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Abstract. We consider the following superlinear elliptic equation on Sn

ε2∆Snu− u + up = 0 in Sn, u > 0 in Sn

where ∆Sn is the Laplace-Beltrami operator on Sn. We prove that for any k = 1, ..., n−1,
there exists pk > 1 such that for 1 < p < pk and ε sufficiently small, there exist at least
n − k positive solutions concentrating on k−dimensional subset of the equator. We
also discuss the problem on geodesic balls of Sn and establish the existence of positive
nonradial solutions. The method extends to Dirichlet problems with more general
nonlinearities. The proofs are based on the finite-dimensional reduction procedure which
was successfully used by the second author in singular perturbation problems.

1. Introduction

Let D be a geodesic ball in the n-dimensional sphere Sn = {x ∈ Rn+1 : |x| = 1},
centered at the North pole with geodesic radius θ∗n. We consider singularly perturbed

elliptic problems of the following type

(1.1) ε2∆Snu− u+ up = 0, u > 0 in D, u = 0 on ∂D.

where ∆Sn is the Laplace-Beltrami operator on Sn and p > 1. It is well-known that the

moving plane method applies to the balls contained in the hemisphere, see [34] and [21],

and implies that all positive solutions are radial in the sense that they depend only on

the geodesic distance θn from the North Pole. For large balls containing the hemisphere,

the moving plane device fails in general. However in some special cases it is still true that

all positive solutions are radial as was observed by Brock and Prajapat [10]. For instance

if p ≤ n+2
n−2

and ε2 > 4
(n−2)n

then (1.1) admits only radial solutions.

The main goal of this paper is to construct non radial solutions for small ε and for balls

with radius θ∗n > π/2.
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Throughout this paper we shall assume that θ∗n > π/2

We shall also be interested in non radial solutions of the corresponding problem in Sn

(1.2) ε2∆Snu− u+ up = 0, u > 0 in Sn.

In [9] Brezis and Peletier conjectured that nonradial solutions will bifurcate as ε → 0.

It is one of the purposes of this paper to answer this question affirmatively. More precisely

we have, setting for fixed k = 1, ..., n− 1,

(1.3) pk =

{
n−k+2
n−k−2

, if k < n− 2,
+∞, if k ≥ n− 2,

Theorem 1.1. For each integer k = 1, ..., n − 1, there exists εk > 0 such that for 1 <

p < pk, 0 < ε < εk problem (1.2) has at least n − k solutions concentrating on a

k-dimensional surface of the equator.

The analogous problem for an arbitrary domain in Rn and for a power nonlinearity

(1.4)

{
ε2∆u− u+ up = 0, u > 0 in Ω;
u = 0 on ∂Ω,

has attracted a lot of attention in recent years. For p < n+2
n−2

, and ε small, problem (1.4)

admits solutions with spike layers concentrating at (local or global) maximum points of

the distance function. See [13], [15], [24], [30], [38], and the references therein. We expect

according to numerical computations carried out in [36], that such a result remains true

also for (1.1). For the critical case similar results have been established in[7].

In [6] the authors studied (1.1) for ε small and general p and proved for balls of geodesic

radius θ∗n > π/2 the existence of radially symmetric clustered layer solutions (i.e., solutions

depending on θn only) for (1.1) as ε → 0. The same result was obtained independently

by Brezis and Peletier [9] for the special case n = 3 and p = 5 by means of a completely

different technique.

Our results extend to problems with more general nonlinearities

(1.5) ε2∆Snu− u+ f(u) = 0 u > 0 in D ⊂ Sn, u = 0 on ∂D,

where f is subject to the following conditions:

(f1) f(t) ≡ 0 for t < 0, f(0) = f ′(0) = 0 and f ∈ C1+σ[0,∞) ∩ C2(0,∞),
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(f2) the following problem has a unique solution

(1.6) ∆w − w + f(w) = 0 in Rn−k, w(0) = max
y∈Rn−k

w(y), w(y) → 0 as |y| → +∞.

Assumption (f2) implies that w(y) = w(|y|) is radial and that the only solution of the

linearization of (1.6) at w

(1.7) ∆v − v + f ′(w)v = 0 in Rn−k, v(y) → 0 for |y| → +∞

is a linear combination of ∂w
∂yj
, j = 1, ..., n − k. The proof of this fact can be found in

Appendix C of [33].

We will show that problem (1.5) possesses three types of solutions:

(1) Type (I ) solutions with a spike near k−dimensional subset of the boundary ∂D

(2) Type (II) solutions with clustered spikes on k-dimensional subset of spheres near

the equator

(3) Type (III) solutions with clustered spikes both on k−dimensional subset of spheres

near the equator and a spike near k−dimensional subset of the boundary ∂D.

Remark: The symmetry results in [31] and [10] imply that in balls contained of radius

θ∗n < π/2 problem (1.5) has only radial solutions. As for problem (1.1) nonradial solutions

can therefore only be expected for θ∗n > π/2.

To state our results, we introduce the polar coordinates in Rn+1:

(1.8)


x1 = r sin θn sin θn−1... sin θ2 sinϕ,
x2 = r sin θn sin θn−1... sin θ2 cosϕ,
x3 = r sin θn sin θn−1... cos θ2,
...
xn+1 = r cos θn

where r =
√
x2

1 + ...+ x2
n+1, 0 ≤ ϕ < 2π, 0 ≤ θj ≤ π, j = 2, ..., n. So a parametriza-

tion of Sn is r = 1, {0 ≤ ϕ < 2π, 0 ≤ θj ≤ π, j = 2, ..., n}. We also define

(1.9) ξj = cos θj, j = 2, ..., n.

We look for nonradial solutions of (1.1) of the form

u = u(ξn, ..., ξk+1), k = 1, ..., n− 2.

Define a k−dimensional spherical cap on Sn

(1.10) Cr = {θk+1 = ... = θn−1 =
π

2
, θn = arccos r}.
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We also need a quantity: let ρε satisfy

(1.11) w(ρε) = A0ε
2ρε, ρε >> 1

where A0 is some generic constant to be given in (3.10). It is not difficult to see that there

exists a unique solution ρε which satisfies (2− δ) log 1
ε
≤ ρε ≤ 2 log 1

ε
for all ε ≤ ε0(δ).

The location of the boundary layer is given by the unique solution of

(1.12)
r̃ε +R√
1−R2

− n− k − 1

4
ε ln

ε
√

1−R2

r̃ε +R
=

1

2
ε log

1

ε
+O(ε).

