensional ball and the (n − 1)-dimensional sphere,
respectively, whose centers are located at 0 and radii are %. We use S n−1 = S n−1(0, 1) for the sake of brevity.
Furthermore, dS % is the surface measure of the sphere S n−1(0, %) in Rn and dS = dS 1.

- For a Riemannian manifold (X, g), ∆g stands for the Laplace-Beltrami operator (of negative spectrum). If
(X, g) is the standard Euclidean space, we denote ∆ = ∆g.

- χA is the characteristic function of a set A.

- t+ = max{t, 0} and t− = max{−t, 0} for any t ∈ R.

- For fixed n ∈ N and γ ∈ (0, 1) such that n > 2γ, the space D1,2(RN
+ ; x1−2γ

N ) is defined as the completion of

the space C∞c (RN
+ ) with respect to the norm

‖U‖D1,2(RN
+ ;x1−2γ

N ) :=
(∫
RN

+

x1−2γ
N |∇U |2dx

)1/2

for U ∈ C∞c (RN
+ ) (1.3)

(refer to Remark 3.2). Let also D1,2(%) be the completion of C∞c
(
BN

+ (0, %) ∪ Bn(0, %)
)

with respect to the
norm (1.3).
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- For a function f ∈ L2(Rn), the Fourier transform f̂ of f is defined by

f̂ (ξ) =
1

(2π)n/2

∫
Rn

f (x)e−ix·ξdx for ξ ∈ Rn.

We also use ρ = |ξ|.

- The letters C and C̃ (without subscripts) denote positive numbers that may vary from line to line.

2 Setting of the problem

The following setting is due to Brendle [13] and Almaraz [4]. Fix W : (Rn)4 → R be a multi-linear form
such that its tensor norm

|W | =

 n∑
i, j,k,l=1

(Wik jl + Wil jk)2


1/2

is positive everywhere and it satisfies all algebraic properties the Weyl tensor has: Wi jkl = −W jikl = −Wi jlk =

Wkli j (symmetry and anti-symmetry), Wi jkl + Wikl j + Wil jk = 0 (the Bianchi identity) and any contraction of
W gives 0 (which is equivalent to

∑n
i=1 Wi jik = 0 by the symmetric property). Then we set a tensor

Hi j(x) = Hi j(x̄) = Wik jlxkxl and HaN(x) = HNb(x) = 0 (2.1)

for any x ∈ RN
+ , and using this we also define a trace-free symmetric two-tensor h in RN

+ which satisfies

hab(x) =

µε2d0 f
(
ε−2|x̄|2

)
Hab(x̄) for |x| ≤ ν,

0 for |x| ≥ 1.
(2.2)

Here 0 < ε � ν ≤ 1 (e.g., ν| log ε| ≥ 1/100 would suffice), µ = ε1/3 and f (t) =
∑d0

m=0 amtm is a polynomial
of degree d0 (1 ≤ d0 ≤ 4 and am ∈ R). Moreover we impose further conditions on the tensor h that

haN(x) = 0 and
2(2d0+2)∑

m=0

∣∣∣Dmhab(x)
∣∣∣ ≤ η0 for all x ∈ RN

+ (2.3)

where η0 � ε > 0 is a small number to be determined in Section 3, and that it relies only on the first n
variables (so that ∂Nhab = 0 where ∂N = ∂xN ) if 0 ≤ xN ≤ ν. By virtue of our construction, it immediately
follows that

xahab(x) =

N∑
a=1

∂ahab(x) = 0 for any |x| ≤ ν. (2.4)

Now if we define ḡ = exp (h), then
(
RN

+ , ḡ
)

is a smooth Riemannian manifold with a boundary. Moreover,

it is easy to check that the submanifold (Rn, ĥ) where ĥ = ḡ|TRn is totally geodesic. This is equivalent to
say that the second fundamental form πi j satisfies πi j = ∂N ḡi j/2 = 0. This fact implies in particular that the
mean curvature H = ḡi jπi j/n also vanishes on Rn.

Furthermore, since the trace of the tensor h is zero, we have the following expansion of the scalar
curvature of the manifold (RN

+ , ḡ): For some C = C(n) > 0,∣∣∣∣∣∣∣∣Rḡ −

 n∑
i, j=1

∂i jhi j −

n∑
i, j,k=1

∂i
(
hi j∂khk j

)
+

1
2

n∑
i, j,k=1

∂ihi j∂khk j −
1
4

n∑
i, j,k=1

(
∂khi j

)2


∣∣∣∣∣∣∣∣

≤ C
(
|h|2

∣∣∣D2h
∣∣∣ + |h||Dh|2

)
in C

(
RN

+

)
. (2.5)

See [13, Proposition 26] for the detailed explanation. In particular, a further inspection with (2.4) shows that

Rḡ = −
1
4

n∑
i, j,k=1

(
∂khi j

)2
+ O

(
|h|2

∣∣∣D2h
∣∣∣ + |h||Dh|2

)
in C∞({|x| ≤ ν}). (2.6)
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In order to make the space RN
+ to be asymptotically hyperbolic with conformal infinity (Rn, [ĥ]), we

solve the singular Yamabe problem. Precisely, we construct a metric g+ ∈ [ḡ] in RN
+ such that its scalar

curvature Rg+ is equal to −n(n + 1) and ρ2g+|TRn = ĥ for some boundary defining function ρ of Rn = ∂RN
+ .

By the results of Aviles-McOwen [9] and Andersson-Chruściel-Friedrich [7], it is known that this problem
is solvable for N ≥ 3 and the defining function ρ has the form

ρ = xN
(
1 + AxN + BxN

N

)− 2
N−2 (2.7)

near the boundary Rn, where A ∈ C∞(RN
+ ), B ∈ C∞(RN

+ ) and B has a polyhomogeneous expansion in the
xN-variable near the boundary.

To obtain the existence of the metric g+, one can take the following procedure: Let us assume that

g+ = w
4

N−2 ḡ for some positive function w in RN
+ such that wx

N−2
2

N → 1 as xN → 0+. If we put u = wx
N−2

2
N and

g̃ = x−2
N ḡ, then the problem boils down to the Loewner-Nirenberg problem [62]

−
4(N − 1)

N − 2
∆g̃u + Rg̃u + N(N − 1)u

N+2
N−2 = 0 in RN

+ and u = 1 on Rn. (2.8)

By employing a stereographic projection, we may assume that the domain of the equation is BN instead of
RN

+ . Then it turns out that this equation admits positive upper and lower solutions, which gives the unique
positive solution u continuous up to the boundary S n (or Rn after transforming back - see Appendix A.1
for further discussion on the conformal change). This also guarantees the existence of the defining function
ρ = u−

2
N−2 xN .

Very recently, Han and Jiang [44] established optimal asymptotic expansions of solutions to the Dirichlet
problem for minimal graphs in the hyperbolic space. As it will be discussed in Appendix A.2, their approach
also alludes that the formal expansion of the solution u to Eq. (2.8) in the xN-variable is accurate up to
O(xN

N log xN) order. Because the coefficient of the xN-order in the expansion of u is a constant multiple of the

mean curvature H of (Rn, ĥ) ⊂
(
RN

+ , ḡ
)

and it holds that H = 0 due to our construction of ḡ, it is expected that
the asymptotic expansion of ρ contains only even powers of xN . Indeed, we have the following description
on ρ up to the 4(d0 + 1)-th order of xN .

Proposition 2.1. Assume that N ≥ 22 (and n ≥ 21) and let x = (x̄, xN) ∈ RN
+ .

1. It holds that C−1xN < ρ(x̄, xN) < CxN in RN
+ for some C > 0 independent of the points x ∈ RN

+ .

2. Denote Hab(x) = f (|x̄|2)Hab(x) and fix numbers ν, η > 0 sufficiently small. Then we have

ρ(εx) =

1 + µ2ε4(d0+1)
2d0+2∑
m=1

C2m(x̄)x2m
N + O

(
µ3ε4(d0+1)|x|2

(
1 + |x|4d0

)
x2

N

)
+ O

(
(εxN)4(d0+1)+2−η

) εxN

(2.9)
in C2(BN

+ (0, ν/ε)) where the function C2m is defined as

C2m(x̄) = −
1

24(N − 1)(N − 2)

m−1∏
m̃=1

1
(2m̃ + 3)(N − 2(m̃ + 1))

 n∑
i, j,k=1

∆m−1
(
∂kHi j(x̄)

)2
(2.10)

for all m = 1, · · · , 2(d0 + 2). The value in the bracket is understood as 1 if m = 1.

Proof. Since u is a bounded function in RN
+ away from 0 and ρ = u−

2
N−2 xN , the first assertion is true. The

proof of (2.9) is postponed to Appendix A.2. �

Our proof for Theorem 1.1 strongly relies not only on the results on the singular Yamabe problem,
but also on the following local interpretation of the conformal fractional Laplacian found by Chang and
González.
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Proposition 2.2. ([20, Theorem 5.1], see also [41, Proposition 2.1]) Let γ ∈ (0, 1), ḡ be a Riemannian
metric on RN

+ and ĥ its induced metric on the boundary Rn. Also we suppose that the mean curvature on
Rn is 0 and the last component xN of RN

+ serves as the boundary defining function, namely, ḡ = ḡxN + dx2
N

for some one parameter family of metrics ḡxN on Rn. Then one can construct an asymptotically hyperbolic
metric g+ in RN

+ conformal to ḡ such that Rg+ = −n(n + 1) and a defining function ρ satisfying ρ2g+|TRn = ĥ
as well as (2.7) and (2.9). (This is what we explained in the previous paragraphs.) Moreover if U is a
solution of the following extension problem−divḡ

(
ρ1−2γ∇U

)
+ E(ρ)U = 0 in

(
RN

+ , ḡ
)
,

U = f on Rn

for a given function f in the Sobolev space Hγ(Rn), where E is the error term given by

E(ρ) = −∆ḡ

(
ρ

1−2γ
2

)
ρ

1−2γ
2 +

(
γ2 −

1
4

)
ρ−1−2γ +

n − 1
4n

Rḡρ
1−2γ, (2.11)

then

Pγ[g+, ĥ] f = −κγ

(
lim
ρ→0+

ρ1−2γ ∂U
∂ρ

)
= −κγ

(
lim

xN→0+
x1−2γ

N
∂U
∂xN

)
:= ∂

γ
νU. (2.12)

Here κγ = 22γ−1Γ(γ)/Γ(1 − γ) and ν designates the unit outer normal vector −∂xN to the boundary Rn.

Therefore, in order to solve the nonlocal Eq. (1.2) with c = 1, it suffices to find a positive solution of the
degenerate local problem 

−divḡ
(
ρ1−2γ∇U

)
+ E(ρ)U = 0 in

(
RN

+ , ḡ
)
,

U = u on Rn,

∂
γ
νU = U

n+2γ
n−2γ on Rn.

(2.13)

Besides, by (2.12), a critical point of the energy functional

Iγ(U) =
κγ

2

∫
RN

+

(
ρ1−2γ|∇U |2ḡ + E(ρ)U2

)
dvḡ −

n − 2γ
2n

∫
Rn

U
2n

n−2γ
+ dvĥ for U ∈ H1 (2.14)

solves (2.13). Here dvḡ and dvĥ represent the volume forms of
(
RN

+ , ḡ
)

and (Rn, ĥ) respectively. Because

det ḡ = det ĥ = 1 due to our construction, it holds that dvḡ = dx and dvĥ = dx̄. Eq. (3.23) and the Sobolev

trace inequality D1,2(RN
+ ; x1−2γ

N ) ↪→ L
2n

n−2γ (Rn) ensure that Iγ is well-defined in the spaceH1 defined in (3.8).
In the special case ḡ = dx2, g+ = dx2/x2

N and ρ = xN , the fractional Paneitz operator Pγ
dx̄2 reduces

to the usual fractional Laplacian (−∆)γ and the corresponding result to Proposition 2.2 was established by
Caffarelli and Silvestre [18]. As it is now well-understood through a series of works conducted by many
mathematicians (see for instance [16, 17, 23, 25, 26, 41, 76, 77] and references therein), this observation
allows one to apply well-known techniques such as the mountain pass theorem, blow-up analysis, the finite
dimensional reduction method, the moving plane method, the Moser iteration method and so on, for local,
but degenerate, equations to analyze the corresponding nonlocal equations. On the other hand, the results of
Yang [84] and Case-Chang [19], which present the extension results for the higher order fractional conformal
Laplacians, would allow one to apply similar approaches for the case γ ∈ (1, n/2).

Before finishing this section, we recall the bubbles wλ,σ and their γ-harmonic extensions Wλ,σ. Given
λ > 0 and σ ∈ Rn, the function wλ,σ is defined as

wλ,σ(x̄) = cn,γ

(
λ

λ2 + |x̄ − σ|2

) n−2γ
2

=
1

λ
n−2γ

2

w1,0

( x̄ − σ
λ

)
for any x̄ ∈ Rn

for some normalizing constant cn,γ whose value is presented below, and Wλ,σ(x) = λ−
n−2γ

2 W1,0(λ−1(x̄ −
σ), λ−1xN) is a unique solution of the degenerate elliptic equation

div
(
x1−2γ

N ∇U
)

= 0 in RN
+ ,

U(·, 0) = wλ,σ on Rn,

U ∈ D1,2(RN
+ ; x1−2γ

N ).

(2.15)
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Each bubble wλ,σ solves the equation

(−∆)γu = u
n+2γ
n−2γ in Rn. (2.16)

Hence ∂γνWλ,σ = w
n+2γ
n−2γ
λ,σ in Rn by Proposition 2.2. Besides, it is possible to describe Wλ,σ in terms of the

Poisson kernel Kγ:

Wλ,σ(x̄, xN) = (Kγ(·, xN) ∗ wλ,σ)(x̄) = pn,γ

∫
Rn

x2γ
N

(|x̄ − ξ|2 + |xN |
2)

n+2γ
2

wλ,σ(ξ)dξ. (2.17)

The values of constants cn,γ and pn,γ are

cn,γ = 2
n−2γ

2

Γ
(

n+2γ
2

)
Γ
(

n−2γ
2

)
n−2γ

4γ

and pn,γ =
Γ
(

n+2γ
2

)
π

n
2 Γ(γ)

. (2.18)

The nondegeneracy result of [24] tells us that the set of bounded solutions for the linearized problem to
(2.16)

(−∆)γu =

(
n + 2γ
n − 2γ

)
w

4γ
n−2γ
λ,σ u in Rn

is spanned by

z1
λ,σ :=

∂wλ,σ

∂σ1
= −

∂wλ,σ

∂x1
, · · · , zn

λ,σ :=
∂wλ,σ

∂σn
= −

∂wλ,σ

∂xn

and

z0
λ,σ :=

∂wλ,σ

∂λ
= −

(
n − 2γ

2

)
wλ,σ − x · ∇wλ,σ

where λ > 0 and σ = (σ1, · · · , σn). Also, if we let Zm
λ,σ be the γ-harmonic extension of zm

λ,σ for m = 0, · · · , n,
i.e., the solution of (2.15) whose second equality is replaced by U(·, 0) = zm

λ,σ on Rn, then the following
decay properties can be checked.

Lemma 2.3. There exists a constant C = C(n, γ) > 0 such that

∣∣∣∇m
x̄ Wλ,σ(x)

∣∣∣ ≤ Cλ
n−2γ

2

λn−2γ+m + |x − (σ, 0)|n−2γ+m (m = 0, 1, 2) (2.19)

and

∣∣∣∇m
x̄ ∂NWλ,σ(x)

∣∣∣ ≤ Cλ
n−2γ

2

 x2γ−1
N

λn+m + |x − (σ, 0)|n+m +
1

λn−2γ+1+m + |x − (σ, 0)|n−2γ+1+m

 (m = 0, 1)

for all (λ, σ) ∈ (0,∞) × Rn and x ∈ RN
+ . Here ∇m

x̄ means the m-th derivative with respect to the x̄-variable.

Proof. In [22, Lemma A.2] the authors proved the assertion under the assumption that (λ, σ) = (1, 0) by
treating Green’s representation formula (3.16) (cf. Lemma 3.9 below). The estimate for general (λ, σ) is
achieved by rescaling of the variables. �

Lemma 2.4. Fix any γ ∈ (0, 1), α ≥ 1 and β ≥ 0. Given t0 > 0 fixed, we have that∫
BN

+ (0,t0)c
xα−2γ

N |x̄|βW2
1,0(x̄, xN)dx̄dxN ≤ Ct−n+1+2γ+α+β

0

and ∫
BN

+ (0,t0)c
xα−2γ

N |x̄|β|∇W1,0(x̄, xN)|2dx̄dxN ≤ Ct−n−1+2γ+α+β
0

where C = C(n, γ, α, β) is a positive constant relying only on n, γ, α and β.
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Proof. Integrating in the polar coordinate and taking advantage of (2.19), we have∫
BN

+ (0,t0)c
xα−2γ

N |x̄|βW2
1,0(x̄, xN)dx̄dxN

≤ C
∫
{(r,xN )∈R2: r2+x2

N≥t20 , r,xN>0}

xα−2γ
N rn−1+β

1 + (r2 + x2
N)n−2γ

drdxN (r = |x̄|)

≤

∫ π
2

0

∫ ∞

t0

tα−2γ(sin θ)α−2γtn−1+β(cos θ)n−1+β

t2(n−2γ) tdtdθ (r = t cos θ, xN = t sin θ)

= C
∫ ∞

t0
t−n+2γ+α+βdt = Ct−n+1+2γ+α+β

0 .

In the above formula, that
∫ π

2
0 (sin θ)α−2γ(cos θ)n−1+βdθ < ∞ is guaranteed by the assumption that α−2γ > −1

and β ≥ 0.
The other equation can be derived in similar reasoning. Therefore the conclusion of Lemma 2.4 follows.

�

For the remaining part of the paper, we write Wδ,0 = Wδ and wδ,0 = wδ for simplicity.

3 Reduction process

Recall the parameter ε ∈ (0, 1) in the definition of the tensor h (refer to (2.2)). From now on, for each
sufficiently small fixed ε > 0, we look for a positive solution to (2.13) of the form Wεδ(ε),ετ(ε) + Ψεδ(ε),ετ(ε)
where Wεδ(ε),ετ(ε) is the γ-harmonic extension of the bubble wεδ(ε),ετ(ε) and Ψεδ(ε),ετ(ε) is a remainder term
which is small in a suitable sense, by choosing the constant δ(ε) > 0 and the point τ(ε) ∈ Rn appropriately.

Let us consider the admissible set A := (1 − ε0, 1 + ε0) × Bn(0, ε0) where ε0 ∈ (0, 1) is some small
number. In this section, given any (δ, τ) ∈ A, we shall choose a function Ψεδ,ετ for each Wεδ,ετ so that
Wεδ,ετ + Ψεδ,ετ solves an auxiliary equation to (2.13). The selection of the special pairs (εδ(ε), ετ(ε)), which
gives a desired solution of (2.13) for each ε > 0, will be performed in the subsequent sections. Throughout
this section, it is assumed that (λ, σ) = (εδ, ετ).

3.1 Weighted Sobolev inequality and regularity results for degenerate elliptic equations

In this subsection, we derive Sobolev inequalities for the spaces D1,2(RN
+ ; x1−2γ

N ) andD1,2(%). After proving
them, we also examine regularity of solutions to degenerate elliptic equations.

Lemma 3.1. The followings hold.

1. Fix any %1, %2 > 0. Then we have(∫ %1

0

∫
Bn(0,%2)

x1−2γ
N |U |2dx

)1/2

≤ C‖U‖D1,2(RN
+ ;x1−2γ

N ) for U ∈ D1,2(RN
+ ; x1−2γ

N )

where C > 0 depends only on N, γ, %1 and %2.

2. Given % > 0 fixed, there exist positive constants C and η depending only on N, γ and % such that for
all 1 ≤ m ≤ N

N−1 + η(∫
BN

+ (0,%)
x1−2γ

N |U |2mdx
)1/2m

≤ C
(∫

BN
+ (0,%)

x1−2γ
N |∇U |2dx

)1/2

, U ∈ D1,2(%). (3.1)

Proof. 1. By density, we may assume that U ∈ C∞c (RN
+ ). By the proof of Lemma 3.1 of [22], we obtain∫ %1

0

∫
Bn(0,%2)

x1−2γ
N |U(x̄, xN)|2dx̄dxN ≤ C

(∫
Bn(0,%2)

|U(x̄, 0)|2dx̄ +

∫ %1

0

∫
Bn(0,%2)

x1−2γ
N |∇U(x̄, xN)|2dx̄dxN

)
.
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Thus the Sobolev trace inequality D1,2(RN
+ ; x1−2γ

N ) ↪→ L
2n

n−2γ (Rn) (proved in [80]) gives the desired inequality.

2. Since x1−2γ
N is an element of the class of Muckenhoupt weights A2, [78, Lemma 2.2] (cf. [36, Theorem

1.2]) implies that (3.1) holds for arbitrary U ∈ C∞c
(
BN

+ (0, %) ∪ Bn(0, %)
)
. By the standard density argument,

(3.1) can be extended to all U ∈ D1,2(%). �

Remark 3.2. Since x1−2γ
N , x2γ−1

N ∈ L1
loc(RN

+ ), Lemma 3.1 (1) shows that the gradient ∇U is well-defined for
any U ∈ D1,2(RN

+ ; x1−2γ
N ). See [36, Subsection 2.1].

Consider the equation −divḡ
(
ρ1−2γ∇U

)
= x1−2γ

N Φ in
(
RN

+ , ḡ
)
,

∂
γ
νU = ζ on Rn (3.2)

and its related inequalities for given Φ ∈ L1
loc(RN

+ ) and ζ ∈ L1
loc(Rn).

