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Abstract

We study the existence of 2m-periodic positive solutions of the equation

a(6)

U90+U:—3,
u

where a(6) is a positive smooth 2m-periodic function. A priori estimates and
sufficient conditions for the existence of solutions of the equation are estab-
lished.

1 Introduction and statement of the results

We are concerned in this paper with the equation

a(f) 1
Ueg‘}‘UZF, GES, (11)
where a(f) is a positive smooth function on S' = R/27Z. Equation (1.1) arises
from the study of the generalized curve shortening problem, which can be derived
as follows. Consider the following generalized curve shortening problem

%Z =®(0)k]° 'kN, o>0, 6€S, (1.2)

where (-, t) is a planar curve, k(-,t) is its curvature with respect to the unit normal
N, and ® is a positive function depending on the normal angle # of the curve. This
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problem has been extensively studied in the last two decades. See [1-7, 15, 16, 18-19,
21-25, 32]. Assuming that 7(-,t) is convex, then we can use the normal angle 6 to
parameterize 7, and equation (1.2) is equivalent to

ow _ —a(0)

=7 6 St 1.3
ot (wag + w)‘f ( )

where w(#,t) is the support function of (-, ¢). A self-similar solution is of the form
w(#,t) = &(t)u(#), which means that the shape of the curves does not change during
the evolution governed by (1.2). Such solutions are important in understanding the
long time behaviors and the structure of singularities of (1.2). It is rather easy to
see that &(t)u(#) is a self-similar solution if and only if u satisfies

ugp +u = Zz(ﬁ)l 0es! (1.4)
with a() = ®-(6), p+ 1 = L and [€()|771E(t)€'(t) = —C, where C is a positive
constant. The case 0 = % or equivalently, p = 2, (1.2) is called the affine curve
shortening problem, and equation (1.4) becomes (1.1). Thus a solution of equation
(1.1) is a self-similar solution of the anisotropic affine curve shortening problem.
Note that in general a(f) can only be assumed to be 27-periodic. Equation (1.4)
also appears in image processing [32], 2-dimensional LP-Minkowski problem [8, 27]
and other problems [25].

Equation (1.1) is a special case of

u" + f(0,u) =0 (1.5)

where f : R x R — R is continuous, T'—periodic in the first variable and has a
singularity of repulsive type near the origin. The existence of periodic solutions of
(1.5) had been studied by many people. Using the Poincaré-Birkhoff fixed point
theorem, the following result was proved by del Pino, Manésevich and Montero in
[17]. Let {pn}22, be the eigenvalues of

"+ pu =0
with T-periodic boundary conditions:
u(0) = u(T), «'(0)=u(T),
that is, p, = (2”7")2, n=0,1,---.If f satisfies
, Vs e (0,9), (f1)
for some positive constants ¢,c’,d and v > 1, and there exists a nonnegative integer
Hn

n such that ) 0
VIR lslgjglof@ < hfﬁfip f(sa s) < ,Uwzl—f—l (72)




uniformly in 6 € [0, T, then problem (1.5) possesses at least one T-periodic positive
solution. This result gives a Fredholm alternative-like result for the problem

a(0)

u’’

u" + A= (1.6)
which means that (1.6) possesses a T'—periodic solution if A # £t foralln = 0,1, --- .
Thus for T' = 27, problem (1.6) has at least one 27-periodic solution for A satisfying
o< 0,1,

Equation (1.4) with p # 2 has been studied by many authors. When a = 1, all
solutions of (1.4) can be classified. See Abresh and Langer [1] in the case of p = 0
and B. Andrews [5] in the case of general p. When a is 27-periodic, Dohmen and
Giga [18], Dohmen, Giga and Mizoguchi [19] studied the p < 1 case. Matano and
Wei [29] proved that (1.4) is solvable if 0 < p < 7,p # 2 and a is 27-periodic.

These results do not cover the affine case, that is, equation (1.1). Indeed, the
situation for the affine case is quite different. It is known that there are some
obstructions for the existence and one can’t get a priori estimates for the solutions
of (1.1) without additional assumptions on a due to the invariance of the problem.
To see this, let us consider its simplest form

1 1

Equation (1.7) is invariant under the action of the special linear group SL(2,R).

For any matrix
a b
=(00)

in SL(2,R), we have an “affine diffeomorphism” on S' given by

. (cosf,sinf) AT .
(cosB,sin f) — T(cos 0. sm ) AT]| (cos@,sinf),

that is,

tanf = ———— d—bc=1.
an a—+btanf’ 4 ¢

For any function u in S?, define

u() = cos HN\/(a tanf — ¢)2 4 (btan 6 — d)2u(6).

Then u4(0) is a solution of (1.7) if and only if u(6) is a solution of (1.7). Starting
with the trivial solution v = 1, one can show that all solutions of (1.7) are given by
a 2-parameter family of functions

(M

uet(0) = (” cos®(0 — t) + & *sin’(0 — 1)) 2, (1.8)



for (¢,t) € (0,1] x [0, 7). Thus the solutions of (1.7) are not bounded. The group
SL(2,R) plays an important role as that of the conformal group Conf(S?) in the
Nirenberg’s problem in geometry, which has been extensively studied and many
significant results have been obtained. See [9-14, 25, 27, 32, 34] and the references
therein.

In [2], Ai, Chou and Wei considered the solvability of problem (1.1) under the
assumption that a is m-periodic. After scaling, in this case the problem is equivalent
to the equation (1.6) with I" =7, A = £ = 1 and v = 3. Let

B(g) _ /Oﬂ a(9 + t) - a(gszn;:—la/(e) sin Qtdt
_ / (@0 +1) —a'(0)sin2t

sin? ¢

A function a is called B-nondegenerate if B(f) never vanishes at any critical point
6 of the function a. They proved that if @ is a positive, B-nondegenerate and C?-
function of period 7, then one can get a priori estimates for all m-periodic solutions
of (1.1). Moreover, if the winding number of the map G around the origin is not
equal to —1 , where

G(0) = (=B(0),d'(0))  0€[0,m),

then problem (1.1) has a m-periodic solution.

In this paper we study equation (1.1) for 27-periodic function a, which is more
interesting and natural from geometric point of view. We will consider a slightly
general form, that is, for a fixed n > 2, the existence of nm-periodic solutions of

a(6
Ugyg + U = % (1.9)
where a is nr-periodic. It is the same as the equation (1.6) with 7' =7, v = 3 and
A = £ =n? by scaling.

Before we state our results, we comment on the difficulties in studying (1.9).
A major problem is to study possible blow-ups. When a(f) is m—periodic, since
the blow-up sequence u.; (defined at (1.8)) is m—periodic, only single blow-up can
occur. However, when a is nm-periodic, there are n possible blow-ups. We have to
analyze the interaction between different blow-ups.

