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Abstract

Let (X"*!, g*) be an (n+1)-dimensional asymptotically hyperbolic manifold with a conformal infinity
(M", [h]). The fractional Yamabe problem addresses to solve

A n+2
Pl hlw) =cur>, u>0 onM

where ¢ € R and PY[g", h] is the fractional conformal Laplacian whose principal symbol is (=A)”. In
this paper, we construct a metric on the half space X = R"*!, which is conformally equivalent to the unit
ball, for which the solution set of the fractional Yamabe equation is non-compact provided that n > 24
fory € (0,v") and n > 25 for y € [y*, 1) where y* € (0, 1) is a certain transition exponent. The value of
" turns out to be approximately 0.940197.
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1 Introduction

Given n € N, let (X"*!,¢%) be an (n + 1)-dimensional asymptotically hyperbolic manifold with a con-
formal infinity (M", [A)). In [43]], Graham and Zworski introduced the fractional conformal Laplacian
P}; = PY[g*, k] for y € (0,n/2) whose principal symbol is given as (—A)” and which obeys the confor-
mal covariance property:

Yot s il = e oy [+
PY g wi h| = w w2 PY [¢*, h] (w) (1.1)

holds for any positive function w on M. If we denote by Qy Py(l) the associated fractional scalar curvature

and further assume that (X, g%) is a Poincaré-Einstein mamfold then P}]l and Qll1 become the conformal
Laplacian and the scalar curvature (up to constant multiples)
n—2 n—2

A= 1) % = =)

1 _
Piz__Aﬁ_'-

respectively, while Piz2 and Qi coincide the Paneitz operator and Branson’s Q-curvature

A2 2 , n-4 o
.= Aiz + div;, (alnR;lh + aanlc;l) d+ Q;l,
0? = a3, A;R; + as,R? + asy|Ric;|*
i = danBplty 4n i S5n h
where aj,,- - ,as, € R are constants depending only on n. (Here Rj, and Ric;, are the scalar curvature

and the Ricci curvature tensor of the manifold (M, k), respectively.) Therefore, by recalling the Yamabe
problem and the Q-curvature problem, it is natural to ask whether there is a metric sy € [fz] such that the
corresponding curvature Qy is a constant. This problem is referred to as the fractional Yamabe problem or
the y-Yamabe problem, and explored by Gonzalez-Qing [41]] (non-umbilic cases) and Gonzalez-Wang [42]]
(umbilic and non-locally conformally flat cases) in the case of y € (0, 1). Owing to (I.1)), it is equivalent to
find a solution of ey

PZ(u) =cu?, u>0 onM (1.2)

for some constant ¢ € R, or to obtain a positive critical point of the y-Yamabe quotient

24 R
fM uPilu dvy,

E)(w) = for u € H' (M) \ {0}.

n=2y

_2n_ n
(sl )

The classical Yamabe problem (y = 1) was completely solved by a series of works, starting from
Yamabe [[83]]. Trudinger [[79] proved existence of a (least energy) solution for the Yamabe problem under
the additional assumption that the metric h has non-positive scalar curvature. Aubin [8]] obtained a solution
assuming that n > 6 and that (M, &) is not locally conformally flat. Schoen [72]] completed the remaining
cases, using the positive mass theorem. See also Lee-Parker [54]] and Bahri [11]. On the other hand,
the variational theory for high Morse index solutions was also actively investigated (see e.g. [[/3] for the
examples such as St x §m=1 and [70] for general manifolds with n > 3 and positive scalar curvature). In
this point of view, it is natural to take into account the full set of the solutions.

Schoen [75] raised the conjecture that the solution set for the classical Yamabe problem is compact in the
C>-topology, unless the underlying manifold is conformally equivalent to S” with the canonical metric. The
case of the round sphere S is exceptional since is invariant under the action of the conformal group on
S", which is not compact. Then numerous progress on this direction was achieved by several researchers.
Schoen himself proved compactness of the solution set in the locally conformally flat case [[75, [74]]. Li
and Zhu proved it in dimension 3 [60], Druet in dimensions 4 and 5 [30], see also [57, 58]. In dimension
n > 6, the analysis is much more subtle and it is related to the so called Weyl Vanishing conjecture which
asserts that the Weyl tensor should vanish at an order greater than [”2;6] at a blow-up point. Li and Zhang in
[57,158] proved the Weyl Vanishing conjecture up to dimension 11, which in combination with the positive
mass theorem allow them to show compactness of the solution set for Yamabe problem up to dimension



11. See also Marques [[63]] which treated the dimension up to 7. The recent work of Khuri, Marques and
Schoen [52]] verified the Weyl Vanishing conjecture up to dimension 24 and revealed that the compactness
of the solution set for the classical Yamabe problem holds when the dimension of the manifold is strictly
less than 25. Somewhat surprisingly, the compactness conjecture is not valid in dimension n > 25: indeed,
in this case it is possible to construct a Riemannian manifold (M, [fz]) such that the set of constant scalar
curvature metrics in the conformal class of / fails to be compact. This is shown by Brendle [13]], for n > 52,
and Brendle-Marques [15]], for n > 25. We also refer to [6} [12] for construction of non-smooth background
metrics.

In 1992, Escobar [32] 33]] formulated an analogue of the Yamabe problem for manifolds with boundary,
which is now called the boundary Yamabe problem. This corresponds to the fractional Yamabe problem
with y = 1/2 as Gonzdlez and Qing observed in [41]]. The solvability issue was solved in most of the cases:
in [32]] solvability is proved in dimension 2, in dimension is 3 or 4 under the assumption that boundary is
umbilic, in dimension n > 5 if the manifold is locally conformally flat and the boundary is umbilic. We
refer the reader for developments on this issue to [34} 164, 165! 3,33} [14]] and reference therein. The problem
of compactness of the solution set for the %—fractional Yamabe problem is studied in the conformally flat
case with umbilic boundary in [37], and in the case of dimension 2 in [38]]. Related results on compactness
were obtained by Almaraz in [5] and by Han-Li [45]. Notably, compactness is lost for high dimensions, but
this time for dimensions n > 24. Indeed, there are examples of metrics on the unit ball B*™*!, with n > 24,
for which the set of scalar-flat metrics on B"*! in the same conformal class with respect to which dB"*! has
constant mean curvature, is not compact. This construction is done in [4]. Just a remark: In the boundary
Yamabe problem studied by Almaraz [4]], the author denoted by n the dimension of the upper-half space.
Since in this paper we assume n to be the dimension of its boundary, the critical dimension in our main
theorem for y = 1/2 reads to be 24 instead of 25 as in [4]]. Thus, when y = 1/2, compactness of the set of
solutions to the fractional Yamabe problem is lost at least from n > 24. See also Disconzi-Khuri [28]].

Interestingly enough, also for the y = 2 case, it is again from dimension n = 25 that compactness
for the set of solutions to the 2-fractional Yamabe problem (namely, the Q-curvature problem) is lost: in
[82], Wei and Zhao showed the existence of a non-compact set of metrics on the sphere S” for which the
curvature Q]% is constant, or equivalently the solution set for problem , with y = 2, is non-compact.
Concerning compactness of solutions to the Q-curvature problem, as far as we know, the only available
results are contained in [46, 71} |55, 156]], see also [47].

Given these results, one can expect that the starting dimension for non-compactness of the y-Yamabe
problem depends on vy.

In this paper, we explore precisely this problem. We are interested in non-compactness property for the
fractional Yamabe problem provided that y € (0, 1) and the background dimension is sufficiently high. We
show that there is a transition of the critical dimension at some y € (0, 1), which takes into account that the
smaller vy tends to be, the stronger the nonlocal effect becomes. Our result in particular bridges the classical
Yamabe problem and the boundary Yamabe problem.

Our result is the following
Theorem 1.1. There exists a number y* ~ 0.940197 such that the following properties hold:

1. There are a C* Riemannian metric g* and a boundary defining function p on R™*! such that (R"*!, g*)
is an asymptotically hyperbolic manifold with the conformal infinity (R”, [h]) where h = p?*g*|gn. They can
be taken to be independent of the choice of 7.

2. Fix any y € (0,1) and suppose that n > 24 if y € (0,v*) and n > 25 if y € [y*,1). Then one has
a sequence of positive solutions {u),}men to the fractional Yamabe equation (1.2) with the constant ¢ = 1,
satisfying ||u2’,,||Loo(Rn) — 00 as m — 0o,

3. The smooth metric g = p>g* on R"*! is not conformally flat and the boundary (R", h) is umbilic (in fact,
totally geodesic) with respect to g. Moreover, if YY(R",[g.]) is the y-Yamabe energy of the flat metric in R",
then

EX(u,) < Y'(R"[g]) and  E(uy) —> YV (R", [gc]) as m — oo.



Recently numerous results on nonlocal conformal operators have been established. This includes [71]]
for the higher-order fractional Yamabe problem, [40] for the fractional singular Yamabe problem, [51]] for
the fractional Yamabe flow and [[1} 211,148 49 |50] for the fractional Nirenberg problem. Furthermore, Druet
[29], Druet-Hebey [31]], Micheletti-Pistoia-Vétois [67], Esposito-Pistoia-Vétois [35] (for vy = 1), Deng-
Pistoia [27]], Pistoia-Vaira [69] (for v = 2) and Choi-Kim [22]] (for y € (0, 1)) dealt with compactness issue
of lower order perturbations of Eq. (I.2)).

Structure of this paper. In the next section, we will describe the setting of our problem. Whilst our
program is adopted from [13]], [[15)] and [4], we need to recall two more ingredients to handle the nonlocal
conformal operators - the singular Yamabe problem (refer to [7] and [9]]) and the Caffarelli-Silvestre type
extension result ([16]) for the fractional conformal Laplacian obtained in [20]. To be more precise, we first
define a Riemannian metric g on the closure of the half space RY, slightly perturbing the canonical metric
g.. Then we select a suitable boundary defining function p by imposing the scalar curvature of (RY, g*)
where g* = p~2g to be —n(n + 1) and solving the associated singular Yamabe problem (see Appendix .
Because the precise information of p near the origin will be required, we will also achieve it in Appendix
Now (RY, g*) becomes an asymptotically hyperbolic manifold, and the fractional conformal Laplacian
is well defined. Instead of treating it directly, we consider its localization due to Chang-Gonzélez [20].

In Section [3] the finite dimensional Lyapunov-Schmidt reduction method is applied to show that our
desired solution will be attained once we find a critical point of a certain functional Jg (in (3.39)). At this
point, it is necessary to understand the global behavior of p and the spectral property of —A,, to establish
the linear theory and to ensure the positivity of solutions. This will be touched in Appendix [A.3]

An important property is that Jg can be approximated at main order by a polynomial P (in (4.31)) as it
will be shown in Sectiond] To do so, we have to calculate a number of integrals regarding the bubbles W,
in (2.17). In the local case (y = 1/2,1 or 2), the formulae of the bubbles are explicit, so it is relatively plain
to obtain the value of the integrals (refer to [13| Proposition 27]). However, in the non-local case, only the
representation formula is available for the bubbles. In order to get over this difficulty, we further develop the
approach of Gonzélez-Qing [41] where they utilized the Fourier transform. Finally, Section [5|is devoted to
search a critical point of P, thereby proving our main theorem.

Notation.

- Throughout the paper, we use the Einstein convention. The indices a, b, ¢ and d always run from 1 ton+ 1,
while i, j, k, A p,q, s and § run from 1 to n.

- We denote N = n+ 1. Also, for x = (x1,---,xy) € Rﬂy = {(x1,---,xy) € RY ¢ xy > 0}, we use
X=(x1,"+,%,0) € IRY ~R"and r =[x > 0.

- For any ¢ > 0, we write BY(0,0) to denote the upper-half open ball in RY centered at the origin whose
radius is 0. Also, B"(0,0) and S"1(0, 0) are the n-dimensional ball and the (n — 1)-dimensional sphere,
respectively, whose centers are located at 0 and radii are 0. We use S"~! = §"71(0, 1) for the sake of brevity.
Furthermore, dS, is the surface measure of the sphere S "=1(0,0) in R" and dS = dS .

- For a Riemannian manifold (X, g), A, stands for the Laplace-Beltrami operator (of negative spectrum). If
(X, g) is the standard Euclidean space, we denote A = A,.

- x4 is the characteristic function of a set A.
-t = max{t, 0} and - = max{-¢,0} for any 7 € R.
- For fixed n € N and y € (0, 1) such that n > 2y, the space D'2(RY; xll\,_zy) is defined as the completion of

the space C°(RY) with respect to the norm

12 .
1Ullpi2 . -2, = ( fR . le\,_27|VU|2dx) for U € CO(RY) (1.3)

+

(refer to Remark . Let also D'?(o) be the completion of cr (Bﬂy (0,0) U B*(0, Q)) with respect to the
norm (I.3).



- For a function f € L2(R"), the Fourier transform f of f is defined by

£ 1 —iX- n
f© = W‘fwf(x)e ‘dx for& e R".

We also use p = [£].

- The letters C and C (without subscripts) denote positive numbers that may vary from line to line.

2 Setting of the problem

The following setting is due to Brendle [13] and Almaraz [4]. Fix W : (R"* — R be a multi-linear form
such that its tensor norm

Y 1/2

W] = [ Z (Wikji + Wiljk)z)
i,jki=1

is positive everywhere and it satisfies all algebraic properties the Weyl tensor has: Wi = =Wy = =W =

Wiiij (symmetry and anti-symmetry), Wi + Wiy; + Wygji = 0 (the Bianchi identity) and any contraction of
W gives O (which is equivalent to 3., W;ji = 0 by the symmetric property). Then we set a tensor

Hij(x) = Hij(%) = Waux*x'  and  Han(x) = Hyp(x) = 0 2.1)
for any x € RY, and using this we also define a trace-free symmetric two-tensor / in RY which satisfies

ue f (e215) Hap(%)  for x| < v,

hap() = 2.2
o) {o for |+l > 1. 22

Here 0 < e < v <1 (e.g., v|[logel > 1/100 would suffice), u = €'/3 and f@) = Zfl"zo apt™ is a polynomial
of degree dy (1 < dy < 4 and a,, € R). Moreover we impose further conditions on the tensor / that

2(2dy+2)
hav() =0 and > |D"hap(0)| <mo forall x € RY (2.3)

m=0

where 779 > € > 0 is a small number to be determined in Section |3} and that it relies only on the first n
variables (so that Onyhgy, = 0 where dy = dy,) if 0 < xy < v. By virtue of our construction, it immediately
follows that

N
X hap(x) = Z Oahap(x) =0 for any |x| < v. 2.4)

a=1
Now if we define g = exp (h), then (@, g) is a smooth Riemannian manifold with a boundary. Moreover,

it is easy to check that the submanifold (R”, &) where /i = g|7g» is totally geodesic. This is equivalent to
say that the second fundamental form r;; satisfies 7r;; = dyg;;j/2 = 0. This fact implies in particular that the
mean curvature H = gijnl- j/n also vanishes on R".

Furthermore, since the trace of the tensor £ is zero, we have the following expansion of the scalar
curvature of the manifold (Rﬂy ,8): For some C = C(n) > 0,

Rg—[z dijhij = . 0 (hijakhkj)+% > a,~h,~,-akhk,-—}l D (akhij)z]
i,j=1 i,j,k=1 i,jk=1 i,jk=1

< C(|hP |[D?h| + IMIDAR) inC (@) 2.5)

See [13] Proposition 26] for the detailed explanation. In particular, a further inspection with (2.4)) shows that
AN 2 212 AN

Ry = _Zij;:I (Ghij)” + O(InP |D?R| + [RIDAP)  in C¥({lx] < v)). (2.6)



In order to make the space RY to be asymptotically hyperbolic with conformal infinity (R”, [h]), we
solve the singular Yamabe problem. Precisely, we construct a metric g* € [g] in RY such that its scalar
curvature Rg+ is equal to —n(n + 1) and 02g"|rre = h for some boundary defining function p of R" = ORY.
By the results of Aviles-McOwen [9] and Andersson-Chrusciel-Friedrich [7], it is known that this problem
is solvable for N > 3 and the defining function p has the form

2
p=xy(1+Axy+Bxy) ™7 2.7)

near the boundary R”, where A € C DO(@), B € C®RY) and B has a polyhomogeneous expansion in the
xy-variable near the boundary.

To obtain the existence of the metric g*, one can take the following procedure: Let us assume that
N-2 N-2

gt = wﬁg for some positive function w in RY such that waT — lasxy — 0+. If we putu = waT and
g= xz_v2 g, then the problem boils down to the Loewner-Nirenberg problem [62]]
4N -1 +
- %Ag,u + Rzu+ N(N — Duv? =0 in RY and u=1 onR" (2.8)

By employing a stereographic projection, we may assume that the domain of the equation is B" instead of
RY. Then it turns out that this equation admits positive upper and lower solutions, which gives the unique
positive solution u continuous up to the boundary S” (or R" after transforming back - see Appendix
for further discussion on the conformal change). This also guarantees the existence of the defining function
p= u‘ﬁ XN.