Our main result in this paper is the following

Theorem 1.2. Let k = 1, ..., n− 1 be a fixed integer. Let N > 0 be another fixed positive

integer. Set −R = arccos θ∗n. Then there exists εN,k > 0 such that for all ε < εN,k, problem

(1.1) admits three types of solutions u1
ε(ξn, ..., ξk+1), u

2
ε(ξn, ..., ξk+1), u

3
ε(ξn, ..., ξk+1), with

the following properties

(1) (Type I) u1
ε concentrates at Σ1 = Crε

1
where rε

1 satisfies (1.12)

More precisely, we have u1
ε(0, ..., 0, r

ε
1) → w(0), where w(y) is the unique solution of (1.6),

and there exist two constants a and b such that

(1.13) u1
ε(ξn, ..., ξk+1) ≤ ae−bε−1dist((ξn,...,ξk+1),Σ1).

(2) (Type II) u2
ε(ξn, ..., ξk+1) concentrates at Σ2 = ∪N

l=1Crε,l
2

with

(1.14) rε,l
2 = (l − N + 1

2
)ερε +O(ε), l = 1, ..., N

where ρε is defined by (1.11).

(3) (Type III) u3
ε(ξn, ..., ξk+1) concentrates at k-dimensional subset Σ3 = ∪N

l=1Crε,l
3
∪Cr̃ε

0

where rε
0 satisfies (1.12) and

(1.15) rε,l
3 = (j − N + 1

2
)ερε +O(ε), l = 1, ..., N.

As a consequence, for each N ≥ 1, there exists at least (2N + 1) solutions for ε suffi-

ciently small.

Remarks:

(1) When k = n−1, this corresponds to result in [6] and [9]. In this case the solutions

are radial. When k = 1, ..., n− 2, all solutions in Theorem 1.2 are nonradial.
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(2) It was proved in [16] that all solutions of (1.6) are radial. In general there are not

necessarily unique. Examples of functions for which there is a unique solution are

found for instance in [28].

Going back to equation (1.2), we have the following

Theorem 1.3. Let k = 1, ..., n− 1 and k + 1 ≤ j ≤ n and N be a fixed positive integer.

Then there exists εN,k > 0 such that for all ε < εN,k, problem (1.2) admits n- k solutions

uε,j(ξn, ..., ξk+1) such that uε,j concentrates on a k−dimensional subset {θi = π
2
, i = k +

1, ..., n, i 6= j, θj = arccos rε
l,j} where

(1.16) rε
l,j = (l − N + 1

2
)ερε +O(ε), l = 1, ..., N

Theorem 1.1 then follows from Theorem 1.3.

Radially symmetric Type II solutions are studied for the following singularly perturbed

problem

(1.17)

{
ε2∆u− u+ f(u) = 0, u > 0 in Ω;
∂u
∂ν

= 0 on ∂Ω

where Ω is the unit ball in Rn. See [1], [2], [11], and [26]. In particular, we mention

the results of [26] which state that for any positive integer N ≥ 1, there exists a layered

solution uε to (1.17) with the property that uε concentrates on N spheres rε
1 > ... > rε

N

satisfying 1−rε
1 = ε log 1

ε
+O(ε), rε

j−1−rε
j = ε log 1

ε
+O(ε), j = 2, ..., N . This is in contrast

to the Dirichlet problem where near the boundary the solution concentrates at most on

one sphere(cf. solutions of Type I of [6]).

Our approach mainly relies upon a finite dimensional reduction procedure. Such a method

has been used successfully in many papers, see e.g. [1], [2], [14], [18], [19], [26]. In

particular, we shall follow the one used in [26].

This method consists of three main steps:

Step 1: Choose good approximate solutions which concentrate on some circles Cr1 , ..., CrN
.

This is done in Section 3.

Step 2: Solve the nonlinear PDE modulo the projections of finite dimensions correspond-

ing to translation modes. This reduces the problem to a finite dimensional problem.

This is done in Section 4.



6 CATHERINE BANDLE AND JUNCHENG WEI

Step 3: Use degree theory (depending on nondegeneracy of some reduced functional) to

solve the reduced problem.

This is done in Section 5.

The interested reader may consult the survey article of Ni [29] (pages 170-173) for more

details.

Throughout this paper, unless otherwise stated, the letter C will always denote various

generic constants which are independent of ε, for ε sufficiently small. The notation Aε =

0(Bε) means that |Aε

Bε
| ≤ C, while Aε = o(Bε) means that limε→0

|Aε|
|Bε| = 0.

Acknowledgment. The research was completed while the first author (C.B.) was

visiting the Institute of Mathematical Sciences of The Chinese University of Hong Kong.

She would like to express her gratitude for the hospitality and the stimulating atmosphere.

The research of the second author (J.W.) is supported by an Earmarked Grant from RGC

of Hong Kong.

2. Coordinates on Sn

In this section, we introduce the spherical coordinates on Sn and derive the equation

for u. For this purpose we find it convenient to map Sn stereographically onto Rn. The

equator is mapped into Sn−1 and we shall assume that the upper hemisphere is mapped

into the unit ball of Rn.

Let x ∈ Rn and let (r, θn−1, θn−2, . . . , θ2, ϕ) be its spherical coordinates given at (1.8),

such that θk ∈ [0, π) for k = 2, . . . , n− 1 and ϕ ∈ [0, 2π).

Then

|dx|2 = dr2 + r2dθ2
n−1 + r2 sin θ2

n−1dθ
2
n−2 + . . .

+ r2 sin θ2
n−1 sin θ2

n−2 sin θ2
n−3 . . . sin θ

2
2dϕ

2.

For our purposes it will be convenient to use the new variables

ξk = cos θk for k = 2, . . . n− 1, ξ1 = ϕ.

Then

|dx|2 = dr2 +
r2

1− ξ2
n−1

dξ2
n−1 +

r2(1− ξ2
n−1)

1− ξ2
n−2

dξ2
n−2 + · · ·+ r2(1− ξ2

n−1) . . . (1− ξ2
2)dξ

2
1 .
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P’

P
Rn

Sn qn

  

South Pole

North Pole

r

Figure 1. Stereographic projection

After a stereographic projection of Sn ⊂ Rn+1 onto Rn we have for the line element on Sn

ds2 =

(
2

1 + r2

)2

|dx|2.

Let θn be the geodesic distance from a point on Sn to the North pole and set

ξn = cos θn.

Then

r = tan
θn

2
=

√
1− ξn
1 + ξn

,
2

1 + r2
= 1 + ξn.

We have (
2

1 + r2

)2

r2 = 1− ξ2
n and

(
dr

dξn

)2

= (1− ξn)−1(1 + ξn)−3.