To state our main results, for any positive C?-function a(f), we define

a @+ (j—1)m)
Z “a@+ (j — 1)) (1.10)

B, (0) = /_% (29"'21 a@+t+(G—1)m) - > i1 a(@+(j— 1)m)) sin Qtdt. (111)

sin’t



Following [2], a function a is called B,-nondegenerate if B, (f) does not vanish
whenever A,(f) = 0. Note that by definition, A, () and B, () are m—periodic.
Our first result is the a priori estimates.

Theorem 1.1 Let a be a positive, C* and nw-periodic function. Suppose that a()
1s B, -nondegenerate. Then there exists a constant C' depending on a only such that

1
—<u<C 1.12
Leus (1.12)
for any nm-periodic solution u of (1.9).

As for the existence we have

Theorem 1.2 Let a be a positive, C? and nmw-periodic function. Suppose that

min B,(0) >0, or max B,(f) <0, (1.13)
An(0)=0 An(6)=0

then equation (1.9) has an nm-periodic solution.
An example of a satisfying (1.13) is
a() = (1 + by cos @ + by cos 26)?, (1.14)

where b; and by are some constants in (—3, 1) to be determined later. It is easy to
see that Ay(#) = —8by sin 2. Hence A,(6) = 0 if and only if § = 0, Z, 7, 3* and

2(1 + by cos 2t)% + 2(by cos t)?, 6 =0,m;
al@+t+m)+al@+1t) =
2(1 — by cos 2t) + 2(by sint)?, 0=12,°.
Then
4(1 + by cos 2t) (—2bg sin 2t) — 2b7 sin 2t, 6 =0,mn;
(a(0+t+7)+a(6+t)) =
4(1 — by cos 2t) (2by sin 2t) + 2b? sin 2t, 0=1%,3
and
—4(b? + 4by) T — 8b2T, 6 =0,mr;
Bg(e) =
4(b? + 4by)T — 8b3, =123
Thus (1.13) is satisfied if b2 + 4by = 0 and by # 0.
Let



A _ Gn(e)
G0 =130

whose Brouwer degree deg(@n, S1) is well defined if a is B,-nondegenerate. See the
Appendix or [20] for definitions and properties. With the condition (1.13), we see
that deg(G,,S') = 0. (See (i) of the Appendix.)

The following result concerns with the case deg(G,,S!) # 0. For any fixed
C?-function a(f), let

:St - st

- Za'(9+ (j — D7), (1.15)

B, (0) = /7r (Yrd(@+t+(— 1)%)8;12%:?:1 a(@+(j—1)m))sin Qtdt, (1.16)

Gn(0) = (—Ba(0), An(0))- (1.17)

For a =1+ a we have A, (¢)(0) and B, (g)(#) given by (1.10) and (1.11). Then
(=Bu(e)(0), An(e)(6)) = (=Bu(0), Au(0))e + O(e7).

Thus for small ¢, 1 + ¢a is B,-nondegenerate if G, (f) :

( Bn(6), An(0)) # (0,0).
sY).

By homotopy invariance of degree, deg(G,,S!) = deg(&= &

Theorem 1.3 Let a be a positive, C? and nr-periodic function such that for all 0,

Gn(0) = (=Bn(8), A,(0)) # (0,0) and deg(|g"‘,S ) # —2. Then the equation

1+ ¢ca(6)

- (1.18)

Ugg + U =

has an nm-periodic solution if € is small.

It is not difficult to see that if » = 1, the map G, (#) is the same as the map G
in [2] and it is m—peridic. In this case, we fix ¢ << 1 and consider the homotopy
of as(#) = (1 — s)(1 + ea(f)) + sa(f). For s € [0,1], the function a, is always
B—nondegenerate, and thus one can get uniform a priori estimates for all 7-periodic
solutions of

as(0)
Ugp + U = R (1.19)
Using the degree argument, one can solve the problem up to s = 1 if deg(-&- ik JR/7Z) =

winding number of G+1 # 0. However, for n > 2, we do not know how to construct
such a homotopy. The degree argument can only be used for small £. The general
a case remains open.
We briefly sketch the idea of the proofs of our results. We only consider the case
n = 2 since that of n > 3 is the same. To prove Theorems 1.1 and 1.2, we take a
sequence Ay such that V k, A\ # 1, \y — 1 as k — oo and consider the equation
a()

— 1

6



According to [17], there is a 2m-periodic solution uy. By careful analysis of blow-up,
we can get asymptotic estimates of uy, and Ay, — 1. Under the condition (1.13), these
estimates ensure that wuy converges to a solution of (1.1) if A, 1 or Ay \( 1 as
k — oo. The proof of Theorem 1.3 follows from the Liapunov-Schmidt reduction
and degree argument.

The paper is organized as follows. In section 2, some asymptotical estimates are
given based on blow-up analysis, and in section 3 we give the necessary condition
for the existence and sharp estimates. Theorem 1.1 and Theorem 1.2 are proved in
section 4, and in section 5 we provide a proof of Theorem 1.3.

2 Preliminary Blow-up Analysis

Let a be a positive 27-periodic function, A; be a sequence such that V k, Ay #
1,Ar = 1as k — oo and u, be a 2r-periodic solution of

a(f)

Ugg + Aku = u—, 0 € [0, 27T] (21)

The aim of this section is to derive some asymptotical estimates of u, and Ay — 1,
which will lead to sharp estimates in the next section.

Here and after, unless otherwise stated, the letter C' will always denote various
generic constants which are independent of k. We denote A ~ B if there exist two
positive uniform constants C; and Cy such that C1A < B < CyA. Cf = o(1) means
that limk_,+oo Ck =0.

We start with the following simple but useful lemma.

Lemma 2.1 For any solution u of problem (2.1), defining Fy(0) = u%,a + \eui +
0
&2), then there is a constant C independent of k such that
U
O_lF]C(OQ) S Fk(Ol) S CF]C(OQ), 4 01,02 € [0,271’]
Proof. By equation (2.1), we can easily get that

a'(0)
ui

Fy(0) =

which implies that
|FL(0)] < C|Fy,(0)]
since a(f) is smooth and positive. Thus

|(10ng)l‘ S Ca

which leads to

SC, V01,02€ [0,271'].



Thus we finish the proof. O

From the above lemma, we know that u is bounded from above if and only if it is
bounded from below. Without loss of generality, we assume that mingeg oq ux(0) —
0. Then Fy(f) — +oco uniformly in 6 as k — oo. This in particular implies that, as
k — oo,

1
either wug(f) or —— — +0o whenever uy(f) =0.
uk(e)

If u, (1;) = 0 and ug(rx) — 0, then by the equation (2.1) we see that u(r;) =

%—Akuk (1) > 0 and hence 7y is a local minimum point. Similarly, if uy (6)) = 0

and ug(0;) — 400, then u,(6;) < 0 and 6, is a local maximum point. This also
implies that the values of u; at any local maximum point of u; must approach +oo,
and the value of u; at any local minimum point of u; must approach 0.