Very recently, Han and Jiang [44]] established optimal asymptotic expansions of solutions to the Dirichlet
problem for minimal graphs in the hyperbolic space. As it will be discussed in Appendix[A.2] their approach
also alludes that the formal expansion of the solution u to Eq. (2.§) in the xy-variable is accurate up to
O(x% log xx) order. Because the coefficient of the xy-order in the expansion of u is a constant multiple of the

mean curvature H of (R”, fz) C (@, g) and it holds that H = 0 due to our construction of g, it is expected that

the asymptotic expansion of p contains only even powers of xy. Indeed, we have the following description
on p up to the 4(dy + 1)-th order of xy.

Proposition 2.1. Assume that N > 22 (and n > 21) and let x = (X, xy) € Rﬂy.
1. It holds that C™'xy < p(%, xy) < Cxy in RY for some C > 0 independent of the points x € RY.

2. Denote Hab(x) =f (%% Hap(x) and fix numbers v,n > 0 sufficiently small. Then we have

p(ex) = |1 + p2e¥D+D Mi*f C2m()_c)x12\,m +0 (,11364(‘1()J“1)|x|2 (1 + |x|4d°) szv) +0 ((exN)4(d°+1)+2_'7) EXN
" (2.9)
inC Z(Bﬂy (0,v/€)) where the function Coy, is defined as
1 = 1 d N
ol = N DV =D Ll ga 3 —2mm+1) i’;l A" (0cH () (2.10)
forallm=1,---,2(dy + 2). The value in the bracket is understood as 1 if m = 1.

Proof. Since u is a bounded function in RY away from 0 and p = u‘ﬁxN, the first assertion is true. The
proof of (2.9) is postponed to Appendix m]

Our proof for Theorem [I.1] strongly relies not only on the results on the singular Yamabe problem,
but also on the following local interpretation of the conformal fractional Laplacian found by Chang and
Gonzilez.



Proposition 2.2. ([20, Theorem 5.1], see also [41| Proposition 2.1]) Let y € (0,1), g be a Riemannian
metric on RY and h its induced metric on the boundary R". Also we suppose that the mean curvature on
R" is 0 and the last component xy of RY serves as the boundary defining function, namely, § = g, + a’xlzv
for some one parameter family of metrics g, on R". Then one can construct an asymptotlcally hyperbollc
metric g+ in RY conformal to g such that Rg+ = —n(n + 1) and a defining function p satisfying P28 e = h
as well as 2.T) and 2.9). (This is what we explained in the previous paragraphs.) Moreover if U is a
solution of the following extension problem

~divg (pl_ZVVU) +E(U=0 in (Rﬁ’,g),
U=f on R"

for a given function f in the Sobolev space HY(R"), where E is the error term given by

R O N R D O il § IR
E(p) = g (07 )" +(y 4)p —Rep! Y, @.11)
then 8 5
U . 1-2y OU
pPY =— 1 =— 1 Y ——|:=0lU. 2.12
N it m R R v LT @12

Here k,, = 227—1F(y) /I'(1 = y) and v designates the unit outer normal vector =0y, to the boundary R".

Therefore, in order to solve the nonlocal Eq. (L.2) with ¢ = 1, it suffices to find a positive solution of the
degenerate local problem
~divg (o' 'VU) + E()U =0 in (RY, ),

U=u on R", (2.13)
n+2
U = Ury on R".
Besides, by (2.12), a critical point of the energy functional
K -2 2n
rw)=Z fN (0" 2IVUE + E(p)U?) dvg - = 4 f U7 dv, for U e H, (2.14)
RY "

solves (2.13). Here dv; and dvj, represent the volume forms of (@, g) and (R”, h) respectively. Because

detg = det/ = 1 due to our construction, it holds that dv; = dx and dv;, = d&. Eq. (3:23) and the Sobolev

trace inequality D'2(RY; x}v_zy) < Lih (R™) ensure that I7 is well-defined in the space ) defined in (3.8).

In the special case g = dx*, g* = dx* /szv and p = xy, the fractional Paneitz operator PZ}_{Z reduces
to the usual fractional Laplacian (—A)” and the corresponding result to Proposition was established by
Caffarelli and Silvestre [18]]. As it is now well-understood through a series of works conducted by many
mathematicians (see for instance [16} (17, 23 |25, 26l 41} |76, [77]] and references therein), this observation
allows one to apply well-known techniques such as the mountain pass theorem, blow-up analysis, the finite
dimensional reduction method, the moving plane method, the Moser iteration method and so on, for local,
but degenerate, equations to analyze the corresponding nonlocal equations. On the other hand, the results of
Yang [[84] and Case-Chang [[19], which present the extension results for the higher order fractional conformal
Laplacians, would allow one to apply similar approaches for the case y € (1,n/2).

Before finishing this section, we recall the bubbles w, , and their y-harmonic extensions W, . Given
A > 0and o € R", the function w,  is defined as

n-2y

A 2
SRR B

2 +|x-0of?

1 X —
= n_zywl,o(x/lo-) for any X € R"
A2

for some normalizing constant c¢,, whose value is presented below, and W, ,(x) = A~ = W1 o4 Iz -
o), I~ xy) is a unique solution of the degenerate elliptic equation
div (xll\,_27VU ) =0 inRY,
U0 =wys on R”, (2.15)
U e D2RY; x ).



Each bubble w, . solves the equation

n+2

(=<AY'u = u> inR". (2.16)
n+2y

Hence 0,W,, = w" > in R" by Proposition Besides, it is possible to describe W, in terms of the

A0
Poisson kernel K,

2y
Wi (F,xx) = (Ky (-, xn) % Wi )(®) = Puy f N @ @.17)

R (1% = 17 + Javl?)

The values of constants ¢, and p, , are

n-2y
oy r(n+27) Iy l—(n+2y)
oy =27 (r(n—}v)J and py, = nﬁriy) _ (2.18)

The nondegeneracy result of [24] tells us that the set of bounded solutions for the linearized problem to

.19

n+2y\ %
-A)Yu = w"?u inR"
= (n - 27) o
is spanned by
Zl L 8W/l,0' _ _aw/l,O' U aW/l,a' _ _aw/l,O'
Lo oy ox; - AT oy, 0x,
and
0o Wi _ (n-2y v
o = Y = - > Wioc — X VW
where 4 > 0and o = (071, - -+, 07). Also, if we let Z7' _be the y-harmonic extension of '} form = 0,--- ,n,

i.e., the solution of (2.15)) whose second equality is replaced by U(-,0) = z} on R”, then the following
decay properties can be checked.

Lemma 2.3. There exists a constant C = C(n,y) > 0 such that

n-2y
CA™
[VEW ()| < T T (m=0,1,2) (2.19)
and
2y-1
- X 1
V2N W0 (0)] < CA'T N (m=0,1)

+
Antm 4 |x _ (0., 0)|n+m An—2y+l+m |x _ (O’, 0)|n—27+]+m

forall (1,0) € (0,00) X R" and x € Rﬂy . Here V! means the m-th derivative with respect to the x-variable.

Proof. In [22, Lemma A.2] the authors proved the assertion under the assumption that (1,0) = (1,0) by

treating Green’s representation formula (3.16) (cf. Lemma below). The estimate for general (4, o) is
achieved by rescaling of the variables. |

Lemma 2.4. Fixanyy € (0,1), @ > 1 and 8 > 0. Given ty > 0 fixed, we have that
f T RPWE (&, xy)didxy < Cry"HHTEs
BY (0.10)° ’
and
f x%_zylfclﬁlVWl o(F xy)Pdrdxy < Ct(;"_szHHﬁ
BY (0,t0)°

where C = C(n,y,a, ) is a positive constant relying only on n, y, a and .



Proof. Integrating in the polar coordinate and taking advantage of (2.19), we have

fN xzf_zymﬁwio(x’ xy)dxdxy
BY(0.t0)°

=2y n—
a Vrn 148

N _
< Cf drdxy (r=1x|)
(r,xn)eR2: r2+x12\,2t(2), rxyn>0} 1+ (I’2 + x12v)n—27

{
fg foo toz—2y(sin 0)(1/—27tn—1+/3(cos 0)ﬂ—1+,3
<
0 fo

12(n=2y)
— -n+2y+a+f 3, _ ot lF2y+atp
=C f t dt=C l‘O .

To

X

tdtdd (r=tcos6, xy =tsinf)

In the above formula, that fo%r (sin 0)* 2 (cos )" 1Pdo < o is guaranteed by the assumption that -2y > —1
and 8 > 0.

The other equation can be derived in similar reasoning. Therefore the conclusion of Lemma[2.4]follows.

O

For the remaining part of the paper, we write Wso = W5 and wso = w; for simplicity.

3 Reduction process

Recall the parameter € € (0, 1) in the definition of the tensor % (refer to (2.2)). From now on, for each
sufficiently small fixed € > 0, we look for a positive solution to (2.13)) of the form Wese)er(e) + Peste),er(e)
where Wes(e)er(e) 1 the y-harmonic extension of the bubble Wese).er(e) and Wes(e) er(e) 1S @ remainder term
which is small in a suitable sense, by choosing the constant 6(e) > 0 and the point 7(€) € R" appropriately.

Let us consider the admissible set A = (1 — &, 1 + &9) X B"(0,&y) where gy € (0,1) is some small
number. In this section, given any (3,7) € A, we shall choose a function W5, for each Weser so that
Wes.er + Wes.er solves an auxiliary equation to (2.13)). The selection of the special pairs (ed(¢), €7(€)), which
gives a desired solution of (2.13)) for each € > 0, will be performed in the subsequent sections. Throughout
this section, it is assumed that (1, o) = (€0, €7).

3.1 Weighted Sobolev inequality and regularity results for degenerate elliptic equations

In this subsection, we derive Sobolev inequalities for the spaces D'(RY; xllv_zy) and D'2(p). After proving

them, we also examine regularity of solutions to degenerate elliptic equations.
Lemma 3.1. The followings hold.

1. Fix any 01,07 > 0. Then we have

01 1/2
dlofe 12N, 1-2y
(j(; f"(OQZ)xN |U| dx) < C“U“D‘J(R’X;xl'v‘z“/) forUe DRy xy )

where C > 0 depends only on N, vy, 01 and 0>.

2. Given o > 0 fixed, there exist positive constants C and n depending only on N, y and o such that for
alll <m< 5 +n

1/2m 1/2
(f x}v‘zlelz’"dx) < c(f x}V‘27|VU|2dx) . UeD" (o). 3.1)
N N
B (0,0) BY(0,0)

Proof. 1. By density, we may assume that U € CX(RY). By the proof of Lemma 3.1 of [22]], we obtain

01 01
f f xy NUGR, xy)Pdidxy < C ( f U(%, 0)%dx + f f xy 7IVU(, xN)Izd)‘cde).
0 "(0,02) B"(0,02) 0 "(0,02)
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Thus the Sobolev trace inequality DI’Z(RQ’ ; xll\,_zy) — L'%V (R™) (proved in [80]]) gives the desired inequality.

2. Since x,l\,_zy is an element of the class of Muckenhoupt weights A;, [78, Lemma 2.2] (cf. [36, Theorem

1.2]) implies that (3.1)) holds for arbitrary U € C® (Bﬂy (0,0) U B*(0, Q)). By the standard density argument,
(B-1) can be extended to all U € D'*(p). o

Remark 3.2. Since xllv_z", xlz\;y_l € LIIOC(RIJY ), Lemma (1) shows that the gradient VU is well-defined for

any U € D'2(RY; xll\,_zy). See [36, Subsection 2.1].

Consider the equation

{—dng ("2 VU) = x @ in (RY.g). 3.2)

00U =¢ on R”

and its related inequalities for given @ € LlloC (Rﬂy )and { € LllOC R™M).

Definition 3.3. We say that a function U € D'2(RY; xllv_zy) is a weak solution of (3.2)) if
K, f P (VU,VV), dx = , f XY OVdx + | fvdx forany Ve CORY)
RY RY R

where V = v on R".

1/2
Because the norm U — ( fRN pl’zylVU | gdx) is equivalent to || - the space Dl’z(Rﬂ:’ ; x}lv—Zy) is

”DI’Z(RQJ;X}V_ZY)’
suitable to deal with (3:2). Also, we can immediately extend the space C°(RY) of test functions in Definition

to Co(RY) 1 DI2(RY; x1727) by the method of mollifiers.

The following local regularity result for a weak solution to (3.2) can be proved.

Lemma 3.4. Suppose that U € L™ (RY) is a weak solution of (3.2). Fix any o > 0. If ® € L*(BY(0, 0)) and
£ € L¥(B"(0,0)), then U € C*(BY(0,0/2)) for some & € (0, 1) and

1Ulleosv00r2 < € (1011 208%0.09) + 1Pl (30,07 + =800 - (3.3)
The constant C > 0 depends only on N, y and o.

Remark 3.5. We may relax the integrability condition of U, ®@ and { to get more general results. However,
the current setting is sufficient for our purpose, so we do not pursue in this direction.

Proof of Lemma By applying the standard Moser iteration technique with the John-Nirenberg inequal-
ity for BM O(Bﬂy 0, 0); le\,_zydx), we obtain Moser’s Harnack inequality: If U € L”(Rﬂf ) is a nonnegative
weak solution to (3.2)), then there exists C > 0 depending only on N,y and o such that for any 0 < o’ < /2

sup U<C| inf U+ (Q,)2||®||L°°(B’+V(O,g)) + (Q,)27||§||L°°(B"(O,Q)))-
)CEBQ](O,Q/) x€B+ (O,Q’)

Inequality (3.3) is its consequence. For a proof in a similar setting, refer to Proposition 2.6 of [48] and
Propositions 3.1, 3.2 of [78]l. In fact, our case is simpler because we assumed that U € L™(RY) so that we
do not need to trim it. O

In the remaining part of this subsection, we are concerned about the weak maximum principles for
weighted Neumann problems.

Lemma 3.6. Suppose that U € D"(RY; xll\,_zy) satisfies the inequality

~divz (p'VU) 20 in (RY.3).
07U >0 on R"

weakly. Then U > 0 in RY.

10



Proof. 1t holds that

Ky fRNp1_27 (VU,VV)zdx > f 0,U - Vdx >0 for any nonnegative V € C‘f’(@).

+

Since the space C;"’(Rﬂy ) is dense in DI’Z(RQ’ ; xllv_zy), we caninsert V = U_ € DI’Q(RQ’ ; x]lv_zy) in the above

inequality to get V = 0. Hence U > 0 in RY. o
The following generalized maximum principle will be used in Lemma [3.15]

Lemma 3.7. Suppose that U € L°(RY) n D'2(RY; X2

N ) satisfies

{LU = —divg (o' 'VU) + E()U 20 in (RY.3), (3:4)

07U >0 on R"

weakly (in the sense of the adequate modification of Definition [3.3). Assume also that there exists a function
W e DM2(RY; xll\,_zy) such that W € CRY), VW € L*RY),

LW = ~divg (o' VW) + E@W > 0 in (RY, ).
W>0 on Rﬂy, 3.5)
AW >0 onR",

and |U(x)|/W(x) — 0 uniformly as |x| — oo, then U > 0 in Rﬂy .

Proof. The proof is in the spirit of that of [48, Lemma A.3]. By testing (3.4) with W~'® ¢ CC(@) N
Dl’z(RﬂY ; x}\,—h), we observe that the function V := WU satisfies

f [p1—27 (<vv, V), - 2(VV, VW), W'® + (VW,V (VW' D)) ) +E@VO|dx>0  (3.6)
RN

g

+

for all nonnegative function ® € CZ°(RY). By density and (3-1)), it is also allowed to take any nonnegative
® e D'2(RY; xll\,_zy) with compact support into (3.6).

To the contrary, suppose that ian V(x) < —m < 0. If we define a function V,, = V + m, then (V,;,)_ > 0
xeRY

has a compact support since |V(x)| — O uniformly in x as [x] — oo by the hypothesis. Therefore putting
® = (V,,,)- in (3.6) and employing (3.5) with the test function W=V (V,,)_, we obtain

fNPI_ZVIV(Vm)—Iédx < 2fNP1_27 (YW, V(Vir)-)g W' (Vin)-dx.
R RS

+

Now, by applying Holder’s inequality and the boundedness of W~! and VW on the previous inequality, and
then utilizing the weighted Sobolev inequality (3.1]), we find that

f xllv_27dx >C>0
supp(Viu)-

where supp(V,,)- is the support of (V,,)_. However since xll\ny € Llloc(@) and |supp(V;)-| = 0as m —

- ian V(x), the left-hand side should go to 0 as well, which is absurd. We have reached a contradiction, and
xeRY

soV (orU)>0inRY. |
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3.2 Existence and decay estimate for solutions to degenerate elliptic equations

This part is devoted to study existence and decay property of solutions to degenerate elliptic equations.