Definition 3.3. We say that a function U ∈ D1,2(RN
+ ; x1−2γ

N ) is a weak solution of (3.2) if

κγ

∫
RN

+

ρ1−2γ 〈∇U,∇V〉ḡ dx = κγ

∫
RN

+

x1−2γ
N ΦVdx +

∫
Rn
ζvdx̄ for any V ∈ C∞c (RN

+ )

where V = v on Rn.

Because the norm U 7→
(∫
RN

+
ρ1−2γ|∇U |ḡdx

)1/2
is equivalent to ‖ · ‖D1,2(RN

+ ;x1−2γ
N ), the space D1,2(RN

+ ; x1−2γ
N ) is

suitable to deal with (3.2). Also, we can immediately extend the space C∞c (RN
+ ) of test functions in Definition

3.3 to Cc(RN
+ ) ∩ D1,2(RN

+ ; x1−2γ
N ) by the method of mollifiers.

The following local regularity result for a weak solution to (3.2) can be proved.

Lemma 3.4. Suppose that U ∈ L∞(RN
+ ) is a weak solution of (3.2). Fix any % > 0. If Φ ∈ L∞(BN

+ (0, %)) and
ζ ∈ L∞(Bn(0, %)), then U ∈ Cϑ(BN

+ (0, %/2)) for some ϑ ∈ (0, 1) and

‖U‖Cϑ(BN
+ (0,%/2)) ≤ C

(
‖U‖L2(BN

+ (0,%)) + ‖Φ‖L∞(BN
+ (0,%)) + ‖ζ‖L∞(Bn(0,%))

)
. (3.3)

The constant C > 0 depends only on N, γ and %.

Remark 3.5. We may relax the integrability condition of U, Φ and ζ to get more general results. However,
the current setting is sufficient for our purpose, so we do not pursue in this direction.

Proof of Lemma 3.4. By applying the standard Moser iteration technique with the John-Nirenberg inequal-
ity for BMO(BN

+ (0, %); x1−2γ
N dx), we obtain Moser’s Harnack inequality: If U ∈ L∞(RN

+ ) is a nonnegative
weak solution to (3.2), then there exists C > 0 depending only on N, γ and % such that for any 0 < %′ < %/2

sup
x∈BN

+ (0,%′)
U ≤ C

(
inf

x∈BN
+ (0,%′)

U + (%′)2‖Φ‖L∞(BN
+ (0,%)) + (%′)2γ‖ζ‖L∞(Bn(0,%))

)
.

Inequality (3.3) is its consequence. For a proof in a similar setting, refer to Proposition 2.6 of [48] and
Propositions 3.1, 3.2 of [78]. In fact, our case is simpler because we assumed that U ∈ L∞(RN

+ ) so that we
do not need to trim it. �

In the remaining part of this subsection, we are concerned about the weak maximum principles for
weighted Neumann problems.

Lemma 3.6. Suppose that U ∈ D1,2(RN
+ ; x1−2γ

N ) satisfies the inequality−divḡ
(
ρ1−2γ∇U

)
≥ 0 in

(
RN

+ , ḡ
)
,

∂
γ
νU ≥ 0 on Rn

weakly. Then U ≥ 0 in RN
+ .
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Proof. It holds that

κγ

∫
RN

+

ρ1−2γ 〈∇U,∇V〉ḡ dx ≥
∫
Rn
∂
γ
νU · Vdx ≥ 0 for any nonnegative V ∈ C∞c (RN

+ ).

Since the space C∞c (RN
+ ) is dense in D1,2(RN

+ ; x1−2γ
N ), we can insert V = U− ∈ D1,2(RN

+ ; x1−2γ
N ) in the above

inequality to get V = 0. Hence U ≥ 0 in RN
+ . �

The following generalized maximum principle will be used in Lemma 3.15.

Lemma 3.7. Suppose that U ∈ L∞(RN
+ ) ∩ D1,2(RN

+ ; x1−2γ
N ) satisfiesLU := −divḡ

(
ρ1−2γ∇U

)
+ E(ρ)U ≥ 0 in

(
RN

+ , ḡ
)
,

∂
γ
νU ≥ 0 on Rn (3.4)

weakly (in the sense of the adequate modification of Definition 3.3). Assume also that there exists a function
W ∈ D1,2(RN

+ ; x1−2γ
N ) such that W ∈ C(RN

+ ) , ∇W ∈ L∞(RN
+ ),

LW = −divḡ
(
ρ1−2γ∇W

)
+ E(ρ)W ≥ 0 in

(
RN

+ , ḡ
)
,

W > 0 on RN
+ ,

∂
γ
νW ≥ 0 on Rn,

(3.5)

and |U(x)|/W(x)→ 0 uniformly as |x| → ∞, then U ≥ 0 in RN
+ .

Proof. The proof is in the spirit of that of [48, Lemma A.3]. By testing (3.4) with W−1Φ ∈ Cc(RN
+ ) ∩

D1,2(RN
+ ; x1−2γ

N ), we observe that the function V := W−1U satisfies∫
RN

+

[
ρ1−2γ

(
〈∇V,∇Φ〉ḡ − 2 〈∇V,∇W〉ḡ W−1Φ +

〈
∇W,∇

(
VW−1Φ

)〉
ḡ

)
+ E(ρ)VΦ

]
dx ≥ 0 (3.6)

for all nonnegative function Φ ∈ C∞c (RN
+ ). By density and (3.1), it is also allowed to take any nonnegative

Φ ∈ D1,2(RN
+ ; x1−2γ

N ) with compact support into (3.6).
To the contrary, suppose that inf

x∈RN
+

V(x) < −m < 0. If we define a function Vm = V + m, then (Vm)− ≥ 0

has a compact support since |V(x)| → 0 uniformly in x as |x| → ∞ by the hypothesis. Therefore putting
Φ = (Vm)− in (3.6) and employing (3.5) with the test function W−1V(Vm)−, we obtain∫

RN
+

ρ1−2γ|∇(Vm)−|2ḡdx ≤ 2
∫
RN

+

ρ1−2γ 〈∇W,∇(Vm)−〉ḡ W−1(Vm)−dx.

Now, by applying Hölder’s inequality and the boundedness of W−1 and ∇W on the previous inequality, and
then utilizing the weighted Sobolev inequality (3.1), we find that∫

supp(Vm)−
x1−2γ

N dx ≥ C > 0

where supp(Vm)− is the support of (Vm)−. However since x1−2γ
N ∈ L1

loc(RN
+ ) and |supp(Vm)−| → 0 as m →

− inf
x∈RN

+

V(x), the left-hand side should go to 0 as well, which is absurd. We have reached a contradiction, and

so V (or U) ≥ 0 in RN
+ . �
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3.2 Existence and decay estimate for solutions to degenerate elliptic equations

This part is devoted to study existence and decay property of solutions to degenerate elliptic equations.

Assuming that n > 2γ + 4(d0 + 1) + 2/3, let us set three weighted norms

‖U‖∗ = sup
x∈RN

+

χ{|x−(σ,0)|≤ν/2} ·

 µεκ−
n+2γ

2

εκ−2γ−(2d0+2) + |x − (σ, 0)|κ−2γ−(2d0+2) + η0
εκ−

n+2γ
2

νκ

−1

+χ{|x−(σ,0)|≥ν/2} ·
|x − (σ, 0)|κ−2γ

η0ε
κ−

n+2γ
2

 · |U(x)|,

‖U‖∗∗ = sup
x∈RN

+

χ{|x−(σ,0)|≤ν/2} ·
εκ−2γ−2d0 + |x − (σ, 0)|κ−2γ−2d0

µεκ−
n+2γ

2

+ χ{|x−(σ,0)|≥ν/2} ·
|x − (σ, 0)|κ−2γ+2

η0ε
κ−

n+2γ
2

 · |U(x)|

and

‖v‖∗∗∗ = sup
x̄∈Rn

χ{|x̄−σ|≤ν/2} ·
 µεκ−

n+2γ
2

εκ−(2d0+2) + |x̄ − σ|κ−(2d0+2) + η0
εκ−

n+2γ
2

νκ

−1

+ χ{|x̄−σ|≥ν/2} ·
|x̄ − σ|κ

η0ε
κ−

n+2γ
2

 · |v(x̄)|

for any fixed number

κ ∈

(
max

{
n + 2γ

2
+ 2(d0 + 1) +

1
3
, n − 2γ

}
, n

)
, (3.7)

small parameters ν, η0 � ε > 0, points (δ, τ) ∈ A, and functions U = U(x̄, xN) in RN
+ and v = v(x̄) on Rn.

(Here the dimension assumption implies that µε−
n−2γ

2 +2d0+2 → ∞ and µ−2εκ−
n+2γ

2 ν−κ → 0 as ε → 0.) Then
we define the Banach spaces

H1 =

{
U ∈ D1,2(RN

+ ; x1−2γ
N ) ∩C(RN

+ ) : ‖U‖∗ < ∞
}
, H2 =

{
U ∈ L∞(RN

+ ) : ‖U‖∗∗ < ∞
}

(3.8)

and
H3 =

{
v ∈ L∞(Rn) : ‖v‖∗∗∗ < ∞

}
where the spaceH1 is endowed with the norm ‖ · ‖D1,2(RN

+ ;x1−2γ
N ) + ‖ · ‖∗.

We solve an inhomogeneous degenerate equation with homogeneous weighted Neumann condition and
obtain an estimate for the solution.

Lemma 3.8. Let ε and η0 be the small positive numbers chosen in (2.2) and (2.3). For any fixed point
(δ, τ) ∈ A and a function Φ ∈ H2, the equation−divḡ

(
ρ1−2γ∇U

)
= x1−2γ

N Φ in
(
RN

+ , ḡ
)
,

∂
γ
νU = 0 on Rn (3.9)

has a unique solution U0 ∈ H1 satisfying

‖U0‖∗ ≤ C‖Φ‖∗∗. (3.10)

Here the constant C > 0 relies only on n, γ and κ.

Proof. Step 1 (A priori estimate). Suppose that U0 ∈ D1,2(RN
+ ; x1−2γ

N ) is a solution of (3.9) for a given

Φ ∈ H2. It holds

− divḡ
(
ρ1−2γ∇U

)
= −divgc

(
x1−2γ

N ∇U
)

+ E(U) for any U ∈ H1 (3.11)

where

E(U) :=
(
1 − u−

2
N−2 (1−2γ)

)
divgc

(
x1−2γ

N ∇U
)

+ u−
2

N−2 (1−2γ)
(
δi j − ḡi j

)
x1−2γ

N ∂i jU

− ∂au−
2

N−2 (1−2γ)ḡabx1−2γ
N ∂bU − u−

2
N−2 (1−2γ)∂iḡi jx1−2γ

N ∂ jU
in RN

+ (3.12)
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and gc is the standard metric in RN
+ . Therefore the function U1 ∈ C(RN

+ ) ∩ D1,2(RN
+ ; x1−2γ

N ) defined to be

C−1
11 ‖Φ‖

−1
∗∗U1(x) =



µε−
n−2γ

2 +2d0+2

2 − (
|x − (σ, 0)|

ε

)2 + C12 for |x − (σ, 0)| ≤ ε,

µεκ−
n+2γ

2

|x − (σ, 0)|κ−2γ−(2d0+2) + C12 for ε ≤ |x − (σ, 0)| ≤ ν/2,

η0ε
κ−

n+2γ
2

|x − (σ, 0)|κ−2γ for |x − (σ, 0)| ≥ ν/2

with a large constant C11 > 0 depending only on n, γ and κ and

C12 := εκ−
n+2γ

2

(
ν

2

)−κ+2γ
[
η0 − µ

(
ν

2

)2d0+2
]
,

satisfies −divḡ
(
ρ1−2γ∇ (U1 ± U0)

)
≥ 0 in

(
RN

+ , ḡ
)
,

∂
γ
ν (U1 ± U0) = 0 on Rn.

(3.13)

See below for the details. Then Lemma 3.6 will assert that |U0| ≤ U1, and hence (3.10) will be valid.

Derivation of (3.13). If |x − (σ, 0)| ≤ ε, then we have the inequality

−divḡ
(
ρ1−2γ∇U1

)
≥

3
2

(n + 2 − 2γ)C11‖Φ‖∗∗x
1−2γ
N µε−

n−2γ
2 +2d0

by (3.11), (3.12) and Lemma A.5. Also since |x| ≤ |x − (σ, 0)| + |σ| ≤ (1 + ε0)ε,∣∣∣∣x1−2γ
N Φ

∣∣∣∣ ≤ x1−2γ
N ‖Φ‖L∞({|x−(σ,0)|≤ε}) ≤ ‖Φ‖∗∗x

1−2γ
N µε−

n−2γ
2 +2d0 .

In the meantime, we get for ε ≤ |x − (σ, 0)| ≤ ν/2 that

−divḡ
(
ρ1−2γ∇U1

)
≥

1
2

(κ − 2γ − 2(d0 + 1))(n − κ + 2(d0 + 1))C11‖Φ‖∗∗x
1−2γ
N µεκ−

n+2γ
2 |x − (σ, 0)|−κ+2γ+2d0

≥ x1−2γ
N ‖Φ‖L∞({ε≤|x−(σ,0)|≤ν/2}) ≥

∣∣∣∣x1−2γ
N Φ

∣∣∣∣ .
Thus −divḡ

(
ρ1−2γ∇U1

)
≥

∣∣∣∣divḡ
(
ρ1−2γ∇U0

)∣∣∣∣ in both cases. Moreover a similar estimate can be performed to
show that this inequality still holds when |x− (σ, 0)| ≥ ν/2. The identity ∂γν (U1 ± U0) = ∂

γ
νU1 = 0 is readily

checkable from the definition of U1.

Step 2 (Existence and Uniqueness). For each ` ∈ N, we consider the mixed boundary value problem
−divḡ

(
ρ1−2γ∇U

)
= x1−2γ

N Φ in BN
+ (0, `),

U = 0 on ∂BN
+ (0, `) ∩ {xN > 0},

∂
γ
νU = 0 on Bn(0, `) ⊂ Rn.

(3.14)

Then (3.1) and the Riesz representation (or the Lax-Milgram) theorem are applied to derive the unique
solution U0` ∈ D

1,2(`).
Also, by changing the argument in Step 1 a bit, we can obtain that |U0`| ≤ U1 in BN

+ (0, `) for all ` ∈ N.
Therefore

κγ

∫
BN

+ (0,`)
ρ1−2γ|∇U0`|

2
ḡdx =

∫
BN

+ (0,`)
x1−2γ

N ΦU0`dx ≤ C‖Φ‖2∗∗,

which implies the existence of the D1,2(RN
+ ; x1−2γ

N )-weak limit U0. It is easy to check with Lemma 3.4 that
U0 belongs toH1 and satisfies both (3.9) and (3.10), so the proof is finished. �
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The next lemma provides decay property of a solution to the equation with a nonzero weighted Neumann
boundary condition −divgc

(
x1−2γ

N ∇U
)

= 0 in RN
+ ,

∂
γ
νU = ζ on Rn (3.15)

for a given function ζ on Rn.

Lemma 3.9. Suppose that a function ζ on Rn satisfies ‖ζ‖′∗∗∗ := ‖(1 + |x|κ)ζ‖L∞(Rn) < ∞ for any fixed
κ ∈ (2γ, n). Then there exists a constant C > 0 depending only on N, γ and κ such that

|∇m
x̄ U(x)| ≤

C‖ζ‖′∗∗∗
1 + |x|κ−2γ+m (m = 0, 1, 2)

for the solution U ∈ H1 to problem (3.15) and all x ∈ RN
+ . Moreover it holds that

|∂xN U(x)| ≤ C‖ζ‖′∗∗∗

 1
1 + |x|κ−2γ+1 +

x2γ−1
N

1 + |x̄|κ


for every x ∈ RN

+ .

Proof. We borrow the idea of the proof of [22, Lemma A.2]. Note that the solution U ∈ H1 can be expressed
as

U(x̄, xN) =
1∣∣∣S n−1

∣∣∣ · 21−2γΓ( n−2γ
2 )

Γ( n
2 )Γ(γ)

∫
Rn

1
|(x̄ − ȳ, xN)|n−2γ ζ(ȳ)dȳ (3.16)

(see e.g. [18, 16, 23]).

Step 1 (Estimate for U). Without loss of generality, we may assume that |x| ≥ % for some fixed % > 1 large
enough. For |x̄| ≥ xN , by suitably modifying the proof of [81, Lemma B.2], we find∫

Rn

1
|(x̄ − ȳ, xN)|n−2γ

dȳ
1 + |ȳ|κ

≤

∫
Rn

1
|x̄ − ȳ|n−2γ

dȳ
1 + |ȳ|κ

≤
C
|x̄|κ−2γ ≤

C
|x|κ−2γ . (3.17)

If |x̄| ≤ xN , then we immediately get that |x| ≤
√

2xN . This allows us to discover∫
{|ȳ|≤2|x̄|}

1
|(x̄ − ȳ, xN)|n−2γ

dȳ
1 + |ȳ|κ

≤
1

xn−2γ
N

∫
{|ȳ|≤2|x̄|}

dȳ
1 + |ȳ|κ

≤
C

(
1 + |x̄|n−κ

)
xn−2γ

N

≤
C
|x|κ−2γ (3.18)

and ∫
{|ȳ|≥2|x̄|}

1
|(x̄ − ȳ, xN)|n−2γ

dȳ
1 + |ȳ|κ

≤ C
∫
{|ȳ|≥2|x̄|}

1

(|ȳ|2 + x2
N)

n−2γ
2

dȳ
|ȳ|κ

≤
C

xκ−2γ
N

∫ ∞

0

1

(t2 + 1)
n−2γ

2

dt
tκ
≤

C
|x|κ−2γ .

(3.19)

By combining (3.16)-(3.19), we realize that (3.21) is true.

Step 2 (Estimate for ∇x̄U, ∇2
x̄U and ∂xN U). We can handle the situation |x̄| ≤ xN as in (3.18) and (3.19), so

assume |x̄| ≥ xN .
Consider the function ∇x̄U first. By differentiating (3.16) in x̄ and applying integration by parts, one

sees that

|∇x̄U(x̄, xN)| ≤ C‖ζ‖′∗∗∗

∫{
|ȳ−x̄|≥ |x̄|2

}
∩
{
|ȳ|≥ |x̄|2

} +

∫
{
|ȳ|≤ |x̄|2

}
∇ȳ

(
1

|x̄ − ȳ|n−2γ

)
dȳ

1 + |ȳ|κ

+

∫
Rn

1
|x̄ − ȳ|n−2γ

dȳ
1 + |ȳ|κ+1 +

∫
{
|ȳ−x̄|= |x̄|2

} 1
|x̄ − ȳ|n−2γ

dS ȳ

1 + |ȳ|κ

 ≤ C‖ζ‖′∗∗∗
|x|κ−2γ+1
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where dS ȳ is the surface measure on the sphere |ȳ − x̄| = |x̄|
2 . Also we confirm

|∂xN U(x̄, xN)| ≤ C‖ζ‖′∗∗∗

∫{
|ȳ−x̄|≥ |x̄|2

} +

∫
{
|ȳ−x̄|≤ |x̄|2

}
 xN

|(ȳ, xN)|n−2γ+2

dȳ
|x̄ − ȳ|κ

≤ C‖ζ‖′∗∗∗

 x2γ−1
N

|x̄|κ

∫
Rn

dȳ
|(ȳ, 1)|n−2γ+2 +

xN

|x|n−2γ+2

∫
{
|ȳ−x̄|≤ |x̄|2

} dȳ
|x̄ − ȳ|κ


≤ C‖ζ‖′∗∗∗

 x2γ−1
N

|x̄|κ
+

1
|x|κ−2γ+1

 .
The estimate of the function ∇2

x̄U is similar to that of ∇x̄U. This establishes the proof. �

3.3 Linear theory

The goal of this subsection is to find a function Ψ ∈ H1 and numbers (c0, · · · , cn) ∈ Rn+1 which solve the
linear problem

−divḡ
(
ρ1−2γ∇Ψ

)
+ E(ρ)Ψ = x1−2γ

N Φ in
(
RN

+ , ḡ
)
,

Ψ = ψ on Rn,

∂
γ
νΨ −

(
n+2γ
n−2γ

)
w

4γ
n−2γ
λ,σ ψ = ζ +

n∑
m=0

cmw
4γ

n−2γ
λ,σ zm

λ,σ on Rn,∫
Rn w

4γ
n−2γ
λ,σ z0

λ,σψdx̄ =
∫
Rn w

4γ
n−2γ
λ,σ z1

λ,σψdx̄ = · · · =
∫
Rn w

4γ
n−2γ
λ,σ zn

λ,σψdx̄ = 0

(3.20)

for given functions Φ ∈ H2 and ζ ∈ H3.

Proposition 3.10. Suppose that n > 2γ + 4(d0 + 1) + 2/3. Then, for all sufficiently small parameters
0 < ε � ν, η0 satisfying ν| log ε| ≥ 1/100, points (δ, τ) ∈ A and functions Φ ∈ H2, ζ ∈ H3, problem (3.20)
admits a unique solution Ψ ∈ H1 and c = (c0, · · · , cn) ∈ Rn+1. Moreover, there exists C > 0 depending only
on n, γ and κ such that

‖Ψ‖∗ ≤ C (‖Φ‖∗∗ + ‖ζ‖∗∗∗) . (3.21)

Proof. The proof of this result is divided into two steps.

Step 1 (A priori estimate). In this step, we first show (3.21) assuming that Ψ ∈ H1 is a solution of (3.20).
For this aim, we argue by contradiction.

To emphasize that the metric ḡ = exp(h) and the defining function ρ depend on the choice of ε (see
(2.2)), we will write ḡε = ḡ and ρε = ρ throughout the proof.