Hence for £ >> 1, the local minimum and maximum points of uy are isolated.
Therefore they appear alternatively and satisfy

1
i (Ok)’
where 73 and 6, are local minimum and maximum points of uy, respectively.
Let 7} < 72 be two consecutive local minimum points of u; and let 6 € [}, 77]

satisfy ug (k) = My = maxgepr1 .2 ug(#). Then ug(ry), ug(7) — 0 and My — oo as
k — oo. We have the following convergence result.

U,k(Tk) ~

Lemma 2.2 For k — oo we have

O — 71 — g (2.2)
2 -1 =, (2.3)

u(E 0+ 7)) . .
z —sin@ uniformly in [0, 7. (2.4)

M,

In particular, ug has two minimum and two mazimum points in [0, 27).

Proof. We first prove that 6y — 7} < 5. The idea is to compare with the case when
a is constant.
Let my = u(r}). Then my — 0 and My ~ mik On the interval [7}, 0], ug
satisfies
C

2—3§U;+)\kuk§

w, > 0 in (13, 0k). (2.5)
Ul

2
2u3’
Set c
Hc(uk) = )\kui + — -
U
Then (u,)? + He, (ug) is strictly increasing over [r{, 6] while (u,)? + Hg, (ug) is
strictly decreasing over [7}}, 0x].



Let He, () = He, (M) where 7y, < 1. Then since He,(my) > He, (M) =
Hg, (1), we see that 1y, > my and 7y, ~ M, ' ~ my. So there exists a unique
74 € (1, 0k) such that ug(7}) = 7.

Over [}, 78], by equation (2.1), u,(6) ~ m;>. Hence u,(0) ~ m; (0 — 7}) for
6 € [r},7¢]. Therefore

7o
wil) —ualrd) = [l (0040 ~ i - )’
Tk
which implies that
o — 1 =0(m}). (2.6)

On the other hand, we have

(u;c(e))Q > HCz (Mk) - HCz (uk)a Voe [Tk}’ ek]

Hence M
’° d
0, — 7l < / il . (2.7)
My \/ch (Mk) - HC2 (’U,)
Let Ty = [ M du Then we note that T} is the length between consec-

Mk ‘\/HCQ (Mk)fHCZ (u) '
utive minimum and maximum points of the equation

v+ M\ = %, v(0) = 1, v(Ti) = My, v () > 0 for 8 € (0,T}) (2.8)
v

since v' (0) = /He,(My) — He,(v). On the other hand, by rescaling of #(f) =

(f—;)_iv(%), 0 satisfies

"/ - ].

By (1.8), all solutions of (2.9) have period 7. This implies that

M du 7
T, = = ) (2.10)
me V/He,(My) — Hey(u) 2/
So .
kETw(ek —7) :kETw(ok — e+ —T) < R (2.11)
Similarly, we can prove that
. 2 ™ . 2 1
_ < Z - < 7. 2.12
kETw(Tk Or) < 2’ kEI—Poo(Tk o) < (2.12)
Tlg_Té 1
Now we let u), = ”k(er”“k) Then it follows from equation (2.1) that
satisfies .
2 1 2 1 T g 1
Aty = z 2.13
Tig,00 + ( )" Akl = ( YV ) @ (2.13)



Integration by parts gives that

2 1 ™ ™ 2 1 T (e 4 7]
(—T’“WT’C)QA;C/O agde—/o ak,ad‘g:(TI;ngk)2/0 a0 T 4p 5

since i 9(0) = @p(m) = 0. Hence

T ,7_2 _ 7_1 ™
/ iy gdf < (A—E)2), / aido. (2.14)
0 ™ 0
Using the fact that 0 < @x(0) < Hm[ax] tg(f) = 1 and (2.14), we deduce that
€(0,m

is bounded in H([0,7]). Thus we can assume 7 — @ weakly in H*([0,7]) and
7= lim (12 — 7}). Letting k — oo, one gets
—00

7r 2 ™
azdo < = | a2d. (2.15)
[4 7TQ
0 0

By the embedding theorem, @, — 4 in C([0,7]), and so

i(0) = lim (i) _ 0,

i a(r) = lim “(7%)

k—00 Mk k—00 Mk =0

and @ € Hy([0,7]).
On the other hand, by Wirtinger’s Inequality, we know that

/ a*df < / iigd, (2.16)
0 0

and equality holds if and only if & = C'sin 6.

Combining (2.15) and (2.16), we see that 7 > 7. But according to the previous
argument, 7 < 7 and hence 7 = 7 and the equality at (2.16) holds. Therefore,
@ = C'sin . The assumption that maxgejo,«) @ (f) = 1 yields that maxgep 1 %(0) = 1.
Hence i = sin 6 and @, — sin in Cz[0, 7). This proves (2.4). The proof of Lemma
2.2 is completed. g

The following so-called Pohozaev’s Identity will be used frequently in the rest of
the paper.

Lemma 2.3 Let a be a positive, C* and 2m-periodic function. Then we have

2m 1 _ 3,/
/ @(0) + 4(; AU 1 L cos 20)d8 = 0 (2.17)
0
and 7 a(0) + 4(1 — Ap)ulu!
/ " k sin 20d6 = 0 (2.18)
0

for any 2m-periodic solution u of (2.1).

10



Proof. For any solution u of (2.1), we have

u? u? a(f) + (1 — Ap)ut)’
()" +4(5) = ( = ) (2.19)
and the lemma follows from an integration over [0, 27]. O

Let € = uk(7:) = mingepo,2r ux(f) — 0 and let 6 be the next local maximum
point of ux. Then My = ug(f;) — oo. The above lemmas lead to the following
estimates.

Proposition 2.4 There exists a uniform positive constant C such that

A — 1] < Ces. (2.20)
Proof. We first prove
27 1
/ —df < C. (2.21)
o Uk

To this end, let @ (0) = up(2%%0 + 7),0 € [0, 7] and Ay = (2%=760)? ). Then
Uy, satisfies

_ 20, — 1) oa(X =g 4+
U g0 + Melix = ( ( - ’“))2 ( s ) (2.22)
k
and
Ui\ Uy 2(0k — k) 3aI(M0+Tk) BN /
()" +4(2) = ( ) T T 4(1 = N )Tl (2.23)
2 2 u U,

By virtue of @, (0) = 0 and @, () = 0 we obtain

% ﬂi n ﬂ% ! 1
0 ()" +4(5)) sin20d6 = 0. (2.24)

Consequently, from (2.23) and (2.24) we deduce that

us

9 _ L 2(0k_7'k)0 _ 2
( A Tk))3/ a'( . + Tk) sin 20d6 = 4(\; — 1)/ Uy Ty, sin 26d6
m 0

