CHAPTER 2

GRAPH THEORY

1. Terminologies

An undirected graph (or simply a graph) is an ordered pair G = (V, E), where V =
{v1,v9,...}, a non-empty set, is called the set of vertices and E = {ej, ey, ...} is called the
set of edges, such that each edge ey is identified with an unordered pair {v;,v;} of vertices.
The vertices v;,v; associated with edge ej are called the end vertices of e;. A graph with a
finite number of vertices as well as a finite number of edges is called a finite graph, otherwise
it is called an infinite graph.

An edge {v;, v;} having the same vertex as both its end vertices is called a self-loop. Two
edges with the same end vertices are referred to as parallel edges. A graph that has neither
self-loops nor parallel edges is called a simple graph. In this section, we only consider finite
undirected simple graphs.

If a vertex v; is an end vertex of some edge e;, v; and e; are said to be incident with
each other. Two non-parallel edges are said to be adjacent if they are incident on a common
vertex. Similarly, two vertices are said to be adjacent if they are the end vertices of the same
edge.

The number of edges incident with a vertex v;, with self-loops counted twice, is called
the degree, d(v;), of vertex v;. A vertex with odd (respectively even) degree is called an odd
(respectively even) vertex. A vertex having no incident edge is called an isolated verter. A
vertex of degree one is called a pendant vertexr. Two adjacent edges are said to be in series
if their common vertex is of degree two.

ExaMPLE 2.1. Undirected graphs are usually represented by diagrams like the following
one which shows a graph with six vertices and seven edges.
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In this graph, we have edge e; is a self-loop and edges e; and e, are parallel edges.
Vertex v; is incident with edge ey. Vertices vy and vy are adjacent with degrees d(v;) = 4
and d(ve) = 3. Vertex vs is a pendant vertex and vertex vg is an isolated vertex. Edges es
and e; are adjacent and in series. Edges e; and e3 are adjacent but not in series.

2. Some Theorems

THEOREM 2.1. The number of vertices of odd degree in a graph is always even.
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ProoF. Let (V, E) be a graph with e edges and n vertices. Since each edge contributes
two degrees, the sum of the degrees of all the vertices is twice the number of edges, i.e.

(1) Z d(v;) = 2e

But the left side of (1) can only be an even number if there are an even number of vertices
with odd degrees. O

A walk is defined as a sequence of edges (e;,, €, - - ,€;,) such that e;; = {v;; 1,v;,} for
j=1,2,...n, (ie. e;;—1 and e;; are adjacent edges), and no edge is repeated in the sequence.
Vertices with which a walk begins and ends are called its terminal vertices (i.e. vertices v;,
and v;,). The two terminal vertices are also said to be joined by the walk. If a walk begins
and ends at the same vertex, then it is called a closed walk. A walk that is not closed is
called an open walk. We note that a walk may meet the same vertex more than once, i.e.

vi; = v;, for some j # k.

An open walk in which no vertex meets the walk more than once is called a path (or a
simple path or an elementary path). The number of edges in a path is called the length of
a path. A closed walk in which no vertex (except the two terminal vertices) appears more
than once is called a circuit (or cycle), i.e. a circuit is a closed, non-intersecting walk.

In Example 1, the set of edges {es, €7, €9, €3, €6} constitutes an open walk which is not a
path for the vertex vy appears twice. However, the set of edges {e7, es, 3, €6} forms a path
and the set {es, e7, €2, e3} is a circuit.

THEOREM 2.2. (1) If a walk w joins two distinct vertices v1 and vo, then w contains
a path joining v and vs.
(ii) If there are paths from a vertex v to w and from w to x where v # x, then there is a
path from v to x.

PROOF. (i) Let us traverse the walk from v; to ve. If every vertex meets w at most once,
then w is a path. If there exists a vertex v that meets w for a second time, then remove all
the edges between the first time and the second time w meets v. The remaining edges still
form a walk from v; to vo. Repeat the process until a walk is obtained where every vertex
meets it at most once. This is then a path from v; to v,.

(ii) Combining the paths from v to w and from w to z will form a sequence of edges from
v to z. By using the same process as in part (a) to remove edges, a path from v to z is
obtained. ]

A graph G = (V, E) is said to be connected if there is at least one path between every
pair of distinct vertices in G. Otherwise, G is disconnected. A graph H = (V', E') is said to
be a subgraph of G = (V, E) if V' CV and E' C E. A connected subgraph of a graph is
called a component of the given graph if it is maximal (maximal in the set inclusion sense).
Thus a component cannot be a proper subset of another connected subgraph of GG. In fact,
the sets of vertices in two distinct components of a graph must be disjoint. For if not, the
union of two components will yield a larger connected subgraph of G. Components of a
graph can easily be obtained by the following theorem. Its proof is left as an exercise.