Hence

ds2 =
1

1− ξ2
n

dξ2
n +

1− ξ2
n

1− ξ2
n−1

dξ2
n−1 +

(1− ξ2
n)(1− ξ2

n−1)

1− ξ2
n−2

dξ2
n−2+

· · ·+ (1− ξ2
n)(1− ξ2

n−1) . . . (1− ξ2
2)dξ

2
1

=
n∑

i=1

giidξ
2
i .
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The Laplace-Beltrami operator on Sn takes the form

∆Sn =
1
√
g

n∑
i=1

∂

∂ξi
(
√
gg−1

ii

∂

∂ξi
),

where
√
g =

n∏
k=3

(1− ξ2
k)

k−2
2 .

For m = 2, . . . n denote

∆m :=
1

(1− ξ2
m)

m−2
2

∂

∂ξm

(
(1− ξ2

m)
m
2
∂

∂ξm

)
.

Then

∆Sn = ∆n +
∆n−1

1− ξ2
n

+ · · ·+ ∆m∏n
i=m+1(1− ξ2

i )
+ · · ·+ 1∏n

i=2(1− ξ2
i )

∂2

∂ξ2
1

.(2.1)

Remark Observe that ∆m is the Laplace- Beltrami operator on Sm depending only on

the geodesic distance from the North pole of Sm, that is (0, · · · , 0, 1︸︷︷︸
m+1

, 0, · · · , 0).

Finally for u = u(ξn, ..., ξk+1) satisfying (1.1), we have

(2.2) ε2

[
∆nu+

∆n−1u

1− ξ2
n

+ · · ·+ ∆k+1u∏n
i=k+2(1− ξ2

i )

]
− u+ f(u) = 0 in D, u = 0 on ∂D

Let

(2.3) zj =
ξj
ε
, j = n, ..., k + 1, z = (zn, ..., zk+1).

Then (2.2) becomes

(2.4) ∆
′
u− u+ f(u) = 0 in Iε;u = 0 on Iε

where

(2.5) ∆
′
u = ∆

′

nu+ +
∆

′
n−1u

1− ε2z2
n

+ · · ·+
∆

′

k+1u∏n
i=k+2(1− ε2z2

i )
,

∆
′

mu =
1

(1− ε2z2
m)

m−2
2

∂

∂zm

(
(1− ε2z2

m)
m
2
∂

∂zm

)
u

and

Iε =

[
−R
ε
,
1

ε

)
×
(
−1

ε
,
1

ε

)n−k−1
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We also write (2.4) in the following form:

(2.6)
n∑

i=k+1

1√
g(εz)

∂

∂zi

(√
g(εz)(gii(εz))

−1 ∂u

∂zi

)
− u+ f(u) = 0 in Iε;u = 0 on Iε

where

(2.7)
√
g =

n∏
i=k+1

(1− ε2z2
i )

i−2
2 , g−1

ii =
1− ε2z2

i∏n
l=i+1(1− ε2z2

l )

Let us illustrate the solutions described in Theorem (1.2) in the three-dimensional case.

If we project the ball D ⊂ S3 stereographically into R3 we obtain again a ball of Euclidean

radius R0 = tan
θ∗3
2

centered at the origin. The equator corresponds to the concentric ball

of Euclidean radius 1. The figures indicate in the meridian plane the maxima of the

solutions. We show type III solutions.

R0

x1

x3

1

Figure 2. radial solutions with boundary layer and clustered spikes near
the equator

Near the boundary the solutions have only one maximum whereas near the equator the

number of spikes is any number N ≤ N0(ε). This number increases as ε decreases. This

is the same for nonradial solutions. The spikes here lie on circles near the boundary and

near the equator.
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R0

x1

x3

1 1-dim.spike

1-dim.clusters near the
equator

Figure 3. nonradial solutions with boundary layer and clustered spikes
near the equator

3. Approximate Solutions

In this section we introduce a family of approximate solutions to (2.6) and derive some

useful estimates. Since the construction of type III of Theorem 1.2 is the most complicated,

we shall focus on the existence of u3
ε in Theorem 1.2. The proof of existence of u1

ε, u
2
ε can

be modified accordingly. We shall use a unified approach to prove both Theorem 1.2 and

Theorem 1.3.

Let us now fix j0 ∈ {k + 1, ..., n}. (To prove Theorem 1.2, we take j0 = n.)

Let w be the unique solution of (1.6), (see assumption (f2)). Using ODE analysis, it is

standard [17] to see that

w(y) = Anr
−n−k−1

2 e−r +O(r−
n−k+1

2
e−r), y ∈ Rn−k, r = |y|,(3.1)

w′(r) = −Anr
−n−k−1

2 e−r +O(r−
n−k+1

2 e−r) for r ≥ 1,

where An > 0 is a generic constant depending on n and f only. We state the following

lemma, which measure the interactions of spikes. The proof of it follows from (3.1) and

Lebesgue’s Dominated Convergence Theorem. See Lemma 2.3 of [25].
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Lemma 3.1. Let k1 ≥ k2 > 0 and let w be a function satisfying (3.1). Then for

|P1 − P2| >> 1 we have

(3.2) wk1(z− P1)w
k2(z− P2) = O

(
wk2(|P1 − P2|)

)
and for k1 > k2

(3.3)∫
Rn−k

wk1(z−P1)w
k2(z−P2) = wk2(|P1−P2|)(1+O(

1

|P1 − P2|
))

∫
Rn−k

wk1(z)e
−k2<

P1−P2
|P1−P2|

,z>

For t = (tn, ..., tk+1) with tn ∈ (−R
4
, 1

4
), we start with the approximation of solutions

concentrating at z = t/ε. Let

(3.4) wt(z) := w

(
(zn −

tn
ε

)
√
gnn(t), . . . , (zk+1 −

tk+1

ε
)
√
g(k+1)(k+1)(t)

)
, z ∈ Iε

and

(3.5) wε,t(z) = wt(z)η(εz− t), z ∈ Iε,

where

(3.6) η(x) =

{
1 for |x| < 1−R

100
;

0 for |x| > 3(1−R)
100

The approximation of the type I solution with a boundary layer is more complicated.

For t0 = (t0n, 0, ..., 0) where t0n ∈ (−R,−R
4
), we have to define wε,t0 differently. First we

set

(3.7) αε(t
0) = w

(
(−R− t0n)

√
gnn(t0)

ε
, 0, ..., 0

)
, βε(z) = e−

(εzn+R)
√

gnn(t0)
ε , z ∈ Iε.

(3.1) implies that for R+t0n
ε

>> 1

(3.8) αε(t
0) = (An +O(ε))

(
ε
√

1− (t0n)2

R + t0n

)n−k−1
2

e
− (R+t0n)

ε

√
1−(t0n)2

A first ansatz for type I solutions of Theorem 1.2 is

w̃(z) =
(
wt0(z)− αε(t

0)βε(z)
)
η(εz− t0).