0 (2.25)

us

3
= —4(X — 1)/ Uy cos 20d6.
0
It follows from Lemma 2.2 that 3 C > 0 such that

| / 26| < C| / 142 cos 20d6).
0 0

11



Hence for small ¢,

5 o (2 Tk>9+ 26
IAk—l\/ ﬂkd0<0‘/2 ) Sin dﬁ‘

<C\/fk d9|+\/ (6)d6)] + | fk( Jdo))  (2.26)

wm

< 05/ —df+ C(6)M,
0

U’k

12 k— k) 941, sin . . .
where f(0) = ot _‘Z+ L e, (0) is a constant depending on ¢ and in the last
Ul

inequality we have used (2.4).
On the other hand, from (2.22) and (2.26) we get

vol3

| @ -
0
2 _ z 2(9k*7k)0 . z

™

2(9 _ ) z a(2(9k—7'kl)€0 47 ) s 10 (2.27)
T 0 Uk 0o Uj
> Minges: a(0) / “li_c
= 9 T

since 0 is small. The left hand side of (2.27) can be estimated as follows. Reflecting
the function @, with respect to § = 7, we get a new function defined on [0, 7], still
denoted by u. Then @ (0) = T(m). By Sobolev Inequality (See Proposition 1.3 of

[2]) we have that
/ L an( / @ —,)df) <
o T 0 ’

Since Uy, is symmetric with respect to 6 = 7, we see that

™ ™ 2

/0 * L / (@ 7)) < " (2.28)

“k 0

Combining (2.27) with (2.28) we obtain

21 i 21 2
/ _—Qde(w/ _—2d9—0> <Z (2.29)
o U 2 o U 4
Consequently,
21
/ lw<c (2.30)
0o Uk



and

Ok 1 2(6, — 31
/ Lo < 20 =) /2 —df < C. (2.31)
Tk U’k a0 0 U’k
Similarly, let 7, be the local minimum point of uj; next to 6y, we have
T, 1
/ lw<c (2.32)
0 Uk

It follows from (2.31) and (2.32) that

7

Tk 1
/ lw<c (2.33)
Tk uk
The same argument yields
2w 4T, 1
/ —df < C. (2.34)
T, U

(2.21) follows from (2.33) and (2.34) since uy, has two local minimum and maximum
points on [0, 27).
Now we can prove the estimate (2.20). Using the identity (2.18) we see that

4 — 1||/02ﬂ we(0)1, () sin 20d6] < ‘/OQWW‘ <c (2.35)
k
It is easy to see from Lemma 2.2 that
|/027r ug(0)uy () sin 20d6| = \/OQW uz (6) cos 20df| > C M. (2.36)
Inserting (2.36) into (2.35), we lead to
e —1] < M% < Ce;.
Thus (2.20) is proved. O

Let Ep = minge[o,gﬂ] ’U,]c(e) = ’U,k(Tk) — 0 and
U.(0) = (£ cos® 0 + e *sin”*6)? .
We define a transformation

y 1
9=Tk+1/fk(y)=ﬂc+/
0

- 2.
U2 -1(7) o (2.37)

where ¢}, = (a(73)) %€k It induces a rule of transformation of the equation (2.1) as
follows: let

vk(y) = Ug -1 (y)un(7 + U (y)) = Us‘,kl(e — 7k )uk(0),

13



using

dy 772
i Ufk (0 — ), and
d%y —ay . _
T = (82:2 — & 2) sin 2(6 — Tk)UE;(O — Tk),
one can verify that
d?vy, a(e + Yr) Uk
— =" 4+(1-A ) 2.38
dy2 +Uk Ul?c’ + ( k) U;Z—l(y) ( )

Using the estimate (2.20), we can prove the following result on the asymptotical
behavior of uy.

Proposition 2.5 Let a be a positive, C? and 2m-periodic function and let u; be a
solution of (2.1) such that e, = mingejoon] uk(0) = ug(x) — 0 and 7, — 6. Then
the functions vg, vk, i are bounded. That is, 3 C > 0 such that

Sur(y) SO, uey(y) £ C, ye0,27], (2.39)

Ql+~

which implies
C1Ug (0 — ) < ug(0) < CoUs (0 — 1), 6 €[0,27]. (2.40)
Moreover, for any 0 < aa < 1
v = v>® in CH*([0,27]), k — oo, (2.41)

where the function v™> is given by

ve(y) = @ (%), vels gl (2.42)
(a%(QO) sin?y + a(f + W)a_%(t%) cos?y)?, ye€ (%3]

=

Proof. For simplicity of notations we assume 7, = 0 and 6y = 0. Let

Fy(y) = % <v,f,y +vp + a(djv’“igy)))

Then

dF,
d—y = Uky\ Ukyy T Uk —

atyr)\  (al¥n)),
)* 207
— (1—Ak)U§kj)fé )+QZ%§;/’2’“(?J2;) (2.43)

k
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Using Proposition 2.4, we have

11—\
AL e
‘Ui_l(y) -

2
€k

<cC. (2.44)

2 . >
1 "2 cos2y + g’ sin’ y

)
€k

Combining (2.43) and (2.44) we get that

(1 — )\k)vkvk,y C\vkvk,y|

() el 2 cos?y + )’ sin’ y
k
< C|Fy|
el 2 cos?y + &)’ sin’ y
and
as(1x(y)) Ca(ti(y)) - C| £
QU,%Uf%_l = w2(el, %cos?y + el ’sin?y) T &) cos?y + g, sin?y
Thus
dF, 1
|—k|<OFk —————— (2.45)
€, cos‘y—+eg. sin"y
Since o J o
/ — i 5 :/ df = 2x,
0o € cos?y+elsin“y 0
from (2.45) we derive that
C™ ' Fy(y2) < Fi(y1) < CFi(y), for any y1, y,.
In particular, since Fj,(0) < C, this implies that
0_1 < Fk(y) < Ca
that is,
1
ve(y) < C, kg (y)| < C  and . <, (2.46)
k
which concludes (2.39) and (2.40).
From (2.39) a better estimate for Ay — 1 can be derived:
1
M\ — 1| < Cej log —. (2.47)
k

In fact, from (2.35), we have that

2
|Ak—1|/ d0<\/ a(0)sin20,

T | sin 20\ T | sin 20)|
<C ———df < C’/ db
B /0 uj 0 Ujk ()

1 1
<Ce}’log — < Cellog —,

15



which proves (2.47).
Let fr = (1 — M) gy , 1( - From (2.47), we see that for p > 1,

2 27 1 1
[ ipay<cn-ng [ opdy< oty 0 @)
0 o UP, Ek

k

where we have used the following estimate

27 1 9 4
dy < Ce; .
/0 (e, > cos?y + &, sin? )% v=

Standard regularity shows that {v;} converges to some v*° in C'**-norm for any

a > 0. Away from y = g, - U . (y) is bounded from below, so v>® is C? if
YF 5 3 and satisfies
o . oo a0 Tm
Vgy + 0% = (Uio))3, y € (—5, 5), (2.49)
and (n) 3
o e o0(m T 3T
Uyy tuo = Wa (/S (55 7) (250)
Hence . .
) =ai(0) if ye(-5,7)
since v(0) = lim v, (0) = a1(0) and (v>®)(0) = lim v},(0) = 0. It follows that
—00 —00
v (5) =v=(0) =at(0), =) (E) = 0=)(©0) =0

O

Remark: Under the same conditions as those of Proposition 2.5, the following
estimates can be obtained:

ok — v llor(o2m) < Cei|logexl, (2.51)

where the function v;° is given by

vp(y) = {WI(T'“)’ vels ?’ (2.52)

1
(a2 (1) sin® y + a(7 + m)a™ 3(73,) cos 2y)?, yel[Z,2.