Assuming that n > 2y + 4(dy + 1) + 2/3, let us set three weighted norms

-1

n+2y n+2y
B Ue2 €
WUlls = :el;a% X{lx—(0)l<v/2} (E-K—Z)/—(Z " Ik~ (0. OF TG 0 ]
lx — (o, 0)%
i 0v2) gy | 1T,
o€ 2
EK—Zy—Zdo + |X _ (O', 0)|K—27—2d0 |x _ (O’, 0)|K—27+2
Ul = sup |xyx—0y<v/2) - e + X (x—(0)[2v/2) * o U
xeRY HET T noe’" 2
and
,ue’(_% EK_# - |Xx — ol*
[Vl = j;l]é) X{lz-ol<v/2} * (6K_(2d0+2) PP o2 ] + X (lx-cl2v/2} m (X))l
for any fixed number
n+2 1
Ke(max{ 27+2(d0+1)+§,n—2y},n), (3.7)

small parameters v,79 > € > 0, points (3, 7) € A, and functions U = U(X, xy) in RQ’ and v = v(X) on R".

. . . . . _n=2y +2do+2
(Here the dimension assumption implies that pe™ 2

we define the Banach spaces

0 Ty
— coand u 22 v¥ - 0ase — 0.) Then

H, = {U e D2®RY; X\ N CRY) : Ul < oo}, Hy, ={U € L°®RY) : U]l <0} (3.8)

and
H; = {v e L°(R") : ||[V]|sss < 00}

where the space H is endowed with the norm || - |, , ®Voly F -1l
+4N
We solve an inhomogeneous degenerate equation with homogeneous weighted Neumann condition and

obtain an estimate for the solution.

Lemma 3.8. Let € and ng be the small positive numbers chosen in 2.2)) and (2.3). For any fixed point
(6, 7) € A and a function ® € H,, the equation

—divg (pl—ZYVU) = x]lv—Zch in (Rﬂf ,g), (3.9)
U =0 on R" '
has a unique solution Uy € H satisfying
IUoll« < ClIDlss. (3.10)

Here the constant C > 0 relies only on n,y and «.
Proof. Step 1 (A PRIORI ESTIMATE). Suppose that Uy € Dl’z(Rﬁ’ ;x]lv_zy) is a solution of (3.9) for a given
® € H,. It holds

— divg (p'VU) = —divy, (xy VU) + EU)  forany U € H, 3.11)

where

. -5 1= : 1-2 -5 =2y) (sij _ 5if) 172y
&) = (1 -y =2 27))d1V Axy 7VU) +u v=20=2) (51 — 1) x 7778, U
2 e (o 2) ( o0 in RY (3.12)
— Ju~ 2= gab x}V‘ZVabU —u n2U=2)g, 5 xll\,_zy(? U

12



and g, is the standard metric in Riv . Therefore the function U; € C (@) N Dl’z(RiV ; xl_zy) defined to be

N
2
12 2dg 2 [2 _ (|x - (o, 0)|)
€

He 2 +Cyp for|x—(0,0) <,
C—l o -1 _ #EK_”Jr227
@l Ur(x) = p—m O)LK—Z)'—(ZH'O*'Z) +Cpp fore < |x—(0,0) <v/2,
2

10€

W forlx—(0',0)|2v/2

with a large constant C;; > 0 depending only on n,y and k and

2y [V —k+2y v 2do+2
Cppi=€"72 (—) [770 —,U(—) ],

2 2

satisfies

{_ div (0! V (U1 £ Up)) 20 in (RY, ), (3.13)

8Z(U1 iU()):O on R”.
See below for the details. Then Lemma [3.6 will assert that |Up| < Uy, and hence (3.10) will be valid.
Derivation of (3.13). If |x — (0, 0)| < €, then we have the inequality

3 _ n-2
~divg (0" VUI) 2 S0+ 2= 29)C1al|@ley e 2 70

by (3-11), (3:12) and LemmalA.5] Also since |x| < [x — (0, 0)| + o] < (1 + &p)e,
1-2 1-2 1-2y _m2vp
[y 70| <y Pl re-orzen < [Py, e T 20,

In the meantime, we get for € < |x — (0, 0)| < v/2 that

1 _ e
~divg (o' VU 2 5k =2y = 2(do + D)(n — k + 2dy + D)C11[[Dlfuxyy 21 x = (o, 0)[ K22

1-2 1-2
> Xy NPl L= (estx—(o0pi<v/2)) = |XN 7<D|-

Thus —div, (p1_27V U 1) > |dng (pl_ZVV Uo)| in both cases. Moreover a similar estimate can be performed to
show that this inequality still holds when |x — (o, 0)| > v/2. The identity 8}, (U; + Up) = 0LU; = 0 is readily
checkable from the definition of Uj.

StepP 2 (ExisTENCE AND UNIQUENESS). For each ¢ € N, we consider the mixed boundary value problem

~divg (p!'VU) = xy 70 in BY(0,0),
U=0 on BY(0,¢) N {xy > 0}, (3.14)
07U =0 on B0, ¢) c R".

Then (3.1) and the Riesz representation (or the Lax-Milgram) theorem are applied to derive the unique
solution Uy, € D'2(0).

Also, by changing the argument in Step 1 a bit, we can obtain that |Ug,| < U; in BY(0, ¢) for all £ € N.
Therefore

mj‘ M%W%£w=f xy Y Upedx < C||OI,,
BY (0,0 BY (0,0

which implies the existence of the D'2(RY; xll\,_Zy)—weak limit Uy. It is easy to check with Lemma that
Uy belongs to H and satisfies both (3.9) and (3.10), so the proof is finished. i
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The next lemma provides decay property of a solution to the equation with a nonzero weighted Neumann
boundary condition

—divg, (xy VU)=0 inRY, 3.15)
aU=¢ on R” .
for a given function £ on R”.
Lemma 3.9. Suppose that a function { on R" satisfies ||{||.,, = (1 + |x[)llzx®r) < oo for any fixed
Kk € (2y,n). Then there exists a constant C > 0 depending only on N, y and « such that
CIlIZIl
VEU(x)| < T3 ap-2rem (m=0,1,2)

for the solution U € H, to problem (3.13) and all x € RY. Moreover it holds that

1 Xi,y_l
+
1+ |x[<=2r+1 1 +|x[x

for every x € RY,

Proof. We borrow the idea of the proof of [22] Lemma A.2]. Note that the solution U € H can be expressed
as
1 2R |

U, xn) = : m —
N = 5] TOr) e (Gosmr

{(3)dy (3.16)

(see e.g. [18 116, [23]]).

Step 1 (EsTiMATE For U). Without loss of generality, we may assume that |x| > o for some fixed o > 1 large
enough. For |X| > xy, by suitably modifying the proof of [81, Lemma B.2], we find

1 y 1 y C C
f — o _1 o _C : (3.17)
re (X =3, 01727 1+ |I¢ Re [X=J2 1+ [J T xR T 2y
If |%| < xy, then we immediately get that |x| < V2xy. This allows us to discover
1 dy 1 dy C(1+|x"* C
f — T f v o _'f' ) - (3.18)
<2tz 16 =3, xp)" =7 1+ [yf¢ Xy Jisl<2a) 1+ [y Xy Y |xcfx==Y
and 1 dy | dy
f T <C f —
=20 16 =3, xp)" =7 1+ [yf¢ =215 (|72 + x2) 7 |yl
(3.19)

< C f"" 1 dt < C
= xk_zy 0 (t2 + 1)% ~ = |x|’<_27'

N
By combining (3.16)-(3.19), we realize that (3.21)) is true.

StEP 2 (ESTIMATE FOR VU, V2U AND 8y, U). We can handle the situation |%| < xy as in (3.18) and (3.19), so
assume |X| > xy.

Consider the function VU first. By differentiating (3.16) in X and applying integration by parts, one
sees that

_ , 1 dy
V)'CU s = C skt Vs ¥ v Vv
| x, xn)| < CIKI Kf[ly—xlz'x]ﬂ{lylzg] + j[-lylsi'}] ¥ (|X _yln—Z'y) 1+ 5

2

ClIZ 1

- |x|/<—27+1

N 1 y__ . f 1 dSy
re X =12 1+ B Jog=10) 1% = 512 1+ [
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where dS is the surface measure on the sphere [y — X| = % Also we confirm

= ’ XN d)—)
0, UG, xw)| < CIEIL. f " f ] i 4
e =522} Jisse)) 1G22 (X 31

[ 2y-1

p _ i}
sl | T [ i e [ s
| TR G, DIPEEE a1 = S
2y 1
1
< ’ N
_C”{“*** |X|K +|X|K_2y+1 °

The estimate of the function V%U is similar to that of VzU. This establishes the proof. m|

3.3 Linear theory

The goal of this subsection is to find a function ¥ € % and numbers (co, - - - ,c,) € R™! which solve the
linear problem

—div (0! V) + E(p)¥ = x, 7 ® in (RY.32).

Y=y on R",

- (E2)wiTv =+ § ami i, on B, 20
4y
n=2y 0 _ n 2 1 - _ n 2 - _

ﬁR’l W/l 0_7 Z/l o-wdx »E& W/l 0'7 Z/I O'l//dx - \ER” W/l 0_7 Zg O'wdx =0

for given functions ® € H, and ¢ € Hs.

Proposition 3.10. Suppose that n > 2y + 4(dy + 1) + 2/3. Then, for all sufficiently small parameters
0 < € < v, no satisfying v|1og €| > 1/100, points (6,7) € A and functions ® € Hy, ¢ € H3, problem (3.20)
admits a unique solution ¥ € H; and ¢ = (co, - -+ , c,) € R, Moreover, there exists C > 0 depending only
on n,y and k such that

W]« < C (1Ples + [IZ1ls) - (3.21)

Proof. The proof of this result is divided into two steps.

Step 1 (A priorT ESTIMATE). In this step, we first show (3.21)) assuming that ¥ € H; is a solution of (3.20).
For this aim, we argue by contradiction.

To emphasize that the metric g = exp(h) and the defining function p depend on the choice of € (see
(2.2)), we will write g. = g and p, = p throughout the proof.

Suppose that there exists no constant C > 0 such that (3.21]) holds uniformly for any choice of € > 0 and
{ € H;. Then there are sequences of numbers €, > 0 and ¢, = (coz, -+, cne) € R™!, points (8¢, 7¢) € A,
and functions W, € H;, O, € H, and ¢, € Hj; such that they satisfy (3.20) with g = g, and p = p,, for each
¢ €N, as well as

(6. 7¢) = (80, 70) € A and € — 0 as £ — oo. By @.11), @Z), @I) and (A.I18), we have

0
0

12 (4072 + |x — (0, 0)*0*2))  for |x — (0, 0)| < v/2,

no(1+1x - (@, 0)|4)_1) for x — (o, 0)] > v/2. (3:23)

X E(p)(x) = {

Thus from Lemma 3.8 we get a solution W, € H| to the equation

. 1-2 1-2 . -
—divg, (0, YVW1() = —E(p)¥¢ + xy '@, in (RY, ).
0¥ =0 on R”

such that
2y-1
11ell < € ([ B, + 1) < € ullel. + el
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where g := g, and p, := p,,. Moreover, by arguing as Step 1 in the proof of Lemma 3.8 we deduce

2dy+2
11l imner < C (1 log ™7 ¥4l + 1@lloc) > 0 as € oo (3.24)
for pg 1= 651/3 and
ue’(_ﬁ e -
Ullsj = su + U (x).
U1l inner {xeR’f:|x—(£0)|gv/2} {GK—ZV—(ZdMZ) + |x — (0, 0)[x—2r=(2do+2) 0 VK ] Ul
Now the function Wy, := ¥, — ¥, € H satisfies
. 1-2 . —
—divg, (p, VW) = 0 in (RY,2),
Wor = Yorand ¥yip = Yy on R”,
+2y % n+2y = 2 (325)
07> —(Z L) wi Yo = §£+(,,_27) 71// |+ Z (emew, " 27 onR",
4y
j\Rn ;- 27 '/’2de - \Eén ;- 27 l/’lfdx’ jl\%n ;- 27 n‘ﬁZé’dx - jl\%n Y nl?”lfdx
and
1-Cny < lilgginfll‘l’zfll* < limsup [[¥oll« <1+ Cno (3.26)
L {—o0
._ 0 ._ 0 — : : —
where We i= Wespers 2 = Zeg,eny T % = Zes,ere  Lesting (3.25) with each Z7' = Z7;  for

m=0,---,nand ¥y, we find with Lemma[2.3]and the assumption « > (n + 2y)/2 + 2(dp + 1) + 1/3 that

n 4y

(cm)e(€de)™ f L 27 dx = Z(Cm)e f w22 dx
R"

m=0

1—2’)’ m m j—
= VW, VZ;') dx — d
Ky fRN Py < 2, VZ; >§ x . JezpdXx

+

+2 a4
=_ (n 7)f w7 1 edX — Lezpdx + 0(,11 e?dOH (f
n—2y Rr RY

+

2dp+1 2do+1 2dy+1
= O (e ™ ¥ 1ellsinner + €' [log e[ + e ||§f||***)+0(,ug€ " ( f .
R

+

12
lev_zyW‘I’zelde) }

12
lev_2y|V‘Pze|2dX) ]

Kyf xllv_27|V‘I’25|2dx§CKyf ,Oél;_zywlf'zdédx
RY RY

n+2y A n+2y\ 2% R ,,47y o
w, Y5 dX + Se + W, e | Yoedx — Z(Cm)[ ¢ Wiedx
n— 2')/ R~ R n— 2’)/ =0 R
n
O (k&™) +o (me%“ > |(Cm)€|] .
=0

As a result, it holds that

=C

n
f xy V¥l Pdx = O (uje***)  and Z (el = o (uee, ™) as € — oo. (3.27)
RY =
The previous estimate implies that

-1 n-2
Yy, = (,uezd"J’z) eTyng(e-+a) — ¥y, weakly in D" 2(RJr,xN 8]
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up to a subsequence (which is still denoted as Yar). Additionally, by the Schauder estimates [41, Proposition
3.2] or [16} Lenﬁa 4.5], it can be further assumed that ¥, converges to a function Y¥,¢ uniformly over

compact sets in RY. With this convergence property, we observe that W satisfies

—divy, (xN VV‘P) 0 in RY,
Y=y on R”,
4y
v% n+2y n-2y
0,¥ = (n 2)’) W . onR”,
24
J];% w" 27 Owdx = = j;{,, Wf_zyz'l’wd)'c =0

50 that Wa = 0 according to [24] (see the paragraph after (2.18)). Hence if we choose any & > 0, then

4y

—2
w, e

2= 1 2y e ¢
w7 Wy +C ot llog e[ Mol < S+ 3 +35 =6

k—(2dy +2))

L=(B"(0,0)) (3.28)

for o > 0 and ¢ € N large - namely its leftmost side goes to 0 as £ — co. We also have
4y

n=2y _m
¢ %

W <C(pe) . (3.29)

skoksk

2 2y
sC(nwn*,im+e/|logef| ||%f||***) and

skkesk

4y
n=2y
Wg %015

Let us introduce a barrier function U, defined as

4y
o, [ w0l A+ Il + |[w) = + (nee, ™) Z lcadel |~ Ua(x)
2
s 2[5 [2=(@.0) x = (0|
S [2 2 R if - (0,0 < ¢,
+10€” T V2 = x = (0, 0)F + Usllx = (0, 0D + Coa
n+2y
= pe 2 a2 - = (@0l
lx — (o, 0)|<~2y=(2do+2) +He € 7 Usw-Cupr2) ( € ife <|x—(0,0) <v/2,
n+2
+10€” T V2 = x = (0, 0)F + Us(lx = (0, 0D + Coa
_m2y .
o€ 2 (W + Us(|x = (o, O)|)) if |[x = (0,0)| = v/2

for constants C; > 0 large enough (depending on n, k, v, v and 19) and Cy; € R suitably selected so that U,
is continuous in RY. Here Us,(x) = U3 (|x]) € D2 (RY; xll\,_27) is a radial function that solves

—divg, (xy VU) =0 inRY,
U = (1 + |57 on R",

Then after some calculations using (3.11)), (A.I8) and Lemma|[3.9] one finds that for all £ € N

—divg, (o, V(U2 £ P20)) 20 in (RY, ).
(9?,/ (Uy W) >0 on R".