Suppose that there exists no constant C > 0 such that (3.21) holds uniformly for any choice of ε > 0 and
ζ ∈ H3. Then there are sequences of numbers ε` > 0 and c` = (c0`, · · · , cn`) ∈ Rn+1, points (δ`, τ`) ∈ A,
and functions Ψ` ∈ H1, Φ` ∈ H2 and ζ` ∈ H3 such that they satisfy (3.20) with ḡ = ḡε` and ρ = ρε` for each
` ∈ N, as well as

‖Ψ`‖∗ = 1, ‖Φ`‖∗∗ + ‖ζ`‖∗∗∗ → 0, (3.22)

(δ`, τ`)→ (δ0, τ0) ∈ A and ε` → 0 as ` → ∞. By (2.11), (4.8), (4.9) and (A.18), we have

x2γ−1
N E(ρ)(x) =

O
(
µ2

(
ε4d0+2 + |x − (σ, 0)|4d0+2

))
for |x − (σ, 0)| ≤ ν/2,

O
(
η0

(
1 + |x − (σ, 0)|4

)−1
)

for |x − (σ, 0)| ≥ ν/2.
(3.23)

Thus from Lemma 3.8 we get a solution Ψ1` ∈ H1 to the equation−divḡ`

(
ρ

1−2γ
`
∇Ψ1`

)
= −E(ρ`)Ψ` + x1−2γ

N Φ` in
(
RN

+ , ḡ`
)
,

∂
γ
νΨ1` = 0 on Rn

such that
‖Ψ1`‖∗ ≤ C

(∥∥∥∥x2γ−1
N E(ρ`)Ψ`

∥∥∥∥
∗∗

+ ‖Φ`‖∗∗

)
≤ C (η0‖Ψ`‖∗ + ‖Φ`‖∗∗)
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where ḡ` := ḡε` and ρ` := ρε` . Moreover, by arguing as Step 1 in the proof of Lemma 3.8, we deduce

‖Ψ1`‖∗,inner ≤ C
(
µ`

∣∣∣log ε`
∣∣∣2d0+2γ

· ‖Ψ`‖∗ + ‖Φ`‖∗∗

)
→ 0 as ` → ∞ (3.24)

for µ` := ε1/3
`

and

‖U‖∗,inner := sup
{x∈RN

+ :|x−(σ,0)|≤ν/2}

 µεκ−
n+2γ

2

εκ−2γ−(2d0+2) + |x − (σ, 0)|κ−2γ−(2d0+2) + η0
εκ−

n+2γ
2

µ2νκ

−1

· |U(x)|.

Now the function Ψ2` := Ψ` − Ψ1` ∈ H1 satisfies

−divḡ`

(
ρ

1−2γ
`
∇Ψ2`

)
= 0 in

(
RN

+ , ḡ`
)
,

Ψ2` = ψ2` and Ψ1` = ψ1` on Rn,

∂
γ
νΨ2` −

(
n+2γ
n−2γ

)
w

4γ
n−2γ

`
ψ2` =

[
ζ` +

(
n+2γ
n−2γ

)
w

4γ
n−2γ

`
ψ1`

]
+

n∑
m=0

(cm)`w
4γ

n−2γ

`
zm
`

on Rn,∫
Rn w

4γ
n−2γ

`
z0
`
ψ2`dx̄ = −

∫
Rn w

4γ
n−2γ

`
z0
`
ψ1`dx̄, · · · ,

∫
Rn w

4γ
n−2γ

`
zn
`
ψ2`dx̄ = −

∫
Rn w

4γ
n−2γ

`
zn
`
ψ1`dx̄,

(3.25)

and
1 −Cη0 ≤ lim inf

`→∞
‖Ψ2`‖∗ ≤ lim sup

`→∞
‖Ψ2`‖∗ ≤ 1 + Cη0 (3.26)

where w` := wε`δ`,ε`τ` , z0
`

:= z0
ε`δ`,ε`τ`

, · · · , zn
`

:= zn
ε`δ`,ε`τ`

. Testing (3.25) with each Zm
`

:= Zm
ε`δ`,ε`τ`

for
m = 0, · · · , n and Ψ2`, we find with Lemma 2.3 and the assumption κ > (n + 2γ)/2 + 2(d0 + 1) + 1/3 that

(cm)`(ε`δ`)−2
∫
Rn

w
4γ

n−2γ

1

(
zm

1

)2
dx̄ =

n∑
m̃=0

(cm̃)`

∫
Rn

w
4γ

n−2γ

`
zm̃
` zm

` dx̄

= κγ

∫
RN

+

ρ
1−2γ
`

〈
∇Ψ2`,∇Zm

`

〉
ḡ

dx −
∫
Rn
ζ`zm

` dx̄

= −

(
n + 2γ
n − 2γ

) ∫
Rn

w
4γ

n−2γ

`
zm
` ψ1`dx̄ −

∫
Rn
ζ`zm

` dx̄ + O

µ`ε2d0+1
`

·

(∫
RN

+

x1−2γ
N |∇Ψ2`|

2dx
)1/2

= O
(
µ`ε

2d0+1
`

‖Ψ1`‖∗,inner + εκ−1
`

∣∣∣log ε`
∣∣∣κ + µ`ε

2d0+1
`

‖ζ`‖∗∗∗
)

+ O

µ`ε2d0+1
`

·

(∫
RN

+

x1−2γ
N |∇Ψ2`|

2dx
)1/2

and

κγ

∫
RN

+

x1−2γ
N |∇Ψ2`|

2dx ≤ Cκγ

∫
RN

+

ρ
1−2γ
`
|∇Ψ2`|

2
ḡdx

= C

(n + 2γ
n − 2γ

) ∫
Rn

w
4γ

n−2γ

`
ψ2

2`dx̄ +

∫
Rn

[
ζ` +

(
n + 2γ
n − 2γ

)
w

4γ
n−2γ

`
ψ1`

]
ψ2`dx̄ −

n∑
m=0

(cm)`

∫
Rn

w
4γ

n−2γ

`
zm
` ψ1`dx̄


= O

(
µ2
`ε

4d0+4
`

)
+ o

µ`ε2d0+1
n∑

m̃=0

|(cm̃)`|

 .
As a result, it holds that∫

RN
+

x1−2γ
N |∇Ψ2`|

2dx = O
(
µ2
`ε

4d0+4
`

)
and

n∑
m̃=0

|(cm̃)`| = o
(
µ`ε

2d0+3
`

)
as ` → ∞. (3.27)

The previous estimate implies that

Ψ̃2` :=
(
µε2d0+2

)−1
ε

n−2γ
2 Ψ2`(ε · +σ) ⇀ Ψ̃20 weakly in D1,2(RN

+ ; x1−2γ
N )
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up to a subsequence (which is still denoted as Ψ̃2`). Additionally, by the Schauder estimates [41, Proposition
3.2] or [16, Lemma 4.5], it can be further assumed that Ψ̃2` converges to a function Ψ̃20 uniformly over
compact sets in RN

+ . With this convergence property, we observe that Ψ̃20 satisfies

−divgc

(
x1−2γ

N ∇Ψ
)

= 0 in RN
+ ,

Ψ = ψ on Rn,

∂
γ
νΨ =

(
n+2γ
n−2γ

)
w

4γ
n−2γ

1 ψ on Rn,∫
Rn w

4γ
n−2γ

1 z0
1ψdx̄ = · · · =

∫
Rn w

4γ
n−2γ

1 zn
1ψdx̄ = 0

so that Ψ̃20 = 0 according to [24] (see the paragraph after (2.18)). Hence if we choose any ε > 0, then∥∥∥∥∥∥w
4γ

n−2γ

`
ψ2`

∥∥∥∥∥∥
∗∗∗

≤
(
1 + %κ−(2d0+2)

) ∥∥∥∥∥∥w
4γ

n−2γ

1 Ψ̃2`

∥∥∥∥∥∥
L∞(Bn(0,%))

+ C
(

1
%γ

+ ε
2γ
`

∣∣∣log ε`
∣∣∣2γ) ‖Ψ2`‖∗ ≤

ε

3
+
ε

3
+
ε

3
= ε

(3.28)
for % > 0 and ` ∈ N large - namely its leftmost side goes to 0 as ` → ∞. We also have∥∥∥∥∥∥w

4γ
n−2γ

`
ψ1`

∥∥∥∥∥∥
∗∗∗

≤ C
(
‖Ψ1`‖∗,inner + ε

2γ
`

∣∣∣log ε`
∣∣∣2γ ‖Ψ1`‖∗∗∗

)
and

∥∥∥∥∥∥w
4γ

n−2γ

`
zm
`

∥∥∥∥∥∥
∗∗∗

≤ C
(
µε2d0+3

)−1
. (3.29)

Let us introduce a barrier function U2 defined as

C−1
21


∥∥∥∥∥∥w

4γ
n−2γ

`
ψ2`

∥∥∥∥∥∥
∗∗∗

+ ‖ζ`‖∗∗∗ +

∥∥∥∥∥∥w
4γ

n−2γ

`
ψ1`

∥∥∥∥∥∥
∗∗∗

+
(
µ`ε

2d0+3
`

)−1
n∑

m̃=0

|(cm̃)`|

−1

· U2(x)

=



µε2d0+2ε−
n−2γ

2

[
2 −

∣∣∣∣∣ x − (σ, 0)
ε

∣∣∣∣∣2 + U3;κ−(2d0+2)

(
|x − (σ, 0)|

ε

)]
+η0ε

κ−
n+2γ

2 ν−κ
[
2 − |x − (σ, 0)|2 + U3;κ(|x − (σ, 0)|)

]
+ C22

if |x − (σ, 0)| ≤ ε,

µεκ−
n+2γ

2

|x − (σ, 0)|κ−2γ−(2d0+2) + µε2d0+2ε−
n−2γ

2 U3;κ−(2d0+2)

(
|x − (σ, 0)|

ε

)
+η0ε

κ−
n+2γ

2 ν−κ
[
2 − |x − (σ, 0)|2 + U3;κ(|x − (σ, 0)|)

]
+ C22

if ε ≤ |x − (σ, 0)| ≤ ν/2,

η0ε
κ−

n+2γ
2

(
1

|x − (σ, 0)|κ−2γ + U3;κ(|x − (σ, 0)|)
)

if |x − (σ, 0)| ≥ ν/2

for constants C21 > 0 large enough (depending on n, κ, γ, ν and η0) and C22 ∈ R suitably selected so that U2
is continuous in RN

+ . Here U3;κ(x) = U3;κ(|x|) ∈ D1,2(RN
+ ; x1−2γ

N ) is a radial function that solves−divgc

(
x1−2γ

N ∇U
)

= 0 in RN
+ ,

∂
γ
νU = (1 + |x̄|κ)−1 on Rn.

Then after some calculations using (3.11), (A.18) and Lemma 3.9, one finds that for all ` ∈ N−divḡ`

(
ρ

1−2γ
`
∇ (U2 ± Ψ2`)

)
≥ 0 in

(
RN

+ , ḡ`
)
,

∂
γ
ν (U2 ± Ψ2`) ≥ 0 on Rn.

Consequently we see from (3.22), (3.24), (3.27)-(3.29), Lemma 3.6 and Lemma 3.9 that

‖Ψ2`‖∗ ≤ C


∥∥∥∥∥∥w

4γ
n−2γ

`
ψ2`

∥∥∥∥∥∥
∗∗∗

+ ‖ζ`‖∗∗∗ +

∥∥∥∥∥∥w
4γ

n−2γ

`
ψ1`

∥∥∥∥∥∥
∗∗∗

+
(
µ`ε

2d0+3
`

)−1
n∑

m̃=0

|(cm̃)`|

→ 0 as ` → ∞.

However it contradicts (3.26), meaning that (3.21) should be correct. This concludes a priori estimate part
of the proof.

17



Step 2 (Existence). Set a subspace ofH1

Z⊥ =

{
Ψ ∈ H1 : Ψ = ψ on Rn and

∫
Rn

w
4γ

n−2γ
λ,σ zm

λ,σψdx̄ = 0 for all m = 0, · · · , n
}
. (3.30)

Then expressed in the weak form, Eq. (3.20) is reduced to a problem finding Ψ ∈ H1 such that

κγ

∫
RN

+

ρ1−2γ 〈∇Ψ,∇V〉ḡ dx + κγ

∫
RN

+

E(ρ)ΨVdx = κγ

∫
RN

+

x1−2γ
N ΦVdx +

(
n + 2γ
n − 2γ

) ∫
Rn

w
4γ

n−2γ
λ,σ ψvdx̄ +

∫
Rn
ζvdx̄

(3.31)
for any V ∈ Z⊥ where V = v on Rn. See below for more explanation. Moreover the above equation can be
rewritten in the operational form

(κγ · Id − K)Ψ = Φ̃ + ζ̃

where Φ̃, ζ̃ ∈ Z⊥ are defined by the relation∫
RN

+

ρ1−2γ
〈
∇

(
Φ̃ + ζ̃

)
,∇V

〉
ḡ

dx = κγ

∫
RN

+

x1−2γ
N ΦVdx +

∫
Rn
ζvdx̄

holding for any V ∈ Z⊥ and K is a compact operator inZ⊥ given by∫
RN

+

ρ1−2γ 〈∇K(Ψ),∇V〉ḡ dx =

(
n + 2γ
n − 2γ

) ∫
Rn

w
4γ

n−2γ
λ,σ ψvdx̄ − κγ

∫
RN

+

E(ρ)ΨVdx

for every V ∈ Z⊥. (One can prove existence of Φ̃, ζ̃ and well-definedness and compactness of K by applying
the truncation argument as in the proof of Lemma 3.8 with (3.1), the Sobolev trace inequality in [80] and
(3.23).) In light of (3.21), the operator κγ · Id − K must be injective in Z⊥. Thus the Fredholm alternative
guarantees that it is also surjective, from which we deduce the unique solvability of (3.20). �

3.4 Estimate for the error

Let Eλ,σ := −x2γ−1
N (E(Wλ,σ) + E(ρ)Wλ,σ) be the error term where the operator E is defined in (3.12). The

next lemma contains its estimate, especially showing that it is small as an element ofH2.

Lemma 3.11. For fixed ν, η0 � ε > 0 small and (δ, τ) ∈ A, we have

‖Eλ,σ‖∗∗ ≤ C (3.32)

for C > 0 dependent only on n, γ and κ.

Proof. We observe from (3.12) that

Eλ,σ = u−
2

N−2 (1−2γ)
(
ḡi j − δi j

)
∂i jWλ,σ + ∂au−

2
N−2 (1−2γ)ḡab∂bWλ,σ + u−

2
N−2 (1−2γ)∂iḡi j∂ jWλ,σ − x2γ−1

N E(ρ)Wλ,σ.

(3.33)
Hence an application of Lemmas 2.3 and A.5, (3.23) and (A.18) yields

|Eλ,σ(x)| ≤


Cµε

n−2γ
2

εn−2γ−2d0 + |x − (σ, 0)|n−2γ−2d0
for |x − (σ, 0)| ≤ ν/2,

Cη0ε
n−2γ

2

|x − (σ, 0)|n−2γ+2 for |x − (σ, 0)| ≥ ν/2.

(3.34)

For instance, the second term of Eλ,σ in (3.33) can be estimated as∣∣∣∣∂au−
2

N−2 (1−2γ)ḡab∂bWλ,σ

∣∣∣∣ ≤ C
(
|∇x̄z| · |∇x̄Wλ,σ| + |∂Nz| · |∂NWλ,σ|

)
≤ Cµ2ε

n−2γ
2

(
ε4d0 + |x|4d0

)  |x|3

εn−2γ+1 + |x − (σ, 0)|n−2γ+1 +
|x|2x2γ

N

εn + |x − (σ, 0)|n


≤ Cµ2ε

n−2γ
2

[
ε4d0+3 + |x − (σ, 0)|4d0+3

εn−2γ+1 + |x − (σ, 0)|n−2γ+1 +
ε4d0+2+2γ + |x − (σ, 0)|4d0+2+2γ

εn + |x − (σ, 0)|n

]
≤

Cν2d0+2µ2ε
n−2γ

2

εn−2γ−2d0 + |x − (σ, 0)|n−2γ−2d0

if |x| ≤ ν. The norm bound (3.32) is immediately deduced by (3.34). �
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3.5 Solvability of the nonlinear problem

We now prove that an intermediate problem

−divḡ
(
ρ1−2γ∇Ψ

)
+ E(ρ)Ψ = x1−2γ

N Eλ,σ in
(
RN

+ , ḡ
)
,

Ψ = ψ on Rn,

∂
γ
νΨ −

(
n+2γ
n−2γ

)
w

4γ
n−2γ
λ,σ ψ = Nλ,σ(ψ) +

n∑
m=0

cmw
4γ

n−2γ
λ,σ zm

λ,σ on Rn,∫
Rn w

4γ
n−2γ
λ,σ z0

λ,σψdx̄ =
∫
Rn w

4γ
n−2γ
λ,σ z1

λ,σψdx̄ = · · · =
∫
Rn w

4γ
n−2γ
λ,σ zn

λ,σψdx̄ = 0

(3.35)

to our main Eq. (2.13), or (1.2), is solvable by using the contraction mapping argument. Here

Nλ,σ(ψ) := (wλ,σ + ψ)
n+2γ
n−2γ
+ − w

n+2γ
n−2γ
λ,σ −

(
n + 2γ
n − 2γ

)
w

4γ
n−2γ
λ,σ ψ ∈ H3. (3.36)

Proposition 3.12. For ν, η0 � ε > 0 small enough, n > 2γ + 4(d0 + 1) + 2/3 and (δ, τ) ∈ A fixed, there
exists a unique solution Ψλ,σ ∈ H1 and cλ,σ = ((c0)λ,σ, · · · , (cn)λ,σ) ∈ Rn+1 to Eq. (3.35) such that

‖Ψλ,σ‖∗ ≤ C (3.37)

where C > 0 depends only on n, γ and κ.

Proof. According to Proposition 3.10, one can define an operator Tλ,σ : H2×H3 → H1 to be Tλ,σ(Φ, ζ) = Ψ

where Ψ ∈ H1 solves Eq. (3.20) for given pairs (λ, σ) ∈ (0,∞)×Rn and (Φ, ζ) ∈ H2×H3. One also has that
‖Tλ,σ(Φ, ζ)‖∗ ≤ M1(‖Φ‖∗∗ + ‖ζ‖∗∗∗) for some M1 > 0. In terms of this operator Tλ,σ, (3.35) is reformulated
as

Ψ = Tλ,σ(Eλ,σ,Nλ,σ(ψ)) =: T ′λ,σ(Ψ) for Ψ ∈ Z⊥

whereZ⊥ is the space defined in (3.30). Let us set

B =
{
Ψ ∈ Z⊥ : ‖Ψ‖∗ ≤ M2

}
with M2 > 0 a number to be determined. By using the facts that κ > n − 2γ,

|Nλ,σ(ψ)| ≤ C

w
−

n−6γ
n−2γ

λ,σ |ψ|2 if |x̄ − σ| ≤ ν/2,

|ψ|
n+2γ
n−2γ if |x̄ − σ| ≥ ν/2,

and

|Nλ,σ(ψ1) − Nλ,σ(ψ2)| ≤ C

w
−

n−6γ
n−2γ

λ,σ (|ψ1| + |ψ2|)|ψ1 − ψ2| if |x̄ − σ| ≤ ν/2,(
|ψ1|

4γ
n−2γ + |ψ2|

4γ
n−2γ

)
|ψ1 − ψ2| if |x̄ − σ| ≥ ν/2

(which follows from the mean value theorem), we easily get that ‖Nλ,σ(ψ)‖∗∗∗ = o(1)‖Ψ‖∗ and ‖Nλ,σ(ψ1) −
Nλ,σ(ψ2)‖∗∗∗ ≤ o(1)‖Ψ1 − Ψ2‖∗. Then, by (3.32) also, we see that there exists a constant M3 > 0 such that

‖T ′λ,σ(Ψ)‖∗ ≤ M1
(
‖Eλ,σ‖∗∗ + ‖Nλ,σ(ψ)‖∗∗∗

)
≤ M1 (M3 + o(1)‖Ψ‖∗) ≤ 2M1M3

for all Ψ ∈ B and

‖T ′λ,σ(Ψ1)−T ′λ,σ(Ψ2)‖∗ = ‖Tλ,σ
(
0,Nλ,σ(ψ1) − Nλ,σ(ψ2)

)
‖∗ ≤ M1‖Nλ,σ(ψ1)−Nλ,σ(ψ2)‖∗∗∗ ≤ o(1)‖Ψ1 −Ψ2‖∗

for any Ψ1 and Ψ2 ∈ B. Therefore T ′λ,σ is a contraction map on the set B with the choice M2 = 2M1M3.
The result follows from the contraction mapping theorem. �

One can also analyze the differentiability of the function Ψεδ,ετ with respect to its parameter (δ, τ).

Lemma 3.13. Given n > 2γ+ 4(d0 + 1) + 2/3 and small fixed numbers ν, η0 � ε > 0, the map (δ, τ) ∈ A 7→
Ψεδ,ετ ∈ H1 is of class C1. Furthermore, there exists C > 0 depending only on n, γ and κ such that∥∥∥∇(δ,τ)Ψεδ,ετ

∥∥∥
∗
≤ Cε−1. (3.38)

Proof. The proof is similar to that of [82, Proposition 6.2]. �
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3.6 Variational reduction

Provided that the assumptions of Proposition 3.12 are fulfilled and in particular a small ε > 0 is fixed, let Jγ0
be a localized energy functional given by

Jγ0 (δ, τ) = Iγ(Wεδ,ετ + Ψεδ,ετ) for (δ, τ) ∈ A ⊂ (0,∞) × Rn (3.39)

where Iγ is the functional defined in (2.14).

Lemma 3.14. The followings are valid provided that η0, ε > 0 small fixed and n > 2γ + 4(d0 + 1) + 2/3.