16



By definition, v° € C'([—%, %]) and is uniformly bounded from above and below.

Observe that, v satisfies

a(7;)

, forye [-%,2
o OF) e
—k = (2.53)
dy? a(tg +m)
T oo\3 for y € [%, 37” .
(vi°)
Combining (2.38) and (2.53), we have for y € [-7,%
d? (v, — v$°) oy 0T+ k) —alm)  alm)  alme) (1 — Aok
ap TS o} R B o KR N )
_ a(Te + ) — al(7k) ~eoy o (= Aeog
- o + cx(y) (v — v°) + Uf;e,l(y) ,
(2.54)

where ) = (a(73)) 4y, and ¢ is a bounded function due to (2.39) and the definition
of v°. In fact, cx(y) = —3 + o(1). Thus, the function ¢(y) := vy — vi° satisfies

2

df—i—c;c(p f, (;r)=g0'(—g)=0 (2.55)

where ¢, is a bounded function and

:aln ) —aln) | (1= M)w
I= vk i Us - (y)

k

Let hz, 1 = 1,2 be the two fundamental solutions of the linear equatlon +ckg0 =

0 such that h1~(0) =1, 1, (0) = 0, hy(0) = 0, h4(0) = 1. Since & is bounded it is easy
to see that ||hl|c1(—z =) < C,i = 1,2. By the method of variation of parameters

(since (5) = ¢'(§) = 6) we have

Y

hﬁ+hﬂ)/ i (2.56)

T
2

o(y) = —hi(y) /

(B}

and hence
ok = vllerq-z,2) < Cll o=,z (2.57)

17



Note that

do
in?(0 — 73,) + &4 cos?(0 — 73
a3 (7y)e?
9 _
‘G,( + Tk) a(Tk)‘a(Tk) sin2 9 + gé cos2 f
g [ O el s

x | sin 6|
<Ce;|logey.

/
= [ " lat®) - alm) ()
/

(2.58)

a(7y,) sin® § + &} cos? 0

On the other hand, similar to (2.48), it is easy to see that

wola

s
2

1—Ag)v
/ Iﬁ\dy < Ce|logey|. (2.59)
A

Combining (2.58) and (2.59), we obtain

||’l)k — U,?o”Cl([,g’g]) S Cé‘i| ]0g6k|. (260)
For y € [Z,2F

5y 9], v satisfies

2,,00
dvp

alT, +
dy? T = i

)P

Using the similar arguments as before, we can obtain

|lvg — v,‘c’o”Cl([%,sTw]) < Cei|logey). (2.61)

Now the estimate (2.51) is a consequence of (2.60) and (2.61).

3 Sharp blow-up estimates

In this section we will use Pohozaev Identities to get a sharp estimate of A\, —1. Let
a(f) be a 2m-periodic positive C? function and Ay — 1, and let uy, be a 27-periodic
solution of

0
Uk, 00 + /\kuk = %, 0 e [0, 27‘(’]
k

(3.1)

The main result of this section is

18



Proposition 3.1 Assume that mingep on uk(f) = ur(m) = e — 0 and 7, — 6.
Then

Ay(0)) = a'(6o) N a'(m + 6y)

=0, (3.2)
a(90) CL(’]T + 90)
and
A — 1
4 z ! ! ! ! .
e; 2 (a'(0+00) + a0+ 7+ 0) —d'(0p) —a' (7 + 0p)) sin 20 A
df

2ma?(0) /% sin? 6 +olek)
= iB (60) + o(<})
2ma?(0) 20" kIt

(3.3)

Proof. For simplicity of notations, we assume 7, = 0. This can be achieved by
translation. Then 6, = 0. By (2.17) and Proposition 2.4 we get that

2 1 2
/ ' (2 ) (cos20 +1)df = 4/ (Ax — Duguy(cos 20 + 1)db
0 0

Uy

2w
= 4(/\k—1)/ uj sin 20d6
0

2m
= 4(\ — 1)/ (%)2 sin 20d6 - M}
0 k

= 4\ — 1)(/27r sin® § sin 20d6 + 0(1)>M,f
o1t = MIM2) = of1). (3.4

On the other hand, as k — 400, using the change of variable 6 = 1/ (y) we have

” d(0) _ [T,
/0 uk(e)(00820+1)d0 —/_ (0 (cos 260 + 1)de

I(w
2
Uk

s
3
2
_T
2

1 d) ¥ alm
=2 =y d“/r ) ) ol

2

)
k(y)) 2 cos?y
(

(
y) cos?y+ a(r)e sin’y
3

(3.5)
by Lebesgue Dominated Convergence Theorem and Proposition 2.5. This proves
(3.2).

The proof of (3.3) is more involved.

19



By (2.18) we see that

2T a/(e) 2T )
/ ) Gin20do = —a(n — 1) / u2(6) cos 2046. (3.6)
o up(0) 0

From u (¢r(y)) (e}, % cos® y + €} 2 sin? y)2 — v™(y) in C* we have

k(P (1)) (% cos®y + £ sin? )z — v™(y)]

2 —92 1 (37)
=|ug(0) (g}, cos® @ + &}, sin?0) 72 — v (h;1(0))] = o(1).

Hence
2 27
/ u} (0) cos 20d = / (v™)?(y,(0)) + o(1)) (4% cos® 0 + &, =% sin? 0) cos 20d6
0 0
=s,;2a% (k) / (v™°)? (¢ () sin® O cos 20d0 + o(e;,?)

—¢;%a7 (0) /_ (v™°)* (¢ 1()) sin® O cos 20d8 + o(e;.?).