Consequently we see from (3.22), (3.24), (3.27)-(3:29), Lemma [3.6|and Lemma [3.9| that

4y
. zyw%’ + IZellsss + ngzywlé’

EETS

1¥2¢ll < C[

+ (™) Z|(cm)f| =0 asl— .
m=

EETS

However it contradicts (3.26), meaning that (3.21)) should be correct. This concludes a priori estimate part
of the proof.
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Step 2 (ExiSTENCE). Set a subspace of H;

4y

Zt = {‘I’ € Hp:¥ =y onR"and f w;_éyzg’(,xpdfc =0forallm=0,--- ,n}. (3.30)
R

Then expressed in the weak form, Eq. (3.20) is reduced to a problem finding ¥ € H; such that

_ +2 B
Ky prHV (V,VV), dx + K fN E(p)¥Vdx = k, fN POV + (” - Zy)f Wi yvds + f {vdx
RY RY RY n—2zy n R"
(3.31)

for any V € Z+ where V = v on R”. See below for more explanation. Moreover the above equation can be
rewritten in the operational form

(ky - 1d = K)¥ = D+
where @, £ € Z+ are defined by the relation

=2y (® \v = 20 ¥
Lgp < ( +Z), V>gdx Ky fM Xy Vdx + § lvdx
holding for any V € Z+ and K is a compact operator in Z* given by

12 (Y KP). YV dx = H2Y s E(p)¥Vd
p 7 AVKCY), VV)edx = | - — Wi YvdX — K, (0)¥PVdx
RY n—2yj) Jrn RY

forevery V € Z+. (One can prove existence of 0, 7 and well-definedness and compactness of K by applying
the truncation argument as in the proof of Lemma [3.8 with (3.I)), the Sobolev trace inequality in [80] and
(3:23).) In light of (3.21), the operator «, - Id — K must be injective in Z*. Thus the Fredholm alternative
guarantees that it is also surjective, from which we deduce the unique solvability of (3.20). m|

3.4 Estimate for the error
Let E) o := —xlzvy_l(S(W/w) + E(p)W,) be the error term where the operator & is defined in (3.12). The
next lemma contains its estimate, especially showing that it is small as an element of H,.
Lemma 3.11. For fixed v,n9 > € > 0 small and (6, 7) € A, we have
lEr ol < C (3.32)
for C > 0 dependent only on n, y and .
Proof. We observe from (3.12) that
E/l,O' = u—ﬁ(l—b/) (gij - 5ij) aijW},g + ﬁau_ﬁ(l_zwg“bc')bW,w + u‘ﬁ(l_zy)(‘),-g"jajwﬂg - Xlzvy_lE(p)W,],o—.
(3.33)
Hence an application of Lemmas [2.3|and [A.5] (3:23) and (A.T8) yields

n=2y

Cue

for |x — (0, 0)| < v/2,
n—2y—2d, - n—2y—
Ero()] < | €770 4 L= (o, =2 (3.34)

(j € 2
lx — ((Zoo)|n—27+2 for |x = (0, 0)| = v/2.

For instance, the second term of E,» in (3.33) can be estimated as

2 _(1-2v)=
Dt g0, W | < C(IVsal - IVeWagl + 10wzl - 10N Wao)

+
e+ 4 |x — (0, 0)"=2r+ €+ |x = (0, 0)"

<R [ h3 4 |x — (o, Q)0+ M 4k — (q, O)I4do+2+27}
2ty — (o, )21 P
Cy2do+2 ’uz 6%
< En—2)’—2d0 + |.X _ (0.’ O)In_zy_ZdO
if [x| < v. The norm bound (3.32)) is immediately deduced by (3.34). _

3 2.2y
n-2y X | x]*x
< O™ (€4do+|x|4d0)[ || N ]

18



3.5 Solvability of the nonlinear problem

We now prove that an intermediate problem

—divg (0! 2'VY¥) + E()¥ = xy VE,, in (RY.2).
=y on R”,
4y
» " 3.35
aylP_(Z‘gz) 27lﬁ lea'(w)*' Z me/lj_y To’ on R”, ( )
4y
o Wi 8 5 = Wl = = w7 s =0

to our main Eq. @D, or (I.2)), is solvable by using the contraction mapping argument. Here

Z+2y Z+27 n+ 2 n47
Nao@) = (oo + )17 — Wi —( - 21) Ty eH. (3.36)

Proposition 3.12. For v,ng > € > 0 small enough, n > 2y + 4(dp + 1) + 2/3 and (6,7) € A fixed, there
exists a unique solution ¥, € Hy and ¢ = ((c0)aos- - »(Cn)ae) € R™! 10 Eq. (3.35) such that

Yiell < C (3.37)
where C > 0 depends only on n, vy and «.

Proof. According to Proposition|3.10} one can define an operator T, : HoXH3z — Hitobe Ty (D,{) =¥
where ¥ € H, solves Eq. (3.20) for given pairs (4, o) € (0, 00) x R" and (®, ) € H, X Hj3. One also has that
T 2o (D, Dl < Mi(||®@|]ss + [|{]|ss) for some M; > 0. In terms of this operator T, (3.33) is reformulated
as

Y = Tao(Eae: NaoW)) =: Ty ,(¥) for'¥ e Z*

where Z* is the space defined in (3:30). Let us set
B={¥eZ":|I¥]. < My

with M, > 0 a number to be determined. By using the facts that « > n — 2y,

_n-6y

"~ 2’ 2 if|x - o] <v/2,
Nao@) < € {Vag, W TR =al<v/
|t//|" 2y if |x—ol| >v/2,

and
n—6y

Wﬁ(,y(|¢1|+|¢2|)|lﬁ1 ol if|x—o] <v/2,
(w 5t ol 27)|w1 vl )T - o] > /2

(which follows from the mean value theorem), we easily get that ||Ny ()|l = o(D|[P|l. and [Ny (1) —
Nao@2)llse < o(D|¥1 — P2l Then, by (3.32)) also, we see that there exists a constant M3 > 0 such that

INo o (1) = NaogWo)l < C

1T} (Pl < My (IEx ol + INLo@)llisi) < My (M3 + o(D|P]l) < 2M1 M3
forall ¥ € B and
1T, o (F1) = T3 (P = ITa0 (0, Naog (1) = Naog@2)) ls < MilIN2o 1) = Nag @)l < o(DI[¥1 = P2l

for any ¥; and ¥, € B. Therefore T/’l . 18 a contraction map on the set 8 with the choice M, = 2MM3.
The result follows from the contraction mapping theorem. m|

One can also analyze the differentiability of the function W¢s ¢, With respect to its parameter (J, 7).

Lemma 3.13. Given n > 2y +4(dy + 1) + 2/3 and small fixed numbers v,ny > € > 0, the map (6,7) € A
Weser € Hiy is of class C'. Furthermore, there exists C > 0 depending only on n, 'y and k such that

||V(6,T)TE(5,ET||* <Ce . (3.38)

Proof. The proof is similar to that of [[82, Proposition 6.2]. O
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3.6 Variational reduction

Provided that the assumptions of Proposition are fulfilled and in particular a small € > 0 is fixed, let Jg
be a localized energy functional given by

Jg(&, T) = I"Weser + Peser) for (6,7) € A C (0,00) X R" (3.39)
where [” is the functional defined in (2.14).
Lemma 3.14. The followings are valid provided that 1o, € > 0 small fixed and n > 2y + 4(dy + 1) + 2/3.
1. The functional Jg is continuously differentiable.
2. If (6(e), t(€)) > 0 is a critical point of JY, then (") (Wese),er(e) + Pesie),erce)) = 0.
Proof. 1. Since the functional I” : H; — R is a C'-map, the assertion follows from Lemmam
2. Suppose that (Jg)/ (6(e), 7(e)) = 0. If we write (6, 7) = (19, T1,--* ,Tn), then

4y 4y n

n
— Y _ n-2 i n=2 . A
0= 81',7,]0 (6(e), () = Z Cin jl;n WE(;(;,)’ET(E)errg(e)’g(f)arm ng(;,)’a(e) + l/leé(e),e‘r(e)) =. Z CinCmin
=0

m=0

form = 0,--- ,n, where Wes(e).er(ey = Ves(er.er(e) ON R”. According to (3.38)), the matrix (&mm)mm=0. n 18
diagonal dominant. Thus co = -+ = ¢, = 0 and s0 (I”)’ (Wes(e),er(e) + Pes(e).er(e)) = 0. m]

The next lemma implies that the solution Wes(e) er(e) + Peste),ex(e) to problem (2.13) (or (I.2))) has desired
properties described in Theorem Consequently, in view of the previous lemma, it suffices to find a
critical point of Jg whose domain A is finite dimensional.

Lemma 3.15. The critical point Wese) er(e) + Pesce).ere) € Hi of I is positive in @ and of Cﬂ(@) for some
¥ € (0, 1). Also, if parameters v,n9 > € > 0 are small enough, then there exists a constant C > 0 depending

only on n and 7y such that
n=2y

||W56(5),67(5) + \PE(S(E),ET(G)“LOO(R}';) >Ce 7. (340)

Proof. SteP 1 (PosITIvITY OF Wes(e) er(e) + Pes(e)er(e))- For the brevity, we write U = Wes(e).er(e) + Yes(e).erce)
for a fixed € > 0. Fixing any « < « which satisty (3.7), let us define W (which should not be confused with
the bubbles W, ) by

|y (1= (@0
e +2do+2 o [0 A +C3p forlx—(0',0)|ff’

€
/JEK,_Lzzy
W(x) = C31 +C for e < |x — (0, 0)| < v/2
— k' =2y—(2dp+2) 32 = > = >
|¢x ((7} (1?J2y 0
noe’ ™ 7

W fOI'|X—(O',0)|ZV/2

where C3; > 0 large and C3, € R chosen so that W € C (@). Then W is a suitable barrier which makes it

possible to apply Lemma This leads us to deduce that U is nonnegative in RY.
For the moment, we admit
2 2
n (N-1)
2 _ .

/l](—Ag+) > — =Y

1 1 (3.41)

where A1(=Ag+) is the first eigenvalue (or the infimum of the spectra) of the operator —Ag+ acting on the

space L2(RY, g"). Its validity will be proved in the end of Appendix Then by Lemma 4.5-Theorem
4.7 and the discussion in Section 5 of Chang-Gonzélez [43]] (or [19, Lemma 6.1]), we realize that there is
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a special boundary defining function p* in RY such that E(p*) = 0 and U := (p/p*)" 22U satisfies a
degenerate elliptic equation of pure divergent form

~div((p")' " VU) =0 in (RY.3).

AP _ (3.42)
QU=U=-QU  onR",

where Q]?; is the fractional scalar curvature. By the strong maximum principle for uniformly elliptic opera-

tors, it is immediately obtained that U >0in RY. On the other hand, if there is a point xo € R” such that
U(xp) = 0, then the Hopf lemma [41], Theorem 3.5] for (3.42)) implies that

0> 8]T(x0) = U (x0) ~ 0 (x)Ux0) = 0

a contradiction. Therefore the function U, or equivalently, U must be positive in RY .

SteP 2 (REGULARITY PROPERTY AND ESTIMATE OF THE LOWER BOUND). Because of (3.37), our solution U is
essentially bounded in RY. Hence it is in C?(RY) for some © € (0, 1) by Lemma 3.4{(1). Moreover we have

n+2y —x _n=2y
+ 10" 2T v )ZCG 2,

(Wsé(e),er(e) + \PE(S(E),ET(E)) (0,0) > Weé(e),er(s)(o-) - ||\PE§(6),ET(E)II* (ﬂ62d0+2 2

Therefore (3.40) is obtained. i

4 Energy expansion

This section is devoted to compute the localized energy Jg . We initiate it by getting a further estimation of
the term ¥, , = ¥ 5.6, Recall that Hp(x) = f(|X1%)Hp(x) for x = (%, xy) € RY.

4.1 Refined estimation of the term ¥, ,

Suppose that € > 0 is small and (6,7) = (¢ !4, e 'o) € A. By applying Proposition with 2 = 0, one
can deduce that there exists a solution ‘I”/‘:ﬂ of

—divy, (xN yV‘I’) Z x ,uez‘lof( 2|)"c|2) H;j(X)0;;W) in Rﬁ’,
i,j=1
Y=y on R”,
4 n+27 n—, 27 n— 27 , (41)
Y =) wi 0= 5 on R,
4y 4y
n=-2y (0 n 2 1 - _ _ n-2y - _
fR /l(ryz/l(rwdx_.ﬁ% W/la'yz/l(rwdx_ '“_fR" /Ia'yzﬁfrlpdx_o

-2
(1o 2d0+2) €° Yao(ex) for any fixed € > 0

(and o = eé/ ?) small, then it solves the equation with € = 1. This implies that (4.1)) admits a solution for

In fact, (@.1) has a scaling invariance: If we put ¥s,(x)

any € > 0.
Let us introduce norms
0 w2y A —1
Wi, = e A
* felgfv XU DI=v/2) "\ Go2y=@do+d) o [x — (o, O)—2r—Cdod) 07
N
x — (0, 0)%
X (-0 Ol2v/2) - gy — | UM,
Mo€e ="
0 w2y A —1
Wi, = e .
. xsel[gf)\’ X{lx—(c,0)|<v/2} ek—2y—(4do+2) 4 Ix = (o, O)|K_27_(4d0+2) o o
+
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x = (o, O)F 22
X (-0 0)l2v/2) * 2y U,

no€e 2
,UZGK‘MZZ7 e o | — o¥
’ o - . - —
VIl = SUP Wilv=01<v/2) " | G=@drd) 5 (5 = o@D i + X{I5-cl2v/2) * g - ()]
0

for U = U(x, xy) in Rﬂy and v = v(x) on R”, and set a function ‘Pﬁg =Y — WA Then it can be estimated

A0
as in the following lemma.

Lemma 4.1. Suppose that n > 2y + 4(dy + 1) + 2/3. Then we have

’

(ko

(ko

and

2(dp+1)

12

< Cue 2(d0+1))

0’||D12(RN ) “\Pifr||pl.2(m;x;;27) = 0(#'5

for some C > 0 independent of € > 0 and (6,7) € A.

Proof. We find easily that

—divg (o' VYE ) = x TE) inRY,
‘I’fg = l,///lia and ‘P/w Yic on R”,
W\ " = 42
RS~ (P2 TTYB Ny + 3 e, onR. 4.2)
n 2 O _ n 2 T —
j;% W/l 0_7 A, o"’b/l o'dx f]R" W/l 0_7 Zﬁ a'w/l,(rdx =0

where the nonlinear operator N, . is given in ( and
E,, = (u‘ﬁ“‘zw = 1) (8 = 67)0;Waor + (87 = 6V + pue® f (€ 215) Hyj| 6 W
+ 0 2o W o+ w2 — T E() (W + Wa) -
Computing similarly to the proof of Lemma[3.11] we obtain
IE, Il < C.

Moreover we have
||N/l,0'(lﬁ/l,0')||;** <C

under the assumption « > n — 2y. Hence, following the argument in Step 1 of the proof of Proposition [3.10]
we infer that

195,11 < C(IE I, + N @) < C.

The second inequality is now verified. The first inequality is direct consequence of (3.37).
In order to derive the third and fourth estimates, one can test ‘I’i(r and ‘Pﬁ » in @.1)) and @.2)), respec-
tively, and then use their L*-bounds and (3.7). The details are omitted. m]

Lemma 4.2. It holds that

T6,7) = P (Weser) + 2D . 71{(5, 7) + o (2! D) (4.3)

uniformly in the admissible set A = (1 — g9, 1 + &) X B*(0, &y) where J}'((S, T)isa Cz-function defined by

J(6,7) = Z f NV H (20 W ¥4 dx. (4.4)
i,j=1
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Proof. Since (I") (Weser + Weser)Peser = 0, we get by Lemmad.1] (3.23) and (3.37) that

_ Ky 1-2 1 (n+2y s 2 2 _A(dy+1
Jg((s,r)_ﬂ(wﬂm)_gf]M 7|V\PE(5€T| dx+§(n_2y)fw Wi (Whser) dx+ o (e D).

A n . .
Here W¢; lﬁf(; . on R" and the inequality
2n 2n 2” n+2y (”l + 2'}/)" 2n
n-2 n=2 n-2 n 2 n—
(Weé er Ve, e‘r) T - Wa;’; - (—I’l 2’)/) (Weé er Hes, e‘r) ! Weser + (n—2 )2 6(5 ;weé er| <C |'7be<5 €T "

is applied to control the nonlinear term. Besides, by making use of (.1), we discover

Ky ‘[RN - 27|V‘{’E(5€T| dx

_ 2y -2y [ -2 5 i n+2y = o zd_
= Z MG N f( | ) ’J(x) ’JWE5ET eo.erdX D R Weé,e‘r( eé,er) X

n_
i,j=1 Y

Putting these facts together, we obtain (@4.3).
On the other hand, by (2.I7), we have that sWs, = K, (-, xn) * Osws, etc. Thus we can employ the
standard difference quotient argument to verify that the first and second order derivatives of ‘I’?T with respect

to (6, 7) are continuous. (Check [48], Propostion 2.13].) The C 2—differentiability of J%’ follows from it. m|

The previous lemma ensures that if there exists a minimizer of the function (6, 7) = I"(Weser) + pe¥ @t .

KYJ;/((S, 7)/2 in the set A, then Jg also has a minimizer in A provided that € > 0 is sufficiently small.

4.2 Expansion of the localized energy
We derive an expansion of the map (5, 7) = I"(Weser).

Proposition 4.3. Suppose that n > 2y + 4(dy + 1). If we choose n = 1 in the statement of Proposition
then the following estimation holds.

k - — 2 2n
[y(Weé,er) = % [f Xllv 2y|VW1|2dx +/12€4(d0+1)J;’(6’ T)] _n Y f w;'_zyd)?
R 2n "

+ 0 (ﬂ3€4(d0+1) + (E/V)n—Zy)

where
1 n
-2y (17 7 -
HOLES -21:1 fR T (HaH i) (29 W10 Wocdx
L, J,l= +
3 2 2 1-2 2
+3 {(N=2-(1-2y) }fRN xy T CW dx 4.5)

+

2dp+2

+(1-2y) Z f 2m=2y o) IV Ws.odx

1 1 ! 1+2m 2%
Ny -5) -2 -5 Z " 2m + 3)Cagmsy W2, dx.