1. The functional Jγ0 is continuously differentiable.

2. If (δ(ε), τ(ε)) > 0 is a critical point of Jγ0 , then (Iγ)′(Wεδ(ε),ετ(ε) + Ψεδ(ε),ετ(ε)) = 0.

Proof. 1. Since the functional Iγ : H1 → R is a C1-map, the assertion follows from Lemma 3.13.

2. Suppose that
(
Jγ0

)′
(δ(ε), τ(ε)) = 0. If we write (δ, τ) = (τ0, τ1, · · · , τn), then

0 = ∂τm Jγ0 (δ(ε), τ(ε)) =

n∑
m̃=0

cm̃

∫
Rn

w
4γ

n−2γ

εδ(ε),ετ(ε)z
m̃
εδ(ε),ετ(ε)∂τm

(
w

4γ
n−2γ

εδ(ε),ετ(ε) + ψεδ(ε),ετ(ε)

)
=:

n∑
m̃=0

cm̃ĉmm̃

for m = 0, · · · , n, where Ψεδ(ε),ετ(ε) = ψεδ(ε),ετ(ε) on Rn. According to (3.38), the matrix (ĉmm̃)m,m̃=0,··· ,n is
diagonal dominant. Thus c0 = · · · = cn = 0 and so (Iγ)′(Wεδ(ε),ετ(ε) + Ψεδ(ε),ετ(ε)) = 0. �

The next lemma implies that the solution Wεδ(ε),ετ(ε) + Ψεδ(ε),ετ(ε) to problem (2.13) (or (1.2)) has desired
properties described in Theorem 1.1. Consequently, in view of the previous lemma, it suffices to find a
critical point of Jγ0 whose domainA is finite dimensional.

Lemma 3.15. The critical point Wεδ(ε),ετ(ε) + Ψεδ(ε),ετ(ε) ∈ H1 of Iγ is positive in RN
+ and of Cϑ(RN

+ ) for some
ϑ ∈ (0, 1). Also, if parameters ν, η0 � ε > 0 are small enough, then there exists a constant C > 0 depending
only on n and γ such that ∥∥∥Wεδ(ε),ετ(ε) + Ψεδ(ε),ετ(ε)

∥∥∥
L∞(Rn) ≥ Cε−

n−2γ
2 . (3.40)

Proof. Step 1 (Positivity of Wεδ(ε),ετ(ε) + Ψεδ(ε),ετ(ε)). For the brevity, we write U = Wεδ(ε),ετ(ε) + Ψεδ(ε),ετ(ε)
for a fixed ε > 0. Fixing any κ′ < κ which satisfy (3.7), let us define W (which should not be confused with
the bubbles Wλ,σ) by

W(x) = C31



µε−
n−2γ

2 +2d0+2

2 − (
|x − (σ, 0)|

ε

)2 + C32 for |x − (σ, 0)| ≤ ε,

µεκ
′−

n+2γ
2

|x − (σ, 0)|κ′−2γ−(2d0+2) + C32 for ε ≤ |x − (σ, 0)| ≤ ν/2,

η0ε
κ′−

n+2γ
2

|x − (σ, 0)|κ′−2γ for |x − (σ, 0)| ≥ ν/2

where C31 > 0 large and C32 ∈ R chosen so that W ∈ C(RN
+ ). Then W is a suitable barrier which makes it

possible to apply Lemma 3.7. This leads us to deduce that U is nonnegative in RN
+ .

For the moment, we admit

λ1(−∆g+) >
n2

4
− γ2 =

(N − 1)2

4
− γ2 (3.41)

where λ1(−∆g+) is the first eigenvalue (or the infimum of the spectra) of the operator −∆g+ acting on the
space L2(RN

+ , g
+). Its validity will be proved in the end of Appendix A.3. Then by Lemma 4.5-Theorem

4.7 and the discussion in Section 5 of Chang-González [43] (or [19, Lemma 6.1]), we realize that there is
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a special boundary defining function ρ∗ in RN
+ such that E(ρ∗) = 0 and Ũ := (ρ/ρ∗)(n−2γ)/2U satisfies a

degenerate elliptic equation of pure divergent form−div
(
(ρ∗)1−2γ ∇Ũ

)
= 0 in

(
RN

+ , ḡ
)
,

∂
γ
νŨ = Ũ

n+2γ
n−2γ − Qγ

ĥ
Ũ on Rn,

(3.42)

where Qγ

ĥ
is the fractional scalar curvature. By the strong maximum principle for uniformly elliptic opera-

tors, it is immediately obtained that Ũ > 0 in RN
+ . On the other hand, if there is a point x0 ∈ R

n such that
Ũ(x0) = 0, then the Hopf lemma [41, Theorem 3.5] for (3.42) implies that

0 > ∂γνŨ(x0) = Ũ
n+2γ
n−2γ (x0) − Qγ

ĥ
(x0)Ũ(x0) = 0,

a contradiction. Therefore the function Ũ, or equivalently, U must be positive in RN
+ .

Step 2 (Regularity property and Estimate of the lower bound). Because of (3.37), our solution U is
essentially bounded in RN

+ . Hence it is in Cϑ(RN
+ ) for some ϑ ∈ (0, 1) by Lemma 3.4 (1). Moreover we have

(
Wεδ(ε),ετ(ε) + Ψεδ(ε),ετ(ε)

)
(σ, 0) ≥ wεδ(ε),ετ(ε)(σ) − ‖Ψεδ(ε),ετ(ε)‖∗

(
µε2d0+2ε−

n−2γ
2 + η0ε

κ−
n+2γ

2 ν−κ
)
≥ Cε−

n−2γ
2 .

Therefore (3.40) is obtained. �

4 Energy expansion

This section is devoted to compute the localized energy Jγ0 . We initiate it by getting a further estimation of
the term Ψλ,σ = Ψεδ,ετ. Recall that Hab(x) = f (|x̄|2)Hab(x) for x = (x̄, xN) ∈ RN

+ .

4.1 Refined estimation of the term Ψλ,σ

Suppose that ε > 0 is small and (δ, τ) = (ε−1λ, ε−1σ) ∈ A. By applying Proposition 3.10 with h = 0, one
can deduce that there exists a solution ΨA

λ,σ of

−divgc

(
x1−2γ

N ∇Ψ
)

= −
n∑

i, j=1
x1−2γ

N µε2d0 f
(
ε−2|x̄|2

)
Hi j(x̄)∂i jWλ,σ in RN

+ ,

Ψ = ψ on Rn,

∂
γ
νΨ −

(
n+2γ
n−2γ

)
w

4γ
n−2γ
λ,σ ψ =

n∑
m=0

cmw
4γ

n−2γ
λ,σ zm

λ,σ on Rn,∫
Rn w

4γ
n−2γ
λ,σ z0

λ,σψdx̄ =
∫
Rn w

4γ
n−2γ
λ,σ z1

λ,σψdx̄ = · · · =
∫
Rn w

4γ
n−2γ
λ,σ zn

λ,σψdx̄ = 0.

(4.1)

In fact, (4.1) has a scaling invariance: If we put Ψδ,τ(x) = (µ0ε
2d0+2
0 )−1ε

n−2γ
2

0 Ψλ,σ(εx) for any fixed ε0 > 0
(and µ0 = ε1/3

0 ) small, then it solves the equation with ε = 1. This implies that (4.1) admits a solution for
any ε > 0.

Let us introduce norms

‖U‖′∗ = sup
x∈RN

+

χ{|x−(σ,0)|≤ν/2} ·

 µ2εκ−
n+2γ

2

εκ−2γ−(4d0+4) + |x − (σ, 0)|κ−2γ−(4d0+4) + η0
εκ−

n+2γ
2

νκ

−1

+χ{|x−(σ,0)|≥ν/2} ·
|x − (σ, 0)|κ−2γ

η0ε
κ−

n+2γ
2

 · |U(x)|,

‖U‖′∗∗ = sup
x∈RN

+

χ{|x−(σ,0)|≤ν/2} ·

 µ2εκ−
n+2γ

2

εκ−2γ−(4d0+2) + |x − (σ, 0)|κ−2γ−(4d0+2) + η0
εκ−

n+2γ
2

νκ

−1
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+χ{|x−(σ,0)|≥ν/2} ·
|x − (σ, 0)|κ−2γ+2

η0ε
κ−

n+2γ
2

 · |U(x)|,

‖v‖′∗∗∗ = sup
x̄∈Rn

χ{|x̄−σ|≤ν/2} ·
 µ2εκ−

n+2γ
2

εκ−(4d0+4) + |x̄ − σ|κ−(4d0+4) + η0
εκ−

n+2γ
2

νκ

−1

+ χ{|x̄−σ|≥ν/2} ·
|x̄ − σ|κ

η0ε
κ−

n+2γ
2

 · |v(x̄)|

for U = U(x̄, xN) in RN
+ and v = v(x̄) on Rn, and set a function ΨB

λ,σ := Ψλ,σ−ΨA
λ,σ. Then it can be estimated

as in the following lemma.

Lemma 4.1. Suppose that n > 2γ + 4(d0 + 1) + 2/3. Then we have∥∥∥ΨA
λ,σ

∥∥∥
∗
≤ C,

∥∥∥ΨB
λ,σ

∥∥∥′
∗
≤ C

and ∥∥∥ΨA
λ,σ

∥∥∥
D1,2(RN

+ ;x1−2γ
N ) ≤ Cµε2(d0+1),

∥∥∥ΨB
λ,σ

∥∥∥
D1,2(RN

+ ;x1−2γ
N ) = o

(
µε2(d0+1)

)
for some C > 0 independent of ε > 0 and (δ, τ) ∈ A.

Proof. We find easily that

−divḡ
(
ρ1−2γ∇ΨB

λ,σ

)
= x1−2γ

N E′λ,σ in RN
+ ,

ΨB
λ,σ = ψB

λ,σ and Ψλ,σ = ψλ,σ on Rn,

∂
γ
νΨ

B
λ,σ −

(
n+2γ
n−2γ

)
w

4γ
n−2γ
λ,σ ψ

B
λ,σ = Nλ,σ(ψλ,σ) +

n∑
m=0

cmw
4γ

n−2γ
λ,σ zm

λ,σ on Rn,∫
Rn w

4γ
n−2γ
λ,σ z0

λ,σψ
B
λ,σdx̄ = · · · =

∫
Rn w

4γ
n−2γ
λ,σ zn

λ,σψ
B
λ,σdx̄ = 0,

(4.2)

where the nonlinear operator Nλ,σ is given in (3.36) and

E′λ,σ :=
(
u−

2
N−2 (1−2γ) − 1

) (
ḡi j − δi j

)
∂i jWλ,σ +

[
ḡi j − δi j + µε2d0 f

(
ε−2|x̄|2

)
Hi j

]
∂i jWλ,σ

+ ∂au−
2

N−2 (1−2γ)ḡab∂bWλ,σ + u−
2

N−2 (1−2γ)∂iḡi j∂ jWλ,σ − x2γ−1
N E(ρ)

(
Wλ,σ + Ψλ,σ

)
.

Computing similarly to the proof of Lemma 3.11, we obtain

‖E′λ,σ‖
′
∗∗ ≤ C.

Moreover we have
‖Nλ,σ(ψλ,σ)‖′∗∗∗ ≤ C

under the assumption κ > n − 2γ. Hence, following the argument in Step 1 of the proof of Proposition 3.10,
we infer that ∥∥∥ΨB

λ,σ

∥∥∥′
∗
≤ C

(
‖E′λ,σ‖

′
∗∗ + ‖Nλ,σ(ψ)‖′∗∗∗

)
≤ C.

The second inequality is now verified. The first inequality is direct consequence of (3.37).
In order to derive the third and fourth estimates, one can test ΨA

λ,σ and ΨB
λ,σ in (4.1) and (4.2), respec-

tively, and then use their L∞-bounds and (3.7). The details are omitted. �

Lemma 4.2. It holds that

Jγ0 (δ, τ) = Iγ(Wεδ,ετ) + µ2ε4(d0+1) ·
κγ

2
Jγ1 (δ, τ) + o

(
µ2ε4(d0+1)

)
(4.3)

uniformly in the admissible setA = (1 − ε0, 1 + ε0) × Bn(0, ε0) where Jγ1 (δ, τ) is a C2-function defined by

Jγ1 (δ, τ) :=
n∑

i, j=1

∫
RN

+

x1−2γ
N Hi j(x̄)∂i jWδ,τΨ

A
δ,τdx. (4.4)
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Proof. Since (Iγ)′(Wεδ,ετ + Ψεδ,ετ)Ψεδ,ετ = 0, we get by Lemma 4.1, (3.23) and (3.37) that

Jγ0 (δ, τ) = Iγ(Wεδ,ετ) −
κγ

2

∫
RN

+

ρ1−2γ
∣∣∣∇ΨA

εδ,ετ

∣∣∣2
ḡ dx +

1
2

(
n + 2γ
n − 2γ

) ∫
Rn

w
4γ

n−2γ
εδ,ετ

(
ψA
εδ,ετ

)2
dx̄ + o

(
µ2ε4(d0+1)

)
.

Here ΨA
εδ,ετ = ψA

εδ,ετ on Rn and the inequality∣∣∣∣∣∣(wεδ,ετ + ψεδ,ετ
) 2n

n−2γ
+ − w

2n
n−2γ
εδ,ετ −

(
2n

n − 2γ

) (
wεδ,ετ + ψεδ,ετ

) n+2γ
n−2γ
+ ψεδ,ετ +

(n + 2γ)n
(n − 2γ)2 w

4γ
n−2γ
εδ,ετψεδ,ετ

∣∣∣∣∣∣ ≤ C
∣∣∣ψεδ,ετ∣∣∣ 2n

n−2γ

is applied to control the nonlinear term. Besides, by making use of (4.1), we discover

κγ

∫
RN

+

ρ1−2γ
∣∣∣∇ΨA

εδ,ετ

∣∣∣2
ḡ dx

= −κγ

n∑
i, j=1

∫
RN

+

µε2d0 x1−2γ
N f

(
ε−2|x̄|2

)
Hi j(x̄)∂i jWεδ,ετΨ

A
εδ,ετdx +

(
n + 2γ
n − 2γ

) ∫
Rn

w
4γ

n−2γ
εδ,ετ

(
ψA
εδ,ετ

)2
dx̄.

Putting these facts together, we obtain (4.3).
On the other hand, by (2.17), we have that ∂δWδ,τ = Kγ(·, xN) ∗ ∂δwδ,τ, etc. Thus we can employ the

standard difference quotient argument to verify that the first and second order derivatives of ΨA
δ,τ with respect

to (δ, τ) are continuous. (Check [48, Propostion 2.13].) The C2-differentiability of Jγ1 follows from it. �

The previous lemma ensures that if there exists a minimizer of the function (δ, τ) 7→ Iγ(Wεδ,ετ) + µ2ε4(d0+1) ·

κγJγ1 (δ, τ)/2 in the setA, then Jγ0 also has a minimizer inA provided that ε > 0 is sufficiently small.

4.2 Expansion of the localized energy

We derive an expansion of the map (δ, τ) 7→ Iγ(Wεδ,ετ).

Proposition 4.3. Suppose that n > 2γ + 4(d0 + 1). If we choose η = 1 in the statement of Proposition 2.1,
then the following estimation holds.

Iγ(Wεδ,ετ) =
κγ

2

[∫
RN

+

x1−2γ
N |∇W1|

2dx + µ2ε4(d0+1)Jγ2 (δ, τ)
]
−

n − 2γ
2n

∫
Rn

w
2n

n−2γ

1 dx̄

+ O
(
µ3ε4(d0+1) + (ε/ν)n−2γ

)
where

Jγ2 (δ, τ) :=
1
2

n∑
i, j,l=1

∫
RN

+

x1−2γ
N

(
HilH jl

)
(x̄)∂iWδ,τ∂ jWδ,τdx

+
3
2

{
(N − 2)2 − (1 − 2γ)2

} ∫
RN

+

x1−2γ
N C2W2

δ,τdx (4.5)

+ (1 − 2γ)
2d0+2∑
m=1

∫
RN

+

x1+2m−2γ
N C2m|∇Wδ,τ|

2dx

+

{
N

(
γ −

1
2

)
− 2

(
γ2 −

1
4

)} 2d0+1∑
m=1

∫
RN

+

x1+2m−2γ
N (2m + 3)C2(m+1)W2

δ,τdx.

The functions Cm ∈ C∞(Rn) for m = 1, · · · , 2d0 + 2 are defined in (2.10).

Proof. We start the proof by calculating
∫
RN

+
ρ1−2γ|∇Wεδ,ετ|

2
ḡdvḡ. From an estimate∣∣∣∣∣∣∣ḡi j −

δi j − hi j +
1
2

n∑
l=1

hilh jl


∣∣∣∣∣∣∣ ≤ C|h|3 in C1({0 ≤ xN ≤ ν}), (4.6)
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Proposition 2.1 and Lemma 2.4, and the facts that ∂Nhab = 0 in {0 ≤ xN ≤ ν} and det ḡ = 1, we see that∫
RN

+

ρ1−2γḡab∂aWεδ,ετ∂bWεδ,ετdvḡ

=

∫
BN

+ (0,ν)
ρ1−2γ

[
ḡi j∂iWεδ,ετ∂ jWεδ,ετ + (∂NWεδ,ετ)2

]
dx + O

((
ε

ν

)n−2γ
)

=

∫
BN

+ (0,ν)
x1−2γ

N

1 + (1 − 2γ)µ2ε4(d0+1)−2m
2d0+2∑
m=1

C2m
(
ε−1 x̄

)
x2m

N


×

|∇Wεδ,ετ|
2 +

n∑
i, j=1

−hi j(x) +

n∑
l=1

hilh jl(x)
2

 ∂iWεδ,ετ∂ jWεδ,ετ

 dx + O
(
µ3ε4(d0+1) +

(
ε

ν

)n−2γ
)

=

∫
RN

+

x1−2γ
N |∇W1|

2dx +

n∑
i, j=1

∫
BN

+ (0,ν/ε)
x1−2γ

N

−hi j(ε x̄)dx +
1
2

n∑
l=1

hilh jl(ε x̄)

 ∂iWδ,τ∂ jWδ,τdx

+ (1 − 2γ)µ2ε4(d0+1)
2d0+2∑
m=1

∫
BN

+ (0,ν/ε)
x1+2m−2γ

N C2m(x̄)|∇Wδ,τ|
2dx + O

(
µ3ε4(d0+1) +

(
ε

ν

)n−2γ
)
.

Furthermore, the algebraic properties of the tensor W give

n∑
i, j=1

∫
BN

+ (0,ν/ε)
x1−2γ

N hi j(ε x̄)∂iWδ,τ∂ jWδ,τdx = O
(
µν2(d0+1) ·

(
ε

ν

)n−2γ
)

(4.7)

whose proof is deferred to the end of the proof, whereas we immediately obtain from the definition of the
tensor Hi j that∫

BN
+ (0,ν/ε)

x1−2γ
N

(
hilh jl

)
(ε x̄)∂iWδ,τ∂ jWδ,τdx

= µ2ε4(d0+1)
∫
RN

+

x1−2γ
N

(
HilH jl

)
(x̄)∂iWδ,τ∂ jWδ,τdx + O

(
µ2ν4(d0+1) ·

(
ε

ν

)n−2γ
)
.

This completes the estimation on the gradient part of the energy Iγ.
Next, we compute

∫
RN

+
E(ρ)W2

εδ,ετdx. Let

Ẽ(ρ) = −∆ḡ

(
ρ

1−2γ
2

)
ρ

1−2γ
2 +

(
γ2 −

1
4

)
ρ−1−2γ

=

(
γ −

1
2

)
ρ−2γ

[
∂iḡi j∂ jρ + ḡi j∂i jρ + ∂NNρ

]
−

(
γ2 −

1
4

)
ρ−1−2γ

[
ḡi j∂iρ∂ jρ +

(
(∂Nρ)2 − 1

)]
.

(4.8)

Then putting Proposition 2.1 and (4.6) together leads us to deduce

Ẽ(ρ)(εx)

=

(
γ −

1
2

)
(εxN)−2γ

µ4ε8d0+7
n∑

i, j,l=1

2d0+2∑
m=1

Hil∂iH jl∂ jC2mx2m+1
N + µ2ε4d0+3

n∑
i, j=1

2d0+2∑
m=1

δi j∂i jC2mx2m+1
N

+µ2ε4d0+3
2d0+1∑
m=0

2(m + 1)(2m + 3)C2(m+1)x2m+1
N

 (4.9)

−

(
γ2 −

1
4

)
(εxN)−1−2γ

µ4ε8(d0+1)
n∑

i, j=1

2d0+2∑
m=1

δi j∂iC2m∂ jC2mx2(m+1)
N

+µ2ε4(d0+1)
2d0+1∑
m=0

2(2m + 3)C2(m+1)x
2(m+1)
N

 + O
(
µ · µ2ε4d0+3−2γx1−2γ

N |x|2
(
1 + |x|4d0

))
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in BN
+ (0, ν/ε). Therefore, recalling the definition (2.11) of E(ρ) and the expansion (2.6) (or (A.13)) of the

scalar curvature Rḡ, we find that∫
RN

+

E(ρ)W2
εδ,ετdvḡ

=

∫
RN

+

(
Ẽ(ρ) +

N − 2
4(N − 1)

Rḡρ
1−2γ

)
W2
εδ,ετdx

= µ2ε4(d0+1)
∫

BN
+ (0,ν/ε)

x1−2γ
N

(γ − 1
2

) 2d0+2∑
m=1

∆C2mx2m
N +

2d0+1∑
m=0

2(m + 1)(2m + 3)C2(m+1)x2m
N


−

(
γ2 −

1
4

) 2d0+1∑
m=0

2(2m + 3)C2(m+1)x2m
N +

3(N − 2)2

2
C2

 W2
δ,τdx

+ O
(
µ3ε4(d0+1) + (ε/ν)n−2γ

)
.