(3.8)

a4 (0) /_ * ()2 (6)) sin? 6 cos 208 — ~2a(0). (3.9)

Similarly, if § € [Z, 27], we have 1, *(0) € [Z, 2] and

(™) (¢, 1(9)) = a? (0) sin® 1, ' (6) + a(ﬁ)a’% (0) cos® 1, ' (6)
_ era(m)a=7(0) cos? 6 + a7 (0) sin® 0
B gt cos? 0 + sin? § '

Then

a}(0) / 7 ()2 (9)) sin® 0 cos 20d0

3m 44 _1 2 1 202
%(0) / > gea(m)a 24(0) cos” 0 —|— 62L2(0) sin” 0 sin? 0 cos 200
x g’y cos? 0 + sin” 6 (3.10)

2

2w
=a(0) / sin® § cos 20df + o(1)

=— Za(O) +o(1).
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Substituting (3.9) and (3.10) into (3.8), we get

2
/ 3(0) cos 2000 = ~ T a(0)e;? + ofc;?). (3.11)
0

Now we estimate the left hand side of (3.6). It follows from (3.7) that

s

4

a' () sin 20

T .
——G———df
[

a'(0) sin 26d0

; - /’2’ uz(0) (6k cos? ) + ¢, "*sin? 0) 1 (¢}” cos? f + ¢, > sin? f)
g e % (6) sin 20
= + O(ex|1 k do
/’2’ < (il Og€k|)> et cos? 0 + sin” 0
3 2 .
2 8;9 a' () sin 20 )
= do +
—z (vp°)? (d’k (0)) e, * cos? 6 + sin? § olex)
£ 3

df + o(e})

o=

2
12
_ k
a2 (1x) /g el *cos? 0 + sin® 0
' 2 2 a'(f) — a'(0)  sinfsin26

= 1, . dd + o(e;,
az %) J - sinf ¢4 * cos?f + sin” 0 (&)

(

2 T o o

k ] / a (es)inQZ (0) sin 20df + o(£3)
k) J_

€
a(T

a'(0) sin 20

™

(B}

2

5 o ot
=k / “(9)_ 23(0) sin 20df + o(s3), (3.12)

a(0) J_z  sin

where we have used (2.51).
Similarly, we have

7 d/(0) sin 20
/ a()s;n o
T U/k

7 1 522 '(0) sin 26

Il
NH\ vl

df + o(e;
o (0 (@) 2 cos2 0 + s )
3z ! i
_ Eli/ 1a(H) sin 26 1 40 + o(c2)
= g'ra(m 4+ Ti)a 2 (1x) cos? 0 + a2 (13,) sin® 0
3 1ny _ A : :
_ / a (0) a'(m) 1sm 6 sin 260 1 40 + o(22)
x sinf  eha(m +7)a"2(1x) cos? @ + a2 (1) sin? 0
_ & [TdO)-dm) )
= ) [5 S Sl 20d6 + o(gy,)
2 T !
ep [?dO@+7)—d(m) . 5
= 2 . 1
2(0) /_% o~y sin 260df + o(ey) (3.13)
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Combining (3.6) and (3.13) we can obtain that

2w 1 : 2 % ! —ad ! —d
/ a'(6) sin 20 0 _ i / a'(0) — a'(0) + a2(0 +m) —d(m) g +o(e2).
; ul a(0) J_ sin”

s
2

This completes the proof of Proposition 3.1. O

4 Proofs of Theorem 1.1 and Theorem 1.2

In this section, we prove Theorem 1.1 and Theorem 1.2. We only discuss the
case n = 2 since for n > 2, the proof is the same.

Proof of Theorem 1.1: This is an immediate consequence of Proposition 3.1.
Indeed, if there is a sequence uy of

6

Ug,99 + Up = &3), g St (4.1)
Ug

such that e = minges: ug(0) = ug(mx) — 0. Let 7, — 6y, then by Proposition 3.1,

we have

Ay(0y) = a'(6o) a'(m + 6y)

~ Valby) | Ja(r+60) 42

and

dd + o(gy)

£ /” (a'(0+60) + a'(0 + 0+ 7) — ' (6y) — @' (6o + 7)) sin 20
2ma2(0o) Jo
T

" 2ra? (6o)

sin® 6
Bs(o) + o(e},) = 0.

Hence

This contradicts the assumption that a is Bs-nondegenerate and proves Theorem
1.1. O
Proof of Theorem 1.2: Without loss of generality we suppose min 4, g)=o B2(f) >
0. We take a sequence A\ < 1 and A\, — 1. According to [17], there is a 27-periodic

solution u; of
a(f
Uk,09 + Axug = —(3)- (4.4)
U
If e, = mingegt ux(d) = ux(7%) — 0,7 — 6o, then by Proposition 3.1 we have

Ay(8p) = 0 and
4

€
M —1=—E_—_By(6 1) 4.5
k 27102 () 2(0o) + o(e}) (4.5)
So Bs(6y) < 0, which is impossible. Thus the sequence uy are uniformly bounded
from below and above. By taking a limit, we obtain a solution u of (1.1). a
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5 Proof of Theorem 1.3

In this section, we will use Liapunov-Schmidt reduction and degree theory to
prove Theorem 1.3. Similar approach has been used by Rey-Wei ([30], [31]) and
Wei-Xu ([34]). In particular, we shall follow the argument in Section 4 of [34]. For
simplicity we only give the proof of 27-periodic case and that of n > 2 is similar
and hence it is omitted.

Let € be a small positive number and

1 +€a(0).

Slu| = ugg +u — 03

(5.1)

In order to prove Theorem 1.3, we need to find a solution of S[u] = 0. In the following
we consider S[u] = 0 as a perturbation of

_ 1

It is known that all solutions of (5.2) are given by

Nl=

Unt(0) = (A*cos®(@ — t) + A ?sin*(0 — t))?,

where (A, t) € (0,1] x S*. Note that when A = 1,U, ; = 1 which is independent of ¢.
We are going to find a 27-periodic solution u of S[u] = 0 having the form

u(0) = Una(0) + ¢(0), (5-3)

where ¢(0) is relatively small.
Substituting (5.3) into the equation (5.1), we obtain

S[Uns+ @] = S[Uny) + Laqo] + No), (5.4)

where PU ) o) (0)
+€a ea
SlUy] = —2 +U =
A T
d’¢ 3¢
LA,t[¢] - W + (b + Uﬁ,t’
and

_ ([ 1+4eald) 1+4ca(d) 3¢
Vo= ter i o)

Since Ly, is a second order ODE operator, the kernel of L is two-dimensional.
It is easy to see that

Acos?(0 —t) — A=3sin*(0 — t) sin(2(0 — t))
Z, = , Zy=mEV T Y)
Un, U,

I

(5.5)
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are orthogonal and satisfy L ;[Z;] = Ly [Z5] = 0. Thus we deduce that
{¢ € C*(S")|Li[¢] = 0} = span{Zi, Z»}.
For later purpose, we need to consider another two kernels:

71 = cos(2t)anZ, — sin(2t)byZo, Zy = cos(2t)byZo + sin(2t)ap 2, (5.6)
1 _ 1

It is easy to see that fozw 7% =1, foh Z3 =1, fozw 717y =0, and span{Z,, Zy} =

span{Zy, Zy}. The reason for choosing 7, Z, instead of 73, Z, will be clear later.