If we compute Sε[w̃] first order terms in ε remain (cf. Section 6.2, in particular the

computation following (6.24)). The correction which takes care of these terms is described

next.
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Let Ψ0(y) be the unique solution of the problem

(3.9){
∆Ψ0 −Ψ0 + f

′
(w)Ψ0 = (− R√

1−R2 )(2y1
∂2w
∂y2

1
+ n ∂w

∂y1
) + 2R√

1−R2y1

∑n−k
j=2

∂2w
∂y2

j
− A0e

−2c1f
′
(w)e−y1 , in Rn−k∫

Rn−k Ψ0
∂w
∂yj

= 0, j = 1, ..., n− k

where A0 and c1 are defined by

(3.10) A0 =
k
∫

Rn−k |∇w|2dy
An

∫
Rn−k f(w)e−y1dy

and e−2c1 =
R√

1−R2
A0.

(Observe that by (3.10), the right hand of (3.9) is perpendicular to ∂w
∂yj
, j = 1, ..., n − k.

Hence by the assumption (f2) concerning (1.7), there exists a unique solution to (3.9).)

Since Ψ0 does not satisfy the Dirichlet boundary conditions we have to modify it as

follows: let

(3.11)

Ψ̂0(z) = Ψ0

(
(zn −

t0n
ε

)
√
gnn(t0), . . . , zk+1

√
g(k+1)(k+1)(t0)

)
−Ψ0

(
(−R− t0n

ε
)
√
gnn(t0), 0, ..., 0

)
βε(z).

The approximate solution of type I assumes now the form:

(3.12) wε,t0(z) =

(
wt0(z)− αε(t

0)βε(z)− εΨ̂0(z)

)
η(εz− t0),

where t0n ∈ (−R,−R
4
).

Note that for zn ≥ 1
4ε

, we have

(3.13) |wε,t(z)|+ |∇zwε,t(z)|+ |∇2
zwε,t(z)| ≤ e−

1
Cε .

Observe also that, by construction, wε,t satisfies the Dirichlet boundary condition, i.e.,

wε,t(−R
ε
, zn−1, ..., zk+1) = 0. Furthermore, wε,t depends smoothly on t as a map with

values in C2 (Iε).

Next we describe the approximate location of the concentration points t. We first

describe the boundary concentration point. Let t̄0ε be the unique solution such that

(3.14)
t̄0ε +R√
1−R2

− n− k − 1

4
ε ln

ε
√

1−R2

t̄0ε +R
=

1

2
ε log

1

ε
+ c1ε

where c1 is defined at (3.10).
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To describe the concentration points near the equator, we have to consider the auxiliary

functional

(3.15) Eε(t
1, ..., tN) =

A0

2

N∑
i=1

(ti)2 +
N∑

i=2

G(
ti − ti−1

ε
)

where A0 is defined in (3.10) and the function G satisfies

(3.16) G(T ) =
1∫

Rn−k f(w)e−y1

∫
Rn−k

f(w(y1, ..., yn−k))w(T + y1, y2, ..., yn−k)

The properties of G are given in the following lemma whose proof is given in Section 6.

Lemma 3.2. The function G is radially symmetric and for T large, we have

(3.17) G(T ) = (1 +O(
1

T
))w(T ), G

′
(T ) = (1 +O(

1

T
))w

′
(T ), G

′′
(T ) = (1 +O(

1

T
))w

′′
(T )

Using Lemma 3.2, we have the following result, the proof of which is carried out in

Section 6.

Lemma 3.3. The functional Eε(t
1, ..., tN) has a unique minimizer (t̄1ε, ..., t̄

N
ε ) in the set

{(t1, ..., tN)|tj − tj−1 > ε, j = 2, ..., N}.

Moreover, we have

(3.18) t̄jε = (j − N + 1

2
)ερε +O(ε)

where ρε is the unique solution of

(3.19) G
′
(ρε) = A0ε

2ρε, ρε >> 1.

Furthermore, the smallest eigenvalue of the matrix

M = (
∂2Eε

∂ti∂tj
)

is greater than or equal to A0. As a consequence, we have that

(3.20) |M−1x| ≤ C|x|.

Remark: Note that for any 0 < δ < 1 there exists ε0 > 0 such that.

(3.21) (2− δ) log
1

ε
≤ ρε ≤ 2 log

1

ε
for all ε ≤ ε0.

We introduce the following set

(3.22) Λ =

{
(t0, t1, ..., tN)

∣∣∣∣∣ t0 = (t0n, 0, ..., 0), ti = (0, ..., tij0 , 0, ..., 0),where
|t0n − t̄0ε| ≤ ε1+τ0 ,
|tij0 − t̄iε| ≤ ε, i = 1, ..., N

}
,
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where 0 < τ0 <
σ
4
, σ being defined in (f1).

For (t0, ..., tN) ∈ Λ, we define

(3.23) t0n = t̄ε0+ε1+τ0 t̂0, tij0 = t̄iε+εt̂i, i = 1, ..., N, t0 = (t0n, 0, ..., 0), ti = (0, ..., tij0 , 0, ..., 0),

(3.24) Wi = wε,ti(z), i = 0, 1, ..., N,W (z) :=
N∑

i=0

Wi,

and

(3.25)

Iε,i =

[
(−R + tin)(gnn(ti))1/2

ε
,
(1− tin)(gnn(ti))1/2

ε

)
×

k+1∏
l=n−1

(
(−1 + til)(gll(t

i))1/2

ε
,
(1− til)(gll(t

i))1/2

ε

)
.

Then we have

(t0, t1, ..., tN) ∈ Λ iff |t̂j| < 1, j = 0, 1, ..., N

and

(3.26) αε(t
0) = O(

√
ε), tjj0 = O(ε| ln ε|), j = 1, ..., N, |ti − tj| ≥ 2|i− j|ε log

1

ε
.

The choice of the approximated location of the concentration points comes from the

computations carried out in the proof of formula (5.1).

Let

(3.27) Sε(u) = ∆
′
u− u+ f(u).

Finally we state the following important lemma on the error estimates. The proof of

them will be delayed to Section 6.2.

Lemma 3.4. Let (t0, ..., tN) ∈ Λ and let ε be sufficiently small. Then

(i) if εzj = t0j + ε(gnn(t0))−1/2yn+1−j, j = n, ..., k + 1, we have

(3.28) Sε[W0](z) = −
2An +O( 1

| ln ε|)√
1−R2

ε1+τ0 t̂0e−2c1f
′
(w)e−y1 +O(ε1+σ

2 ),

where σ is defined in the condition (f1).

(ii) if εzj = tij + ε(gnn(ti))−1/2yn+1−j, j = k + 1, ..., n, i = 1, ..., N , we have

(3.29) Sε[Wi] = −2εtij0
∂2w

∂y2
n+1−j0

+ 2εtij0

∑
m<j0

∂2w

∂y2
n+1−m

−εj0tij0
∂w

∂yn+1−j0

+ ε2Ei(y) +O(ε3(1 + |y|3)e−|y|)
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where Ei, i = 1, ..., N are bounded and integrable functions which are even in yj, j =

1, ..., n− k. As a consequence, we obtain

(3.30) ‖Sε[W ]‖L∞(Iε) ≤ Cε1+τ0 .

