NEW ENTIRE POSITIVE SOLUTION FOR THE NONLINEAR
SCHRODINGER EQUATION: COEXISTENCE OF FRONTS AND
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ABSTRACT. In this paper we construct a new kind of positive solutions of
Au —u+uP =0 on R?

when p > 2. These solutions have the following asymptotic behavior
o o]
u(z,2) ~ wz — f(2)) + Y _ wol(,2) — &i€1)
i=1

as L — +oo where w is a unique positive homoclinic solution of w” —w+w? = 0
in R ; wo is the two dimensional positive solution and & = (1,0) and &; are
points such that & = jL 4+ O(1) for all j > 1. This represents a first result
on the coezistence of fronts and bumps. Geometrically, our new solutions
correspond to triunduloid in the theory of CMC surface.

1. INTRODUCTION

1.1. Entire Solutions. Positive entire solutions of
(1.1) Au—u+uP =0on RY

where 1 < p < (%)Jﬂ vanishing at infinity have been studied in many contexts.
This class of problems arises in plasma and condensed-matter physics. For exam-
ple, if one simulates the interaction-effect among many particles by introducing a

nonlinear term, we obtain a nonlinear Schrédinger equation,

N

where ¢ is an imaginary unit and p > 1. Making an Ansatz

P(z,t) = exp(—it)u(z)
one finds that a stationary wave u satisfies (1.1) ([16]).

In recent years, much effect has been devoted to the study of existence and
multiplicity of positive solutions of

2Au—V(z)u+uP =0; u € H' (RY)

as ¢ — 0. Floer-Weinstien [8] constructed single spike solutions concentrating
around any given non-degenerate critical point of the potential V' in R provided
infrp V' > 0, using Lyapunov-Schmidt reduction. This was later extended by Oh
[27], [28] for the higher dimensional case.
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Spike layered solutions (solutions concentrating in zero dimensional sets) in bounded
domain © with Dirichlet and Neumann boundary condition have been studied in
recent years by many authors. See for example, Ni-Wei [26], Lin-Ni-Wei[17], and
the review articles by Ni [24] and Wei [32]. Higher-dimensional concentration is
later on studied by Malchiodi-Montenegro [18]-[19] in the Neumann case and by
del Pino- Kowalczyk-Wei [6] in R2.

In this paper, we focus on positive solutions to (1.1). The solution to (1.1)
that is decaying at oo is well-understood: all such solutions are radially symmetric
around some point (Gidas-Ni-Nirenberg [13]), and are unique modulo translations
(Kwong [16]). Though solutions of (1.1) are bounded (since p < (3+2).), not much
is known about the solutions which does not decay at infinity [29]. One obvious
solution of such kind is the following: if we consider a solution Wx_; of (1.1) in
RN~! which decays at infinity, it induces a solution in RY which depends on N —1
variables and decays at infinity except for one direction. In the case N = 2, consider
solutions u(z, z) to problem (1.1) which are even in z and vanish at |z| — oo,

(1.2) u(z, 2) = u(z, —2) Y(z,2) € R?

and

(1.3) lim u(z,2) =0VzeR
|@|— o0

In [2], Dancer used local bifurcation arguments to obtain a class of solutions which
constitute a one parameter family of solutions that are periodic in the z variable
and originate from w, where w is the unique positive solution of

(1.4) W' —w+wP =0,w>0,w(z) =w(—z) in Rw € H'(R).

These solutions are called Dancer’s solutions. They can be parameterized by a
small parameter 6 > 0 and asymptotically

(1.5) ws(z,2) = w(z) + s (2) cos(v/Ar1z) + O(e171).
In a seminal paper [21], Malchiodi constructed a new kind of solutions with three
rays of bumps. More precisely, the solutions constructed in [21] have the form
3 +4oo

(1.6) u(@,z) = Y wol(w,z) —iLl})

j=1 i=1

where l_;-, j = 1,2,3 are three unit vectors satisfying some balancing conditions
(Y-shaped solutions, see Figure 1). Here wg is the unique solution to the two
dimensional entire problem

(1.7) Awy — wp + wf = 0,wy > 0,
’ wOEHl(Rz).

On the other hand, in [4], del Pino, Kowalczyk, Pacard and Wei constructed
another new kind of multi-front solutions using Dancer’s solutions and Toda system.
(These are even-ended front solutions. See Figure 2.) More precisely, the solutions
constructed in [4] have the form

(1.8) u(z, z) ~ ngj (x — fi(2),2)
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FIGURE 1. Multi-bump solutions with Y shape.

where f1 < fa < ... < fk satisfies the following Toda system
(1.9) Cof;" —efi-1-Fi _ efrfj+1’f0 = —00, fK41 = +00,cq > 0.

From now on, we call the one-dimensional solution w as “front” solution and
the two-dimensional solution wp as “bump” solutions. Thus results of [4] and [21]
establishes the existence of multi-front and multi-bump solutions respectively.