But we note that when A = 1,7, = ﬁ cos(20), Z, = ﬁsin(%) (which are inde-

where ap =

pendent of ¢).
For h € C(S!), we consider the following linear problem:

Lagld) = h+ 121+ c2Z,, 60 €S,
27 _ 2m _ (57)
/ ¢(9)Zld9=/ $(0)Zodf = 0,
0 0

where (cy, ¢2) € R?. By Fredholm Alternative theorem, we know that (5.7) is solvable
if and only if (¢;, ¢o) satisfies

27 27 2
hZM+q/ 2w+@/ Z1Zpdf = 0,
027r 027r 0 27 (58)
/ h,ZQde +c / legdo + Co / Z22d9 =0.
0 0 0
Since fOQW Z17Zdf = 0, (c1,¢y) is uniquely determined by the following
2 _ 2 _
C1 = / thdO, Cy = / hZ2d0 (59)
0 0

Moreover, if (5.8) is satisfied, then the solution is unique and there is a positive
constant C which depends on the lower bound of A only such that

[llosyy < Cllhllo (5.10)
and
c1] + [e2| < C|R[lesy- (5.11)

The estimate (5.10) is a consequence of the fact that h — ¢ is a bounded linear
operator from C(S!) — C(S?), and (5.11) follows from (5.8).
After solving the linear problem, now we can solve the nonlinear problem:

L[] = =S[Uny] — N[¢] + c1.Z1 + 225, 0 € S,

N $(0)Z,do = / " $(8) Zodb = 0, (5.12)
0

0
for some coefficients ¢; and c;. Namely we have
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Lemma 5.1 For Ay > 0, there exist eg > 0 and C which is independent of € such
that for any € < g9, Ag < A <1 and t € St, problem (5.12) has a unique solution

(¢, C1, 02) - (¢A,t,€7 CAtes CA,t,E) satzsfymg

(5.13)

Moreover, the maps (A,t) = ¢ and (A, t) = (c1(A,t,¢€),c2(A, t,€)) are continu-
ous.
When A =1, ¢pre and (c1(A,t,€), ca(A, t,€)) are independent of t.

Proof. We will use the contraction mapping principle to prove the lemma. To this
end, we write the first equation of problem (5.12) in its equivalent form:

¢ = A(— S[Urg] = N¢]) := Blg]- (5.14)

For a positive constant &; < %, define a convex set in C(S') by

¢ {¢ ‘ ¢ is 2r — periodic, [¢]lcen < e,

/0 " 5(0)Z0d = /0 " 5(6) Zydb = o}.

It follows from the mean value theorem that

2
[IN[¢lllesy < C(Ao)(|lw¢||0(s + || ||c<s ) < C(Ao)(ere+ei), VoecC.

(5.15)

Since S[Up4] = we have that for ¢, ¢; € C,

USJ

1B[8]llcsty < C(Ao)(IS[UA ey + IIN[9]llest)
(5.16)
< C(Ag)(e +ee1 +€3)

and

| B[¢1] — Bld]llcsy < C(Ao)l|N[d1] — Ng]llcsy
< C(Ao)(E + 191l + IBllesy) |61 — ¢l (5.17)

< C(Ao)(e + 2¢1) |61 — Bllosy-

Letting €0 = z5¢5,y, €1 < 4C(A 7, then (5.16) and (5.17) imply that the operator B
is a contraction mapping from C to C. Hence C has a unique fixed point ¢p;. € C
and

I¢atellcey = 1Bldatelllosy < 2C(Ao)e + C(Ao)ll@atellcsy,
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that is

9atellosy < Ce.

The continuity of ¢a .., (c1(A,t,€),c2(A,t,€)) on parameters A, ¢ also follows from

the contraction mapping theorem. B
When A = 1,Up; = 1,7, = %cos(%), Zy = ﬁ sin(26) are all independent of
t and hence ¢y ,.,c1(1,t,¢),c2(1,1,¢) are also independent of ¢. Hence Lemma 5.1

holds. O

The proof of Theorem 1.3 will be finished if for ¢ < &7 we can find some (A, t) €
(0,1] x S* such that (ci1(A,t,€),c2(A,t,€)) = 0 in problem (5.12). This will be
accomplished by degree theory. In order to use degree theory we need the asymptotic
expansions of ¢1(A,t,¢) and cy(A,t,¢) as A — 0.

According to (5.9), ¢1(A, t,€) and cy(A, ¢, €) satisfy

a1(A,t,e) = [T (S[Uny] + N[])Z1de, (5.18)
(A, t,e) = [77(S[Uny] + N(6)]) Zod6. '

Let
- W’ 5.19
(At e) = e (5.19)
Then we have
Lemma 5.2 For A — 0 we have
aihe) = 6(B22—7(rﬂA5 +0(A%)) (5.20)
and )
Bt = g(_AQT(t) ++o(1) (5.21)

where Ay and By are defined in (1.15) and (1.16) respectively.

Proof. From the definition of Uy, we have

/27r 7240 — /27T (Acos?(0 —t) — A=3sin*(0 — t))2d0
o U Jo AZcos?(0—t)+ A~2sin?(0 —t)

27
=A? / (A%cos® + A %sin” 6)do (5.22)
0

2 40 — cos?
AN €8 49 = 7A~* + 0(1
+ /0 A2 cos? 0 4+ A—2sin’ 0 4 +0(1)

and
1 Acos?f — A3sin’6

27 2
— SlUpr+)Z1dl = — 6+t de. 5.23
£ /0 UnilZ: /0 al®+1) (A2 cos?  + A~2sin? §)2 (5.23)
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Let

9=¢A(y)=/0y o

A~2cos? T + A2sin® 7
Then v : S' — S!is a diffeomorphism and

cos? 6 1,
= .24
(A2 cos? f + A—2sin? §)2 d0 A2 ©P ydy, (5-24)

sin” 0 df = A?sin? yd (5.25)
= 1n .
(A2cos? § + A~2sin? §)2 e,
sin 26 sin 2y
df = dy. 5.26
A2cos26 4+ A~2sin’ 6 A—2cos?y + A?sin’y Y (5-26)
Inserting (5.24) and (5.25) into (5.23), as A — 0, we get

1 27

1
— | S[UAZdE =~ T | a(a(y) + 1) cos 2ydy
€ Jo A Jy

2

27
=35 | @ a) + v ) sin2pdy

A [ sin 26
= 0+t do
2/0 @0+ )A4c0s20+sin20

A [T sin 26
=— "O+1t)—d(t
2/0 (0 +) a()]A400320+sin29

o .
+ % / (@0 +) =t +m)] 5 COSS;I;QmeQ ~df
A [T[d(0+1t)—a'(t)] sinBsin20
2 /0 sin ¢ sin? § + A4 cos2
i é/ﬂ @@ +t+7)—ad(t+m)] sinfsin26
2 Jo sin 0 sin? @ + A4 cos? 6