The functions Cy, € C*(R") form = 1,--- ,2dg + 2 are defined in (2.10).

Proof. We start the proof by calculating ﬁ&” pl‘ZVIVWﬁ;,ngdVg,. From an estimate

i IS
g/ - [5ij — hij + 3 ;hilhﬂ]
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Proposition[2.1]and Lemma[2.4] and the facts that dyhq, = 0 in {0 < xy < v} and detg = 1, we see that

fN ,01 _zygabaa Wsé,erab Weé,e‘rdvg
R+

1-2 .. 2 € n-2y
= f o 4 [gljaiWedETajWedE‘r + (aNW65,ET) ]dx +0 ((_) )
BY(0,v) v
2dy+2
= Xy 1+ (1 = 2yyletdorD=2m i Com (€7 %) 3"
- N N YU 2m N
By (0,v) m=1

VW, |2+Zn: —h~~(x)+zn:h”hﬂ(x) OWese:0 Wi er | dx + O 36“<do+‘)+(f)n_zy
€0,€T ij ) iYWeo,erVUjVVed,er e v

X
ij=1 =1
n 1 n
= f xllv_zylVWszx + Z f xll\,_zy [—hij(f)_C)dx + = Z hilhjl(E)_C)] 0iW;s.0 W rdx
RY 524 B0/ 245
2dy+2

n-2y
4

+ (] _ 27),11264(d0+1) Z f
m=1 B

Furthermore, the algebraic properties of the tensor W give

N0,v/e)

c 1-2 e\
D f X2 s (€200 Wisir0 jWiiedlx = O(yvz(do”)-(—) ) @4.7)
BY(0.v/e) v

ij=1

whose proof is deferred to the end of the proof, whereas we immediately obtain from the definition of the
tensor H;; that

=z

fN x1—2y (h,'[/’lﬂ) (E)'c)(')iW(;,T(')jW(;,de
BY(0,v/e)

_ 2 [0 (TN (09 We -9 Wede 4 O |24 D (€Y
=He NXN ( il jl)(-x)l 570 WsradX + nv v .
R+

This completes the estimation on the gradient part of the energy 7.
Next, we compute fRN E(p)W2 dx. Let

€0,€T

~ 127\ 1=y 1\
E(p)=—Ag(p Zy)p a +(72—Z)p s

(4.8)
1\ _ " " 1N o or
= (7 - i)p 2 [0:8"0,0 + 80,0 + dwwp]| - (72 - Z)p 230,00 + ((Onp)* - 1))
Then putting Proposition 2.1 and (#.6)) together leads us to deduce
E(p)(ex)
1 n 2d0+2_ . n 2d0+2
— (7_ 5) (€xN)—2y #468d0+7 Z Z HilaiHjlajC2mx12Vm+l +’u2€4d0+3 Z Z 6ijaijc2mx12\/m+1
ijl=1 m=1 i,j=1 m=1
2d()+1
Pt Z 2(m + 1)2m + 3)C2(m+1)x12\,m+1} (4.9)
m=0
1 n 2dp+2
_ (yz _ Z) (exp) 172 | uteSo+D Z Z 6ijaic2majc2mxi/(m+l)
i,j=1 m=1
2do+1
+ﬂ2€4(d0+1) Z 202m + 3)C2(m+1)x12\/(m+1) +0 (’u . ﬂ2€4d0+3_27x11\,_27|x|2 (1 + |x|4do))
m=0
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in BY(0,v/e€). Therefore, recalling the definition (2.11)) of E(p) and the expansion (2.6) (or (A.13)) of the
scalar curvature Rg, we find that

f E(p) €6, e‘rdvg’
RN
N-2 1-2 2
= E ]? Y
l;( ©)+ sy ke )Wégdx

2dp+2 2dp+1
—Mé%”lf Xy ( ) EZAQm D 20m+ 1D@m A+ 3)Copmeny "
BIJY(O,V/E) m=0

2d0+1 2
1 3(N -2
—(72—-) § %2nr+3Xh@HUxm"+-£————l{h W2 _dx
4) & 2 ’

+ 0(/1364(d0+1) + (e/v)n—Zy) .

Here we utilized the fact that |[Rg| and x_szlE(p)l are bounded in RY (refer to (3.23)) to compute the
remainder term. We further note that ACy,, = (2m + 3)(N — 2(m + 1))Cogn+1) is satisfied for all m =
,2dp + 2 by (2.10).
Finally, it holds that fRn w”;;dvh fRn yd)'c by scaling invariance and the observation that deth = 1.
Thus collecting all the computations made here we can conclude the proof.

Derivation of (4.7). Unlike the local cases where pointwise relations of the bubbles were used (see [13]
Proposition 13] for v = 1 or [4, Proposition 3.2] for y = 1/2), our proof heavily relies on the algebraic

properties of the tensor W;j; instead. Write 7 = (!,---,7") e R" and
do dy m
- - - m -—
Fx+1R) = an (15 + 1P +287)" = 30 apbs (152 + 122)" (5 1
m=0 m=0 =0

where a,,, by, € R. By the definition of 4;; in (2.2), then we have

Z f _27hl-j(efc)6l~W5J(')jW5,de
B

=1 Y (0,v/€)

n-2y
= 2 Z f 1- ZVHU(Ex)f(|x| )(9 Ws.0;Wsdx + O(MV2(dO+1) (V) )
i,j=1

= pe* o+ fN x]lv_zyW,-kﬂ (xk + Tk) (xl + Tl) f(|)? + T|2) x X! | %1720, W50, W5 ) (|7, xn)dx
R+

+ O (D - (efvy) (4.10)
dy m
1-2
=3 > anbu, f Y f 15 + )" 1720, Wod, W) (15, xv)
m=0 t=0
o n-2y
X Wikji f x'x’ (xk + Tk) (xl + Tl) (x-1)'dS drdxy + O (ﬂvz(d(’”) . (S) )
S"*I(O,r) )4
However, since W;;x = 0 and Z Wijik = 0 hold, we have the validity of
Wikjlf x'x/ (xk + Tk) (xl + Tl) (xl‘z'1 +oot x”‘r")t ds =0 4.11)
S710,1)

forany givent € R"and7 =0, 1,--- ,dy (where dy will be chosen to be dy < 4). Plugging (4.11)) into (4.10),
we obtain {.7). m]

The previous proposition implies that searching a critical point of the function Jg can be reduced to looking
for that of J}' + J; . Since the tensor Hy, in (2.1) satisfies the symmetric condition H,p(X, xn) = Hap(—X, xy)
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for all (%, xy) € RY, so does the tensor H. Also, it is a simple task to check that ‘I’Q_T()‘c, xN) = ‘PQT(—)E, ).
Therefore (J) + J3)(6,7) = (J] + J})(6,—7) for any (6,7) € A. As an immediate consequence, we have

a(le + Jg) ) & (Jly + Jg) B
— 25,00=——=2(5,00=0 forevery é > 0. (4.12)
or otdo

In the next subsection, we carry out some computations necessary to find a critical point (specifically, a local
minimizer) of JIY + Jg . Actually, with the aid of these computations, we are able to deduce that (le + J%' )(6,0)
can be expressed with a polynomial P = P(5) (see Subsection [£.4). As a result, our problem is translated
into obtaining a suitable critical point of the polynomial P which we shall take care of in Section[5] It will
turn out that for sufficiently large dimensions (for instance n > 52 if y = 1/2), an appropriate choice of a
linear function f in the definition of the metric g (see (2.2))) gives a desirable critical point of the polynomial
P. However, it is inevitable to introduce a polynomial f of degree dy = 4 in the metric g instead so as to
enable to find a necessary critical point of P in lower dimensions (e.g. 24 < n < 51 for y = 1/2). Since
the computation is extremely complicated in the case that dy = 4, we will take into account only when the
dimension # is large enough (so that dyp = 1) in most part of the paper to clarify the exposition. Changes
required to consider lower dimensions will be described in Subsection[5.2]

4.3 Preparation for an expansion of J) + J)
Let us introduce some functions.

- Denote the Bessel function of the first kind and the modified Bessel function of the second kind of order y
by J, and K,, respectively. Their definitions and properties can be found in [2].

- Set ¢ by the solution of the ordinary differential equation in the variable ¢ > 0:

1-2
" (1) + %(ﬁ'(t) - =0, ¢0)=1 and¢@(c0)=0. (4.13)

In particular, o(r) = d\” K, (¢) for t > 0 where d; = 2177 /T (y).

- Notice that the Fourier transform of w is a radially symmetric function. We shall denote by Ww1(£) = Wi (p)
with a slight abuse of the notation.

- Let A, and B, be numbers defined to be

Ag = f 1" (dt and B, = f P i)™ dp
0 0

for @ € N U {0}. Also, we set functions
Fiay(@.B) = f f Xy P WL(E, xv)dxdxy,
0 n
Fataf) = [ [ WP Gy, (4.14)
O n

Fapy(@f) = f f X510, Wi PR, x)d T xy
0 R}l

for @ € 2N + 1 and B € 2N as far as they are finite.

The main objective of this subsection is to depict how to express the values of functions in (¢.14) in terms
of numbers A; and B;. Especially, the following lemma will be established as one of the consequences. See
also Appendix [B|below and [53].

Lemma 4.4. Suppose that dy = 1 and n > 2y + 8. Then it holds

n(3(n-3)?+(1-4y%))
3n—-4)n-2y-4Hn+2y-4)

Fiay(1,2)=|s""| A1Bo, (4.15)
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n(n+2) (1501 = 3)%(n = 5% + Ri(1,4))
Fiay(1,4) =|s"| ABy,  (4.16)
” 15n—-4)(n-6)n—-2y—-4)(n+2y—-4)(n—-2y—-6)(n+2y—6)
lan=1 n(n+2)(n+4)(35(n-3)%(n—5)2(n=7)>+R1 ,,(1,6))
FL"J’(I’ 6) - |Sn | [35(n—4)(n—6)(n—8)(n—2y—4)(n+27—4)(n—2y—6)(n+2)1/—g)(n—2)/—8)(n+2y—8) A1B,. (417)
Moreover we have
FanyG.2) = |5 (1-92)201+2) (501 = D(n = 3) + (1 - 49?)) n
2ny(3,2) = 15(n —4)(n -2y —4)(n + 2y — 4) v
Fon®.2) =[5 2(1 =92 =) (500 = (= 2)(n = 3) = R3 1(3,2)) B
RO 15(n — 4)(n — 2y — 4)(n + 2y — 4) 152

where
Riny(1,4) = (1 - 4y%)[102? - 80n + 177 - 1297
Riny(1,6) = (1= 4y%) [35n* = 700n° + 5299n* — 17990n + 23469
+80y* - 4y? (217 = 210n + 611)],
R3,,(3,2) = (1 =2y)[3n - 14 = 2y(n + 2)].

In order to verify the lemma, the following observation of Gonzélez [39, Lemma 14] and Gonzalez-Qing
[41), Section 7] is needed.

Lemma 4.5. For each xy > 0 fixed, let Wi (&, xn) be the Fourier transform of Wi(X, xy) with respect to the
variable x € R". Then we have that

Wi(&, xy) = Wi@e(€lxy)  for all € € R" and xy > 0, (4.18)
where ¢(t) = dt"K,(t) is the solution to (.13).

Next, we obtain the explicit form of the Fourier transform w;(p) = Ww(£) of the standard bubble w(x).
(4.19) is also obtained in [42] up to the constant multiple.

Lemma 4.6. Ifn > 4y — 1, then it is true that

or (2) %
wi(p) = dop 7K, (p) foranyp >0 whered, = Z—M (4.19)
r(ﬂ) 7
2
As a result, it is a solution of the equation in t > 0:
y 1+2y ,
7 () + Tyfﬁ -0 =0 (4.20)

with the asymptotic behavior
o) = Y2172 A +0(1))  ast— 0+,
N Va2t e (1 + 0(1)  ast — oo.

Proof. Since w is radial, namely, w;(X) = w(r), so is its Fourier transform and can be expressed in terms of
the Bessel function J a2t

N N 1 « n

O = 1) = 5 [ mOaorrtdr forp =1él> 0
pz Jo

We observe that the integral is the (%)—th order Hankel transform of the function r — '3 wi(r), whose

precise value can be computed under the assumption on the dimension n > 4y — 1 as listed in [68]. As a

result, we find from (2.18) that (4.19) has the validity. The fact that Ww; solves Eq. (#.20) results from a

direct computation. |
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The following lemma can be obtained by modifying the proof of [41, Lemma 7.2].

Lemma 4.7. Suppose that ¢ = ¢ or Wy in Lemmas[{.5and[{.6] Setalsoa =1 -2y if¢p = ¢, ora=1+2y
if = wy. Then we have

*° 1 1 b oo
f (@' (p))’ p'dp = (%) (% - a) f ¢(p)*p'dp 4.21)
0 0

and

oo -1 1 1 - e
f ¢(p>2p"dp=<n—a>(’72 )[H("; )(”; —a) l f 6(0)0"2dp 4.22)
0 0

provided that n > 1 for ¢ = ¢, and n > 4y + 1 for ¢ = Ww;.

Proof. We only take into account the case that ¢ = W, since the other case can be covered in the same way.
If we multiply o (o) on the both sides of (#.20) and then integrate the results over (0, o), we get

AW N
(o= ) [ w100 rae = (152 [ 6007 st 423)
0 0

which is @21). Since it is known that K/(p) is of order p™~" near 0, it holds that p"W/(p)*|p=o = O if
n > 4y + 1, which validates the above calculation.
On the other hand, if we test 7" (p) on (#20) instead, we then discover that

® A7 2 * A7 A -1 * A 2
- fo (W}(0)) p"dp + (@ = 1) fo Wi (p)W1 ()" dp = fo Wi(p)“p"dp. (4.24)

Since an application of integration by parts shows that
* A~/ A n—1 _ n-1 * ~ 2 n-2
wipWi(p)p™ dp = —| —— wi(p) p" dp,
0 0

we conclude with (4.23)) and (4.24)) that (.22)) holds. o

With the previous lemmas, it is now possible to proceed the proof of Lemma

Proof of Lemma We remark that the basic idea of this proof is motivated from [41, Lemma 7.3].

We first deal with Fy,,. By taking the Fourier transform on the variable X and applying (.18), one

derives 5

1+m

= m = = m 2 ERTY,
f WG xwds = 117 W30y = (T o)
Rﬂ

L®) (4.25)
= fRn W1(EDe(Elan) - (=A)F (W1 (€Dl xn)) dé

for each fixed m € N U {0} and xy € (0, o). Assume m = 0 first. By (.13)) and (.20), we find
As (1 (EDe(€lxn)) = W1 (o)p(pxw) (1 + xy) + 2] (o) (oxn)xn
—-2v-2 2y =2
+ (%) W (0)p(pxn) + (’”Ty) Wi(0)¢ (oxn)xy  (4.26)

where A, stands for the Laplacian with respect to the &-variable. Moreover the substitution ¢ = pxy enables
us to get

f f xll\/_zy (Wl(p)¢(pr))2 (1 + x]Z\/) pn_ldedp =A|By + A3By
0 0
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and
f f 21 () o)W, (06 ()" dxdp

_ , ® 2(1 = y)(n -3
([ g wal( [ o memon ) = | 22w

which are finite for n > 2y + 4. Therefore, treating the other two terms of the right-hand side of (4.26)) in
this fashion, we deduce from and Lemma[4.7] that

[ [ Wi oazan = [ a7 [ siebeteing - ()bl dedn

- n(3(n-3)?+(1-4y%))
=Is |[12(n—4)(n—2)/—4)(n+27—4)

A1By,

getting (.13). Similar technique also can be applied for m = 1 and 2, which gives (4.16) and #.17). To
derive (4.17) for instance, we first observe that

f Xy f ITOW2 (X, xn)didxy
0 R”

= j; xy fR N(—A)g(Wl(I§I)<P(I§IxN))-A§(Wl(I§I)<P(I§IXN))d§dXN- (4.27)

Furthermore, one can check that

AZ 001 (1€De(Ilxn)
. n2—2n(3+27)+4(2+37+?’2)
= W1(p)p(oxy) (1 + 6xy, + xN) + e wi(o)e(pxn)
n? = 2n(3 ~2y) + 4(2 -3y +7) )
+ p2 Wl(p)ﬂo(pr)xN
[P -10n+4(5+97)
+ 4, (o) (pxn)ay (1 + xy) + p? 201 () (oxn) e
Coy_2 3n-2y-8
+ (—" p7 )2% (P)p(oxn) + (—n py )2W3 (P)p(pxn)xy
(1+7y) (n2 -2n(3 +2y) + 4(2 + 3y + 72))
_ > 20 (p)e(pxn)
2y_2 3n+2y -8
+ (—n Al py )2fv1(p)s0'(px1v)x13v + (’H—y) 2W1(0)¢" (XN ) XN
(=1 +7v) (n2 -2n(3 -2y)+ 4(2 -3y + 7’2))
4 p 2W1(p)¢’ (pxN)xN -

Putting this into ( and computing term-by-term as before we can determine (4
We next turn to the analysis of F,,, and F3 . As in ( , one has