4. Finite-Dimensional Reduction

In this section we perform a finite dimensional reduction process. Since most of the

analysis here is similar to that of [6], we just point out the main differences.

Fix (t0, ..., tN) ∈ Λ. We define two norms:

(4.1) (u, v)ε =

∫
Iε

√
g

[
n∑

i=k+1

g−1
ii |

∂u

∂zi

|2 + uv

]
, < u, v >ε=

∫
Iε

√
guv.

Here
√
g corresponds to volume element related to Sn−k cf. (2.7) Integration by parts

implies

(u, v)ε = − < u,∆′v − v >ε .

Define

(4.2) z0,ε =
∂W

∂t0n
, zi,ε =

∂W

∂tij0
, i = 1, ..., N, Zi = ∆

′
zi,ε − zi,ε, i = 0, ..., N

and

H =

 (u, u)ε < +∞, u(−R
ε
, zn−1, ..., zk+1) = 0,

u even in ξj, j = k + 1, ..., n, j 6= j0
(u, zi,ε)ε = 0, j = 0, . . . , N

 .

Note that, integrating by parts, one has

u ∈ H if and only if < u,Zi >ε= −(u, zi,ε)ε = 0, i = 0, 1, ..., N.

Let us consider first the following linear problem: for given h ∈ L∞(Iε) find φ ∈ H such

that

(φ, ψ)ε− < f ′(W )φ, ψ >ε=< h, ψ >ε, ∀ψ ∈ H.

This equation can be rewritten as a differential equation

(4.3)

{
Lε[φ] := ∆

′
φ− φ+ f ′(W )φ = h+

∑N
i=0 ciZi;

φ ∈ H, < φ, Zi >ε= 0, i = 0, 1, ..., N,

for some constants ci, i = 0, 1, ..., N or in an abstract form as

(4.4) φ+ S(φ) = h̄ in H,
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where h is defined by duality and S : H → H is a linear compact operator. Using

Fredholm’s alternative, showing that equation (4.4) has a unique solution for each h̄, is

equivalent to showing that the equation has a unique solution for h̄ = 0. Next it will be

shown that this is the case when ε is sufficiently small.

In order to derive an a priori bound for φ in terms of h we need the asymptotic be-

haviour of zi,ε and Zi in ε. By elementary computations we obtain, setting yn+1−j =
(εzj−tij)(gjj(t

i))1/2

ε

(4.5) zi,ε = −(gj0j0(t
i))1/2

ε

∂w

∂yn+1−j0

+R1(y)

(4.6) Zi =
(gj0j0(t

i))1/2

ε
f
′
(w)

∂w

∂yn+1−j0

+R2(y)

where Ri(y) i = 1, 2 are bounded and integrable over Rn−k.

Let us define the norm

(4.7) ‖φ‖∗ = sup
z∈Iε

|φ(z)|.

We have the following result.

Proposition 4.1. Let φ satisfy (4.3). Then for ε sufficiently small, we have

(4.8) ‖φ‖∗ ≤ C‖h‖∗

where C is a positive constant independent of ε and (t0, ..., tN) ∈ Λ.

Proof. The proof of this proposition is similar to that of Proposition 4.1 of [6]. We just

point out the differences here. the key point here is to use the symmetry assumption (i.e.,

φ is even in all variables except xij0 ) to exlcude many degeneracies. It is important to

note that W ∈ H and the the equation is invariant under reflections in ξj, j = n, ..., k+1.

Arguing by contradiction, assume that

(4.9) ‖φ‖∗ = 1; ‖h‖∗ = o(1).

Similar to the proof of (4.12) in [6], we obtain

(4.10) ci = O(ε‖h‖∗) + o(ε‖φ‖∗) = o(ε), i = 0, 1, ..., N.
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Also, since we are assuming that ‖h‖∗ = o(1) and since ‖Zi‖∗ = O
(

1
ε

)
, there holds

(4.11) ‖h+
N∑

i=0

ciZi‖∗ = o(1).

Thus (4.3) yields

(4.12)

{
∆

′
φ− φ+ f ′(W )φ = o(1);

φ ∈ H < φ,Zi >ε= 0, i = 0, 1, ..., N,

We show that (4.12) is incompatible with our assumption ‖φ‖∗ = 1. First we claim that,

for arbitrary, fixed R0 > 0, there holds

(4.13) |φ(z)| → 0 on
N⋃

i=0

{|z− ti

ε
| < R0} as ε→ 0

Indeed, assuming the contrary, there exist δ0 > 0, i ∈ {0, 1, . . . , N} and sequences

εk, φk, zk ∈ BR0(t
i) such that εk → 0 as k →∞ and φk satisfies (4.3) and

(4.14) |φk(zk)| ≥ δ0 for all k.

Without loss of generality, we may assume that i = 1. The proof of the other cases

is similar. We also omit the index k for simplicity. Let φ̃(y) = φ(z) where zj =
t1j
ε

+

(gjj(t
i))−1/2yn+1−j. Then using (4.12) and ‖φ‖∗ = 1, as εk → 0 φ̃k converges weakly in

H2
loc(Rn−k) and strongly in C1

loc(Rn−k) to a bounded function φ0 which satisfies

∆φ0 − φ0 + f ′(w)φ0 = 0 in Rn−k.

Hence φ0 must tend to zero at infinity and so, by (1.7), φ0 =
∑n−k

j=1 cj
∂w
∂yj

for some cj.

Since φ is even in yj, j = n, ..., k + 1, j 6= n+ 1− j0, we see that

φ0 = cj0
∂w

∂yn+1−j0

On the other hand,φ̃k ⊥ Zi in H, we conclude that
∫

Rn−k φ0f
′(w) ∂w

∂yn+1−j0
= 0, which yields

cj0 = 0. Hence φ0 = 0 and φ̃k → 0 in B2R(0). This contradicts (4.14), so (4.13) holds

true.