THEOREM 2.3. For any verter v in a graph G, the component containing v is the sub-
graph consisting of v and all vertices of G that have paths to v, together with all the edges
incident on them.
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THEOREM 2.4. If all the vertices of a graph G have degree at least 2, then G contains a
circust.

PRrOOF. Take an edge, say e; = {v;,, v;,}. Since d(v;,) must be at least 2, there exists
an edge e; = {v;,, v, }. We can construct a walk with edges {ei, e2} and extend this walk by
repeating the above process. This process can be continued until the walk meets a vertex for
a second time, i.e. ep—1 = {vi,_,, Vi, } With v;, = v;, for k < m. Then {ex, €x+1, -+ ,€m-1}
is a circuit in G. O

A tree is a connected graph without any circuits. Thus a tree must be a simple graph.
The following are examples of trees:
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THEOREM 2.5. A graph G without self-loop is a tree if and only if there is one and only
one path between every pair of vertices.

PROOF. (Necessity) Suppose that G is a tree. Since G is connected, there exists at least
one path between every pair of vertices. On the other hand, if there exists a pair of vertices
with two distinct paths between them, then these two paths together must contain a circuit
and the graph cannot be a tree.

(Sufficiency) Suppose that there is exactly one path between every pair of vertices. Then G
is connected. Now the existence of a circuit in G' will imply that any pair of vertices in the
circuit have at least two paths between them. Hence G has no circuits and is therefore a
tree. 0

THEOREM 2.6. Let G be a connected graph and C be a circuit in G. The subgraph
obtained by removing one of the edges on the circuit C' is still connected.

PROOF. Let {ej,---,ex} be the circuit and without loss of generality, let e; be the
removed edge. Now given any two vertices and a path connecting them, if the path does
not contain e, then we are done. If the path does contain e, then that removed segment of
the path can be replaced be {eg,ex—1,--- ,e2}. Hence we see that the two vertices are still
connected at least by a walk. Using Theorem 2 (i), the theoerm follows. O

THEOREM 2.7. Suppose that a graph G has n vertices. Then whenever any two of the
following conditions hold, the third condition will also hold.

(i) G has no circuits.
(ii) G is connected.
(iii) G has n — 1 edges.

PRrOOF. ((i) and (ii) = (iii)) We use induction on the number of vertices to prove that G
has n — 1 edges. For n = 1,2, the theorem clearly holds. Assume that the theorem holds for
n =k — 1. Consider the case n = k. If all vertices of G have degree > 1, then by Theorem
4, G must contain a circuit and this contradicts (i). Hence there exists a vertex of degree
zero or one. But the existence of a vertex of degree zero will imply that the graph is not
connected. Hence there exists a vertex of degree one. Remove this vertex together with the
edge incident with it to form a new graph H. Then H is a tree with £ — 1 vertices. By
induction assumption, H has k — 2 edges. Hence G has k — 1 edges.



28 2. GRAPH THEORY

((i) and (iii) = (ii)) Assume that G consists of components C4, Cy,. .. ,Cy. By the part we
already proved, since each component is connected and has no circuits, each component has
one less edge than the number of vertices. Hence G has n — k edges. By (iii), we have £ = 1.
Thus G has only one component and is therefore connected.

((ii) and (iii) = (i)) Assume that G has a circuit C. By Theorem 6, we can remove one of
the edges of C' to obtain a connected subgraph with fewer edges. We can repeat this process
of removing edges from circuits until we obtain a connected subgraph with no circuits. By
the first part of the proof, this subgraph must have n — 1 edges, the same number of edges
as G. Hence this subgraph is G itself and in particular, G' cannot have any circuit. O

It follows from the above theorem that a graph is a tree if it satisfies any two of the conditions
stated in the theorem.

A subgraph 7T is said to be a spanning tree of a connected graph G if T is a tree and
contains all vertices of G. The distance, denoted by d(H, K), between two spanning trees H
and K of a graph G is the number of edges of G present in one tree but not in the other.

THEOREM 2.8. Any connected graph has at least one spanning tree.

PRroOOF. If the graph has no circuits, then it is its own spanning tree. If the graph G has
a circuit, then remove an edge from this circuit and by Theorem 6, the subgraph remaining
is still connected. Repeat this process of removing circuits until a subgraph containing no
circuits is obtained. Then this subgraph is a spanning tree. O

An edge in a spanning tree 7" is called a branch of T'. An edge of G' that is not in a given
spanning tree is called a chord. The set of chords is called a chord set. A circuit formed by
adding a chord to a spanning tree is called a fundamental circuit with respect to that tree. If
after adding a chord to a spanning tree to form a fundamental circuit, a branch is removed
from the circuit to generate another spanning tree, such a process is called a cyclic exchange
or elementary tree transformation.