Here we utilized the fact that |Rḡ| and x−1+2γ
N |Ẽ(ρ)| are bounded in RN

+ (refer to (3.23)) to compute the
remainder term. We further note that ∆C2m = (2m + 3)(N − 2(m + 1))C2(m+1) is satisfied for all m =

1, · · · , 2d0 + 2 by (2.10).

Finally, it holds that
∫
Rn w

2n
n−2γ
εδ,ετdvĥ =

∫
Rn w

2n
n−2γ

1 dx̄ by scaling invariance and the observation that det ĥ = 1.
Thus collecting all the computations made here, we can conclude the proof.

Derivation of (4.7). Unlike the local cases where pointwise relations of the bubbles were used (see [13,
Proposition 13] for γ = 1 or [4, Proposition 3.2] for γ = 1/2), our proof heavily relies on the algebraic
properties of the tensor Wi jkl instead. Write τ = (τ1, · · · , τn) ∈ Rn and

f
(
|x̄ + τ|2

)
=

d0∑
m=0

am
(
|x̄|2 + |τ|2 + 2x̄ · τ

)m
=

d0∑
m=0

m∑
t=0

ambm,t
(
|x̄|2 + |τ|2

)m−t
(x̄ · τ)t

where am, bm,t ∈ R. By the definition of hi j in (2.2), then we have

n∑
i, j=1

∫
BN

+ (0,ν/ε)
x1−2γ

N hi j(ε x̄)∂iWδ,τ∂ jWδ,τdx

= µε2d0

n∑
i, j=1

∫
RN

+

x1−2γ
N Hi j(ε x̄) f

(
|x̄|2

)
∂iWδ,τ∂ jWδ,τdx + O

(
µν2(d0+1) ·

(
ε

ν

)n−2γ
)

= µε2(d0+1)
∫
RN

+

x1−2γ
N Wik jl

(
xk + τk

) (
xl + τl

)
f
(
|x̄ + τ|2

)
xix j|x̄|−2(∂rWδ∂rWδ)(|x̄|, xN)dx

+ O
(
µν2(d0+1) · (ε/ν)n−2γ

)
(4.10)

=

d0∑
m=0

m∑
t=0

ambm,t

∫ ∞

0
x1−2γ

N

∫ ∞

0

(
|x̄|2 + |τ|2

)m−t
|x̄|−2(∂rWδ∂rWδ)(|x̄|, xN)

×Wik jl

∫
S n−1(0,r)

xix j
(
xk + τk

) (
xl + τl

)
(x̄ · τ)tdS rdrdxN + O

(
µν2(d0+1) ·

(
ε

ν

)n−2γ
)
.

However, since Wii jk = 0 and
∑n

i=1 Wi jik = 0 hold, we have the validity of

Wik jl

∫
S n−1(0,1)

xix j
(
xk + τk

) (
xl + τl

) (
x1τ1 + · · · + xnτn

)t
dS = 0 (4.11)

for any given τ ∈ Rn and t = 0, 1, · · · , d0 (where d0 will be chosen to be d0 ≤ 4). Plugging (4.11) into (4.10),
we obtain (4.7). �

The previous proposition implies that searching a critical point of the function Jγ0 can be reduced to looking
for that of Jγ1 + Jγ2 . Since the tensor Hab in (2.1) satisfies the symmetric condition Hab(x̄, xN) = Hab(−x̄, xN)
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for all (x̄, xN) ∈ RN
+ , so does the tensor H. Also, it is a simple task to check that ΨA

δ,−τ(x̄, xN) = ΨA
δ,τ(−x̄, xN).

Therefore (Jγ1 + Jγ2 )(δ, τ) = (Jγ1 + Jγ2 )(δ,−τ) for any (δ, τ) ∈ A. As an immediate consequence, we have

∂
(
Jγ1 + Jγ2

)
∂τ

(δ, 0) =
∂2

(
Jγ1 + Jγ2

)
∂τ∂δ

(δ, 0) = 0 for every δ > 0. (4.12)

In the next subsection, we carry out some computations necessary to find a critical point (specifically, a local
minimizer) of Jγ1 + Jγ2 . Actually, with the aid of these computations, we are able to deduce that (Jγ1 + Jγ2 )(δ, 0)
can be expressed with a polynomial P = P(δ) (see Subsection 4.4). As a result, our problem is translated
into obtaining a suitable critical point of the polynomial P which we shall take care of in Section 5. It will
turn out that for sufficiently large dimensions (for instance n ≥ 52 if γ = 1/2), an appropriate choice of a
linear function f in the definition of the metric ḡ (see (2.2)) gives a desirable critical point of the polynomial
P. However, it is inevitable to introduce a polynomial f of degree d0 = 4 in the metric ḡ instead so as to
enable to find a necessary critical point of P in lower dimensions (e.g. 24 ≤ n ≤ 51 for γ = 1/2). Since
the computation is extremely complicated in the case that d0 = 4, we will take into account only when the
dimension n is large enough (so that d0 = 1) in most part of the paper to clarify the exposition. Changes
required to consider lower dimensions will be described in Subsection 5.2.

4.3 Preparation for an expansion of Jγ1 + Jγ2
Let us introduce some functions.

- Denote the Bessel function of the first kind and the modified Bessel function of the second kind of order γ
by Jγ and Kγ, respectively. Their definitions and properties can be found in [2].

- Set ϕ by the solution of the ordinary differential equation in the variable t > 0:

φ′′(t) +
1 − 2γ

t
φ′(t) − φ(t) = 0, φ(0) = 1 and φ(∞) = 0. (4.13)

In particular, ϕ(t) = d1tγKγ(t) for t > 0 where d1 = 21−γ/Γ(γ).

- Notice that the Fourier transform of w1 is a radially symmetric function. We shall denote by ŵ1(ξ) = ŵ1(ρ)
with a slight abuse of the notation.

- Let Aα and Bα be numbers defined to be

Aα =

∫ ∞

0
tα−2γϕ2(t)dt and Bα =

∫ ∞

0
ρ−α+2γŵ2

1(ρ)ρn−1dρ

for α ∈ N ∪ {0}. Also, we set functions

F1,n,γ(α, β) =

∫ ∞

0

∫
Rn

xα−2γ
N |x̄|βW2

1 (x̄, xN)dx̄dxN ,

F2,n,γ(α, β) =

∫ ∞

0

∫
Rn

xα−2γ
N |x̄|β|∇x̄W1|

2(x̄, xN)dx̄dxN ,

F3,n,γ(α, β) =

∫ ∞

0

∫
Rn

xα−2γ
N |x̄|β|∂xN W1|

2(x̄, xN)dx̄dxN

(4.14)

for α ∈ 2N + 1 and β ∈ 2N as far as they are finite.

The main objective of this subsection is to depict how to express the values of functions in (4.14) in terms
of numbers A1 and B2. Especially, the following lemma will be established as one of the consequences. See
also Appendix B below and [53].

Lemma 4.4. Suppose that d0 = 1 and n > 2γ + 8. Then it holds

F1,n,γ(1, 2) =
∣∣∣S n−1

∣∣∣  n
(
3(n − 3)2 +

(
1 − 4γ2

))
3(n − 4)(n − 2γ − 4)(n + 2γ − 4)

 A1B2, (4.15)
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F1,n,γ(1, 4) =
∣∣∣S n−1

∣∣∣  n(n + 2)
(
15(n − 3)2(n − 5)2 + R1,n,γ(1, 4)

)
15(n − 4)(n − 6)(n − 2γ − 4)(n + 2γ − 4)(n − 2γ − 6)(n + 2γ − 6)

 A1B2, (4.16)

F1,n,γ(1, 6) =
∣∣∣S n−1

∣∣∣ [ n(n+2)(n+4)(35(n−3)2(n−5)2(n−7)2+R1,n,γ(1,6))
35(n−4)(n−6)(n−8)(n−2γ−4)(n+2γ−4)(n−2γ−6)(n+2γ−6)(n−2γ−8)(n+2γ−8)

]
A1B2. (4.17)

Moreover we have

F2,n,γ(3, 2) =
∣∣∣S n−1

∣∣∣ 
(
1 − γ2

)
2(n + 2)

(
5(n − 1)(n − 3) +

(
1 − 4γ2

))
15(n − 4)(n − 2γ − 4)(n + 2γ − 4)

 A1B2,

F3,n,γ(3, 2) =
∣∣∣S n−1

∣∣∣ 2(1 − γ)(2 − γ)
(
5(n − 1)(n − 2)(n − 3) − R3,n,γ(3, 2)

)
15(n − 4)(n − 2γ − 4)(n + 2γ − 4)

 A1B2

where

R1,n,γ(1, 4) =
(
1 − 4γ2

) [
10n2 − 80n + 177 − 12γ2

]
,

R1,n,γ(1, 6) =
(
1 − 4γ2

) [
35n4 − 700n3 + 5299n2 − 17990n + 23469

+80γ4 − 4γ2
(
21n2 − 210n + 611

)]
,

R3,n,γ(3, 2) = (1 − 2γ)
[
3n − 14 − 2γ(n + 2)

]
.

In order to verify the lemma, the following observation of González [39, Lemma 14] and González-Qing
[41, Section 7] is needed.

Lemma 4.5. For each xN > 0 fixed, let Ŵ1(ξ, xN) be the Fourier transform of W1(x̄, xN) with respect to the
variable x̄ ∈ Rn. Then we have that

Ŵ1(ξ, xN) = ŵ1(ξ)ϕ(|ξ|xN) for all ξ ∈ Rn and xN > 0, (4.18)

where ϕ(t) = d1tγKγ(t) is the solution to (4.13).

Next, we obtain the explicit form of the Fourier transform ŵ1(ρ) = ŵ1(ξ) of the standard bubble w1(x).
(4.19) is also obtained in [42] up to the constant multiple.

Lemma 4.6. If n > 4γ − 1, then it is true that

ŵ1(ρ) = d2ρ
−γKγ(ρ) for any ρ > 0 where d2 =

2Γ
(

n+2γ
2

) n−2γ
4γ

Γ
(

n−2γ
2

) n+2γ
4γ

. (4.19)

As a result, it is a solution of the equation in t > 0:

φ′′(t) +
1 + 2γ

t
φ′(t) − φ(t) = 0 (4.20)

with the asymptotic behavior

φ(t) =

d2Γ(γ)2γ−1t−2γ(1 + o(1)) as t → 0+,

d2
√
π/2t−γ−

1
2 e−γ(1 + o(1)) as t → ∞.

Proof. Since w is radial, namely, w1(x̄) = w1(r), so is its Fourier transform and can be expressed in terms of
the Bessel function J n−2

2
:

ŵ1(ξ) = ŵ1(ρ) =
1

ρ
n−2

2

∫ ∞

0
w1(r)J n−2

2
(ρr)r

n
2 dr for ρ = |ξ| ≥ 0.

We observe that the integral is the
(

n−2
2

)
-th order Hankel transform of the function r 7→ r

n−2
2 w1(r), whose

precise value can be computed under the assumption on the dimension n > 4γ − 1 as listed in [68]. As a
result, we find from (2.18) that (4.19) has the validity. The fact that ŵ1 solves Eq. (4.20) results from a
direct computation. �

27



The following lemma can be obtained by modifying the proof of [41, Lemma 7.2].

Lemma 4.7. Suppose that φ = ϕ or ŵ1 in Lemmas 4.5 and 4.6. Set also α = 1 − 2γ if φ = ϕ, or α = 1 + 2γ
if φ = ŵ1. Then we have∫ ∞

0

(
φ′(ρ)

)2 ρηdρ =

(
η + 1

2

) (
η + 1

2
− α

)−1 ∫ ∞

0
φ(ρ)2ρηdρ (4.21)

and

∫ ∞

0
φ(ρ)2ρηdρ = (η − α)

(
η − 1

2

) 1 +

(
η + 1

2

) (
η + 1

2
− α

)−1−1 ∫ ∞

0
φ(ρ)2ρη−2dρ (4.22)

provided that η > 1 for φ = ϕ, and η > 4γ + 1 for φ = ŵ1.

Proof. We only take into account the case that φ = ŵ1 since the other case can be covered in the same way.
If we multiply ρηŵ′1(ρ) on the both sides of (4.20) and then integrate the results over (0,∞), we get(

α −
η + 1

2

) ∫ ∞

0

(
ŵ′1(ρ)

)2
ρηdρ = −

(
η + 1

2

) ∫ ∞

0
(ŵ1(ρ))2 ρηdρ, (4.23)

which is (4.21). Since it is known that K′γ(ρ) is of order ρ−γ−1 near 0, it holds that ρηŵ′1(ρ)2|ρ=0 = 0 if
η > 4γ + 1, which validates the above calculation.

On the other hand, if we test ρη+2ŵ1(ρ) on (4.20) instead, we then discover that

−

∫ ∞

0

(
ŵ′1(ρ)

)2
ρηdρ + (α − η)

∫ ∞

0
ŵ′1(ρ)ŵ1(ρ)ρη−1dρ =

∫ ∞

0
ŵ1(ρ)2ρηdρ. (4.24)

Since an application of integration by parts shows that∫ ∞

0
ŵ′1(ρ)ŵ1(ρ)ρη−1dρ = −

(
η − 1

2

) ∫ ∞

0
ŵ1(ρ)2ρη−2dρ,

we conclude with (4.23) and (4.24) that (4.22) holds. �

With the previous lemmas, it is now possible to proceed the proof of Lemma 4.4.

Proof of Lemma 4.4. We remark that the basic idea of this proof is motivated from [41, Lemma 7.3].

We first deal with F1,n,γ. By taking the Fourier transform on the variable x̄ and applying (4.18), one
derives ∫

Rn
|x̄|2(1+m)W2

1 (x̄, xN)dx̄ =
∥∥∥| · |1+mW1(·, xN)

∥∥∥2
L2(Rn) =

∥∥∥∥∥((−∆)
1+m

2 Ŵ1

)
(·, xN)

∥∥∥∥∥2

L2(Rn)

=

∫
Rn

ŵ1(|ξ|)ϕ(|ξ|xN) · (−∆)1+m
ξ (ŵ1(|ξ|)ϕ(|ξ|xN)) dξ

(4.25)

for each fixed m ∈ N ∪ {0} and xN ∈ (0,∞). Assume m = 0 first. By (4.13) and (4.20), we find

∆ξ (ŵ1(|ξ|)ϕ(|ξ|xN)) = ŵ1(ρ)ϕ(ρxN)
(
1 + x2

N

)
+ 2ŵ′1(ρ)ϕ′(ρxN)xN

+

(
n − 2γ − 2

ρ

)
ŵ′1(ρ)ϕ(ρxN) +

(
n + 2γ − 2

ρ

)
ŵ1(ρ)ϕ′(ρxN)xN (4.26)

where ∆ξ stands for the Laplacian with respect to the ξ-variable. Moreover the substitution t = ρxN enables
us to get ∫ ∞

0

∫ ∞

0
x1−2γ

N (ŵ1(ρ)ϕ(ρxN))2
(
1 + x2

N

)
ρn−1dxNdρ = A1B2 + A3B4
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and ∫ ∞

0

∫ ∞

0
x2−2γ

N ŵ1(ρ)ϕ(ρxN)ŵ′1(ρ)ϕ′(ρxN)ρn−1dxNdρ

=

(∫ ∞

0
t2−2γϕ(t)ϕ′(t)dt

) (∫ ∞

0
ρ−3+2γŵ1(ρ)ŵ′1(ρ)ρn−1dρ

)
=

[
2(1 − γ)(n − 3)

(n − 4)(n − 2γ − 4)

]
A1B2,

which are finite for n > 2γ + 4. Therefore, treating the other two terms of the right-hand side of (4.26) in
this fashion, we deduce from (4.25) and Lemma 4.7 that∫ ∞

0
x1−2γ

N

∫
Rn
|x̄|2W2

1 (x̄, xN)dx̄dxN =

∫ ∞

0
x1−2γ

N

∫
RN

ŵ1(|ξ|)ϕ(|ξ|xN) · (−∆)ξ (ŵ1(|ξ|)ϕ(|ξ|xN)) dξdxN

=
∣∣∣S n−1

∣∣∣  n
(
3(n − 3)2 +

(
1 − 4γ2

))
12(n − 4)(n − 2γ − 4)(n + 2γ − 4)

 A1B2,

getting (4.15). Similar technique also can be applied for m = 1 and 2, which gives (4.16) and (4.17). To
derive (4.17) for instance, we first observe that∫ ∞

0
x1−2γ

N

∫
Rn
|x̄|6W2

1 (x̄, xN)dx̄dxN

=

∫ ∞

0
x1−2γ

N

∫
RN

(−∆)ξ (ŵ1(|ξ|)ϕ(|ξ|xN)) · ∆2
ξ (ŵ1(|ξ|)ϕ(|ξ|xN)) dξdxN . (4.27)

Furthermore, one can check that

∆2
ξ (ŵ1(|ξ|)ϕ(|ξ|xN))

= ŵ1(ρ)ϕ(ρxN)
(
1 + 6x2

N + x4
N

)
+

n2 − 2n(3 + 2γ) + 4
(
2 + 3γ + γ2

)
ρ2

 ŵ1(ρ)ϕ(ρxN)

+

n2 − 2n(3 − 2γ) + 4
(
2 − 3γ + γ2

)
ρ2

 ŵ1(ρ)ϕ(ρxN)x2
N

+ 4ŵ′1(ρ)ϕ′(ρxN)xN
(
1 + x2

N

)
+

n2 − 10n + 4
(
5 + γ2

)
ρ2

 2ŵ′1(ρ)ϕ′(ρxN)xN

+

(
n − 2γ − 2

ρ

)
2ŵ′1(ρ)ϕ(ρxN) +

(
3n − 2γ − 8

ρ

)
2ŵ′1(ρ)ϕ(ρxN)x2

N

−

 (1 + γ)
(
n2 − 2n(3 + 2γ) + 4

(
2 + 3γ + γ2

))
ρ3

 2ŵ′1(ρ)ϕ(ρxN)

+

(
n + 2γ − 2

ρ

)
2ŵ1(ρ)ϕ′(ρxN)x3

N +

(
3n + 2γ − 8

ρ

)
2ŵ1(ρ)ϕ′(ρxN)xN

+

 (−1 + γ)
(
n2 − 2n(3 − 2γ) + 4

(
2 − 3γ + γ2

))
ρ3

 2ŵ1(ρ)ϕ′(ρxN)xN .

Putting this into (4.27) and computing term-by-term as before, we can determine (4.17).
We next turn to the analysis of F2,n,γ and F3,n,γ. As in (4.25), one has∫

Rn
|x̄|2(1+m)|∇x̄W1(x̄, xN)|2dx̄ =

n∑
i=1

∥∥∥∥(−∆)
1+m

2 ∂̂iW1(·, xN)
∥∥∥∥2

L2(Rn)

=

n∑
i=1

∫
Rn
ξiŴ1(|ξ|, xN) · (−∆)1+m

ξ

(
ξiŴ1(|ξ|, xN)

)
dξ

(4.28)
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for any m ∈ N ∪ {0}. Therefore it is possible to perform a computation using (4.28) and the relation

(−∆ξ)m
(
ξiŴ1

)
= −2m∂i(−∆ξ)m−1Ŵ1 + ξi(−∆ξ)mŴ1

to show that

−
∣∣∣S n−1

∣∣∣−1
F2,n,γ(3, 2)

=

∫ ∞

0

∫ ∞

0
x3−2γ

N

[
2ρnŴ1(ρ, xN)Ŵ′1(ρ, xN) + ρn+1Ŵ1(ρ, xN)

(
Ŵ′′1 (ρ, xN) +

n − 1
ρ

Ŵ′1(ρ, xN)
)]

dρdxN

= −

 (1 − γ2)2(n + 2)
(
5(n − 1)(n − 3) +

(
1 − 4γ2

))
15(n − 4)(n − 2γ − 4)(n + 2γ − 4)

 A1B2

(Ŵ′1 signifies the derivative of Ŵ1 in the radial variable ρ = |x̄|). Likewise, one sees that∫
Rn
|x̄|2(1+m)|∂NW1(x̄, xN)|2dx̄ =

∥∥∥∥(−∆)
1+m

2 ∂̂NW1(·, xN)
∥∥∥∥2

L2(Rn)
=

∥∥∥∥(−∆)
1+m

2 ∂NŴ1(·, xN)
∥∥∥∥2

L2(Rn)

=

∫
Rn
|ξ|ŵ1(ξ)ϕ′(|ξ|xN) · (−∆)1+m

ξ

(
|ξ|ŵ1(ξ)ϕ′(|ξ|xN)

)
dξ.

(4.29)

Thus by employing (4.29) and

∆ξ
(
|ξ|ŵ1(ξ)ϕ′(|ξ|xN)

)
= (n + 2γ)ŵ1(ρ)ϕ(ρxN)xN + (n + 2γ − 2)ŵ′1(ρ)ϕ′(ρxN)

+ 2ρŵ′1(ρ)ϕ(ρxN)xN + 2γ
(
n + 2γ − 2

ρ

)
ŵ1(ρ)ϕ′(ρxN) + ρŵ1(ρ)ϕ′(ρxN)

(
1 + x2

N

)
,

we can find the value of F3,n,γ(3, 2).
This completes the proof. �

4.4 Reduction of
(
Jγ1 + Jγ2

)
(·, 0) into a polynomial P

Lemma 4.4 allows us to obtain the following proposition.