Given δ > 0, the decay of w and (4.13) (with R0 sufficiently large) imply

(4.15) ‖f ′(W )φ‖∗ ≤ δ +
1

2
‖φ‖∗.
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Using (4.12) and the Maximum Principle one finds

‖φ‖∗ ≤ ‖f ′(W )φ‖∗ +
N∑

i=0

|ci|‖Zi‖∗ + ‖h‖∗

≤ 2δ +
1

2
‖φ‖∗,

and hence

‖φ‖∗ ≤ 4δ < 1

if we choose δ < 1
4
. This contradicts (4.9). �

Using Proposition 4.1 and standard contraction mapping principle, we have the follow-

ing finite dimensional reduction theorem

Theorem 4.2. For (t0, ..., tN) ∈ Λ and ε sufficiently small, there exists a unique (Φ, c) =

(Φε,t0,...,tN , cε(t
0, ..., tN)) such that the following holds

(4.16)

{
∆

′
(W + Φ)− (W + Φ) + f(W + Φ) =

∑N
i=0 ciZi in Iε,

Φ ∈ H

Moreover, the map (t0, ..., tN) 7→ (Φε,t0,...,tN , cε(t
0, ..., tN)) is of class C0, and we have

(4.17) ‖Φε,t0,...,tN‖∗ ≤ Cε1+τ0 .

Proof. The proof is exactly the same as Proposition 4.2 of [6]. we omit the details. �

5. Proof of Theorems 1.2 and 1.3

From (4.16), we see that, to prove the existence of Type III solutions of Theorem 1.2 and

Theorem 1.3, it is enough to find a zero of the vector cε(t
0, ..., tN) = (c0,ε, c1,ε, ..., cN,ε)

T .

The next Proposition computes the asymptotic formula for cε(t0, t): (Recalling (3.23))

Proposition 5.1. For ε sufficiently small, we have the following asymptotic expansion

(5.1)
1

ε2+τ0
∫

Rn−k(f
′(w)( ∂w

∂y1
)2)
c0,ε(t

0, ..., tN) = d0t̂
0 + β0,ε(t̂

0, ..., t̂N),

(5.2)
1

ε3
∫

Rn−k(f
′(w)( ∂w

∂y1
)2)
ci,ε(t

0, ..., tN) = di
∂(Eε(t̂

1, ..., t̂N))

∂t̂i
+ βi,ε(t̂

0, ..., t̂N), i = 1, ..., N
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where di 6= 0, i = 0, 1, ..., N are positive constants, and βi,ε(t̂
0, ..., t̂N), i = 0, 1, ..., N are

continuous functions in (t̂0, ..., t̂N) with

(5.3) βi,ε(t̂
0, ..., t̂N) = O(ετ0 +

N∑
i=0

|t̂i|2), i = 0, ..., N.

We delay the proof of the proposition at the end of the section. Let us now use it to

prove Theorem 1.2 and Theorem 1.3

Proof of Theorem 1.2:

To prove Theorem 1.2, we set j0 = n.

To find a zero of cε(t
0, ..., tN), it is enough to solve the following systems of equations

(5.4) d0t̂
0 + β0,ε(t̂

0, ..., t̂N) = 0, di∇t̂i(Eε(t̂
1, ..., t̂N) + βi,ε(t̂

0, ..., t̂N) = 0, i = 1, ..., N.

By Lemma 3.3, the matrix M is invertible with uniform bound, (5.4) is equivalent to

(5.5) (t̂0, ..., t̂N) = β̂ε(t̂
0, ..., t̂N)

where β̂ε(t̂
0, ..., t̂N) is a continuous function in (t̂0, ..., t̂N) satisfying

(5.6) β̂ε(t̂
0, ..., t̂N) = O(ετ0 +

N∑
i=0

t̂2i ).

Let B = {(t̂0, ..., t̂N)| |(t̂0, ..., t̂N)| < ε
τ0
2 }. Then Brouwer’s fixed point theorem gives a

solution in B, called (t̂0ε, ..., t̂
0
ε), to (5.5), which in turn, gives a solution

u3
ε = wε,t0ε,...,tN

ε
+ Φε,t0ε,...,tN

ε

to equation (2.6), where

(5.7) t0
ε = (t̄0ε + t̂0ε, 0, ..., 0), ti

ε = (0, ..., t̄iε + t̂0ε, 0, ..., 0).

It is easy to see that u3
ε satisfies all the properties listed in Theorem 1.2.

�

Proof of Theorem 1.3:

To prove Theorem 1.3, we let j0 ∈ {k + 1, ..., n}. Then for each fixed N , there are at

least n− k solutions uε,j0 , j0 = k + 1, ..., n.

�

Now we are ready to prove (5.1).

Proof of (5.1):
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Similar to the proof of (5.8) of [6], we multiply equation (4.16) by
√
gzi,ε, integrate by

parts and obtain, using Lemma 3.4 and Theorem 4.2,

(5.8)
N∑

l=0

cl,ε < Zl, zi,ε >ε=

∫
Iε

√
g(εz)Sε[W+Φε,t0,...,tN ]zi,ε =

∫
Iε

????Sε[W ]zi,ε+O(ε1+τ0)

=

∫
Iε

(
N∑

l=0

Sε[Wl] + f(
N∑

l=1

Wl)−
N∑

l=1

f(Wl))zi,ε +O(ε1+τ0).

For i = 0, 1, ..., N , we make use of (4.5) and deduce that

(5.9)

∫
Iε

Sε[Wl]zi = −1

ε
(gj0j0(t

i))1/2

∫
Iε,i

Sε[Wl]
∂w

∂yn+1−j0

+O(ε1+τ0).

For i = 0, j0 = n, we have, using (3.28),∫
Iε,0

Sε[W0]zi,ε =
2An +O( 1

| ln ε|

1−R2
ετ0 t̂0e

−2c1

∫
Rn−k

f
′
(w)

∂w

∂y1

e−y1dy +O(ε
σ
2 )

(5.10) = d0ε
τ0 t̂0 +O(ε2τ0)

where

d0 =
2An +O( 1

| ln ε|)

1−R2
e−2c1

∫
Rn−k

f
′
(w)

∂w

∂y1

e−y1 =
2An +O( 1

| ln ε|)

1−R2
e−2c1

∫
Rn−k

f(w)e−y1 6= 0.

For i = 1, 2, ..., N , we have, using (3.29),∫
Iε,tj

Sε[Wl]zidz = O(ε1+τ0) if l 6= i,

∫
Iε,tj

Sε[Wi]zidz = −1

ε

∫
Iε,i

N∑
i=1

Sε[Wi]
∂w

∂yn+1−j0

+O(ε3)

= 2tij0

∫
Rn−k

yn+1−j0

∂2w

∂y2
n+1−j0

∂w

∂yn+1−j0

− 2εtij0

∑
m<j0

∫
Rn−k

yn+1−j0

∂2w

∂y2
n+1−m

∂w

∂yn+1−j0

+j0t
i
j0

∫
Rn−k

(
∂w

∂yn+1−j0

)2 +O(ε2)

= −ktij0
∫

Rn−k

(
∂w

∂y1

)2 +O(ε2| ln ε|)

for

(5.11)

∫
Rn−k

yj0

∂2w

∂y2
j0

∂w

∂yj0

= −1

2

∫
Rn−k

(
∂w

∂yj0

)2
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and

(5.12)

∫
Rn−k

yj0

∂2w

∂y2
m

∂w

∂yj0

=
1

2

∫
Rn−k

(
∂w

∂yj0

)2

where m 6= j0.