1.2. Main Results. In this paper we consider the nonlinear Schrédinger equation
(1.10) Au—u+ul =0in R?

where p > 2 and uy = max{£u,0}. Our aim is to construct solutions with both
fronts and bumps. More precisely we look for positive solutions of the form

(1.11) uy(x, 2) =w(w—f(z))+zwo((w72) — &ié1)

for suitable large L > 0 and &;’s are such that & — f(0) = L and
Gl <b< < &<

and satisfy

(1.12) & =3iL+0(1)

for all j > 1; w is the unique even solution to (1.4), wo is the unique positive solution
of (1.7) and & = (1,0). Along the line of the proof we will replace uy by w.
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f1 f2 f3 fk+ 1 fk

FIGURE 2. Multi-front solutions with even-ends.

Because of the new interaction between the fronts and bumps, we are led to
considering the following second order ODE:

f"(2) = ¥p(f,2) in R
f(O) =0, fl(o) =0,
where ¥, (f, 2) is a function measuring the interactions between bumps and fronts
which will be defined in Section 2. Asymptotically ¥, (f,2) ~ ((f—L)2+2z2) 2e~V{=1)*+2%
Let a = 0+°° V(v L2 + 22)dz.
The following is the main result of this paper.

Theorem 1.1. Let N = 2. For p > 2 and sufficiently large L > 0, (1.10) admits
a one parameter family of positive solutions satisfying
(1.14)

ur(z,2) = ur(z, —2) for all (z,2) € R?

us(e2) = (e = £0) ~ lu@) 14 P wn((e:2) — 61) ) 1+ 02(1)

(1.13)

where § = L is a small constant, ws is the Dancer’s solution, f is the unique
solution of (1.18), &; satisfy (1.12) and or,(1) = 0 as L — 400, and the function
||hL||C§’I‘(R)®g < Cal*™ for some constant § > 0,y > 0. ( € will be defined at

Section 2.) Moreover, the solution has three ends.

Figure 3 shows graphically how the solution constructed in Theorem 1.1 looks
like triunduloid type I. (This corresponds end-to-end gluing construction. See dis-
cussions at the end.)

A modification of our technique can be used to construct the following two new
types of solutions: the first one is a combination of positive bump and infinitely
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FI1GURE 3. Isosceles triunduloid Type I

many sign-changing bumps—we call it Solution 2 (triunduloid type II). The second
one is with two fronts and one bump (or finitely many bumps)—we call it Solution
3.

—@ -4 ¢,

A
\a

Solution 2

FI1GURE 4. Isosceles triunduloid Type II

Solution 3

x=f(z) x=-1(z)

FI1GURE 5. End to end gluing construction
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In this paper we will only discuss the proofs of Solution 1. The modifications
needed for Solution 2 and Solution 3 will be explained at the last section.

Theorem 1.1 implies that we can construct solutions which does not decay the
x— axis but decay everywhere else. Though Theorem 1.1 is a purely PDE result,
this result has an analogy in the theory of constant mean curvature (CMC) surface
in R? which we shall describe below.

1.3. Relation with CMC Theory. CMC surfaces in R® are an equilibria for the
area functional subjected to an enclosed volume constraint. To explain mathemati-
cally suppose an oriented surface S is embedded in a manifold M and let us denote v
be the normal field compatible with the orientation. Then for any function z which
is smooth small function we define a perturbed surface S, as the normal graph of
the function of z over S. Namely S, is parameterized as

p €S~ exp(w(p)v(p))

where exp is the exponential map in (M, g). Decompose z into the positive part
and the negative part of z as z = 2T — 2z~ and define the set

B+ = {expytv(p) : £t € (0,2%(p))}.
Then the m-th volume functional

A(z) = / dvols,
S-
and its first and second variations at z = 0 are

DA(0)(v) = /SHU dvol s

D? A(0)(v,v) = /(|ng|2 — (K2 4+ K3 + - 62,0 — Ric(v,v)v® + H*v?)dvols
s

where «; are the principal curvatures of S , Ric denotes the Ricci tensor on (M, g)
and H is the mean curvature function and depends on S. Also note that the critical
points of A are precisely surfaces of mean curvature zero and usually referred to as
minimal surfaces. Moreover, define (m + 1) th volume functional

V(z) := / dvolyr — dvol yy
B, B__
where volumes are counted positively when w > 0 and negatively when w < 0. The
first variation of V is given by

DV(0)(v) :/UdUOls
S

and its second variation is given by

D*V(0)(v,v) = —/ Hv?dvol s
S

Define the shape operator as

m
EEDI
i=1

We see that critical points of the functional A with respect to some volume con-
straint VV = constant have constant mean curvature. Here the mean curvature
appears as a multiple of the Lagrange multiplier associated to the constraint (and
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hence it is constant). The surfaces with constant mean curvature equal to H = A
are critical points of W(S) := A(S) + AV(S). The quadratic form can be written as

D*W(0)(v,v) = —/ vJsv dvols
s

where the Jacobi operator
(1.15) Js = As + |A]* + Ric,(v,v)