(5.27)

:%FQ(t) +o(A)

i in 26
where we have used (5.26), / o ——df =0 and the dominated conver-
o A*cos?6 +sin 6

gence theorem. Hence it follows from (5.19), (5.22) and (5.27) that

a(Ate) = g(B;—ff)As + o(A%)). (5.28)
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Similarly,

/2” 7240 = /2” (sin2(6 — t))2 2 40
0 o AZ2cos?(0 —t) + A~2sin®(0 —t)
[ 4 cos? §sin? @

B /0 A2 cos? 0 + A~2sin? 0

A?cos' 0 (5.29)

2r
— 472 / 20 — dp
0 (cos A2 cos? 0 + A—2sin? 0)

27
= 4A? / cos® 0df + O(A*)
0

do

= 4wA% + O(AY)
and

1 ro 2m sin(20)
S| S[UNLZedt = — 0+t df
- /0 [UntlZo /0 a(f +1) (A%cos?0 + A2 sin? 6)?

:_/ Wa(@bA(y)—i-t) sin 2ydy

/%M
0 dy

(cos2y + 1)dy

2w
, cos2y +1
t d
/0 a'(Yaly) + )A*Q cos2y + A2sin?y y (5.30)

[ [ )+

3

+ +1
/E (le(y) )COS2y+A4 Sin2y

2

=— 1A (t) 4+ d' (7 +t) + o(1)]
+0

1
2
1
2

NE]

cos?y + Atsin’y Y

cos? y

=mA?[~A(t) + o(1)]
provided by ¥ (y) — 0 for y € (—%,%) and Ya(y) — 7 for y € (%,38). So from
(5.19), (5.29) and (5.30) we have
Ay(t
G(A,te) =e(— 24( ) 4 o(1)). (5.31)
This completes the proof of Lemma 5.2. O
Now we fix Ag < A; small enough such that for all Ag < A < Ay
‘(El(Aa L, 5),62(A,ta 6)‘ > #[ZQQ(Q + EQQ(t)AIO]%a Vie Sl-
Then for s € [0, 1],
ci1(A,t,e), e (At By(t Ay(t
(1 _ 8) (Cl( ) 75);62( ) ,g)) +8( 227(1—)1\5,_ 24( )) + (0,0) (532)
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Lemma 5.3 Fore — 0, Ay < A, we have
c1(A,t,€) = cos(2t)e (A, t,€) — sin(2t)z(A, ¢, €) + O(g?) (5.33)

and
ca(A,t,€) = cos(2t)ez(A, t, ) + sin(2t)e; (A, ¢, e) + O(e?). (5.34)

Proof. From (5.15) and the definitions of ¢;(A, ¢, &) we have

2 27
/ (S(Uns + N(d]) Z1d6 N[6|Z1d0
Es P —ta(Ate)| = | ‘
/ Z2d6 / Z2d0
0 0
< Ce’
for some constant C' depending on Aj. The proof of (5.34) is the same. O

Now we choose an £q such that for s € [0,1] and 0 < &€ < g9, Ag < A < Ay,

(1 _ 8)(01(A, t, 6)’ CQ(A,t, 8)) 4 Sem(El(A,t, 8)’ EQ(A(;ZL,, 8)) ?é (0,0) (535)

9 9 9

This is possible by Lemma 5.3. Here we denote € (z,y) = ((cos 8)z—(sin 8)y, (cos 8)y+
(sinf)x).

Set A=1—X. Weseethat A\ - 1as A — 0and A =0 if and only if A = 1. Let
Ag = 1— ). Then we have continuous maps from D(\g) = {(X,Y) € R?|X?+Y? <
A2} to R? given by

1 — 1.,
G.(X)Y) = g(cl(A,t, g),ca(At,e)), G.(X,)Y)= ge%(él(A,t, g),C(A,t,¢)),

where (X,Y) = (Acost, Asint).
Note that G.(0,0) and G.(0,0) are well-defined since when A = 0, ¢, ¢y are
independent of t.

Proof of Theorem 1.3: For £ small enough, we have by Lemma 5.2

G.(X,Y) = em(—B;(t) A® + o(A®), ——Az(t) +o0(1)): ]Bf_AO — R?
T

where B}, = {2+ < (1 —A)*}.
Set § = % We obtain

G.(X,Y) = %em(éBg(t) + 0(8), — A (£) + o(1)). (5.36)
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By non-degeneracy assumption on the function a, we see that if ¢ is sufficiently
small, |G.(X,Y)| > 0 on 0B2 ;(0) =S} ;. By simple property of the degree theory
(see Proposition 1.27 of [20]), we have

deg(ég, B%—J (0),0) = deg(ég/‘éEL S%—&)-
For any real numbers s > 0 and n > 0, we define the maps:
Gs,n(X, Y) = €2it(—8B2(t), 7’]142(1?))

Since these maps never vanish for all (X,Y) € S, their degrees are well defined and
they all have the same degrees which implies that

deQ(Ga D()‘O)a 0) = deQ(G87 D()‘O)a O) = deg(Gs/|G€|a S}L—J)
= deg(G1-ry1/|G1-ro],S1_5)
= deg(Gl,l_/|G1L1|7 S%_a)
= deg(e*"Gy/|Gsl,S")
=2 + d@g(62/|62‘, Sl) 7é 0,

where we have identified the domains S and S} _; for our map G, which is clearly
true since they give the same values for Go.

By the properties of the degree (see the Appendix), there exists (A, t) € D(\g)
such that (¢;1(A,t,¢), (A, t,€)) = (0,0). This completes the proof of Theorem 1.3.
O

Appendix: Definition and Properties of d(«, S¥~1)

In this appendix, we give the definition of the degree d(¢, S¥~1) (where N > 2)
and collect some basic properties of the degree. All the materials in this appendix
can be found in the book by Fonseca and Gambo [20].

Let BY denote the unit ball {|z| < 1} C RV and SV¥~! = dB" be the unit sphere
in R¥. Let ¢ : BY — R" be a continuous function such that ¢(SV~') € RV\{0}.
Then the Brouwer degree d(¢,B",0) can be defined in the usual way (Definition
1.26 of [20]). Now we define

_ ¢(z) .gN-1 _, gN-1
TTE e

By [Proposition 1.27, p.24] of [20], we have
(A1) d(6,BY,0) = d(, S, p) = d(,S"), ¥ peSi

We recall the following properties of d(v,SV¥~') (Corollary 2.3 of [20]): Let
yp : SV — SN¥-1 be a continuous mapping. Then the following assertions are
equivalent:
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(i) 9 is not homotopic to a constant.
(ii) Every continuous extension ¢ of ¢: BY — RY admits a zero.
(iii) Every continuous extension ¢ of 1: BY — RY verifies d(¢, B",0) = d(¢, SV™1) #

0.
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