On the other hand, we have∫
Iε

(f(
N∑

l=1

Wl)−
N∑

l=1

f(Wl))zi = −1

ε

∫
Rn−k

(f
′
(w)(wti−1 + wti+1)

∂w

∂yn+1−j0

+O(ε2)

=
∑

l=i−1,i+1

∫
Rn−k

f(w)
∂(wti−1 + wti+1)

ε∂yn+1−j0

+O(ε2)

= B0

∑
l=i−1,i+1

∂G(
tij0
−tlj0
ε

)

∂tij0
+O(ε2)

where

B0 =

∫
Rn−k

f(w)e−yn+1−j0 6= 0

Thus we have for i = 1, ..., N ,∫
Iε

(
N∑

l=0

Sε[Wl] + f(
N∑

l=1

Wl)−
N∑

l=1

f(Wl))zi

= −ktij0
∫

Rn−k

| ∂w
∂y1

|2 +B0

∑
l=i−1,i+1

∂G(
tij0
−tlj0
ε

)

∂tij0
+O(ε1+τ0)

= −B0[A0t
i
j0
−

N∑
i=2

∂G(
tij0
−ti−1

j0

ε
)

∂tij0
+O(ε1+τ0)]

So we have for i = 1, ..., N ,∫
Iε

Sε[W ]zidz = −B0
∂Eε(t)

∂tij0
+O(ε1+τ0)

= −B0
∂Eε

∂tj
|t=tε +B0

(
M(t− tε)

)
j

+O(ε1+τ0)

(5.13) = djε

(
Mt̂

)
j

+O(ε1+τ0)

where dj = −B0, j = 1, ..., N .



22 CATHERINE BANDLE AND JUNCHENG WEI

Since

(5.14) < Zl, zi,ε >ε=
1

ε2(1− (tij0)
2)

(δli

∫
Rn−k

f
′
(w)(

∂w

∂y1

)2 +O(ε))

we derive Proposition 5.1 from (5.8), (5.10) and (5.13). (The fact that all the error terms

are continuous in (t̂0, t̂1, ..., t̂N) follows from the continuity of Φε,t0,...,tN in (t0, ..., tN).)

�

6. Proof of three lemmas

6.1. Proof of Lemma 3.2. The fact that G is radially symmetric follows from the radial

symmetry of w.

To study the properties of G when T is large, we note that by (3.1) for T large

w(T + y1, y2, ..., yn−k) ∼ An((T + y1)
2 + (

n−k∑
j=2

y2
j )

k+1−n
4 e

−
q

(T+y1)2+
Pn−k

j=2 y2
j

∼ AnT
k+1−n

2 e−T e−y1+O( 1
T

)

∼ w(T )e−y1+O( 1
T

)

Then by Lebesgue’s Dominated Convergence Theorem, we derive that

(6.15)

∫
Rn−k

f(w)w(T + y1, y2, ..., yn−k) = (1 +O(
1

T
))w(T )

∫
Rn−k

f(w)e−y1

and so

G(T ) = (1 +O(
1

T
))w(T )

The other estimates can be proved in a similar way.

�

6.2. Proof of Lemma 3.3. Note that for T large, w
′′
(T ) > 0 and hence G(T ) > 0. It is

easy to see that a global minimizer of Eε(t) exists since Eε(t) is convex. Let us denote it

by (t̄1ε, ..., t̄
N
ε ) which is unique. Setting t̄iε = ε(i− N+1

2
)ρε + εsi

ε, where ρε satisfies

A0ε
2ρε = −G′

(ρε),

then sε
i satisfies

(6.16) A0(i−
N + 1

2
) + A0εs

ε
j + e−(sε

j−sε
j−1) − e−(sε

j+1−sε
j) +O(

N∑
j=1

|sε
j|
ρε

) = 0, j = 1, ..., N

which admits a unique solution sε = (sε
1, ..., s

ε
N) = O(1).
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Let M = (∂2Eε(t)
∂ti∂tj

). We show that the smallest eigenvalue of M is uniformly bounded

from below. In fact, let η = (η1, ..., ηN)T and we compute

(6.17)
∑
i,j

Mijηiηj = A0

N∑
j=1

η2
j +

1

ε2

N∑
j=2

G
′′
(
|tεj − tεj−1|

ε
)(ηj − ηj−1)

2 ≥ A0|η|2

which implies that the smallest eigenvalue of M, denoted by λ1, satisfies

(6.18) λ1 ≥ A0 > 0.

Now we consider

|M−1η|2 = ηtM−2η ≤ λ−2
1 |η|2

which proves (3.20).

�

6.3. Proof of Lemma 3.4. Using (1.6) it is easy to see that

Sε[W ] = Sε[W0] + Sε[
N∑

l=1

Wl] +O(e−
1

Cε )

(6.19) = Sε[W0] +
N∑

l=1

Sε[Wl] + f(
N∑

l=1

Wl)−
N∑

l=1

f(Wl) +O(e−
1

Cε ).

Let us compute each term in the right hand side of (6.19): to this end, we first compute

(6.20) ∆
′
wt =

n∑
l=k+1

1√
g(εz)

(
∂

∂zl

√
g(εz)(gll(εz))

−1∂wt

∂zl

)

=
n∑

l=k+1

1

gll(εz)

∂2wt

∂z2
l

+
n∑

l=k+1

1

gll(εz)
(
∂

∂zl

ln(
√
g(εz)))

∂wt

∂zl

+
n∑

l=k+1

(
∂

∂zl

(gll(εz))
−1)

∂wt

∂zl

Let εzj = tij + ε(gjj(t))
−1/2yn+1−j, j = n, ..., k + 1 or

z =
t

ε
+ Dy

where D is a diagonal matrix.