For CMC surfaces the sign of H and its value can be changed by a reversal
of orientation and homothety respectively and as a result we can normalize the
surface such that H = 1. CMC interfaces arise in many physical and variational
problems. Over the past two decades there is a great deal of progress in under-
standing complete CMC and their moduli spaces. Moduli is a notion to identify
invariant surfaces. In order to study the structure of moduli spaces one needs to
study the properties of (1.15). The reflection technique of Alexandrov [1] shows
that spheres is the only compact embedded CMC surface of finite topology. These
are surfaces homeomorphic to a compact surface S of genus g with a finite number
of points removed from it say m. The neighborhood of each of these punctures are
called ends. Mathematically, we define the ends e; of an embedded surface S in
R3 with finite topology to be a non-compact connected components of the surface
near infinity

SN (R \ B, (0)) = Uk e;
where Bpg,(0) denotes a ball of radius Ry (is chosen sufficiently large so that m is
constant for all R > Ry). Note that sphere is a zero end surface.

The theory of properly embedded CMC surfaces, was classified by Delaunay [3].
These are rotationally symmetric CMC surfaces, called unduloids (having genus
zero and two ends). To describe these, consider the cylindrical graph

(1.16) (t,0) — (h(t) cosb, h(t)sinb,t).
The CMC graph is an ordinary differential equation given by,

1 3
hir — =1+ B+ A +8H)2=0

) o= ) + (L R))
mtinh(t)zs.

Moreover, all the positive solutions of (1.17) are periodic and may be distinguished
by their minimum value € € (0, 1], which is more often referred to as the Delaunay
parameter of the surface D, where 7 = 2¢ — ¢2. Moreover, when 7 = 1, D; is
a cylinder of radius 1 and as 7 | 0, D, converges to an infinite array of mutually
tangent spheres of radius 2 with centers along the z axis. The family D, interpolates
between two extremes and € measures the size of the neck region. Moreover, using
a parameterization (1.16) and

(1.18) t = k(s), h(t) = e,

we obtain the Jacobi operator for the surface D, is given by
1

(1.19) Jp = W(@f + 83 + 72 cosh 20)

where o' + T2—2 sinh20 =0 and k' = 72—2(62" +1).
These surfaces are periodic and interpolate between the unit cylinder and the
singular surfaces formed by a string of spheres of radius 2, each tangent to the
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next along a fixed axis. In particular, Delaunay established that every CMC sur-
face of revolution is necessarily one of these “Delaunay surfaces”. Kapouleas [14]
constructed numerous examples of complete embedded CMC surface in R® (with
genus g > 2 and ends k£ > 3) by gluing Delaunay surfaces onto spheres. In fact
he produced CMC surfaces using suitably balanced simplicial graphs where the k
edges are rays tending to infinity. By balancing condition we mean that the force
vectors associated with each edge cancel at each vertex. In fact balancing condition
combined with spherical trigonometry plays an important role in classifying CMC
surfaces with three ends. A more flexible gluing techniques was used by Mazzeo
and Pacard in [22] to explore moduli surface theory which involves several bound-
ary value problems and then matching the boundary values across the interface.
A CMC surface S of finite topology is Alexandrov-embedded; if S is properly im-
mersed, and if each end of S is embedded; there exist a compact manifold M with
boundary of dimension three and a proper immersion F : M \{q1,q2, - ,qm} — R®
such that F' |sa\{g1,g0, 4.} Parameterizes M. Moreover, the mean curvature nor-
mal of S points into M.

Then we define triunduloid as an Alexandrov embedded CMC surface having zero
genus and three ends. Triunduloids are a basic building block for Alexandrov em-
bedded CMC surface with any number of ends. Nonexistence of one end Alexandrov
embedded CMC surface was proved by Meeks [23]. Kapouleas [14], G-Brauckmann
[9] and Mazzeo-Pacard [22] established existence of triunduloid with small necksize
or high symmetry. In fact G-Brauckmann [9] used conjugate surface theory con-
struction to obtain families of symmetric embedded complete CMC surfaces. The
geometry of moduli space plays an very important role for the understanding of the
structure of CMC’s.

The main aim of this paper is to prove existence of triunduloid type of solution
for (1.1) in R? i.e. a solution having three ends. Solutions having even number of
ends have been shown to exist in recent paper of del Pino, Kowalczyk, Pacard and
Wei in [4]. Y shaped solutions of (1.1) in R® were constructed by Malchiodi [21].
Hence Theorem 1.1 proves that the moduli space M3(R?) of all 3 — end solutions
is nonempty.

Geometrically, solutions constructed in Theorem 1.1 correspond to the so-called
end-to-end gluing in CMC. (We are indebted to Prof. F. Pacard for this connection.)
The end-to-end gluing in CMC corresponds to adding a handle to a multi-end CMC
surfaces. The procedure has been done in the thesis of J. Ratzkin [30]. (A similar
construction has been done for the construction of positive metrics with constant
positive scalar curvature [31].) For nonlinear Schrodinger equation, adding a handle
means adding a half-ray solution with infinitely many bumps. The solution in
Theorem 1.1 represents first step in adding a handle. We believe that with more
work it is possible to add handles to the even number ends solutions constructed
in [4].