Proposition 4.8. Assume that the degree of the polynomial f in (2.2) is d0 = 1 so that it is written as
f (r) = a0 + a1r where a0 and a1 are arbitrarily chosen and fixed. Also, we denote

F4,n,γ(α, β) = F2,n,γ(α, β) + F3,n,γ(α, β) for (α, β) ∈ (2N + 1) × (2N)

and set polynomials

P1(t) =
1

n(n + 2)

[
a2

1(n + 8)F1(1, 6)t4 + 2a0a1(n + 4)F1(1, 4)t3 + a2
0(n + 2)F1(1, 2)t2

]
,

P31(t) =
1

n(n + 2)

[
6a2

1(n + 4)(n + 8)F1(3, 4)t4 + 8a0a1(n + 2)(n + 4)F1(3, 2)t3

+2a2
0n(n + 2)F1(3, 0)t2

]
,

P32(t) =
1
n

[
24a2

1(n + 4)(n + 8)F1(5, 2)t4 + 16a0a1(n + 4)F1(5, 0)t3
]
,

P33(t) = 48a2
1(n + 4)(n + 8)F1(7, 0)t4

(4.30)

where F1 = F1,n,γ (refer to (4.14)). We further define polynomials P21, P22, P23 and P24 by substituting each
F1,n,γ(α, β) appearing in P1, P31, P32 and P33 by F4,n,γ(α + 2, β), respectively. If the polynomial P is given
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by

− 24n(n − 1) · P(t)

=
3
2

(
(n − 1)2 − (1 − 2γ)2

)
P1(t)

+ (1 − 2γ)
2d0+2∑
m=1

m−1∏
m̃=1

1
(2m̃ + 3)(N − 2(m̃ + 1))

 P2m(t)

+

{
(n + 1)

(
γ −

1
2

)
− 2

(
γ2 −

1
4

)} 2d0+1∑
m=1

 m∏
m̃=1

1
(2m̃ + 3)(N − 2(m̃ + 1))

 (2m + 3)P3m(t)

(4.31)

for n > 2γ + 8(= 2γ + 4(d0 + 1)), where the value in the bracket in front of P21 is understood as 1, then it is
true that (

Jγ1 + Jγ2
)

(δ, 0) = P
(
δ2). (4.32)

Remark 4.9. Clearly the above result recovers the polynomial found by Almaraz for the case of γ = 1/2
(up to a multiplicative constant). See (4.6) of [4]. Furthermore, putting γ = 1 and a0 = −a1 = 1 allows us to
regain the polynomial of Brendle in [13, Proposition 19].

It is notable that ΨA
δ,0 = 0 holds since

∑n
i, j=1 Hi j∂i jWδ = 0 in RN

+ . Furthermore, it is straightforward to
check ∫

RN
+

x1−2γ
N

(
HilH jl

)
(x̄)

(
∂iWδ∂ jWδ

)
(x̄, xN)dx

=

∫ ∞

0
x1−2γ

N

∫ ∞

0
f (r2)

(
∂rWδ

r

)2 (
WiklsW jplq

∫
S n−1(0,r)

xix jxkxpxqxsdS r

)
drdxN = 0

by using the contraction and anti-symmetry properties of the tensor W. Hence Jγ1 and the first term of Jγ2
vanishes if τ = 0. Besides, it can be easily seen that Wδ(x) = Wδ(|x̄|, xN) for any x = (x̄, xN) ∈ RN

+ owing to
the representation formula (2.17) of Wδ. Therefore, in view of (2.10) and (4.5), the proof of the proposition
is reduced to computing∫

RN
+

x1+2m−2γ
N

n∑
i, j,k=1

∆m
(
∂kHi j

)2
(x̄)W2

δ (x̄, xN)dx

=

∫ ∞

0

∫ ∞

0

∫S n−1(0,r)

n∑
i, j,k=1

∆m
(
∂kHi j

)2
(x̄)dS r

 x1+2m−2γ
N W2

δ (r, xN)drdxN

for m = 0, · · · , 2d0 + 1 and∫
RN

+

x1+2m−2γ
N

n∑
i, j,k=1

∆m−1
(
∂kHi j(x̄)

)2
|∇Wδ|

2(x̄, xN)dx

=

∫ ∞

0

∫ ∞

0

∫S n−1(0,r)

n∑
i, j,k=1

∆m−1
(
∂kHi j

)2
(x̄)dS r

 x1+2m−2γ
N

(
|∂rWδ|

2 + |∂xN Wδ|
2
)

drdxN

for m = 1, · · · , 2d0 + 2 where r = |x̄|. The most crucial part is to obtain the value of the integrals over the
spheres S n−1(0, r). To do so, it is necessary to look at how the terms

∑n
i, j,k=1 ∆m

(
∂kHi j

)2
look like.

Lemma 4.10. For any m = 0, · · · , 2d0 + 1, there are radial functions G1,m, G2,m and G3,m in Rn such that

n∑
i, j,k=1

∆m
(
∂kHi j

)2
(x̄) = G1,m(r)

n∑
i, j,k=1

(
∂kHi j

)2
(x̄) + G2,m(r)

n∑
i, j=1

H2
i j(x̄) + G3,m(r)|W |2 (4.33)

where r = |x̄|.
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Proof. We will use mathematical induction to justify the statement. By the definition of the tensor Hi j, we
know

n∑
i, j,k=1

(
∂kHi j

)2
(x̄) = f (r2)2

n∑
i, j,k=1

(
∂kHi j

)2
(x̄) +

[
8 f (r2) f ′(r2) + 4r2 f ′(r2)2

] n∑
i, j=1

H2
i j(x̄) (4.34)

so that (4.33) is valid for m = 0. See the proof of [15, Proposition 15] for its detailed derivation. Suppose that
(4.33) holds for m = m̃. Then we verify by direct computations utilizing xk∂kHi j(x̄) = 2Hi j(x̄), xl∂klHi j(x̄) =

∂kHi j(x̄),
∑n

i, j,k,l=1(∂klHi j(x̄))2 = |W |2 and
∑n

k=1 ∂kkHi j(x̄) = 0 that

n∑
i, j,k=1

∆m̃+1
(
∂kHi j

)2
(x̄) =

[
G′′1,m̃(r) +

(
n + 3

r

)
G′1,m̃(r) + 2G2,m̃(r)

] n∑
i, j,k=1

(
∂kHi j

)2
(x̄)

+

[
G′′2,m̃(r) +

(
n + 7

r

)
G′2,m̃(r)

] n∑
i, j=1

H2
i j(x̄)

+

[
G′′3,m̃(r) +

(
n − 1

r

)
G′3,m̃(r) + 2G1,m̃(r)

]
|W |2.

Here G′(r) represents the differentiation of G(r) with respect to the radial variable r. Thus (4.33) holds for
m = m̃ + 1 as well. The proof is finished. �

By the previous lemma, the desired integrals will be evaluated once we get

Lemma 4.11. It holds that

n∑
i, j=1

∫
S n−1

H2
i j(x̄)dS =

1
2(n + 2)

n∑
i, j,k=1

∫
S n−1

(
∂kHi j

)2
(x̄)dS =

∣∣∣S n−1
∣∣∣

2n(n + 2)
|W |2.

Proof. We deduce it by adapting the proof of [13, Proposition 16]. �

Combining all results of this subsection, we are able to complete the proof of Proposition 4.8. Actually the
explicit expression of G1,m, G2,m and G3,m is also necessary, but it can be derived from the proof of Lemma
4.10. Observe that the definition of the polynomials in (4.30) are motivated from the value of

1∣∣∣S n−1
∣∣∣ |W |2rn−1

∫
S n−1(0,r)

n∑
i, j,k=1

∆m
(
∂kHi j

)2
(x̄)dS r for m = 0, · · · , 3(= 2d0 + 1).

We leave the details to the reader.

4.5 The second derivative of
(
Jγ1 + Jγ2

)
(δ, τ) at (δ, τ) = (δ, 0)

Our goal in this subsection is to calculate the function ∂τiτ j

(
Jγ1 + Jγ2

)
(·, 0) for each fixed i, j = 1, · · · , n. This

observation will be used in Section 5 on finding a local minimizer of Jγ1 + Jγ2 (see (C3) below).
We start this subsection by establishing variants of Lemmas 4.10 and 4.11. Set a symmetric two-tensor

W̃i j =

n∑
k,p,q=1

(Wikpq + Wkqip)(W jkpq + Wkq jp). (4.35)

Lemma 4.12. For any i, j ∈ {1, · · · , n} and m = 0, · · · , 2d0 + 1, there are radial functions G̃1,m, · · · , G̃11,m
in Rn such that

n∑
k,p,q=1

∆m
[
∂i j

(
∂kHpq

)2
]

(x̄)
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= G̃1,m(r)δi j

n∑
k,p,q=1

(
∂kHpq

)2
(x̄) + G̃2,m(r)δi j

n∑
p,q=1

H2
pq(x̄) + G̃3,m(r)δi j|W |2

+ G̃4,m(r)
n∑

p,q=1

[
xi

(
Hpq∂ jHpq

)
(x̄) + x j

(
Hpq∂iHpq

)
(x̄)

]
+ G̃5,m(r)

n∑
p,q=1

(
∂iHpq∂ jHpq

)
(x̄)

+ G̃6,m(r)
n∑

k,p,q=1

[
xi

(
∂kHpq∂ jkHpq

)
(x̄) + x j

(
∂kHpq∂ikHpq

)
(x̄)

]
+ G̃7,m(r)W̃i j (4.36)

+ G̃8,m(r)xix j

n∑
k,p,q=1

(
∂kHpq

)2
(x̄) + G̃9,m(r)xix j

n∑
p,q=1

H2
pq(x̄)

+ G̃10,m(r)xix j|W |2 + G̃11,m(r)
n∑

p,q=1

(
Hpq∂i jHpq

)
(x̄)

where r = |x̄|.

Proof. It is plain to check that (4.36) is correct for m = 0 by employing (4.34). Now apply mathematical
induction on m, referring to the proof of Lemma 4.10. The explicit values of G̃1,m, · · · , G̃11,m can be found
in [53]. �

Lemma 4.13. It is valid that

n∑
p,q=1

∫
S n−1

xix jH2
pq(x̄)dS =

∣∣∣S n−1
∣∣∣

2n(n + 2)(n + 4)
|W |2δi j +

2
∣∣∣S n−1

∣∣∣
n(n + 2)(n + 4)

W̃i j,

n∑
k,p,q=1

∫
S n−1

xix j
(
∂kHpq

)2
(x̄)dS =

∣∣∣S n−1
∣∣∣

n(n + 2)
|W |2δi j +

2
∣∣∣S n−1

∣∣∣
n(n + 2)

W̃i j,

n∑
p,q=1

∫
S n−1

xi
(
Hpq∂ jHpq

)
(x̄)dS =

1
n + 2

n∑
p,q=1

∫
S n−1

(
∂iHpq∂ jHpq

)
(x̄)dS

=
1

n + 2

n∑
k,p,q=1

∫
S n−1

xi
(
∂kHpq∂ jkHpq

)
(x̄)dS =

∣∣∣S n−1
∣∣∣

n(n + 2)
W̃i j,

and
n∑

p,q=1

∫
S n−1

(
Hpq∂i jHpq

)
(x̄)dS = 0

for each i, j ∈ {1, · · · , n}.

Proof. The first and second identities in the statement are precisely the ones examined in [13, Proposition
16]. We can deduct the other identities by arguing as its proof. �

By the previous lemmas, we discover

Proposition 4.14. Assume that d0 = 1 and n > 2γ + 8, and define

P̃1;0(t) =
1

2n(n + 2)

[
a2

1F2(1, 6)t3 + 2a0a1F2(1, 4)t2 + a2
0F2(1, 2)t

]
,

P̃1;1(t) =
1

n(n + 2)

[
2a2

1(n + 6)(n + 16)F1(1, 4)t3 + 4a0a1(n + 2)(n + 8)F1(1, 2)t2

+2a2
0n(n + 2)F1(1, 0)t

]
,

P̃1;31(t) =
1
n

[
8a2

1(n + 6)(n + 16)F1(3, 2)t3 + 8a0a1n(n + 8)F1(3, 0)t2
]
,

P̃1;32(t) = 16a2
1(n + 6)(n + 16)F1(5, 0)t3,
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P̃2;0(t) = 0,

P̃2;1(t) =
1

n(n + 2)

[
4a2

1(n + 7)F1(1, 4)t3 + 4a0a1(n + 2)F1(1, 2)t2
]
,

P̃2;31(t) =
1
n

[
16a2

1(n + 7)F1(3, 2)t3 + 8nF1(3, 0)t2
]
,

P̃2;32(t) = 16a2
1(2n + 13)F1(5, 0)t3,

where F1 = F1,n,γ and F2 = F2,n,γ are given in (4.14). Also, for each m̂ = 1 and 2, we set the polynomials
P̃m̂;21, P̃m̂;22 and P̃m̂;23 by replacing each F1,n,γ(α, β) in P̃m̂;0, P̃m̂;31 and P̃m̂;32 with F4,n,γ(α + 2, β). If we put
for m̂ = 1 or 2,

− 24n(n − 1) · P̃m̂(t)

= −24n(n − 1)P̃m̂;0(t) +
3
2

(
(n − 1)2 − (1 − 2γ)2

)
P̃m̂;1(t)

+ (1 − 2γ)
2d0+1∑
m=1

m−1∏
m̃=1

1
(2m̃ + 3)(N − 2(m̃ + 1))

 P̃m̂;2m(t)

+

{
(n + 1)

(
γ −

1
2

)
− 2

(
γ2 −

1
4

)} 2d0∑
m=1

 m∏
m̃=1

1
(2m̃ + 3)(N − 2(m̃ + 1))

 (2m + 3)P̃m̂;3m(t)

where the value in the bracket in front of P̃m̂;21 is regarded as 1, then

∂2
(
Jγ1 + Jγ2

)
∂τi∂τ j

(δ, 0) = P̃1(δ2)W̃i j + P̃2(δ2)δi j|W |2. (4.37)

Proof. Step 1. We start the proof by showing that

∂2Jγ1
∂τi∂τ j

(δ, 0) =

n∑
k,l=1

∫
RN

+

x1−2γ
N ∂klWδ(x) · ∂τiτ j

(
Hkl(x̄ + τ)ΨA

δ,τ(x̄ + τ)
)∣∣∣∣
τ=0

dx = 0.

Indeed, since ΨA
δ,τ and ∂τiΨ

A
δ,τ are smooth in x̄ and Wδ(x̄, xN) = Wδ(r, xN) where r = |x̄|, we have

n∑
k,l=1

∂klWδ(x) · ∂τiτ j

(
Hkl(x̄ + τ)ΨA

δ,τ(x̄ + τ)
)∣∣∣∣
τ=0

=

n∑
k,l=1

∂klWδ(x) · ∂i jHkl(x̄)ΨA
δ,0(x) = 0 for x ∈ RN

+ .

Therefore the assertion is true.
Step 2. We next treat the derivative of the first term Jγ20 in Jγ2 (defined in (4.5)). Because of the observation

n∑
l=1

∂τiτ j

[(
HplHql

)
(x̄ + τ)

]∣∣∣∣∣∣∣
τ=0

xpxq =

n∑
l=1

∂τiτ j

[
τkτk̃ f

(
|x̄ + τ|2

)2
WpklsWqk̃ls̃xsxs̃xpxq

]∣∣∣∣∣∣∣
τ=0

=

n∑
l=1

∂τiτ j

[
τkτk̃ f

(
|x̄ + τ|2

)2 (
HklHk̃l

)
(x̄)

]∣∣∣∣∣∣∣
τ=0

= 2
n∑

l=1

(
HilH jl

)
(x̄)

which is true for any fixed x = (x1, · · · , xn) and τ ∈ Rn, we obtain

∂2Jγ20

∂τi∂τ j
(δ, 0) =

1
2

∫
RN

+

x1−2γ
N

n∑
l=1

∂τiτ j

[(
HplHql

)
(x̄ + τ)

]∣∣∣∣∣∣∣
τ=0

xpxq (∂rWδ)2(x̄, xN)
r2 dx

=

∫
RN

+

x1−2γ
N

n∑
l=1

(
HilH jl

)
(x̄)|x̄|−2|∇x̄Wδ(x̄, xN)|2dx.
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Thus, after carrying out computations as in Subsection 4.3 and in particular applying the first identity in the
proof of [15, Proposition 20], we get

∂2Jγ20

∂τi∂τ j
(δ, 0) =

∫ ∞

0

∫ ∞

0

∫
S n−1(0,r)

n∑
l=1

(
HilH jl

)
(x̄)dS r

 x1−2γ
N r−2|∇x̄Wδ(x̄, xN)|2drdxN

=
δ2

2n(n + 2)
W̃i j

(
a2

1δ
4F2(1, 6) + 2a0a1δ

2F2(1, 4) + a2
0F2(1, 2)

)
where F2 = F2,n,γ is set in (4.14).

Step 3. For γ = 1, one can compute the second derivatives ∂τiτ j J
γ
2 (δ, 0) as in [13, Proposition 21]. However,

since the explicit formula for the bubble Wδ is unknown in our case except when γ = 1/2, we cannot follow
it and need to devise an alternative approach.

As a matter of the fact, as we can expect from the previous step, it suffices to calculate the values

∂2

∂τi∂τ j

∫S n−1(0,r)

n∑
k,p,q=1

∆m
(
∂kHpq

)2
(x̄)dS r


∣∣∣∣∣∣∣∣
τ=0

=

∫
S n−1(0,r)

n∑
k,p,q=1

∆m
[
∂i j

(
∂kHpq

)2
]

(x̄)dS r

for m = 0, · · · , 2d0 + 1. Therefore we can achieve the result by applying Lemmas 4.11, 4.12 and 4.13. The
proof is concluded. �

5 Search for a critical point of the polynomial P and conclusion of the proof
of Theorem 1.1

5.1 A positive local minimizer of the polynomial P

We now choose appropriate coefficients a0 and a1 of the polynomial f (t) = a0 + a1t in (2.2) so that the
function Jγ1 +Jγ2 introduced in (4.4) and (4.5) has a strict local minimum at (1, 0), provided that the dimension
n is sufficiently large. By (4.12) and (4.32), it suffices to confirm three conditions

(C1) ∂δ(Jγ1 + Jγ2 )(1, 0) = 2P′(1) = 0;
(C2) ∂δδ(Jγ1 + Jγ2 )(1, 0) = 4P′′(1) > 0;
(C3) The matrix

(
∂τiτ j

(
Jγ1 + Jγ2

)
(1, 0)

)n

i, j=1
is positive definite;

to guarantee that (1, 0) is a strict minimizer of Jγ1 + Jγ2 .

As in Subsection 4.1 of [4], we put a1 = −1 and then denote

P′(1) = Q(a0) (5.1)

where P is the polynomial defined in (4.31). Then Q(t) = b0 + b1t + b2t2 (b2 < 0) is a quadratic polynomial
in t ∈ R whose exact definition is described in [53]. Let disc(Q) = disc(Q)(n, γ) = b2

1 − 4b0b2 be the
discriminant of Q, which is a function of n ∈ N and γ ∈ (0, 1). Then we discover that it is positive for all
γ ∈ (0, 1) whenever n ≥ 52. To check this fact, we observe that disc(Q)(n, γ) = C(n, γ)R(n, γ) where

R(n, γ) ' 33075n17 − 3307500n16 + 132300
(
893 − 3γ2

)
n15

is the 17th order polynomial in n and C(n, γ) > 0 for every n ≥ 52 and γ ∈ (0, 1). After expanding R(n, γ) in
terms of n and γ, we put γ = 1 (0, respectively) into each term whose coefficient is negative (nonnegative,
respectively). Then we get R̃(n) ' 33075n17 − 3307500n16 + 117747000n15, which is obviously a lower
bound of R(n, γ) for any γ ∈ (0, 1). Since the largest real solution of R̃ is n ' 52.2022, we conclude that
R̃(n) > 0, hence R(n, γ) > 0 for each n ≥ 53. Also it can be directly checked that R(52, γ) > 0 for all
γ ∈ (0, 1). (The precise expression of R(n, γ), C(n, γ) and R̃(n) can be found in [53].)

Let us set

a0 =
−b1 −

√
disc(Q)

2b2
(5.2)

so that P′(1) = 0. We now claim
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Proposition 5.1. Fix γ ∈ (0, 1) and assume that n ≥ 52. If the coefficients a0 and a1 of the polynomial f
in (2.2) are selected by (5.2) and a1 = −1, then (1, 0) is the strict local minimizer of the localized energy
Jγ1 + Jγ2 . Furthermore (Jγ1 + Jγ2 )(1, 0) < 0.

Proof. Denote by ã0 the number which we chose for the coefficient a0, namely, the right-hand side of (5.2).
By the above discussion and (4.12), we see that (1, 0) is the critical point of Jγ1 + Jγ2 . Besides a direct
computation shows (Jγ1 + Jγ2 )(1, 0) < 0. We need to be verify that it satisfies conditions (C2) and (C3).

Step 1. Let us establish (C2) first. Thanks to (4.32), we have ∂δδ(Jγ1 + Jγ2 )(1, 0) = 4P′′(1)|a0=ã0 . Since
Q(99/50) > 0 for all γ ∈ (0, 1) and the leading coefficient b2 of Q is negative, we have ã0 > 99/50. On
the other hand, one can check that P′′(1) − P′(1) is an increasing linear function in a0, say Q̃(a0), whose
coefficients depend on n and γ. As a result, P′′(1) = Q̃(ã0) > Q̃(99/50) > 0.

Step 2. We check (C3). This will be followed by Proposition 4.14 and our assumption |W | > 0 once we
derive that P̃1(1) > 0 and P̃2(1) > 0. If we regard the functions P̃1 and P̃2 as a polynomial in a0, then clearly
their degrees are at most 2. In fact, further computation shows that they are increasing linear functions in a0
for any n ≥ 52 and γ ∈ (0, 1). From this fact, we get P̃m(1)|a0=ã0 > P̃m(1)|a0=99/50 > 0 for m = 1, 2. �

5.2 The lower dimensions

For lower dimensional case, we make the reduced energy functional Jγ0 to have a local minimizer by inserting
a polynomial f of higher degree (d0 ≥ 2) in the definition of the tensor h in (2.2). This approach is pursued
in the local cases by Brendle-Marques [15] (γ = 1), Almaraz [4] (γ = 1/2) and Wei-Zhao [82] (γ = 2).
Here we will select a quartic polynomial f (t) =

∑4
i=0 aiti as in [4] and [82]. In [15], the cubic polynomial

was chosen.