2(1+m) 2 _
RV oy = § (SN e
(4.28)

n

= 2 | &Mt - A (EW el ) de

i=1
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for any m € N U {0}. Therefore it is possible to perform a computation using (4.28)) and the relation
(=A™ (EW1) = —2mdi(—A)"™™' Wy + £(=Ag)" Wy
to show that
— |57 Fany(3,2)

3—2V
— X
0 0

(1 =22 +2) (5(n = 1)(n = 3) + (1 - 49?))
15(n — 4)(n — 2y — d)(n + 2y — 4)

- W n+1 117 T’ n—1 o
zanI(p9 xN)Wl(p’ )CN) +p +1W1(,0, XN) (Wl (,0, XN) + TWI(p’ XN))] dpde

A1B;

(W{ signifies the derivative of Wi in the radial variable p = |x]). Likewise, one sees that

2 2

= ||(—A)HTm5NW1(',XN)

1+m ———
P19y Wi (5, o) = [|(-8) 5 Iy W ¢, 1)
R’l

L2(R™) L2(R™)

(4.29)
= IW EW1(E)¢" (€lxn) - (—A)?m (€1 )¢ (1€]xn)) dE .
Thus by employing (4.29) and
Ag (W1 (€lxn)) = (n + 2y)W1(p)p(pxn)xn + (n + 2y — 2)W) ()¢’ (pxn)

2y -2
+ 20W, (p)g(pxn)xy + 2y (’”Ty) W10 (oxn) + P ()’ (o) (1 + %)

we can find the value of F3,,,(3,2).
This completes the proof. m|

4.4 Reduction of (le +J] ) (-,0) into a polynomial P
Lemma [4.4] allows us to obtain the following proposition.

Proposition 4.8. Assume that the degree of the polynomial f in 2.2) is dy = 1 so that it is written as
f(r) = ap + a1r where ag and ay are arbitrarily chosen and fixed. Also, we denote

Fany(@,B) = Fony(@.B) + Fyny(a.B)  for(a,p) € 2N + 1) x (2N)

and set polynomials

Pi(0) = |t (n + 8)F1(1,6)* + 2apai (n + HF1(1,4)F + ay(n + DF1(1,2)%],

1
n(n+?2)

P31(1) =

1
pr— |6ai(n + 4)(n + 8)F1(3,4)¢" + Bagar (n + 2)(n + 4)F1(3,2)¢°

+2agn(n + 2)F1(3,0)] (4.30)

Py (1) = % |[24at(n + 4)(n + 8)F1(5,2)* + 16apar (n + 4)F1 (5,07
P33(1) = 48a;(n + 4)(n + 8)F(7,0)t*

where Fi = Fy ., (refer to (4.14)). We further define polynomials Py, P2y, P»3 and P24 by substituting each
F1(a,B) appearing in Py, P31, P3; and P33 by Fy,,(a + 2,), respectively. If the polynomial P is given
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—24n(n—1) - P(¢)

3
= (-1 = (1= 29)%) P1(0)
2dy+2 [m—l

+(1-2y) )
m=1

1 ) 1 2do+1 [ m 1
Hoeofr-g)-2(7-3)} X [ L ar w2y | @I

m=1 L

|
431
1_[ (27 + 3)(N — 207 + 1))} Pan(®)

m=1

forn > 2y + 8(=2y + 4(dy + 1)), where the value in the bracket in front of Py is understood as 1, then it is
true that
(47 + 73) (6,0) = P(6?). (4.32)

Remark 4.9. Clearly the above result recovers the polynomial found by Almaraz for the case of y = 1/2
(up to a multiplicative constant). See (4.6) of [4]. Furthermore, putting v = 1 and ag = —a; = 1 allows us to
regain the polynomial of Brendle in [13| Proposition 19].

It is notable that ‘I’?O = 0 holds since ZZ =1 H;;j0;jWs = 0 in Riv . Furthermore, it is straightforward to
check

f xy 7 (HH jr) (3) (8iWs0, W) (%, xy)dx

RN
® 8, Ws\* - ,
:f xllv 2yf f(rz)(r—(s) (Wiklstpqu x’x]xkxpqu"dS,)drdeZO
0 0 r §m=1(0,r)

by using the contraction and anti-symmetry properties of the tensor W. Hence J}' and the first term of Jg
vanishes if 7 = 0. Besides, it can be easily seen that Ws(x) = Ws(|X|, xn) for any x = (X, xy) € Rﬁ’ owing to
the representation formula of Ws. Therefore, in view of (2.10) and (4.5), the proof of the proposition
is reduced to computing

n
_ — \2
fN lev+2m & Z A" (6kHij) (J?)Wg()_c, xn)dx
R i,jk=1

) 00 n N _ -
_L fo anl(O’r)i,;]A (akHu) (X)dS ,

form=0,---,2dy + 1 and

1+2m-2
Xy " 7W§(r,xN)drde

n

m— m— T7 - 2 -
j}; Ly Y A (0 (D) VWP (R x)dx

i,jk=1

5J5
) 00 n _
- f f f DA™ (aHy) (®)dS,
o Jo |JIsmon ;72

form =1,---,2dy + 2 where r = |X|. The most crucial part is to obtain the value of the integrals over the
— \2
spheres $"~1(0, r). To do so, it is necessary to look at how the terms ZZ k=1 A" (akH i j) look like.

1+2m—-2
Xy " (10, Wl + 0y Wil drdxy

Lemma 4.10. Foranym =0,---,2dy + 1, there are radial functions G1 y, Gom and G3 , in R" such that
n . 2 n 2 n
>0 A (OkHy) (®) = Gin(r) Y (9kHij) () + Gam(r) D HYE) + Ga ()W (4.33)
ijk=1 ijk=1 ij=1

where r = |X|.
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Proof. We will use mathematical induction to justify the statement. By the definition of the tensor H; > WE
know

n n n
— 2 2
D (0cHy) (0 = £6 D (kHiy) B+ [8G)F (D) + 4 /(7] D HE(F) (4.34)
i k=1 i k=1 ij=1
so that (4.33)) is valid for m = 0. See the proof of [15, Proposition 15] for its detailed derivation. Suppose that
(@33) holds for m = 7. Then we verify by direct computations utilizing x*6, H; (%) = 2H; (%), X0 H, (X)) =
OxH; (%), sz,k,lzl(akll‘lij(i))z = |W[? and ¥}_, duH;j(X) = O that

n n

D% 4 @) 0= 61,00+ (26140 + 262500 3 (00t 0

i,jk=1 i,jk=1
2 /=
Z i)

~1
+| Gy () + (HT) G, (1) + 2G1,m(r)] WP,

G;’m()+( ) w(r)

Here G’(r) represents the differentiation of G(r) with respect to the radial variable r. Thus (.33)) holds for
m = + 1 as well. The proof is finished. m|

By the previous lemma, the desired integrals will be evaluated once we get

Lemma 4.11. It holds that

" 5|
H2(D)dS = (0xH;j)” ()dS = W2
; oot i 2(n ¥2), Z f () )
Proof. We deduce it by adapting the proof of [[13l Proposition 16]. m|

Combining all results of this subsection, we are able to complete the proof of Proposition[4.8] Actually the
explicit expression of G ,,,, G2, and G3 4, is also necessary, but it can be derived from the proof of Lemma
[M.10] Observe that the definition of the polynomials in (.30 are motivated from the value of

1 f < —\2
S — A" (8pH:;) (R)dS, form=0,---,3(=2dg + 1).
|S}’l—1 | |W|2rn—1 Sn 1(07,.) ij,k:] ( k IJ) r 0

We leave the details to the reader.

4.5 The second derivative of (le +J) ) 6,7) at (6,7) = (6,0)

Our goal in this subsection is to calculate the function 8mj (J;y + J%’ ) (-,0) foreach fixedi, j=1,--- ,n. This
observation will be used in Section [5{on finding a local minimizer of J;y + J;’ (see (C3) below).
We start this subsection by establishing variants of Lemmas {.10|and .T1] Set a symmetric two-tensor

n
Wij = Z (Wikpq + quip)(ijpq + qujp)- (435)
k,p,g=1
Lemma 4.12. Foranyi,je {1,--- ,nfandm = 0,--- ,2dy + 1, there are radial functions Gl,m, . ,511,,,1
in R" such that
< — 2
A" [a,- (0 ) ] @)

k,p,g=1
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n

— 2 — n —
=Gin(0ij Y (OkHpg) (D +Gam(0ij D Hay(®) + Gan(r)ij WP

k,p.g=1 p.q=1
+ Gam(r) )" [ (HpgdiHpg) (B + x; (HpgdiHlpg) (D] + Gsm(r) D" (0:HpgdHpg) ()
pq=1 p.g=1

+Gom(r) D [xi(9kHpgd jeHpg) () + X} (O pgdiiHpg) (D] + Gr,n(r) Wy

k,p.q=1
_ n ) _ n
+ Gem(rxix; Y (OHpg) () + Gom(rxix; Y Hz, (%)
k,p.g=1 p.q=1

n
+ GlO,m(r)xixjn’Vl2 + Gll,m(r) Z (Hpqainpq) (X)
pq=1

where r = |X|.

(4.36)

Proof. It is plain to check that (4.36) is correct for m = 0 by employing @]) Now apply mathematical

induction on m, referring to the proof of Lemma 0l The explicit values of Gy, - -
in [53].

Lemma 4.13. It is valid that

and

n |Sn—l| | |2 2|Sn—1’ _

XH2 (DS = e WS+ —— W,
P fsn_. xS = S it e D Y

i R P
Z fs i (OcH, ) (®ds = —Lwps; + Wi,

Ml nn+2) n(n+2)
1 < )
Z f 1 Hpqa Hpq) (¥)dS = P Z f 1 (ainqaijq) (X)dS
pa=1Y5" pa=1Y5"

5+

Z fs - (HpgijHpg) (£)dS =0

P.g=1

foreachi,je{l,--- ,n}.

1 - ) —
n+2 kpzqzl Ln—l i (akaqa/kHl’q) (X)dS = n(n+2) Wij

,G11,m can be found

O

Proof. The first and second identities in the statement are precisely the ones examined in [[13| Proposition
16]. We can deduct the other identities by arguing as its proof.

By the previous lemmas, we discover

Proposition 4.14. Assume that dy = 1 and n > 2y + 8, and define

D _ 1 2 3 2 2

Pro() = 50— [atF2(1,6) + 2a0ai Fa(1,4) + agFa(1,2)]

~ 1

Pra(0) = [2a3(n + 6)(n + 16)F (1, 4) + 4agai (n + 2)(n + 8)Fy (1, 2)*
nn+2)

+2agn(n + 2)F(1,0)],

— 1
Pi3i(t) = - [Saf(n +6)(n + 16)F(3,2)f + 8apain(n + 8)F; (3, O)tz] ,
P13o(f) = 1642 (n + 6)(n + 16)F(5,0)F°,
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Pyo() =0

ﬁz;l(l) = ﬁ [461%(?1 + 7)F1(1,4)I3 + 4daga (n +2)F(1, 2)[2] ,

— 1
Prai(t) = ~ |[16at(n + T)F1(3,2) + 8nF1(3,0)7],
P232(0) = 16a3(2n + 13)F(5,0)F,

where F1 Fi nland Fy = Fy,, are given in #@.14). Also, for each m = 1 and 2, we set the polynomials
Pm 21, Pm 22 and P03 by replacing each F ,,,(a, ) in Pm .0, P31 and Pm 30 With Fyp(a +2,p). If we put
form=1or2,

—24n(n - 1) - Pa(0)
~ 3
= =24n(n = DPyrg(@) + 5 (= 17 = (1 = 29%) P (1)

2do+1 [m—1
1
A r; LE[ @i+ 3)(N = 2(m + 1))

1 1 2dy [ m 1 _
+{(n+1)(y—§)—2(y ——)}Z[ TN 2 ) (2m + 3)Pjn3m(2)

where the value in the bracket in front of Fﬁ/l;21 is regarded as 1, then

Fn%;2m(t)

PUAR)

W(é 0) = P1(6 YWij+ Pa(67)0;IW|". (4.37)
1

Proof. Step 1. We start the proof by showing that

27

o0t;07;

L (5,0) = Z f 337 7 OaWo(x) - Orye, (Hia(E + W5, (R + )| dx =0,
k=1

Indeed, since W4 and ;%5 are smooth in % and Ws(%, x) = Ws(r, xy) where r = ||, we have

Z FuWs(x) - Ore, (Hig(E + D4 (% + 7)) | Z duWs(x) - 0;jHu(®)¥P4o(x) =0 for x € RY.
k=1 k=1

Therefore the assertion is true.
Step 2. We next treat the derivative of the first term J}  in J) (defined in (#.3)). Because of the observation

xPx? = Z Orie; | T

= Z ey |77 f (154 7P (Huakg) ()|

=2 > (HuH ) (9
=1

kf Ix + 7] ) pklqukzsx X xpxq]

Z 6‘1’,‘['] [ leql (x + T)]

=0

=0

7=0

which is true for any fixed x = (x',---,x") and T € R", we obtain
32@0 £ p a0 Wé) (x ) g
or: a Z a‘n‘r, leql) (X + T)] X - 5
! =0

1- -2
fﬁ] N Z llH]l (x)|x| |V W5(x XN)l dx.
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Thus, after carrying out computations as in Subsection[d.3|and in particular applying the first identity in the
proof of [15, Proposition 20], we get

i a0 = f f Z (HaH ) (0dS | xy 7 r 2V Ws(x, xw)Pdrdoxy
07', §1=1(0,r)

=1

w 2 ¢4 2 2
2n(n+2) Wi (364 F2(1,6) + 2a0a1682F(1,4) + a3 Fx(1,2))

where Fy = F,,,,, is set in (4.14).

Step 3. For y = 1, one can compute the second derivatives (97,-71«]%/ (6,0) as in [[13| Proposition 21]. However,
since the explicit formula for the bubble W; is unknown in our case except when y = 1/2, we cannot follow
it and need to devise an alternative approach.

As a matter of the fact, as we can expect from the previous step, it suffices to calculate the values

n n

— \2 ~ IR
j;"l(()’r) k’g 1 A (akaq) (X)dS , 0 = fsnl(o’r) k’;qzl A" [a” (6kaq)

form =0,---,2dy + 1. Therefore we can achieve the result by applying Lemmas 4. 11, d.12]and 4.13] The
proof is concluded. o

82
aT,'aTj

(X)dS

T=

5 Search for a critical point of the polynomial P and conclusion of the proof
of Theorem [1.1]

5.1 A positive local minimizer of the polynomial P

We now choose appropriate coefficients ag and a; of the polynomial f(r) = ag + ait in (2.2) so that the
function J7 +J} introduced in @4) and [#-3) has a strict local minimum at (1,0), provided that the dimension
n is sufficiently large. By (4.12)) and (#.32), it suffices to confirm three conditions

(CD) ds(J] + J)(1,0) = 2P'(1) =

(C2) 555(]}’ + ]%/)(1, 0)=4P"(1) > 0;

(C3) The matrix (amj (le + Jg ) (1, O))l_’j: 18 positive definite;

to guarantee that (1, 0) is a strict minimizer of le + Jg .

As in Subsection 4.1 of [4]], we put a; = —1 and then denote

P'(1) = Q(ao) (5.1)

where P is the polynomial defined in @31). Then Q(f) = bg + byt + bat* (b, < 0) is a quadratic polynomial
in t € R whose exact definition is described in [53]]. Let disc(Q) = disc(Q)(n,y) = b% — 4byb, be the
discriminant of Q, which is a function of n € N and y € (0, 1). Then we discover that it is positive for all
v € (0, 1) whenever n > 52. To check this fact, we observe that disc(Q)(n,y) = C(n, y)R(n,y) where

R(n,y) = 33075n"7 - 3307500n'® + 132300 (893 - 3y*)n'®

is the 17th order polynomial in 7 and C(n,y) > 0O for every n > 52 and y € (0, 1). After expanding R(n,y) in
terms of n and y, we put y = 1 (0, respectively) into each term whose coeflicient is negative (nonnegative,
respectively). Then we get R(n) ~ 3307517 — 33075001'® + 117747000n'3, which is obviously a lower
bound of R(n,y) for any ¥ € (0, 1). Since the largest real solution of R is n ~ 52.2022, we conclude that
R(n) > 0, hence R(n,y) > 0 for each n > 53. Also it can be directly checked that R(52,y) > 0 for all
y € (0, 1). (The precise expression of R(n,y), C(n,y) and R(n) can be found in [53].)

Let us set

_ —by — Vdisc(0)
a=——g —— (5.2)

so that P’(1) = 0. We now claim
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Proposition 5.1. Fixy € (0,1) and assume that n > 52. If the coefficients ay and a, of the polynomial f
in (2.2)) are selected by (5.2) and a, = —1, then (1,0) is the strict local minimizer of the localized energy
J}’ + Jg. Furthermore (J}' + Jg)(l, 0) <O.

Proof. Denote by @, the number which we chose for the coefficient ag, namely, the right-hand side of (5.2).
By the above discussion and (4.12), we see that (1,0) is the critical point of JIY + Jg . Besides a direct
computation shows (Jf + J%' )(1,0) < 0. We need to be verify that it satisfies conditions (C2) and (C3).