Finally we should also mention that in a recent paper [25], Musso, Pacard and
Wei have constructed nonradial finite-energy sign-changing solutions, using geo-
metric analogue constructions of Kapouleas [14].
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1.4. Main ideas of proof. We sketch the main ideas of the proofs of Theorem
1.1. The solutions we construct have the form

(1.20) u(z,2) ~ ws(z — f(2),2) + Y_wol(,2) = &)
i=1

There are three main parts of proofs: firstly, we add a half-line of bumps (corre-
sponds to > wo((z, z) — &€1)). For this part we use the idea of Malchiodi [21].
Namely we need to use Dancer’s solutions with large periods and analyze the inter-
actions using Toeplitz matrix. Secondly, we have a front solution (corresponds to
ws(x — f(z),2). This is a two-end solution and we follow the analysis by del Pino,
Kowalczyk, Pacard and Wei [4]. The third part deals with the interaction part.
Because of the exponentially decaying tails of both ws and wg, only the interaction
of the first bump and the front is the dominating force. We have to compute the
corresponding ODE which ultimately determines the curve f(z). In all these three
parts, we will make use of the infinite-dimensional Liapunov-Schmidt reduction
method. For this method, we refer to [4], [5], [6], [7].

2. THE EXPONENTIAL EQUATION, TOEPLITZ MATRIX AND IT LINEARISATION

2.1. The differential equation involving f. In this paper the second order
ODE (1.13) plays an important role. We shall study the properties of this ODE
and identify the scaling parameter.

First let us define the function ¥: let w be the one-dimensional solution and wyq
be the two-dimensional solution. ¥ measures the interactions between w and wy
and is defined by

(2.1) .(f,2) = p/ WP (@)we (2)wo (V/ (2 + f)? + 22)da
R
Asymptotically
(2.2) Up(f,2) ~ (f2+22) 2e VI
We also note that
9¥L(f,2) 0¥ (f,2)
(2.3) 9 < 0, —5== <.

Let L >> 1 be a fixed large number. We choose the following small parameter

(2.4) a=e ¥

then a« - 0 as L — oo.
For any 0 < p < 1 we define Cé’“ (R) to be the space of all real-valued functions
where

[ llct ey = 11(c0sh 2)° llcrey < +oc.

We will fix p later. First note that using a scaling we can consider ¢; = 1. Now
f"" > 0 and hence f’ is an increasing function. Also note as f is even, it is enough
to study the behavior of f when z > 0. After a translation, (1.13) becomes

f'(z2) =¥.(f,z) mR
(2.5) F0)=1L
£(0) =o0.
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It is easy to see that (1.13) admits a global bounded solution which is also
increasing. We claim the following result: there exists C; > 0,a; > 0 such that

(2.6) f)y=L+Cy +aa1z+(9(aefﬁ),
2.7) £:(2) = aay + O(ae™ V1),
(2.8) fae(2) = O(ae_%)'

Since f > 0, it is easy to see that (2.6)-(2.7) is a consequence of (2.8). We just need
to establish (2.8). To this end, we note that for all z € R we have \/L? + |z|2 >

%L + %|z| Because of our choice of a at (2.4), we have e~ VE*T2* < qe™ v3 /7.
This implies that

(2:9) fox = O(ae %)
which proves (2.8).

2.2. Bounded solvability of (1.13) on R. In this section we study the linearized
operator of (2.5), around a solution f of (2.5). Let g be an even continuous, bounded
function. Consider the following linear equation

(2.10) QW) :=v" — 8;—; =ginR

We analyze the solvability of the linear problem in ¢ € C;*(R), given g € C5*(R).
Note that asymptotically we have

LG
(2.11) 0% S VP

of 2 +22
Remark 2.1. For the homogeneous equation, there are two fundamental solutions
11 and 9 satisfying

(., 0¥p

1 — le =0 in R
(2.12) < ¥1(0) =0
{ $1(0) =1,

- 8;}%2 =0 inR
(2.13) 4 (0 = 1
{ 3(0) = 0.

Note that 91 is odd while 15 is even. We now claim that wll(—}—oo) # 0. In fact,
suppose ¥ (+00) = 0. Since f, satisfies
0vy,
n _ 4L
fz 6f
(2.14) £2(0)=0
f22(0) = ¥.(0,0),

and f, > 0, we see that by the Maximum Principle ¢; > 0. Then if ¢, (4+00) = 0,

then we have f0+°° 8;; L4y = 0 which is impossible.

fz=aﬂ<0 in R
0z
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Thus v; grows like cz as +o00. This implies that 2 must be a constant at +oc.
We define the one dimensional space called the deficiency subspace & = {x1}
and x is a smooth cut off function such that

1 ifz>1
(2.15) x(2) = {0 if z < 0.