By using the computations in Subsections 4.4 and 4.5 again, we extend Propositions 4.8 and 4.14.

Proposition 5.2. Assume that n > 2γ + 20 and the degree of the polynomial f is d0 = 4. Then (4.32) and
(4.37) hold for some polynomials P of degree 10, and P̃1 and P̃2 of degree 9, respectively. The coefficients
of P, P̃1 and P̃2 depends on a0, · · · , a4. (The full details can be found in [53].)

Remark 5.3. As in the higher dimensional case, we obtain the polynomial of Almaraz [4] from P when
γ = 1/2. Furthermore, if we take f (s) = τ + 5s − s2 + 1

20 s3 and γ = 1, then we again attain the function I(s)
defined in [15, Proposition 18] as a factor of P.

Now, we set

f (t) = t4 −
882178
10000

t3 +
146178

100
t2 −

713925
100

t + a0 (5.3)

leaving a0 undetermined for a minute. Defining the polynomial Q as in (5.1), we again find that it is a
quadratic polynomial. Like above, let us write Q(t) = b0 + b1t + b2t2. We also deduce

1. disc(Q)(n, γ) > 0 for all γ ∈ (0, 1) whenever 25 ≤ n ≤ 51;

2. the function γ 7→ disc(Q)(24, γ) is positive if γ ∈ (0, γ∗) and negative if γ ∈ (γ∗, 1) where γ∗ '
0.940197. We chose f so that (0, γ∗) well approximates the longest interval where the blow-up phe-
nomenon occurs.

3. γ 7→ disc(Q)(23, γ) < 0 for all γ ∈ (0, 1). As a matter of fact, we could not find any quartic polynomial
f which leads the positive discriminant of Q for some 0 < γ < 1 provided that n = 23.

If we denote
n(γ) = min{n0 ∈ N : disc(Q)(n0, γ) > 0 for n0 ≤ n ≤ 51}

and take a0 as in (5.2), the following assertion is valid. This is an analogue of Proposition 5.1 for lower
dimensions.

Proposition 5.4. Fix γ ∈ (0, 1) and assume that n(γ) ≤ n ≤ 51. If the polynomial f is given by (5.3) with
(5.2), then (1, 0) is the strict local minimizer of the localized energy Jγ1 + Jγ2 . In addition, (Jγ1 + Jγ2 )(1, 0) < 0.
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Figure 1: The graph of γ 7→ disc(Q)(24, γ) (0 < γ < 1)

Proof. As in the proof of Proposition 5.1, the assertion is justified if we check that conditions (C2) and (C3)
are true. Their verification can be done for each n(γ) ≤ n ≤ 51. �

Remark 5.5. For a sufficiently small γ > 0, the best n(γ) one can get with a cubic (a quadratic, respectively)
polynomial f is 25 (29, respectively). Moreover we need n > 2γ + 24 when we put a quintic polynomial
f into the metric. This is because the polynomial P (see Proposition 4.8) would contain F1(1, 22) and
F4(3, 22) as its coefficients and they are finite only if the dimensional assumption n > 2γ + 24 holds.

5.3 Completion of the proof of Theorem 1.1

From what we have obtained so far, we can deduce the following existence result.

Proposition 5.6. Assume that n ≥ 24 if γ ∈ (0, γ∗) or n ≥ 25 if γ ∈ [γ∗, 1) (refer to Subsection 5.2 for
the definition of the number γ∗). If ε > 0 is a small parameter in (2.2), ḡ is the metric tensor and ρ is
the boundary defining function chosen in Section 2, then Eq. (2.13) possesses a positive solution Uε in
Rn+1

+ , whose restriction uε on Rn satisfies the fractional Yamabe equation (1.2) with c = 1 and ‖uε‖L∞(Rn) ≥

Cε−
n−2γ

2 .

Proof. For the existence of a positive solution to (2.13), it suffices to search a critical point of the functional
Jγ0 by Lemma 3.14. Lemma 4.2 and Proposition 4.3 ensure that if one finds a local minimizer of Jγ1 + Jγ2
(see (4.4) and (4.5)) in the admissible setA = (1− ε0, 1 + ε0)× Bn(0, ε0) for some small ε0 > 0, then the set
A must contain also a local minimum Jγ0 . However, we already know its validity from Propositions 5.1 and
5.4. Thus (2.13) has a positive solution. The lower L∞(Rn)-bound of the solution comes from (3.40). �

We are now ready to finish our proof of the main theorem.

Proof of Theorem 1.1. Define a smooth two-tensor hab in RN
+ as

hab(x) =

∞∑
m=m0

χ
(
4m2|x − xm|

)
2−(d0+1/6)m f

(
2m|x − xm|

2
)

Hab(x − xm).

Here χ ∈ C∞(R) is a truncation function such that χ(t) = 1 for |t| ≤ 1 and 0 for |t| ≥ 2, Hab is the tensor in
(2.1), xm = (m−1, 0, · · · , 0) ∈ RN

+ and

d0 =

1 for n ≥ 52 (see Subsection 5.1),
4 for 24 ≤ n ≤ 51 and γ ∈ (0, γ∗], or 25 ≤ n ≤ 51 and γ ∈ (γ∗, 1) (see Subsection 5.2).

If we set ḡ = exp (h), then one can construct a metric tensor g+ and a defining function ρ on RN
+ as described

in the proof of Proposition 2.1. Moreover, (2.9) remains valid because the proof requires only the local
structure of ḡ and the vanishing mean curvature condition H = 0 on Rn. Therefore, by choosing m0 ∈ N so
large that (2.3) holds, we can employ Proposition 5.6 with µ = 2−m/6, ε = 2−m/2 and ν = (4m)−1, completing
our proof of Theorem 1.1. �
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A The Loewner-Nirenberg problem

A.1 Existence and uniqueness of the solution

The existence theorem in Andersson-Chruściel-Friedrich [7] to the singular Yamabe problem is presented
in the setting of compact Riemannian manifolds. In this subsection we illustrate how their result can be
applied to the problem (2.8) defined in the upper half space.

To this end, we define some notations: Let B1/2 := BN((0, · · · , 0,−1/2), 1/2) be the ball of radius 1/2
centered at (0, · · · , 0,−1/2) ∈ RN and ys = (0, · · · , 0,−1). Moreover let C : RN

+ → B1/2 \{ys} be a conformal
equivalence between the sets RN

+ and B1/2 \ {ys}, andD its inverse expressed as

C(x) =
(x̄, xN + 1)
|x̄|2 + (xN + 1)2 + (0, · · · , 0,−1) and D(y) = C(y)

for x = (x̄, xN) ∈ RN
+ and y ∈ B1/2 \ {ys}. Next if we denote

W1/2(x) =
1(

|x̄|2 + (xN + 1)2) N−2
2

for x = (x̄, xN) ∈ RN
+ ,

then it is the standard bubble in RN
+ which is the same function as W1,0 in (2.17) up to a constant multiple

provided that γ = 1/2. Introduce also pullback metrics

ḡB := D∗
(
W

4
N−2
1/2 ḡ

)
in B1/2 \ {ys} and g̃B := D∗ (g̃) in B1/2.

We can smoothly extend ḡB on the whole closed ball B1/2 by defining ḡB(ys) = δB(ys), where δB means
the canonical metric on the ball B1/2, because ḡ is equal to the standard metric gc outside of the half ball
{|x| ≤ 1}. Furthermore g̃B(y) = D∗

(
x−2

N ḡ(x)
)

= x−2
N (W1/2(x))−

4
N−2 ḡB(y) for all y = C(x) ∈ B1/2.

Lemma A.1. Set ρB(y) = (D(y))N(W1/2(D(y)))
2

N−2 for y = C(x) ∈ B1/2 \ {ys} and ρB(ys) = 0. Then it is a
smooth boundary defining function for B1/2 satisfying |dρB|ḡB = 1 on ∂B1/2.

Proof. Clearly ρB(y) > 0 in B1/2 and ρB(y) = (D(y))N = 0 for y ∈ ∂B1/2 \ {ys}. Since the decay of
W1/2(x)

2
N−2 is |x|−2 for |x| large enough, the definition ρB(ys) = 0 gives the smooth extension of ρB to the

singularity.
On the other hand, the condition |dρB|ḡB = 1 on ∂B1/2 implies that the sectional curvature of g̃B = ρ−2

B ḡB

approaches to −1 at ∂B1/2, and vice versa. Since g̃ is equal to the standard hyperbolic metric in {|x| ≥ 1}, the
sectional curvature of g̃B is precisely −1 in the neighborhood of ys. Moreover, we have |dxN |ḡ = 1 on RN

+ ,
which means that the sectional curvature of g̃(x) goes to −1 as x tends to Rn, so does the sectional curvature
of g̃B(y) as y converges to a point in ∂B1/2 \ {ys}. �

In summary, (B1/2, ḡB) is a compact manifold, ρB is a smooth defining function for its boundary ∂B1/2 and
g̃B = ρ−2

B ḡB in B1/2. Therefore, according to [7], there is a unique solution uB ∈ CN−1(B1/2) ∩C∞(B1/2) of

−
4(N − 1)

N − 2
∆g̃Bu + Rg̃Bu + N(N − 1)u

N+2
N−2 = 0 in B1/2 and u = 1 on ∂B1/2. (A.1)

Then u(x) = uB(C(x))
(
for x ∈ RN

+

)
satisfies (2.8).

A.2 Expansions for the solution near the boundary

This subsection is devoted to give account of the derivation of Proposition 2.1 under the assumption that
N ≥ 22. To get information on the lower order terms of the expansion for ρ (or equivalently, u) in terms of
xN , we will inspect the equation that z := u − 1 satisfies. We remark that our proof is inspired by Han-Jiang
[44].
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Introduce a linear operator

L(z̃) =
4(N − 1)

N − 2

[
∆ḡz̃ − (N − 2)x−1

N ∂N z̃ − Nx−2
N z̃

]
− Rḡz̃ for z̃ ∈ C2(RN

+ )

and a function g : (−1,∞)→ [0,∞) by

g(t) := (1 + t)
N+2
N−2 −

(
1 +

N + 2
N − 2

t
)
. (A.2)

Then, by employing the relations

∆g̃ = x2
N∆ḡ − (N − 2)xN∂N and Rg̃ = −N(N − 1) + Rḡx2

N (A.3)

which are valid due to the condition H = 0, one can deduce from (2.8) that z is a solution of Q(z̃) = 0 where
Q is the operator

Q(z̃) = L(z̃) − N(N − 1)x−2
N g(z̃) − Rḡ. (A.4)

To approximate the function z near the boundary Rn, let us set a polynomial zd0 in the xN-variable,

zd0(x̄, xN) =

2d0+2∑
m=1

D2m(x̄)x2m
N (1 ≤ d0 ≤ 4) (A.5)

where smooth functions D2m in Rn are determined in the next lemma. We also remind that ∆ḡ = ∆ĥ + ∂NN

and Rḡ(x̄, xN) = Rĥ(x̄) if xN > 0 is small enough. Then the main order term of D2m will turn out to be equal
to ∆m−1

ĥ
Rĥ up to a constant factor.

Lemma A.2. Let R(%1, %2) = Bn(0, %1) × (0, %2) be a cylinder in RN
+ . Then, for a fixed small number

%2 ∈ (0, 1), there exist a constant C = C(%2) > 0 (independent of %1) and functions D2m ∈ C∞(RN
+ ) for

m = 1, · · · , 2d0 + 2 satisfying∣∣∣Q(zd0)(x)
∣∣∣ ≤ Cx2(2d0+2)

N for all x = (x̄, xN) ∈ R(%1, %2).

Proof. By putting the polynomial zd0 given (A.5) into (A.4), we observe that

Q(zd0) =
(
−12(N − 1)D2 − Rĥ

)
+

2d0+1∑
m=1

[
4(N − 1)

N − 2

(
∆ĥD2m − (2m + 3)(N − 2(m + 1))D2(m+1)

)
− D2mRĥ

]
x2m

N

+

(
4(N − 1)

N − 2
∆ĥD2(2d0+2) − D2(2d0+2)Rĥ

)
x2(2d0+2)

N − N(N − 1)x−2
N g

(
zd0

)
where

g
(
zd0

)
=

(N+2
N−2
2

)
D2

2x4
N +

(N+2
N−2
3

) (
2D2D4 + D3

2

)
x6

N + · · ·

is a power series whose coefficients are sums of products of two or more D2m’s. Expanding Q(zd0) in
ascending power of xN up to the 2(2d0 + 2)-th order yields

Q(zd0) =

2d0+1∑
m=0

Gm
(
D2, · · · ,D2m,∆ĥD2m,D2(m+1),Rĥ

)
x2m

N

+ G2d0+2
(
D2, · · · ,D2(2d0+2),∆ĥD2(2d0+2),Rĥ

)
x2(2d0+2)

N + O
(
x2(2d0+3)

N

)
where Gm is a function which can be explicitly written (setting D0 = 0). For example, we have

G0 = −12(N − 1)D2 − Rĥ and G1 =
4(N − 1)

N − 2

(
∆ĥD2 − 5(N − 4)D4

)
− D2Rĥ − N(N − 1)D2

2.
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Solving the equations G0 = · · · = G2d0+1 = 0 inductively, we obtain

D2 = −
Rĥ

12(N − 1)
and D2(m+1) =

∆ĥD2m

(2m + 3)(N − 2(m + 1))
+ Rm

(
D2, · · · ,D2m,Rĥ

)
(A.6)

for m = 1, · · · , 2d0 + 1, where the remainder Rm is a sum of products of two or more its arguments. By (2.3)
and (2.5), ‖G2d0+2‖L∞(Rn) is controlled by the small number η0. Hence the proof is completed. �

As a result of the previous lemma, one gets

L(z − zd0) = O
(
x2(2d0+2)

N

)
+ N(N − 1)x−2

N `(x)(z − zd0) where `(x) =
g(z(x)) − g(zd0(x))

z(x) − zd0(x)
. (A.7)

Furthermore, given any fixed η1 > 0, we may assume that z(x), zd0(x) ≥ −η1 for all x ∈ R(%1, %2) by
decreasing %2 > 0 in the statement of Lemma A.2 and η0 > 0 in (2.3) if necessary. Therefore we have
`(x) ≥ −Cη1 for x ∈ R(%1, %2), which makes possible to deduce the comparison principle to the operator

L1(z̃) = L(z̃) − N(N − 1)x−2
N `(x)z̃ defined for z̃ ∈ C2(R(%1, %2)). (A.8)

Lemma A.3. Choose a small number η2 > 0 such that |Rḡ| ≤ η2 in RN
+ , which is possible due to (2.3) and

(2.5). In addition, let %1 > 0 be any number and %2 ∈ (0, 1) sufficiently small so that `(x) ≥ −Cη1 for every
x ∈ R(%1, %2). If L1(z̃1) ≥ L1(z̃2) in the set R(%1, %2) and z̃1 ≤ z̃2 on its boundary ∂R(%1, %2), then z̃1 ≤ z̃2 in
R(%1, %2).

Proof. Suppose not. Then we can choose a point x0 = (x̄0, (x0)N) ∈ R(%1, %2) satisfying (x0)N > 0, (z̃1 −

z̃2)(x0) > 0, ∇(z̃1 − z̃2)(x0) = 0 and (∆ĥ(z̃1 − z̃2) + ∂NN(z̃1 − z̃2))(x0) ≤ 0. Thus

0 ≥
4(N − 1)

N − 2

[
∆ĥ(z̃1 − z̃2) + ∂NN(z̃1 − z̃2)

]
(x0)

≥

[
4(N − 1)N

N − 2
· (x0)−2

N + N(N − 1)(x0)−2
N `(x0) + Rĥ(x0)

]
· (z̃1 − z̃2) (x0)

≥

[
N(N − 1)

{
4

N − 2
−Cη1

}
(%2)−2 − η2

]
· (z̃1 − z̃2) (x0) > 0

provided that %2
2 ∈

(
0,min

{
1,N(N − 1)

{
4

N−2 −Cη1
}
η−1

2

})
. Accordingly we reach the contradiction. The

lemma should hold. �

Together with Lemmas A.2 and A.3, we are able to estimate the difference between z and its approximation
z0.

Lemma A.4. Fix any η3 > 0 and small ν > 0. Then it holds that∣∣∣z(x) − zd0(x)
∣∣∣ ≤ Cx2(2d0+3)−η3

N for all x ∈ R(ν, ν). (A.9)

Proof. Its proof will be carried out in three steps.

Step 1. Define

z∗(x̄, xN) = C∗1

sin
 π

2%2
1

|x̄|2
 +

π

2%2
1

cos
 π

2%2
1

|x̄|2
 + C∗2x2(2d0+3)−η3

N

with C∗1,C
∗
2 > 0 to be determined soon. We claim that there is C = C(%2) > 0 such that

L1(z∗) ≤ −Cx2(2d0+2)−η3
N in R(%1, %2) (A.10)

where (%1, %2) is the pair for which Lemma A.3 is true.
Write %∗1 = 2%2

1/π for simplicity. Since |hab(x)| = 0 for |x| ≤ 1 (see (2.2)), we see that

∆ĥ

(
sin

(
r2/%∗1

)
+ cos

(
r2/%∗1

)
/%∗1

)
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≤ 2 cos
(
r2/%∗1

)
/%∗1 + O (|hab| + |Dhab|)

(
sin

(
r2/%∗1

)
/
(
%∗1

)2
+ cos

(
r2/%∗1

)
/%∗1

)
.

Therefore we have

L1
(
sin

(
r2/%∗1

)
+ cos

(
r2/%∗1

)
/%∗1

)
≤

4(N − 1)
N − 2

[
∆ĥ − N%−2

2

(
1 −

N − 2
4

Cη1

)
+

N − 2
4(N − 1)

η2

] (
sin

(
r2/%∗1

)
+ cos

(
r2/%∗1

)
/%∗1

)
≤ 0

(A.11)

where r = |x̄|.
Moreover the polynomial α ∈ R 7→ α2 − (N − 1)α − N has N and −1 as its zeros. Hence given that

N ≥ 22, we compute

L1
(
xα0

N

)
≤

4(N − 1)
N − 2

[(
α2

0 − (N − 1)α0 − N
)

+
N − 2

4(N − 1)
η2%

2
2 +

N(N − 2)
4

Cη1

]
xα0−2

N ≤ −C̃xα0−2
N (A.12)

in R(%1, %2) where α0 = 2(2d0 + 3) − η3.
Consequently (A.10) follows from (A.11) and (A.12).

Step 2. Combining (A.7) and (A.10), we obtain

L1(z∗) − L1
(
z − zd0

)
≤ −Cx2(2d0+2)−η3

N

(
1 − C̃xη3

N

)
≤ 0 in R(%1, %2)

for some C, C̃ > 0. Moreover ‖z− zd0‖L∞({x∈RN
+ :xN≤%2}) is bounded, so we can choose C∗1, C∗2 > 0 so large that

z − zd0 ≤ z∗ on ∂R(%1, %2). Thus we infer from the maximum principle in Lemma A.3 that z − zd0 ≤ z∗ holds
in R(%1, %2). By taking %1 → 0 and %2 = ν, we observe that (z − zd0)(x) ≤ C∗2x2(2d0+3)−η3

N for x ∈ R(ν, ν).

Step 3. Similarly we have (z − zd0)(x) ≥ −z∗(x) for all x ∈ R(%1, %2). By letting %1 → 0 again in the square
R(ν, ν), we conclude that (A.9) is true. �

By elliptic regularity, we also obtain decay estimates for the first and second derivatives of z − zd0 (cf.
[61, 44]).

Lemma A.5. There exists a constant C > 0 such that∣∣∣Dx̄(z(x) − zd0(x))
∣∣∣ +

∣∣∣D2
x̄(z(x) − zd0(x))

∣∣∣ ≤ Cx2(2d0+3)−η3
N ,∣∣∣∂xN (z(x) − zd0(x))

∣∣∣ ≤ Cx2(2d0+2)−η3
N ,∣∣∣∂xN xN (z(x) − zd0(x))

∣∣∣ ≤ Cx2(2d0+1)−η3
N

for every x ∈ R(ν, ν). Here Dx̄ implies the derivative with respect to the x̄-variable and so forth.

We are now ready to conclude the proof of Proposition 2.1. However, before initiating the proof,
it may as well note that the rescaled function (∆m−1

ĥ
Rĥ)(ε x̄) of the main term of D2m is comparable to

µ2ε4d0+4−2m∆m−1
ĥ

(∂kHi j)2(x̄) in the set {|x̄| ≤ ν/ε} where Hi j(x̄) = f (|x̄|2)Hi j(x̄). This is because we have by
(2.2) and (2.6) that

Rĥ(ε x̄) = −
1
4
µ2ε4d0+2

n∑
i, j,k=1

(
∂kHi j(x̄)

)2
+ O

(
µ3ε6d0+4|x̄|4

(
1 + |x̄|6d0

))
in C∞({|x̄| ≤ ν/ε}). (A.13)

Since ∂kHi j is a polynomial of degree 2d0 + 1, we have also that ∆
(2d0+3)−1
ĥ

(∂kHi j)2 = 0.