Step 1. Let us establish (C2) first. Thanks to #32), we have d55(J] + J3)(1,0) = 4P”(1)]4y=a,- Since
0(99/50) > 0 for all y € (0, 1) and the leading coefficient b, of Q is negative, we have gy > 99/50. On
the other hand, one can check that P”’(1) — P’(1) is an increasing linear function in ag, say é(ao), whose
coefficients depend on n and y. As a result, P"’(1) = Q(Zlo) > §(99 /50) > 0.

Step 2. We check (C3). This will be followed by Pr0p0s1t10n- 4.14] and our assumption [W| > 0 once we
derive that P1 (1) > 0Oand Pz(l) > 0. If we regard the functions P; and Pz as a polynomial in ag, then clearly
their degrees are at most 2. In fact, further computation shows that they are increasing linear functions in ag
for any n > 52 and y € (0, 1). From this fact, we get Fm(1)|aoza0 > ﬁm(1)|a0:99/50 >0form=1,2. m]

5.2 The lower dimensions

For lower dimensional case, we make the reduced energy functional Jg to have a local minimizer by inserting
a polynomial f of higher degree (dy > 2) in the definition of the tensor % in (2.2)). This approach is pursued
in the local cases by Brendle-Marques [15] (y = 1), Almaraz [4] (y = 1/2) and Wei-Zhao [82] (y = 2).
Here we will select a quartic polynomial f(f) = ?:0 a;t" as in [4] and [82]. In [15], the cubic polynomial
was chosen.

By using the computations in Subsections 4.4 and [4.5] again, we extend Propositions 4.8|and 4.14]

Proposition 5.2. Assume that n > 2y + 20 and the degree of the polynomial f is dy = 4. Then (.32)) and
@D hold for some polynomlals P of degree 10, and P\ and P, of degree 9, respectively. The coefficients
of P, Py and P2 depends on ag, - - - , as. (The full details can be found in [53|].)

Remark 5.3. As in the higher dimensional case, we obtain the polynomial of Almaraz [4] from P when
= 1/2. Furthermore, if we take f(s) = 7+ 55 — s> + 3 s and y = 1, then we again attain the function /(s)
deﬁned in [[15) Proposition 18] as a factor of P.

Now, we set
882178 146178 713925
4 3 2
n=rt- r+ - t+ 5.3
70 10000 100 00 ©-3)
leaving ao undetermined for a minute. Defining the polynomial Q as in (5.I), we again find that it is a

quadratic polynomial. Like above, let us write Q(f) = bg + bt + bat>. We also deduce

1. disc(Q)(n,y) > 0 for all y € (0, 1) whenever 25 < n < 51;

2. the function y — disc(Q)(24,v) is positive if y € (0,y*) and negative if y € (y*,1) where y* =~
0.940197. We chose f so that (0, y*) well approximates the longest interval where the blow-up phe-
nomenon occurs.

3. y > disc(Q)(23,y) < Oforally € (0, 1). As a matter of fact, we could not find any quartic polynomial
S which leads the positive discriminant of Q for some 0 < y < 1 provided that n = 23.

If we denote
n(y) = min{ng € N : disc(Q)(ng,y) > 0 for ng < n < 51}

and take ag as in (5.2), the following assertion is valid. This is an analogue of Proposition [5.1] for lower
dimensions.

Proposition 5.4. Fix y € (0, 1) and assume that n(y) < n < 51. If the polynomial f is given by (5.3)) with
(3.2)), then (1,0) is the strict local minimizer of the localized energy le + Jg . In addition, (JIY + Jg )(1,0) < 0.
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Figure 1: The graph of y - disc(Q)(24,7) (0 <y < 1)

Proof. As in the proof of Proposition[5.1] the assertion is justified if we check that conditions (C2) and (C3)
are true. Their verification can be done for each n(y) < n < 51. |

Remark 5.5. For a sufficiently small y > 0, the best n(y) one can get with a cubic (a quadratic, respectively)
polynomial f is 25 (29, respectively). Moreover we need n > 2y + 24 when we put a quintic polynomial
f into the metric. This is because the polynomial P (see Proposition would contain F(1,22) and
F4(3,22) as its coefficients and they are finite only if the dimensional assumption n > 2y + 24 holds.

5.3 Completion of the proof of Theorem [1.1]
From what we have obtained so far, we can deduce the following existence result.

Proposition 5.6. Assume that n > 24 if y € (0,y*) orn > 25 if y € [v*, 1) (refer to Subsection |5.2| for
the definition of the number y*). If € > 0 is a small parameter in (2.2), g is the metric tensor and p is
the boundary defining function chosen in Section [2} then Eq. [2.13) possesses a positive solution U, in
R’fl, whose restriction ue on R" satisfies the fractional Yamabe equation (1.2)) with ¢ = 1 and ||uell=®ry >

_n=2y

Ce 2.

Proof. For the existence of a positive solution to (2.13)), it suffices to search a critical point of the functional
Jg by Lemma .3‘14l Lemma and Proposition ensure that if one finds a local minimizer of le + Jg
(see (@4) and (4.5)) in the admissible set A = (1 — &g, 1 + &9) X B"(0, &) for some small & > 0, then the set
A must contain also a local minimum Jg . However, we already know its validity from Propositions and
Thus (2.13)) has a positive solution. The lower L*(R")-bound of the solution comes from (3.40). o

We are now ready to finish our proof of the main theorem.

Proof of Theorem Define a smooth two-tensor /;, in RY as

(9]

hap(x) = )" x (4m?1x = xl) 27FOM £ (27 — 5, 2) Hg (x = ).
m=my
Here y € C*(R) is a truncati% function such that y(¢) = 1 for || < 1 and O for |¢f| > 2, H, is the tensor in
@), xn = (m',0,---,0) € RY and

g - 1 forn > 52 (see Subsection[5.1)),
714 for24 <n<5landye€ (0,y"],or25 <n <51 andvy e (y* 1) (see Subsection [5.2).

If we set g = exp (h), then one can construct a metric tensor g* and a defining function p on RY as described
in the proof of Proposition Moreover, (2.9) remains valid because the proof requires only the local
structure of g and the vanishing mean curvature condition H = 0 on R". Therefore, by choosing m( € N so
large that (2.3)) holds, we can employ Propositionwith u =276 ¢€=2"2andy = (4m)~!, completing
our proof of Theorem[I.1] O
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A The Loewner-Nirenberg problem

A.1 Existence and uniqueness of the solution

The existence theorem in Andersson-Chrusciel-Friedrich [7]] to the singular Yamabe problem is presented
in the setting of compact Riemannian manifolds. In this subsection we illustrate how their result can be
applied to the problem (2.8)) defined in the upper half space.

To this end, we define some notations: Let By, := BM((0,---,0,-1/2),1/2) be the ball of radius 1/2
centered at (0,---,0,—1/2) € RN and y; = (0, --- ,0,—1). Moreover let C : @ - m\{ys} be a conformal
equivalence between the sets @ and m \ {vs}, and D its inverse expressed as

Clx) = (,xnv+ 1)

—m+(0,”',0,—1) and Z)(y)ZC(y)

for x = (X, xy) € @ and y € By2 \ {ys}. Next if we denote

1 ~ -
—  forx = (% xy) € RY,

(X7 + (xy + D?) 7

Wipx) =

then it is the standard bubble in RY which is the same function as Wi in (Z.17) up to a constant multiple
provided that y = 1/2. Introduce also pullback metrics

4 -
g =D (Wi3g) mBiz\ly) and gi=D'@ inBip.

We can smoothly extend gz on the whole closed ball By, by defining gg(ys) = 0p(ys), where 6p means
the canonical metric on the ball B2, because g is equal to the standard metric g. outside of the half ball

{lx| < 1). Furthermore g5(y) = D" (x3723(x)) = x;2(W, (X)) ¥2g5(y) for all y = C(x) € By 2.

Lemma A.1. Set p5(y) = (DO W12(DO))F2 fory = C(x) € Bipp \ {ys} and pp(ys) = 0. Then it is a
smooth boundary defining function for By, satisfying |dpplz, = 1 on 0B >.

Proof. Clearly pp(y) > 0 in By, and pp(y) = (D(@y))y = 0 fory € dBy;» \ {ys}. Since the decay of
W, /z(x)ﬁ is |x|72 for |x| large enough, the definition pp(ys) = 0 gives the smooth extension of pp to the
singularity.

On the other hand, the condition |dpplz, = 1 on 0By, implies that the sectional curvature of gp = p;fgg
approaches to —1 at dB| ;», and vice versa. Since § is equal to the standard hyperbolic metric in {|x| > 1}, the

sectional curvature of gp is precisely —1 in the neighborhood of y;. Moreover, we have |dxyl; = 1 on RY,
which means that the sectional curvature of g(x) goes to —1 as x tends to R", so does the sectional curvature
of gp(y) as y converges to a point in 0B12 \ {ys}. O

In summary, (B},2, §g) is a compact manifold, pp is a smooth defining function for its boundary dB; > and
gp = pl_gzgg in By)2. Therefore, according to [7], there is a unique solution ug € CN‘I(Bl/g) N C®(By)2) of

4N -1)

=5 Dapt + Ryt + NN - Du¥2 =0 inBj, and u=1 ondBy. (A1)

Then u(x) = up(C(x)) (for x € RY) satisfies @-3).

A.2 Expansions for the solution near the boundary

This subsection is devoted to give account of the derivation of Proposition [2.1{ under the assumption that
N > 22. To get information on the lower order terms of the expansion for p (or equivalently, &) in terms of
xn, we will inspect the equation that z := u — 1 satisfies. We remark that our proof is inspired by Han-Jiang
(44].
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Introduce a linear operator

4(N -1
L) = % [AgZ ~ (N = 2)xy'dnz - Nx,_\,zz] —Rgz forze CHRY)

and a function g : (=1, 00) — [0, ) by

N+2 N + 2
Hni=0+32 -1+ t]. A2
g(0) =1+ ( N3 ) (A.2)
Then, by employing the relations
Az = x3A; — (N = 2)xydy and Rz = —N(N — 1) + Ryx%, (A.3)

which are valid due to the condition H = 0, one can deduce from (2.8)) that z is a solution of Q(Z) = 0 where
Q is the operator
QR) = L&) - N(N - )xy’g(?) - R;. (A4)

To approximate the function z near the boundary R”, let us set a polynomial zg4, in the xy-variable,

2dy+2
2ap(Exn) = ) Dop(Dxy" (1 <dp < 4) (A5)
m=1

where smooth functions D5, in R" are determined in the next lemma. We also remind that Az = A;, + Oy
and Rz(X, xy) = R;(¥) if xy > 0 is small enough. Then the main order term of Dy, will turn out to be equal
to AZHR,; up to a constant factor.

Lemma A.2. Let R(01,02) = B"(0,01) X (0,02) be a cylinder in RY. Then, for a fixed small number
02 € (0,1), there exist a constant C = C(02) > 0 (independent of 01) and functions D,,, € CW(RIJY ) for
m=1,---,2dy + 2 satisfying

|Qza) (@) < Cx224 for all x = (%, xy) € R(o1,02).
Proof. By putting the polynomial z4, given (A.5) into (A.4), we observe that

Q(za)) = (-12(N = 1D, - Ry)

20tt gy 1)
+ Z [— (Ai,Dzm - (2m+3)(N —2(m + 1))D2(m+1)) - Dsz;,] X"

N-2
m=1
4N -1) _
’ (WAﬁDZ(Zdoﬂ) - D2<2d0+2>sz) X2 0% — N(N = D)xi2g (zay)
where
N+2 N+2
g (zqy) = (Nz‘z)Déxj‘\, + (N3‘2) (2D2D4 + D;) K&+

is a power series whose coefficients are sums of products of two or more D»,,’s. Expanding Q(z4,) in
ascending power of xy up to the 2(2dy + 2)-th order yields

2d()+1

Qzqy) = Z Gnm (D2, e ,Dzm,A;,Dzm,Dz<m+1),R;,) X"
m=0

2(2do+2 2(2do+3
+ G2dy+2 (Dz, o, Daayr2), A;;D2(2d0+2),R;,) P02y O(XN( o ))
where G, is a function which can be explicitly written (setting Doy = 0). For example, we have

4(N -1
Go=—12(N-1)Dy—R;, and G = % (A,D2 = S(N = 4)D4) - DoR;, = N(N — 1)D3.
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Solving the equations Gy = - - - = G24,+1 = 0 inductively, we obtain

D B and D = AL +R (D ---,D RA) (A.6)

T T2(N-1) 2D T QBN = 2m+ 1)) TR T '
form =1,---,2dy+ 1, where the remainder Ry, is a sum of products of two or more its arguments. By (2.3)
and (2.3), |G24,+2/lz=®n is controlled by the small number 9. Hence the proof is completed. m]

As aresult of the previous lemma, one gets

8(z(x)) — 8(z4, (X))

Lz - z24)) = O (63 ®) + NN = Dx?l(x)(z — 24,)  Where £(x) = ) =2, (0)

(A7)

Furthermore, given any fixed n; > 0, we may assume that z(x), z4,(x) > —n; for all x € R(o1,02) by
decreasing ¢, > 0 in the statement of Lemma [A.2]and ny > 0 in (2.3) if necessary. Therefore we have
£(x) = —Cn for x € R(o1, 02), which makes possible to deduce the comparison principle to the operator

L1(@) = LEZ - NN - l)x;,zf(x)i defined for 7 € C*(R(o1, 02)). (A.)

Lemma A.3. Choose a small number 1y > 0 such that |Rg| < > in Rﬂy , which is possible due to (2.3) and
(2.5). In addition, let o1 > 0 be any number and o, € (0, 1) sufficiently small so that {(x) > —Cnj for every
x € R(01,02). If L1(Z1) = L1(Zp) in the set R(01,02) and 71 < 7y on its boundary 0R(01,07), then 71 < Zp in
R(o1,02)-

Proof. Suppose not. Then we can choose a point xg = (Xo, (xo)n) € R(o1,02) satisfying (xo)y > 0, (Z; —
Z2)(x0) > 0, V(Z1 — Z2)(x0) = 0 and (Ay(Z1 — Z2) + Onn(Z1 — Z2))(x0) < 0. Thus

4N -1
0= X80 (a5 - ) + otz - )] (o)
4(N — 1)N
> [ (N - 2_) . (Xo)l_vZ + N(N - 1)(x0)/_\,2£(x0) + R,;(XO)] (21 — Z2) (x0)

4
> [N(N -1 {m - Cm}(@z)_z - 772] (21 —22)(x0) >0

provided that Qg € (0, min {I,N(N -1) {ﬁ - Cm} m, 1}) Accordingly we reach the contradiction. The
lemma should hold. |

Together with Lemmas[A.2]and[A.3] we are able to estimate the difference between z and its approximation
20-

Lemma A.4. Fix any 13 > 0 and small v > 0. Then it holds that
|z(x) - zdo(x)| < ijzv(ZdOH)_m for all x € R(v, V). (A.9)

Proof. Its proof will be carried out in three steps.
Step 1. Define
¥ = o o T _n 7T T -2 « 2Q2do+3)-13
7 (%, xy) = C| [sm(—zlxl ) +— cos(—2|x| ]] + Coxy
207 207 207
with C7, C5 > 0 to be determined soon. We claim that there is C = C(g2) > 0 such that

Li(@) £ =Cxy 27 in R(oy, 02) (A.10)

where (01, 02) is the pair for which Lemma[A.3]is true.
Write o} = 2@% /n for simplicity. Since |hg(x)| = 0 for |x| < 1 (see (2.2)), we see that

A; (sin (rz/g}‘) + oS (rz/g’l‘) /QT)
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< 2cos (r/07) /; + O (has| + |Dhap)) (sin (P/07)/ (0) + cos (/07 /QT) :
Therefore we have
L (sin (rz/g*f) + cos (rz/g’{) /QT)

< 4(;:/—__21) [A;, — No5? (1 - NT_ZCm) + 4(NN—_—21)772] (sin ("Z/QT) + cos (”2/@;) /QT) <0

(A.11)

where r = |x|.
Moreover the polynomial @ € R + a> — (N — 1)a — N has N and —1 as its zeros. Hence given that
N > 22, we compute

P < 007 (A12)

AN - 1) N-2 , N(N-2)
= 4N —-1) C'“]

R e

in R(01,02) where ao = 2(2do + 3) — 113.
Consequently (A.T0) follows from (A.TT) and (A.12).

Step 2. Combining (A.7) and (A.10), we obtain

LiG) = Li (2= 24) < Cxy ™™ (1-Cxf) <0 inR(o1,0)

for some C, C > 0. Moreover ||z — 2| L= ((xeRY :xy <00} 18 DOunded, so we can choose Cj, €7 > 0 so large that
2= 24, < 2" on 0R(01,02). Thus we infer from the maximum principle in Lemma that z — z4, < Z" holds
in R(o1,02). By taking o; — 0 and 0, = v, we observe that (z — z4,)(x) < Cészv(z‘lo+ B for x € R(v, ).