Moreover, we define the norm on C2#(R) & £ to be such that

||(¢;CX¢1)||03’H(R)@5 = ||¢||cg-»(R) + |l
Lemma 2.2. [Linear Decomposition Lemma] Let f be the unique solution of (2.5).
The mapping
Q:Cy"(R) @ & — Cy*(R)
ov
vy - G
s an isomorphism.

Proof. Let ||g]| co# () < 00. Then it is easy to see that by the method of variation
of constants the following function

z +oo
(2.16) V=R =) [ g +a) [ g
is a solution to
n 0¥ _ ! _
(2.17) (N —W =g, (0)=0

We claim that ¢ = R(g) € 092’“(]1@) @ &. In fact, we simply write
R(g) = Ra(g) +Ra(g)x¢n
z +o0 400
1-— — -
w1 [og—xn [ g [ hg -

+oo

(2.18) + | Yagxi1(2)

where ’R,Q(g) = f0+oo 'gb2g.
Clearly we have

(2.19) ||R1(9)||c§’”(R) < 0”9“03”‘(R)7 R2(g)| < C||g||Cg"‘(R)
a
Remark 2.3. Moreover, the space £ can also be described as a parameter space for

the linear problem Q, since the elements are potentially occurring parameters for
the Jacobi field that is those elements ¢ such that Q(v)) = 0.
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2.3. Solvability of another differential equation. In an analogous way we look
for even solutions of

(2.20) e + \e = k(z)

where k is even with ||k(cosh 2)°||co.u(r) < +00. We are interested in solution which
decays to zero at +oo. Since (2.20) is a resonance problem, we impose the following
orthogonality condition

(2.21) /OOO k(z) cos(v/A1z)dz =0

to prove existence and uniqueness of solutions. Using the method of variation of
parameters the solution of (2.20) can be written as S(k) = e where

Skh) = ——sin(v/M2) /ook(t)COS(\/)\Tt)dt

von
1 oo
(2.22) - — cos(\/)\lz)/ k(t) sin(y/ A1 t)dt
on p
Furthermore, we have
(2.23) lle(cosh 2)° || c2.ur) < C < +o0.
2.4. Location of the spikes. Let & = (&,&---,---) be a sequence of points
satisfying
(2.24) & =264 +0(1)
and for all j > 2
(2.25) §iv1 =& =& — &1
Then we obtain for all j > 1
(2.26) & =3L+0(Q1).

2.5. Invertibility of the operator associated with the Toeplitz matrix. Let
& = (&)i>1. We define an operator 7' : R*° — R* such that T' = (T'(§;)); where

2¢; ifj=1
(2.27) (T(&)); = { =& if =it
0 otherwise.

Our main goal is given x = (x1,--,X; ) we want to solve T(§) = x. Using the
fact that (1.4) we define a weighted norm & = (¢;)32, by

[1€lla = 161, €2,85, - )lla = maxa™"[&].

Let
0= {£ = (517527"'51’7"') : ||§||a < +OO}

Lemma 2.4. The operator T has an inverse in 2, whose norm is O(a).

Proof. For any ||x||la < +00, we define

o

&= (k—i)xx-

k=j
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Let I denote the operator defined by the above expression. Then I is an operator
inverse of T. Clearly we have

o0

(2.28) 1651 < llxlla Y (k= §)a** < Ca™||x||q
k=j

This implies
a™[&| < Callxlla
[€lla < Callx|la-
Note that C is independent of «. |

2.6. Idea of the construction. We are actually looking for bump line solution
of (1.10) whose asymptotic behavior is determined by the curve

7 =A{(z,2) 1z = f(2)}
which asymptotically behaves as straight lines having negative exponential growth
in the second order. Then it turns out that f satisfies a second order differen-
tial equation, given by (1.13). Moreover, by (2.1) we have f(z) = 8 + aai|z| +

Oce (acosh z)fﬁ) for some B > 0. Define § = \% Also note that the solu-
tion of (1.13) is unique and since f(z), f(—z) are solutions to (1.13) we must have
f(2) = f(—2) for all z € R Let Z be a positive eigenfunction of

(2:29) Yo + (PP~ = 1) = iy

corresponding to the principal eigenvalue A\; where explicitly

Z(z) = %; AL = %(p+3)(p— 1)

and in particular the asymptotic behavior of w and Z at infinity are given by
w(z) ~e 17l 4 ch(R)(e_ﬂ“)
and
Z(z) ~e 1ol 4 O ) (e~ P11
Consider the Dancer’s solution of (1.10) as ws(z, 2)
ws(z,2) = w(z) + 6Z(x) cos(v/ A1 z) + O(82)e 17!
where |d] is sufficiently small.
2.7. Modified Fermi coordinates near the bump line. Let f be a solution of
the (1.13). We choose v € £ such that
(2.30) v =cxir, ¢ < alth

where k7 is a small number to be chosen later. Now we define a model bump curve
as

T={x=(z,2) e R : 2= f(2) = f(2) +v(2)}
where f is the solution of (1.13). Then we define the local coordinate as a vector
tuple (T, N) where unit tangent

T= %(71;1)
1+(f)?
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and the unit normal to the curve

N=—»=™ —@,-7)

—!