Proof of Proposition 2.1. A combination of (A.5) and (A.9) implies

z(εx) =

2d0+2∑
m=1

D2m(ε x̄)(εxN)2m + O
(
(εxN)2(2d0+3)−η3

)
in BN

+ (0, ν/ε). (A.14)
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Moreover, by virtue of (4.6), it holds

∆ĥ(ε·)v = ∂i
(
ĥi j(ε·)∂ jv

)
= ĥi j(ε·)∂i jv + O (|h(ε·)||D(h(ε·))||Dv|)

= ∆v + O
(
µε2(d0+1)|x̄|2

(
1 + |x̄|2d0

)
|D2v|

)
+ O

(
µ2ε4(d0+1)|x̄|3

(
1 + |x̄|4d0

)
|Dv|

)
for any v ∈ C∞(Rn), so we get from (A.6) and (A.13) that

D2(ε x̄)(εxN)2 =
µ2ε4(d0+1)

48(N − 1)

n∑
i, j,k=1

(
∂kHi j(x̄)

)2
x2

N + O
(
µν2(d0+1) · µ2ε4(d0+1)|x̄|2

(
1 + |x̄|4d0

)
x2

N

)
(A.15)

and
D2(m+1)(ε x̄)(εxN)2(m+1)

=

[
ε2m∆ (D2m(ε x̄))

(2m + 3)(N − 2(m + 1))
+ O

(
µ3ε6(d0+1)|x̄|2

(
1 + |x̄|6d0+2−2m

))]
x2(m+1)

N

+ O
(
|D2m(ε·)|2ε2(m+1)x2(m+1)

N

)
=
µ2ε4(d0+1)

48(N − 1)

 m∏
m̃=1

1
(2m̃ + 3)(N − 2(m̃ + 1))

 n∑
i, j,k=1

∆m
(
∂kHi j(x̄)

)2
x2(m+1)

N

+ O
((
µν2(d0+1) + µ2ν4d0+6−2m

)
· µ2ε4(d0+1)

(
1 + |x̄|4d0+2−2m

)
x2(m+1)

N

)
(A.16)

in BN
+ (0, ν/ε) for each m = 1, · · · , 2d0 + 1. Subsequently we get from (A.14)-(A.16) that

z(εx) =
µ2ε4(d0+1)

48(N − 1)

2d0+2∑
m=1


m−1∏
m̃=1

1
(2m̃ + 3)(N − 2(m̃ + 1))

 n∑
i, j,k=1

∆m−1
(
∂kHi j(x̄)

)2

 x2m
N

+ O
(
µ3ε4(d0+1)|x|2

(
1 + |x|4d0

)
x2

N

)
+ O

(
(εxN)2(2d0+3)−η3

) (A.17)

in BN
+ (0, ν/ε). Since the magnitude of z(ε·) is O(µ2ε4(d0+1)| · |4(d0+1)), the m-th power of z for m ≥ 2 can

be ignored. Accordingly (2.9) follows from (A.17) and ρ = (1 + z)−
2

N−2 xN . Lemma A.5 guarantees the
C2-validity of (2.9), establishing the proposition. �

A.3 Global behavior of the solution

Here we investigate the behavior of z = u−1 in the whole space RN
+ (N ≥ 3) where u is the solution of (2.8).

It is one of the key parts in the proof of Proposition 3.10.

Lemma A.6. Let η0 > 0 be a fixed number in (2.3), which can be reduced if needed. Then there is a constant
C > 0 relying only on N such that

∣∣∣∇m
x̄ z(x)

∣∣∣ ≤ Cη0x2
N

1 + |x|4+m and
∣∣∣∂m

xN
z(x)

∣∣∣ ≤ Cη0x2−m
N

1 + |x|4
for any x ∈ RN

+ and m = 0, 1, 2. (A.18)

Proof. The notations in Appendix A.1 will be used again in this proof.
By (2.3), (2.5) and (A.3), one can pick a number C > 0 (depending only on N) so large that the function

ū := 1 + Cη0x2
NW

4
N−2
1/2 (x) satisfy

−
4(N − 1)

N − 2
∆g̃u =

4(N − 1)
N − 2

Cη0x2
N

2
{
(N − 3)

(
1 + |x̄|2

)
+ 6xN + (N − 3)x2

N

}
(
|x̄|2 + (xN + 1)2)3 + O(|h|)

 ≥ 0

and
Rg̃u + N(N − 1)u

N+2
N−2 =

[
N(N − 1)

(
u

4
N−2 − 1

)
+ O

(
|Dh|2

)
x2

N

]
u ≥ Cη0x2

NW
4

N−2
1/2 (x) · u ≥ 0

in RN
+ . This implies that ū is a global upper solution to (2.8). Similarly, one sees that u := 1−Cη0x2

NW
4

N−2
1/2 (x)

is a lower solution to (2.8). Because of the conformal equivalence between RN
+ and B1/2, it follows that the
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functions v̄ := 1 + Cη0ρ
2
B(y) and v := 1 −Cη0ρ

2
B(y) in B1/2 are super- and sub-solutions of (A.1). Therefore

the standard monotone iteration scheme produces a solution v of (A.1) such that v ≤ v ≤ v̄ (adapt the proof
of Proposition 2.1 in [10]). Since v = uB by the uniqueness, we get Eq. (A.18) with m = 0.

The higher regularity results ((A.18) with m = 1, 2) follows from the scaling property of equation
Q(z) = 0 in RN

+ (cf. [59, Proposition 3.1]). �

Remark A.7. By applying the maximum principle, it is possible to improve the decay estimate of z. Espe-
cially, we observe that z decays faster as the dimension N gets higher: It holds that

|z(x)| ≤ Cη0x2
N |x|

−
(
2+
√

3N−2
)

in
{
x ∈ RN

+ : |x| > 1
}

(A.19)

for C > 0 depending only on N.

Proof. Set z̄(x) = ‖z‖C2
(
RN

+

)x2
N |x|

−α in {|x| > 1} with any fixed α ≥ 4. Since ḡab = δab if |x| > 1 and g(t) ≥ 0
for any t ≥ −1 (see (A.2) for the definition of g), we see

Q(z̄) ≤
4(N − 1)

N − 2

[
∆z̄ − (N − 2)x−1

N ∂N z̄ − Nx−2
N z̄

]
=

4(N − 1)
N − 2

‖z‖C2
(
RN

+

)|x|−α [
−3(N − 2) + α(α − 4)x2

N |x|
−2

]
≤ 0 = Q(z)

provided that 4 ≤ α ≤ 2 +
√

3N − 2. Moreover, it holds that z = 0 ≤ z̄ in {|x| > 1 and xN = 0} and
|z(x)| ≤ ‖∂NNz‖L∞({xN<1})x2

N/2 ≤ z̄(x) in {|x| = 1 and xN > 0}.
By Lemma A.6, ‖z‖C2

(
RN

+

) ≤ Cη0. Besides z̄(x), z(x) → 0 uniformly as |x| → ∞, so we can apply the
argument in the proof of Lemma A.3 to derive that z(x) ≤ z̄(x) for |x| > 1. Analogously, z(x) ≥ −z̄(x) is true
for |x| > 1, validating (A.19). �

Proof of (3.41). Denote by g+
h by the hyperbolic metric in RN

+ , i.e., g+
h = x−2

N (dx̄2 + dx2
N). It is well known

that

λ1
(
−∆g+

h

)
= inf

V∈C∞c (RN
+ )\{0}

∫
RN

+

(
g+

h

)ab
∂aV∂bV

√∣∣∣g+
h

∣∣∣dx∫
RN

+
V2

√∣∣∣g+
h

∣∣∣dx
= inf

V∈C∞c (RN
+ )\{0}

∫
RN

+
x2−N

N |∇V |2dx∫
RN

+
x−N

N V2dx
=

(N − 1)2

4

(see [66]). By (2.3) and Lemma A.6, there are a bounded function ẑ and a two-tensor h̄ab in RN
+ such that

|h̄ab| is uniformly bounded, u
4

N−2 = 1 + η0ẑ and ḡab = δab + η0h̄ab in RN
+ . Hence it follows from the definition

of g+ that
g+

ab = x−2
N (1 + η0ẑ)(δab + η0h̄ab) := (g+

h )ab + x−2
N η0h̄′ab.

This implies that
√
|g+| = x−N

N (1 + O(η0)) and (g+ − g+
h )ab = x2

Nη0h̄′′ab for some tensor h̄′′ in RN
+ having the

bounded norm. We obtain accordingly

λ1
(
−∆g+

)
= inf

V∈C∞c (RN
+ )\{0}

(1 + O(η0))
(∫
RN

+
x2−N

N |∇V |2dx
)

(1 + O(η0))
(∫
RN

+
x−N

N V2dx
) ≥ (1 −Cη0) · λ1

(
−∆g+

h

)
>

n2

4
− γ2

by choosing η0 > 0 small. �

B The values of integrals F1,n,γ, F2,n,γ and F3,n,γ

The next lemma enumerate some values of integrals F1,n,γ, F2,n,γ and F3,n,γ defined in (4.14) which are
necessary to calculate the function Jγ2 in (4.5) for the case d0 = 1. It can be derived in a similar manner
to Lemma 4.4 However, the computation becomes much more involved, so we carried out it by using
Mathematica. More values required to deal with the case d0 = 4 can be found in the supplement [53].
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Lemma B.1. We have

F1,n,γ(3, 0) =
∣∣∣S n−1

∣∣∣  8(n − 3)
(
1 − γ2

)
3(n − 4)(n − 2γ − 4)(n − 2γ + 4)

 A1B2,

F1,n,γ(3, 2) =
∣∣∣S n−1

∣∣∣  8(n − 3)n
(
1 − γ2

)
(5(n − 3)(n − 5) + (1 − 2γ)(1 + 2γ))

15(n − 4)(n − 6)(n − 2γ − 4)(n − 2γ + 4)(n − 2γ − 6)(n + 2γ − 6)

 A1B2,

F1,n,γ(3, 4) =
∣∣∣S n−1

∣∣∣ [ 8(n−3)n(n+2)(1−γ2)(35(n−3)(n−5)2(n−7)+R1,n,γ(3,4))
105(n−4)(n−6)(n−8)(n−2γ−4)(n−2γ+4)(n−2γ−6)(n+2γ−6)(n−2γ−8)(n+2γ−8)

]
A1B2,

F1,n,γ(5, 0) =
∣∣∣S n−1

∣∣∣  128(n − 5)(n − 3)
(
4 − γ2

) (
1 − γ2

)
15(n − 4)(n − 6)(n − 2γ − 4)(n + 2γ − 4)(n − 2γ − 6)(n + 2γ − 6)

 A1B2,

F1,n,γ(5, 2) =
∣∣∣S n−1

∣∣∣ [ 128(n−5)(n−3)n(4−γ2)(1−γ2)(7(n−3)(n−7)+(1−2γ)(1+2γ))
105(n−4)(n−6)(n−8)(n−2γ−4)(n−2γ+4)(n−2γ−6)(n+2γ−6)(n−2γ−8)(n+2γ−8)

]
A1B2,

F1,n,γ(7, 0) =
∣∣∣S n−1

∣∣∣ [ 1024(n−7)(n−5)(n−3)(9−γ2)(4−γ2)(1−γ2)
35(n−4)(n−6)(n−8)(n−2γ−4)(n−2γ+4)(n−2γ−6)(n+2γ−6)(n−2γ−8)(n+2γ−8)

]
A1B2,

F2,n,γ(1, 2) =
∣∣∣S n−1

∣∣∣  (n + 2)
(
3(n − 1)2 +

(
1 − 4γ2

))
12(n − 1)

 A1B2,

F2,n,γ(1, 4) =
∣∣∣S n−1

∣∣∣  (n + 2)(n + 4)
(
15(n − 1)2(n − 3)2 + R2,n,γ(1, 4)

)
60(n − 1)(n − 4)(n − 2γ − 4)(n + 2γ − 4)

 A1B2,

F2,n,γ(1, 6) =
∣∣∣S n−1

∣∣∣ [ (n+2)(n+4)(n+6)(35(n−1)2(n−3)2(n−5)2+R2,n,γ(1,6))
140(n−1)(n−4)(n−6)(n−2γ−4)(n+2γ−4)(n−2γ−6)(n+2γ−6)

]
A1B2,

F2,n,γ(3, 4) =
∣∣∣S n−1

∣∣∣  2(n + 2)(n + 4)
(
1 − γ2

) (
35(n − 1)(n − 3)2(n − 5) + R2,n,γ(3, 4)

)
105(n − 4)(n − 6)(n − 2γ − 4)(n + 2γ − 4)(n − 2γ − 6)(n + 2γ − 6)

 A1B2,

F2,n,γ(3, 6) =
∣∣∣S n−1

∣∣∣ [ 2(n+2)(n+4)(n+6)(1−γ2)(105(n−1)(n−3)2(n−5)2(n−7)+R2,n,γ(3,6))
315(n−4)(n−6)(n−8)(n−2γ−4)(n+2γ−4)(n−2γ−6)(n+2γ−6)(n−2γ−8)(n+2γ−8)

]
A1B2,

F2,n,γ(5, 0) =
∣∣∣S n−1

∣∣∣  32(n − 3)
(
4 − γ2

) (
1 − γ2

)
15(n − 4)(n − 2γ − 4)(n + 2γ − 4)

 A1B2,

F2,n,γ(5, 2) =
∣∣∣S n−1

∣∣∣ [32(n−3)(n+2)(4−γ2)(1−γ2)(7(n−1)(n−5)+(1−2γ)(1+2γ))
105(n−4)(n−6)(n−2γ−4)(n+2γ−4)(n−2γ−6)(n+2γ−6)

]
A1B2,

F2,n,γ(5, 4) =
∣∣∣S n−1

∣∣∣ [ 32(n−3)(n+2)(n+4)(4−γ2)(1−γ2)(21(n−1)(n−3)(n−5)(n−7)+R2,n,γ(5,4))
315(n−4)(n−6)(n−8)(n−2γ−4)(n+2γ−4)(n−2γ−6)(n+2γ−6)(n−2γ−8)(n+2γ−8)

]
A1B2,

F2,n,γ(7, 0) =
∣∣∣S n−1

∣∣∣  256(n − 5)(n − 3)
(
9 − γ2

) (
4 − γ2

) (
1 − γ2

)
35(n − 4)(n − 6)(n − 2γ − 4)(n + 2γ − 4)(n − 2γ − 6)(n + 2γ − 6)

 A1B2,

F2,n,γ(7, 2) =
∣∣∣S n−1

∣∣∣ [ 256(n−5)(n−3)(n+2)(9−γ2)(4−γ2)(1−γ2)(9(n−1)(n−7)+(1−2γ)(1+2γ))
315(n−4)(n−6)(n−8)(n−2γ−4)(n+2γ−4)(n−2γ−6)(n+2γ−6)(n−2γ−8)(n+2γ−8)

]
A1B2,

F2,n,γ(9, 0) =
∣∣∣S n−1

∣∣∣ [ 8192(n−7)(n−5)(n−3)(16−γ2)(9−γ2)(4−γ2)(1−γ2)
315(n−4)(n−6)(n−8)(n−2γ−4)(n+2γ−4)(n−2γ−6)(n+2γ−6)(n−2γ−8)(n+2γ−8)

]
A1B2,

F3,n,γ(3, 4) =
∣∣∣S n−1

∣∣∣ 2(n + 2)(2 − γ)(1 − γ)
(
35(n − 1)(n − 3)2(n − 4)(n − 5) − R3,n,γ(3, 4)

)
105(n − 4)(n − 6)(n − 2γ − 4)(n + 2γ − 4)(n − 2γ − 6)(n + 2γ − 6)

 A1B2,

F3,n,γ(3, 6) =
∣∣∣S n−1

∣∣∣ [ 2(n+2)(n+4)(2−γ)(1−γ)(105(n−1)(n−3)2(n−5)2(n−6)(n−7)−R3,n,γ(3,6))
315(n−4)(n−6)(n−8)(n−2γ−4)(n+2γ−4)(n−2γ−6)(n+2γ−6)(n−2γ−8)(n+2γ−8)

]
A1B2,

F3,n,γ(5, 0) =
∣∣∣S n−1

∣∣∣  32(n − 3)(3 − γ)(2 − γ)
(
1 − γ2

)
15(n − 4)(n − 2γ − 4)(n + 2γ − 4)

 A1B2,

F3,n,γ(5, 2) =
∣∣∣S n−1

∣∣∣ [32(n−3)(3−γ)(2−γ)(1−γ2)(7(n−1)(n−2)(n−5)−R3,n,γ(5,2))
105(n−4)(n−6)(n−2γ−4)(n+2γ−4)(n−2γ−6)(n+2γ−6)

]
A1B2,

F3,n,γ(5, 4) =
∣∣∣S n−1

∣∣∣ [ 32(n−3)(n+2)(3−γ)(2−γ)(1−γ2)(21(n−7)(n−5)(n−4)(n−3)(n−1)−R3,n,γ(5,4))
315(n−4)(n−6)(n−8)(n−2γ−4)(n+2γ−4)(n−2γ−6)(n+2γ−6)(n−2γ−8)(n+2γ−8)

]
A1B2,
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F3,n,γ(7, 0) =
∣∣∣S n−1

∣∣∣  256(n − 5)(n − 3)(4 − γ)(3 − γ)
(
4 − γ2

) (
1 − γ2

)
35(n − 4)(n − 6)(n − 2γ − 4)(n + 2γ − 4)(n − 2γ − 6)(n + 2γ − 6)

 A1B2,

F3,n,γ(7, 2) =
∣∣∣S n−1

∣∣∣ [ 256(n−5)(n−3)(4−γ)(3−γ)(4−γ2)(1−γ2)(9(n−7)(n−2)(n−1)−R3,n,γ(7,2))
315(n−4)(n−6)(n−8)(n−2γ−4)(n+2γ−4)(n−2γ−6)(n+2γ−6)(n−2γ−8)(n+2γ−8)

]
A1B2,

F3,n,γ(9, 0) =
∣∣∣S n−1

∣∣∣ [ 8192(n−7)(n−5)(n−3)(5−γ)(4−γ)(9−γ2)(4−γ2)(1−γ2)
315(n−4)(n−6)(n−8)(n−2γ−4)(n+2γ−4)(n−2γ−6)(n+2γ−6)(n−2γ−8)(n+2γ−8)

]
A1B2

for n > 2γ + 8 where

R1,n,γ(3, 4) =
(
1 − 4γ2

) [
14n2 − 140n + 377 − 12γ2

]
,

R2,n,γ(1, 4) =
(
1 − 4γ2

) [
10n2 − 40n + 57 − 12γ2

]
,

R2,n,γ(1, 6) =
(
1 − 4γ2

) [
35n4 − 420n3 + 1939n2 − 4074n + 3645

+80γ4 − 4γ2
(
21n2 − 126n + 275

)]
,

R2,n,γ(3, 4) =
(
1 − 4γ2

) [
14n2 − 84n + 153 − 12γ2

]
,

R2,n,γ(3, 6) =
(
1 − 4γ2

) [
9
(
7n4 − 112n3 + 685n2 − 1896n + 2105

)
+80γ4 − 4γ2

(
27n2 − 216n + 575

)]
,

R2,n,γ(5, 4) =
(
1 − 4γ2

) [
6n2 − 48n + 99 − 4γ2

]
,

R3,n,γ(3, 4) = (1 − 2γ)
[
42n3 − 532n2 + 2103n − 2844 + 24γ3(n + 4)

−84γ2(n − 4) − 14γ
(
2n3 − 12n2 + 15n + 36

)]
,

R3,n,γ(3, 6) = (1 − 2γ)
[
9
(
21n5 − 518n4 + 4931n3 − 22922n2 + 52567n − 48810

)
− 160γ5(n + 6)

+ 80γ4(11n − 42) + 8γ3
(
27n3 − 162n2 − 97n + 2550

)
− γ2

(
756n3 − 10584n2 + 50308n − 82200

)
−18γ

(
7n5 − 126n4 + 861n3 − 2534n2 + 2153n + 2730

)]
,

R3,n,γ(5, 2) = (1 − 2γ)
[
(3n − 22) − 2γ(n + 2)

]
,

R3,n,γ(5, 4) = (1 − 2γ)
[
3
(
6n3 − 104n2 + 543n − 892

)
+ 8γ3(n + 4)

−4γ2
(
3n3 + 7n − 44

)
+ 2γ

(
48n2 − 83n − 116

)]
,

R3,n,γ(7, 2) = (1 − 2γ)
[
3(n − 10) − 2γ(n + 2)

]
.

Acknowledgement. S. Kim is indebted to Professor M. d. M. González and Dr. W. Choi for their valuable
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[8] T. Aubin, Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl.
55 (1976), 269–296. 2

[9] P. Aviles, R. C. McOwen, Complete conformal metrics with negative scalar curvature in compact Riemannian manifolds,
Duke Math. J. 56 (1988), 395–398. 4, 6

[10] P. Aviles, R. C. McOwen, Conformal deformation to constant negative scalar curvature on noncompact Riemannian mani-
folds, J. Differential Geom. 27 (1988), 225–239. 43

[11] A. Bahri, Proof of the Yamabe conjecture, without the positive mass theorem, for locally conformally flat manifolds, Ein-
stein metrics and Yang-Mills connections (ed. by Toshiki Mabuchi and Shigeru Mukai), Lecture Notes in Pure and Pllied
Mathematics, vol. 145, Marcel Dekker, New York, (1993), 1–26. 2

[12] M. Berti, A. Malchiodi, Non-compactness and multiplicity results for the Yamabe problem on S n, J. Funct. Anal. 180 (2001),
210–241. 3

[13] S. Brendle, Blow-up phenomena for the Yamabe equation, J. Amer. Math. Soc. 21 (2008), 951–979. 3, 4, 5, 25, 31, 32, 33, 35

[14] S. Brendle, S. Chen, An existence theorem for the Yamabe problem on manifolds with boundary, J. Eur. Math. Soc. 16 (2014),
991–1016. 3

[15] S. Brendle, F. Marques, Blow-up phenomena for the Yamabe equation II, J. Differential Geom. 81 (2009), 225–250. 3, 4, 32,
35, 36
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