Step 3. Similarly we have (z — z4,)(x) > —z"(x) for all x € R(01,02). By letting o; — 0 again in the square
R(v,v), we conclude that (A.9) is true. o

By elliptic regularity, we also obtain decay estimates for the first and second derivatives of z — z4, (cf.
[61%144]).

Lemma A.5. There exists a constant C > 0 such that

|Di(z(x) = 2, ()] + | DA(0) = 24, (0))] < Cxy 2@,

01y () — 2y ()| < €20

22dy+1)-
|axNxN(Z(x) - Zdo(x))| < Cx[\g o+1)—13
for every x € R(v,v). Here D5 implies the derivative with respect to the X-variable and so forth.

We are now ready to conclude the proof of Proposition However, before initiating the proof,
it may as well note that the rescaled function (Ag‘lR;Z)(e)'c) of the main term of D;,, is comparable to

pretdora=2mAm=1(5, F, )2(x) in the set {|x| < v/e} where H,;(¥) = f(I¥*)H;;(¥). This is because we have by

(2) and (2.6) that

1 - — 2
R;(€x) = —Zuze“dﬁz Z (0cH (D) + O (1P )5* (1 + |5%0))  in C¥({I5] < v/e)). (A.13)
ijk=1
Since Gkﬁi ; 1s a polynomial of degree 2dy + 1, we have also that A%MOH)_I(B,{E,- j)2 =0.
Proof of Proposition[2.1] A combination of (A.5)) and (A.9) implies

2d0+2
z2(ex) = Z Dap(eR)(exy)™™ + O ((€xy)?*0™375) in BY(0,v/e). (A.14)

m=1
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Moreover, by virtue of (4.6), it holds

Ajeyv = 0i (1(€)0,v) = h(e)di v + O (h(e)ID(h(e)IDV])
= Av + O (e D) (1 + |520) D) + O (12 @ V1 (1 + [71*0) |Dv))

for any v € C*(R"), so we get from and (A.T3) that

2 _4(dp+1) n
€ — _\2 _
D(ex)(exy)’ —W > (H (D) 5+ 0 (A0 2O DI (14 [5*0) ) (AL5)
i k=1

and

Do 1y(€X)(€xy)* D

€2"A (D3 (€X))
_ + O (35D 3P (1 4 [(0D+2-2m)) | (20m+D)
[(Zm +3)N - 2m+ 1)) (s V1 (1 + 13 )| 5

+ 0(|D2m(€')|262(m+I)Xlz\l(m+l)) (A16)

2 A(do+1) n
=£c 1 m(a T =\ 20m+)
T 48N - 1) [I_I Qi+ 3)(N - 2(m + 1)) i;k:l A" (3eH (D) xy

+ 0(( 2(dp+1) +,112 4dy+6— 2m) -,11264<d0+1) (1 + |)?|4d0+2_2m) x12v(m+1))

in BY(0,v/e) foreachm = 1,--- ,2dy + 1. Subsequently we get from (A.T4)-(A.T6) that

2 _A(dy+1) 2dp+2 ([m—1 n
M€ 1 m—1 7 o) | 2m
RV - - A" (0H () |x
48(N - 1) & [L] (2m+3)(N—2(m+]))}i’];Zk;] (04 )} N (A17)

+0 (/.1364(d0+1)|x|2 (1 + IX|4dO) szv) +0 ((6XN)2(2d0+3)_n3)

z(ex) =

in BY(0,v/€). Since the magnitude of z(e-) is O(u?e*@*+D| . [#do+D) " the m-th power of z for m > 2 can
be ignored. Accordingly (2.9) follows from (A.T7) and p = (1 + z) "2xy. Lemma guarantees the
C2-validity of ([2.9), establishing the proposition. m]

A.3 Global behavior of the solution

Here we investigate the behavior of z = u — 1 in the whole space RY (N > 3) where u is the solution of (2.8).
It is one of the key parts in the proof of Proposition [3.10]

Lemma A.6. Let 19 > 0 be a fixed number in (2.3), which can be reduced if needed. Then there is a constant
C > 0 relying only on N such that

2—-m
&
+ |x|*

2
Cnoxy,
1+ |x|4+m

|V72(x)| < d |07 20| < forany x e RY andm = 0,1,2. (A.18)

Proof. The notations in Appendix [A.T| will be used again in this proof.
By 2.3), (2.5] and (A.3), one can pick a number C > 0 (depending only on N) so large that the function

=1+ CnoxN"W{V/z2 (x) satisfy

AN = 1) aN=1) ., [2{N=3) (1 +152) + 6xy + (V - )%}
—————Aju= ———Cnox
N2 TN (%2 + Coy + D)’

+0(hh| =0

and
Ryu+ N(N — v :[N(N—l)( ¥ | )+0(|Dh| )xN]u>CnoxNW1/2 (xX)-u>0

in RY. This implies that i is a global upper solution to (2.8). Similarly, one sees that u := 1— Cnox W 172 7 (x)
is a lower solution to (2.8). Because of the conformal equivalence between RY and By, it follows that the
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functions ¥ := 1 + Cnop3(y) and v := 1 — Cnop%(y) in B, are super- and sub-solutions of (A-I). Therefore
the standard monotone iteration scheme produces a solution v of (A.T)) such that v < v < ¥ (adapt the proof
of Proposition 2.1 in [10]). Since v = ug by the uniqueness, we get Eq. (A.I8) with m = 0.

The higher regularity results ((A.I8) with m = 1,2) follows from the scaling property of equation
Q(z) = 0in RY (cf. [59, Proposition 3.1]). O

Remark A.7. By applying the maximum principle, it is possible to improve the decay estimate of z. Espe-
cially, we observe that z decays faster as the dimension N gets higher: It holds that

20l < Crox el 2 V¥ in {x e RY : | > 1 (A.19)

for C > 0 depending only on N.

Proof. Set z(x) = ||z||C2(RN)x12\,|x|‘“ in {|x| > 1} with any fixed @ > 4. Since g, = 84 if |x| > 1 and g(¢) = 0
for any t > —1 (see (A.2) for the definition of g), we see

4N
QR < SV 2) [A — (N - 2)xN OnZ — Nxjy z]
4N -1)

= TN_2 ||Z||C2(RN)|X|_a [—3(N -2)+ala - 4)x12\,|x|_2] <0=Q»)
provided that 4 < a@ < 2 + V3N —2. Moreover, it holds that z = 0 < Zin {|x|] > 1 and x5 = 0} and
(0] < N10nNZllLo(ey<1p X /2 < Z(x) in {|x] = 1 and xy > O}

By Lemma Izl ca(zy) < < Cno. Besides z(x),z(x) — 0 uniformly as |x| — oo, so we can apply the

argument in the proof of Lemmal[A.3]to derive that z(x) < Z(x) for |x| > 1. Analogously, z(x) > —Z(x) is true
for |x| > 1, validating (A.T9). ]

Proof of (34T). Denote by g/ by the hyperbolic metric in RY, i.e., g} = x32(d%* + dx3). It is well known
that

b
M(-Ag)=  inf Fey ()" 0aVanV g lax . Joy 5 NIVVPx (v -y
M veer®D\O fRiV V2 |g}+l|dx VEC“’(RN \{O fRN Nv2dx 4

(see [66]). By (2.3) and Lemma there are a bounded function % and a two-tensor /g, in Rﬂf such that
|hyp| is uniformly bounded, uvE = 1+ 102 and gup = Oap + Nohap in Rﬂy . Hence it follows from the definition
of g* that

gl = X (1 +102)(Oap + Nohav) = (81)ap + Xy 10H, -
This implies that /|g*| = V(1 + O@o)) and (g* — g1 = xXnoh!, for some tensor 7 in RY having the
bounded norm. We obtain accordingly

1+ 0G10) ( oy 3 VIV VPa) 2
> (1= Co) - i (~Agg) > 7 =y

/11 (—Ag+) = inf
VeCZ®DMOL (1 4+ O@0)) ( Jow 3 Vde)

by choosing 19 > 0 small. O

B The values of integrals F'y ,, ,, >, and F3,,

The next lemma enumerate some values of integrals F,,, F2,, and F3,, defined in (4.14) which are
necessary to calculate the function Jg in for the case dy = 1. It can be derived in a similar manner
to Lemma [4.4] However, the computation becomes much more involved, so we carried out it by using
Mathematica. More values required to deal with the case dy = 4 can be found in the supplement [53]].
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Lemma B.1. We have

Fin,(3,0)=|5""|

Fi,,(3,2) ="

Fiay3,4) =|5""| 7

F1,5(5,0) = |s"!|

_ n—1 [
Fl»"’y(s’z) - |S | 71OS(n—4)(n—6)(n—8)(n—27—4)(n—2y+4)(n—2y—6)(n+2y—6)(n—27—8)(n+2)/—8)

Fiay(7,0)=|S""|

Fony(1,2) = 5"

Fany(1,4) =|5"|

_ |on-1 |
F27”»7(1’ 6) - |S | ] 140(n—-1)(n—4)(n—6)(n—2y—-4)(n+2y—4)(n—2y—-6)(n+2y—6)

Fau,(3,4) =|5""|

_ n—1 [
F2s"’7(3’ 6) - |S | »315(n—4)(n—6)(n—8)(n—27—4)(n+2y—4)(n—2y—6)(n+2y—6)(n—27—8)(n+27—8)

Fp,5(5,0) = ||

_ n—1 [
F2v"v7(5’ 4) - |S | »315(n—4)(n—6)(n—8)(n—27—4)(n+27—4)(n—27—6)(n+2y—6)(n—27—8)(n+27—8)

Fp0(7,0) = |$"7|

Fa(7,2) = |S"| 7

F2,,(9,0) = |s"7!]

F3,,(3,4) ="

_ n—1 [
F3Jl»7(3’ 6) - |S | 73]S(n—4)(n—6)(n—8)(n—27—4)(n+2y—4)(n—2y—6)(n+2y—6)(n—27—8)(n+27—8)

[ 32(1-3)B -2 -y (1-7)
i 15(n—-4)(n—-2y—-4)(n+2y-4)

[32(n-3)(3-y)2—-y)(1-y?)(T(n— 1) (n—2)(n—5)—R3,,,,(5.2))

F3,,(5,0) = |s"7!|

F3,,(5,2) = |s""|

F3,,(5,4) =|s""|

31— 4)(n =2y - H)(n -2y +4) A

| 35(n—4)(n—6)(n—-8)(n—2y—4)(n—2y+4)(n—-2y—6)(n+2y—6)(n—2y-8)(n+2y-_3)

[(n+2)(3(n = 1 + (1 - 49?))

:(n +2)(n+4) (15(n = 12(n = 3)? + Rypy(1,4))

[ 2(n+2)(n+4)(1-97) (3500 = D)(n = 3)*(n = 5) + Ryny(3.4))
i 105(n—4)(n—-6)(n—-2y —4)(n+2y —4)(n-2y —6)(n + 2y — 6)

»15(n —4Hn-2y-4dHn+2y-4)

1320 A 2)(1—2 —Dn— —29)(142
Fyp(5,2) = |Sn 1| 32(n=3)(n+2)(4-7y*) (1=y*) T (n=D(n=35)+(1-2y)(1+2y))

[2(n+2)2 = y)(1 =) (3502 = D) = 3)*(n = 4)(n = 5) = R3 (3, 4))
| 10501~ 4)(n = 6)(n — 2y — 4)(n + 2y = 4)(n = 2y — 6)(n + 2y — 6)

i 32(n—3)(n+2)(3—y)(2—y)( 1 —72)(21(n—7)(n—5)(n—4)(n—3)(n—1)—R3,,,,7(5,4))
| 315(n—4)(n—6)(n—8)(n—2y—4)(n+2y—4)(n—-2y—6)(n+2y—6)(n—2y-8)(n+2y—8)

8(n-3)(1-7?)

B,,

8(n = 3)n (1= y?) (5(n = 3)(n = 5) + (1 = 2)(1 +2))
A1B»,
15(n-4)(n—-6)(n—-2y—-4)(n—-2y+4)(n—-2y—-6)(n+2y—-06) 172
8(n—3)n(n+2)(1-y?)(35(n-3)(n—5)2(n—7)+R1 ,,(3,4)) AB
7lOS(n—4)(n—6)(n—8)(n—27—4)(n—2y+4)(n—2y—6)(n+2y—6)(n—27—8)(n+27—8) 102,

1281~ 5)(n —3) (4 = 2) (1 - 7?)

}Ale,
i 15(n-4)(n—-6)(n—-2y—-4)(n+2y—-4)(n—-2y—-6)(n+2y—-06)

128(n—5)(n=3)n(4—y?)(1-y*)(7(n=3)(n-7)+(1-2y)(1+2y))

]AIBZ,

1024(n—7)(n-5)(n-3)(9-y*)(4—y*)(1-7?)

]Ale,

A1Bo,

12(n—1)

A1By,

60n—1n-4n-2y-4)(n+2y—-4)

(n+2)(n+4)(n+6)(35(n—1)2(n—3)%(n—5)*+R2 ., (1,6))

]Ale,

A1B,,

2(n+2)(n+4)(n+6)(1-y?)(105(n—1)(n—3)*(n=5)>(n=T)+R2,,(3,6))

]Ale,

32(n-3)(4-9%)(1-4?)

A1Bo,

105(n—8)(n—6)(n—2y—3)(n+2y—A)(n—2y—6)(n+2y—6) ]AIBZ’

32(n=3)(n+2)(n+4)(4—y?)(1-y?) 2 1(n-1)(n=3)(n=5)(n=7)+R0.,(5.4))

]Ale,

256(n - 5)(n—3)(9-7*) (4 - ?) (1 -+?) n
35n-dn-6)n-2y-Hn+2y-Hn-2y-6)n+2y-6)| >
256(n—5)(n-3)(n+2)(9-y?)(4—y*) (1-y?) O(n—1)(n—T7)+(1-2y)(1+2y)) A'B
73]S(n—4)(n—6)(n—8)(n—27—4)(n+2y—4)(n—2y—6)(n+2y—6)(n—27—8)(n+27—8) 102,
[ 8192(n-7)(n-5)(n-3)(16-y*)(9-y*)(4-y*)(1-¥?) A\B
| 3T5(=8)(1=6)(n=8)(n=2y=H)(n+2y=H(n—2y=6)(n+2y—6)(n-2y=-8)(n+2y=9) | 152>

A1 B,,

2(n+2)(n+4)2—y)(1-y)(105(n— 1)(n—3)2(n—5)2(n—6)(n—7)—R3y,,,7(3,6))

]Ale,

A1Bo,

105(n—8)(n—6)(n—2y—23)(n+2y—4)(n—2y—6)(n+2y—6) ]AlBZ’

]Ale,
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70 < g ’ 256(n - 5)(n - 3)(4 - NG -1 (4-9*) (1-9?)
3y(7,0) = | | 735(n - -6)n—-2y-4Hmn+2y-4Hn -2y - 6)(n+ 2y —6)

_ lan-1][__256(1=5)(n=3)4-B=y)(4—)(1=y*) O(=D(n=2)(n=1)=R3 ,,(7.2))
F3’”0’(7’2) - |S | 731S(n—4)(n—6)(n—8)(n—2y—4)(n+27—4)(n—27—6)(n+27—6)(n—27—8)(n+27—8) A1Ba,

A1B,,

len-1 8192(1-7)(n=5)(n=3)(5—)E-1(9*) (4-r*) (1-7*)
F3»”J’(9’0) - |S | 73]S(n—4)(n—6)(n—8)(n—27—4)(n+2y—4)(n—2y—6)(n+2y—6)(n—27—8)(n+27—8) A132

forn > 2y + 8 where

Riny(3.4) = (1 -4y [14n% - 1400 + 377 - 129?],
Rony(1,4) = (1= 4y%) [10n7 - 40n + 57 - 12¢?],
Rony(1,6) = (1= 4y%) [35n* — 420n° + 1939n% — 4074n + 3645
+80y* — 4y? (2107 - 126n +275)] ,
Rony(3.4) = (1= 4y%) [14n7 - 84n + 153 - 129,
Ryny(3,6) = (1-4y)[9(7n" - 11217 + 685n” — 1896n + 2105)
+80y* — 4* (27n” - 216n + 575)] ,
Ryny(5.4) = (1= 4y%) [6n* - 48n + 99 — 49|,
R3ny(3,4) = (1= 2y)[42n — 532n% + 2103n — 2844 + 24y (n + 4)
—84y*(n - 4) - 14y (2n® — 1207 + 15n + 36|,
R3,,,(3,6) = (1 - 2y) [9 (21n5 — 518n* + 4931n° — 229225 + 52567n — 48810) — 160y°(n + 6)
+80y*(11n - 42) + 8y (27n° — 1620% — 97n + 2550)
—y* (756n — 10584n> + 50308n — 82200)
—18y (7n° — 126n* + 861n° — 2534n” + 2153n + 2730},
R3,,(5,2) = (1 =2y)[(3n - 22) - 2y(n + 2)],
R3ny(5.4) = (1= 2y)[3(6n — 104n* + 543n — 892) + 8y (n + 4)
—4y” (30 + Tn — 44) + 2y (48n° - 83n - 116,
R3,,(7,2) = (1 = 2y)[3(n = 10) = 2y(n + 2)] .
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