1+(f)?

Let z be the arc length defined as

o /0 V1+ (F (s))ds

which is an increasing function of z and let ¢(z) be the corresponding arc length
parameter. Note that ¢(z) € R2. It turns out that the asymptotic behavior of the
bump line at infinity is not exactly linear but has an exponentially small correction.
This correction needs to be determined and in fact this is the key step in the paper
which involves the linearized operator discussed in Remark 2.1. To describe this
small perturbation we consider a fixed function h

(2.31) [Bll gz gy < @ *h2

for some ky > 0 small.
A neighborhood of the curve 7 can be parametrised in the following way

(2.32) x = X(x,2) = q(z) + (x+ h(z))N(z)

where ¢ = x + h(z) is the signed distance to the curve 7. Define a set

Ve=A{x=(z,2) : |z| < ¢V1+ 22}

for small (. In fact the Fermi coordinates of the curve is defined as long as the map
(t,z) — x is one-one. The asymptotic behavior of the curvature of 7 as |z| = 400
is given by

k(z) ~ a(coshz)~?.

Furthermore, we can show that for ( and « sufficiently small the Fermi coordinates
are well defined around 7¥(z) as long as

(2.33) It < ¢V1+22.

Also we have

(2.34) x eV =[x =[t—h(z)| <V1+72
where x = X (x,z). Moreover, we define

(2.35) X*f(x,z) = f 0 X(x,2).
Furthermore, we have

(2.36) z = x(1+ O0(a?)) +z0(a)

and

(2.37) z= (14 O0(a?))z.
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2.8. Laplacian in the shifted coordinates. The curvature k of the curve ¥
which is given by

(2.38) k= Jzi(z)

We define A by
A:=1-(x+ h)k.

Then the Laplacian in terms of the new coordinates reduces to

(2.39) A= %{a,(%ax) _o, (%ax> - ax(hz'az) +, (%az> }

Then (2.39) can be written as

(240) A= 8,2( + 622 + anaz + CL128X6Z + a22822 + b16x + bg@f
where
(h')? 2h! 1— A2
a1l = ?,au = F,am = T
1
(2.41) b= g (—rA® = WA+ (W)*h — (x + h)h'R)
and
1

(2.42) by = 5 ((h+x)r).

Note that here we have
K= OCGZ,,M(R)(Q),I‘&I = OCS’”(R)(QZ)

and consequently we have
(2.43) a;n = ch'“(R)(a2);al2 = ch-“(]pz)(a);am = ch’#(R)(a(l +[x[))

| b = O (@1 + X)), b2 = Ogn (@l +[x)).
2.9. Approximate solution. In this section we develop the approximate solution.
Firstly we take a Dancer solution and the homoclinic solution. These two solutions
need to be glued together by some cut-off function. In this way the amplitude and
the phase shifts of the ends do not change but instead remain fixed. To achieve an
extra degree of freedom a function whose local form is given by e(z)Z(x) is added

to our approximation.
Precisely, we consider e € 092 #(R) such that

(2.44) lellgzn ey < Ca®+he

where k3 will be chosen later. In addition, we will use a real parameter § such that
(2.45) 6] < althe.

We define the following notations

Xws(x,2) = ws(x,2)
(2.46) X*w(x,z) = w(x)
X*Z(x,2) = Z(x)
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where w is the homoclinic solution, ws and Z being the Dancer solution and the
principle eigenfunction of (2.29) respectively. Now we choose E and Z¢ be nonneg-
ative even cut-off function such that

E{t)+Eo(t)=1; VteR
with
supp & = (_007 _1) U (17 +oo),supp Eo = (_272)‘
Also let

X*E(Xa z) = E(z), *Zo (x,2) = Eo(2).

Now we introduce w = Zw + Egw. Let x be such that
lIxla < Cats
where ks is a small positive number. Define
wj(z,2) = wol(x — & — X5, 2) and wj (2, 2) = woo(x — & — Xj, 2)-

We thereby define the approximate solution of (1.1) in V¢ as
(2.47) w(X) =w+e(z)Z.

Now we intend to define a global approximation. Let 7 be a smooth cutoff function
such that suppne C V¢ such that n = 1in V% and £ satisfying (2.26), then we define

the global approximation as

w

ne(w +e(z)2) + ij(x, Z)
j=1

(2.48) = nw+ ij (z,2).
j=1

Notice that w depends on f,v,h,d, x.