For i = 0, j0 = n, n+ 1− j0 = 1, we have

(6.21)
√
g = (1− ε2z2

n)
n−2

2 (1−
n−1∑

l=k+1

l − 2

2
ε2z2

l +O(ε4)),
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(6.22) g−1
mm =

{
1− ε2z2

n if m = n
1

1−ε2z2
n
(1− ε2(z2

m −
∑n−1

j=m+1 z
2
j ) +O(ε4)) if m < n

and

(6.23)
∂ ln

√
g

∂zm

= −(m− 2)ε2zm

1− ε2z2
m

,
∂g−1

mm

∂zm

=

{ −2ε2zn if m = n

− 2ε2zm

1−ε2z2
n

+O(ε4) if m < n

Substituting (6.23) into (6.20) and after a lengthy computation, we have

Sε[wt0 ]

(6.24) = −2ε
t0n√

1− (t0n)2
y1
∂2w

∂y2
1

+ 2ε
t0n√

1− (t0n)2

∑
m<n

y1
∂2w

∂y2
n+1−m

−εn t0n√
1− (t0n)2

∂w

∂y1

+O(ε2| ln ε|(1 + |y|2)e−|y|)

On the other hand since βε depends on zn only,

∆
′
βε − βε

= (1− ε2z2
n)β

′′

ε − nε2znβ
′

ε − βε

=

[
1− ε2z2

n

1− (t0n)2
+ nε2zn

1√
1− (t0n)2

− 1

]
βε = O(ε)βε

and hence

Sε[wt0 − αε(t0)βε] = f(w − αε(t0)βε)− f(w)

−2ε
t0n√

1− (t0n)2
y1
∂2w

∂y2
1

+ 2ε
t0n√

1− (t0n)2

∑
m<n

y1
∂2w

∂y2
n+1−m

−ε nt0n√
1− (t0n)2

∂w

∂y1

+O(ε3/2(1 + |y|2)e−|y|)

= −αε(t
0)e

− R+t0n

ε

√
1−(t0n)2 f

′
(w)e−y1 − 2ε

R√
1−R2

∂2w

∂y2
1

+ 2ε
R√

1−R2

∑
m<n

∂2w

∂y2
n+1−m

−ε nt0n√
1−R2

∂w

∂y1

+O(ε1+σ
2 )

= −An(1−R2)
k+3−n

4 (
ε

R + t0n
)

n−k−1
2 e

− 2(R+t0n)√
1−R2 f

′
(w)e−y1−2ε

R√
1−R2

∂2w

∂y2
1

+2ε
R√

1−R2

∑
m<n

∂2w

∂y2
n+1−m

−ε nR√
1−R2

∂w

∂y1

+O(ε1+σ
2 )
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Since

(
ε

R + t0n
)

n−k−1
2 e

− 2(R+t0n)√
1−R2

= (
ε

R + t̄0ε
)

n−k−1
2 (1 +O(

ετ0

| ln ε|
t̂0)e

− 2(R+t̄0ε)√
1−R2 e

− 2ετ0 t̂0√
1−R2 = εe−2c1(1 +O(

ετ0

| ln ε|
t̂0)e

− 2ετ0 t̂0√
1−R2 ,

we deduce that (using the equation (3.9))

(6.25)

Sε[W0] = Sε[wt0 − αε(t
0)βε − εΨ̂0] = −

2An +O( 1
| ln ε|)√

1−R2
ε1+τ0 t̂0e

−2c1f
′
(w)e−y1 +O(ε1+σ

2 )

which is just (3.28).

Next we consider the case i = 1, ..., n. In this case, we have that

(6.26) g−1
mm = 1− ε2(z2

m −
n∑

j=m+1

z2
j ) +O(ε4|z|4), √g = 1−

n∑
j=k+1

j − 2

2
ε2z2

j +O(ε4|z|4)

Hence

∆
′
wti = ∆w +

n∑
m=k+1

[
gmm(t)

gmm(ti + εDy)
− 1]

∂2w

∂y2
n+1−m

−2ε2

n∑
m=k+1

zm(gmm(ti))1/2 ∂w

∂yn+1−m

+
n∑

m=k+1

1√
g(ti + εDy)

(−(m− 2)ε2zm)
∂w

∂yn+1−m

+O(ε3(1 + |y|3)e−|y|)

(6.27) = ∆w − 2εtij0yn+1−j0

∂2w

∂y2
n+1−j0

+ 2εtij0

∑
m<j0

yn+1−j0

∂2w

∂y2
n+1−m

−εj0tij0
∂w

∂yn+1−j0

+ ε2Ei(y) +O(ε3(1 + |y|3)e−|y|)

where Ei(y) is a bounded and integrable function which is even in yj, j = 1, ..., n − k.

(The last term is harmless since it is even in yj.)

Hence from (6.27) we have

(6.28) Sε[Wi] = −2εtij0
∂2w

∂y2
n+1−j0

+ 2εtij0

∑
m<j0

∂2w

∂y2
n+1−m

−εj0tij0(gj0j0(t
i))−1/2 ∂w

∂yn+1−j0

+ ε2Ei(y) +O(ε3| ln ε|(1 + |y|3)e−|y|) = O((ε2| ln ε|e−|y|).
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On the other hand, the interaction terms can be estimated as follows: for εzj = tij +

ε(gjj(t
i))−1/2yn+1−j, |l − i| ≥ 2, gjj(t

i) = 1 +O(ε2| ln ε|)

wtl(z) = O(e−
|ti−tl|

ε ) = O(ε4| ln ε|4)

Therefore

(6.29) f(
N∑

i=1

wti)−
N∑

i=1

f(wti) = f
′
(w(y))(wti−1 + wti+1) +O(ε2+σ).

Combining (6.28) and (6.29), we obtain (3.29). (3.30) follows from (3.28) and (3.29).

�

7. Emden equations of Sn

Our interest in the existence of positive nonradial solutions grew out from the study of

the problem

(7.1) ∆Snv − λv + vp = 0, v > 0 in D ⊂ Sn, v = 0 on ∂D, λ > 0.

in particular when p = n+2
n−2

is the critical exponent. As in the previous sections we shall

assume that D is a geodesic ball, centered at the North pole with geodesic radius θ∗n.

As already mentioned in the Introduction if θ∗n < π/2 all positive solutions are radial.

We therefore assume that θ∗n > π/2. If we set u = λ−
1

p−1v and ε−2 = λ then u satisfies

problem (1.1).

In [6] it was shown that in contrast to the corresponding problem in the Euclidean

space (7.1) possesses for arbitrary p > 1 and large λ radial solutions. There are three

types of solutions as in Theorem (1.2) with k replaced by n − 1. As λ increases there

are more and more solutions with an increasing number of spikes on n − 1- dimensional

spheres near the equator. These solutions have been observed numerically in [36]. From

Theorem (1.2) we obtain also the existence of nonradial solutions for (7.1) or equivalently

to (1.1). yields

Theorem 7.1. Let 1 < p < pk. Then the statements of Theorem (1.2) remain valid for

u = λ
1

p−1v, v being a positive solution of (7.1). In particular we have λ−
1

p−1v(θ) → c0 > 0

as θ → Σi, i = 1, 2, 3 where θ = (θn, · · · , θ2, ϕ).

Proof. We only have to show that the assumptions (f1), (f2) are satisfied for

∆w − w + wp = 0 in Rn−k.
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The existence of a ground state was proved in [37]. The radial symmetry follows from

[16], see also the remark in [35]. The uniqueness has been proved in [22]. �

Theorem (1.1) follows from the above result.
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