THEOREM 2.9. Starting from any spanning tree of a graph G, we can obtain every span-
ning tree of G by successive cyclic exchanges.

Proor. Let H and K be two spanning trees of GG. Let us prove that H can be trans-
formed into K by cyclic exchanges by using induction on the distance between H and K.
The case is trivially true if the distance is zero. Assume that the theorem is true if the
distance between H and K is < k — 1. Now if the distance between them is k, add an edge
that is in K but not in H. This creates a circuit C' in H by Theorem 7. The circuit cannot
be contained in K. Thus we can find an edge in C that is not in K. Remove this edge from
C to form a spanning tree H'. Clearly the distance between H' and K is k — 1, and by
induction assumption H' can be transformed to K by cyclic exchange. O

Recall that two subsets Vi and V5 of a set V' are said to be a partitionof V if ViUV, =V
and V) N'Vy = ¢. A bipartite graph G is a graph G = (V, E) such that the vertex set V' can
be partitioned into two subsets V; and V5 such that every edge of G joins V; and V5.

THEOREM 2.10. A graph is bipartite if and only if all its circuits consists of even number
of edges.

PROOF. Suppose G is bipartite with vertex classes Vi and V,. Let {z1,z9, - ,2;,21}
be a set of vertices that forms a circuit in G. We may assume that z; € Vi. Then x4 € V5,
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xs € Vj etc, i.e. z; € V7 if and only if 7 is odd. Since z; € V3, we have j is even. Conversely,
let us assume that all circuits of G have even number of edges. Since a graph is bipartite
if and only if each component of it is, we may assume without loss of generality that G is
connected. Pick a vertex x € V and let V; be the set of vertices y such that the length of
the path joining z and y is odd. Let Vo = V' \ V}. Then there is no edge joining two vertices
of the same set since that will imply that G' contains a circuit of odd number of edges. Thus
(G is bipartite. O

3. Incidence Matrices

Let A = (a;),i=1,...,|V|,j=1,..., |E|, be a matrix defined on an undirected
graph as

1 if edge e; and vertex v; are indicent
Qij = .
0 otherwise

The matrix A is called the incidence matriz of the graph G = (V, E). The ith row of A
corresponds to vertex 7 and its ones indicate all of the edges incident with vertex i. Note
that a graph is completely specified by its incidence matrix.

ExAMPLE 2.2. Consider the graph

Its incidence matirx is

1/1 1 0 0 O
211 0 1 0 1
A= 310 1 1 1 0
4\0 0 0 1 1
THEOREM 2.11. Let A be the incidence matriz of an undirected graph G and let E =
{€i,... €} be any set of edges of G. If E contains no circuits, then the columns of A
associated with the edges e;,, ... , e;, are linearly independent.

PROOF. Use induction on n. Clearly the theorem holds for n = 1. Assume that the
theorem holds for n = 1, ..., k — 1. Let {A, ,..., A, } be the column vectors of A
associated with the edges {e;,...,e; }, and let V be the set of vertices of G which are
incident with some edge in E. Thus G = (V, E) is a subgraph of G. Since G has no circuits,

by Theorem 4, G must contain a vertex x; with degree one. Now suppose that for some
scalars aq, ..., ag,

k
ZO‘J'A*@- =0.
j=1
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Since x; has degree one, it is incident with exactly one edge, say e;;,- Hence the sth compo-
nent of the sum on the L.H.S. is simply «a,. Thus o, = 0 and

k
Z CMjA*ij =0.
J=1j#jo
But this sum consists of £ —1 column vectors corresponding to the edges {e;; }, j =1,... ,k,
J # Jjo. By induction assumption, we must have a; = 0, for j =1, ..., k, 7 # jo. So we
have shown that {A*ij }j=1,.. x are linearly independent. O

We remark that the converse of the above is not true in general unless the graph is bipartite.

THEOREM 2.12. In a bipartite graph, if {e;,,... ,e;, } forms a circuit, then the columns
(A A}

of the incidence matriz of A are linearly dependent.

PROOF. Let ¢;, = {z;,_,,2;;}, j =1, ..., n, where z;, = z;,. Inductively, we can easily
prove that

A, — A

*i41

j+1
+A*i3_ '7(_1)] A*ij
(... 0... ,%1,...,7(—1)7“,...,0 L) ifxgy # @
i

*,,:2

=9(..0...,22,...,0...,) if z;, = x;; and j is odd

(...0...) if z;, = x;; and j is even

Since in a bipartite graph, all circuits consist of even number of edges. We must have n
even. Hence

A —Asyy T A, — - — Ay, =0
and {A,, ,..., A, } are linearly dependent. O

*il *i3 *in

COROLLARY 2.13. If a subgraph of a bipartite graph contains a circuit, then the col-
umn vectors, assoicated with the edges of this subgraph, in the incidence matriz are linearly
dependent.