2.10. The key estimates. In this section we precisely derive some key estimates
concerning the interaction of spikes and the interaction of the front with the spike.
First note that wq is radial and the asymptotic behavior of wy at infinity is given
by

. r 1 . w(’](r)
lim e"r2wo(r) = 4o > 0; and lim
700 =00 wo (’r

~—

We have the following key estimates: Let & = (z, z). Let & = (0,1), then we have

r+ L 1 . r+ L
WP (#)wh (|2 + Lé1|) ———df = —A/ &+ L&y | 2e Bt _Z T — P(5
/RQ §(@)wh (e + La) o o o [ Ja+ral e
1 N - r+ L
= —A &+ Ley| zelatlal _Z T~ Pz
O/RJ + L& G+1a 0@
= —AO/ L_%e_LeL_|w+L€1‘7$+L wh(2)
R2 |.’i'+L€1|
= —AOL_%e_L/ wp(iz)e_LeL_|£+L€1|7x+L
R? | + Léi|

= —wo(L)(1+0(L*1))/ e~ Wb (&)dz

R2

(2.49) —  —yowo(L) (1 +0 (log é) _1>
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where o = [5. e~ '?lwP(#)dz. In this case we consider L to be either &1 — & or
& — &j—1 where j > 2. Similarly we can show there exists y; > 0 such that

. R z+L g — 1\ !

3. PrRooOFr OF THEOREM 1.1

Let  and n; be smooth cut-off function such that

3 1
1 if [s| < -log—
it 5] < 5 log -

&y "= 0 if|s|> ~log
8 ga
and
1t (5,) — &6 < > log -
(3-2) n;(s,t) = ¢

. " 7 1
0 if [(s,t) —&én] > gloga

Define X*n = n(x) and X*w' = w'(x). We are looking for solutions of (1.1) of the
form u = w + ¢ where ¢ is a small perturbation of w. Substituting the value of u
in (1.1) we obtain

(3.3) Aw+g) = (WH+p)+(Ww+p)P =0

where w = w(a, v, h,e,, x) for some ¢ € Cg:g(ﬂ@) ® CL(R?) and v € £. We can
formally write (3.3) as

L(p) +S(w) + N(p) =0in R?

where
L:=A—-1+pwP!
and
N(p) = (w+p)P —wP —pwP iy
with

S(w) == Aw —w + wP.
Hence we should write (3.3) as a fixed point problem for the nonlinear function
e+ LTI (S(W) +N(p)) =0

provided £7! is a suitable bounded operator. But £ will have in general an un-
bounded inverse as L — +4oo. Also note that near the bump line the operator
Lo = 82 + 8% — pwP~! +1 which has a bounded kernel spanned by w', Z(x) cos /A1 2
and Z(z)sin/A;z and near a spike the kernel of L; = A — 1 + pw? ~! is spanned
by wo,z. To get rid of this difficulty we consider a nonlinear projected problem

oo
(3.4) Lp) = S(w) + N(©) + 3 ejnjwjo + ()’ +m(2)nZ
j=1
In the following sections we will describe:
(1) How to solve (3.4) for unknown ¢, ¢ = (c1,co,- -+ - ), d,m with the given
parameters v, h,e,d and x.
(2) Secondly we have to choose the parameters in such a way that ¢, d, m are zero.
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4. LINEAR THEORY

The local structure of M3(R?) near the curve v and the spike are closely related
to the determining whether £ is actually injective or surjective, and when L is not
injective, understanding the elements of it kernel. In order to do so we need to
study the complex operator £. We first study two simplified linear operators

(4.1) LO(SO) =Yzz+ Pz — @ +pwp7190
and
(4.2) Li(p) = Ap—p+pudto

where w is the unique solution of (1.4) and decays exponentially; and wyp is the
unique positive solution of (1.10). Note that w', Z(x)cosv/ A1z and Z(x)sin/ Az
are solutions to Lg(¢) = 0. In Lemma 4.1, we prove that indeed the converse also
hold.

Lemma 4.1. Let ¢ be a bounded solution of

Lo(p) = 0.
Then ¢ € span{w'(z), Z(z) cos V12, Z(z) sin /A1 2}
Proof. This follows from Lemma 7.1 of [4]. O

Lemma 4.2. Let ¢ be a bounded solution of

Li(p) = 0.
satisfying o(x,z) = p(x,—z). Then ¢ = cwo, for some ¢ € R.

Proof. Since the kernel of L; consists of wp, and wy, ;, see [26], the result follows
trivially from the fact that ¢ is even in z— variable. d

By Lemma 4.1 and 4.2 we define the orthogonality conditions as

(4.3) / o(z, z)w' (zr)dx = 0 = / p(x,2) 7 (x)dr Vz € R

R R
and
(4.4) / o(z, 2)wo z (z, 2)dzdz = 0.

R2

Lemma 4.3. Let ¢ be a bounded solution of
(4.5) Lo(p) =k
satisfying (4.3). Then ||¢|loo < C||k||oo for some C > 0.
Proof. This follows from Lemma 7.2 of [4]. O

Remark 4.4. Note that Lemma 4.3 implies that [|¢|| ;e w2 < C||(cosh 2)7k|| e (r2)-

Lemma 4.5. Assume that o € (0,1) be fized. Then there exist C > 0 such that for
any solution of Lo(p) = k satisfies

(4.6) l|(cosh z)? pl|g2.n(m2) < Cl|(cosh ) k| co.n r2).-
Proof. This is again Lemma 7.3 of [4]. O
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Lemma 4.6. Assume that o € (0,1). Then there exists ag > 0 such that for all
a € (0,aq] there exists a constant C, > 0 but remains bounded as a tends to zero,
such that

[|(coshz)? (cosh 2)*@l| Lo (r2) < Cql|(cosh x)7 (cosh 2) k|| oo (r2).-
Proof. This follows from Lemma 7.4 of [4]. a

4.1. Surjectivity. As far as the existence of solution of (4.5) and (4.3) is concerned
we assume that

(4.7) /R k(2 2)ws (2)dz = 0

(4.8) / k(z,2)Z(x)dz =0
R
for all z € R, we prove the following proposition.

Proposition 4.1.1. Assume that o € (0,1) be fized. Then there exists ag > 0 such
that for all a € (0, ag); there exists a constant Cy > 0 such that for oll k satisfying
the orthogonality conditions (4.7), (4.8) and

L(y) =k,
with
(4.9) [|(cosh )7 (cosh 2) k|| co.u(r2) < 400
implies
(4.10) [|(coshz)? (cosh 2)“@l|c2.n(r2) < Cal[(coshz)? (cosh 2) k|| co.u(r2)-

Proof. The main idea is to prove the result for functions which are R periodic in
the z— variable. We consider the problem

Lo(p) =k

with the orthogonality conditions (4.3) and (4.4). We will apply an approximation
argument. Let ¢(z,2) be a & periodic function in the z variable where £ > 0. Define
RE =R x g%' Then we have

_ A
/ (IVe]? = (p?P ™ = 1)¢%] > —1/ ¥
R2 2 Jre

Hence given k € L*(R?) satisfying
kw, =0= kZ(x)
RE RZ

by Lax-Milgram lemma there exists a unique ¢ € H'(IRZ) such that

el ®2) < Cllkllz2=2)-
Moreover, by elliptic regularity, we have

lelloqazy < CUlRlL + el e2)-

Suppose in addition k satisfies (4.7) and (4.8) we obtain

/OE (/Rtpwwdx) P,,dz =0
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/05 (/chZ(m)dx) t::dz = 0.

zr—>/<pwwd:c andzH/cpde
R R

do not depend on z since its integral over [0, ] is 0, we conclude that ¢ satisfies
(4.5) and (4.3).
Hence we can apply Lemma 4.2 and 4.6 to obtain the estimate

and

Hence

[[(cosh )7 || oo (2) < Cll(cosh ) k|| oo m2)-
where C > 0 is a constant independent of £. Given any k satisfying the condition
of the Proposition. Let
ke = kXRg

where x denotes the characteristic function. Let ¢ be the corresponding solution
to

Locpg = kg
Elliptic estimates with compactness arguments yield we can pass through the limit
as & = +00, there exist a bounded solution ¢ of Loy = k. |

5. LINEAR THEORY FOR MULTIPLE INTERFACES

5.1. Gluing Procedure. In this section we decompose the nonlinear projected
problem (3.4) into four coupled equations. We define

1
1 if|s] < glog—
(51) pls) = b
if — log —
0 if |s| > 168
and
. R 7 1
1t |(5,0) - gl < glog
15 1
0 if |(s,t) — & € —log—.
i |(s,0) - 1] > 12 log ~
Moreover, we define X*p = p(x). Using the definition we obtain p;n; = p; and

pipr = 0 for j # k. Similarly we have pn = p. Moreover, pn; = 0 for every j € N.
Note that we are looking for solutions of (3.4) of the form

(5.2) pi(s,t) =

(5.3) o= njd;+np+v
j=1
where ¥ = 11 + 2. Then for j € N, we have
(5.4) pilLo; — (S(w) + N) — cjwja] + (L = A+ 1)¢p1p; =0

(5.5) plLp— (S(w)+ N) —d(z)w' —m(2)Z] +[L = A+ 1Jhep =0
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11 and 9 satisfy the following equation,

A1 = (1= 5)(Ew) +N)
j=1

(5.6) - Z(ﬁ(%m) —n;iL(¢;)) — (1 — Zm‘)(ﬁ — A+ 1)

and
(A=1yy = (1-n)(S(w)+N)
(5.7) = (L(¢n) =nL(¢)) — A=) (L — A+ 1),
where N = N (Z;’;l n;¢; + n¢ + ). This is a coupled system and the coupling
terms are of the higher order in a. Note that (5.5) can be written as

(5.8) [02 + 02 — F'(w)]X*¢ = X*k 4+ X*(dpw') + X*(mpZ)
where
X%k = X*[p(S(w) + N)] = X*p(L — A+ 1)us)
(5.9) — X*p(L(9)) + X*pl0g + 0] — F'(w)]X*¢
Define & = (¢1, o, -+ -+ ). Let the right hand side of the equation (5.6) and (5.7)

be Q1 = Q1(®,41) and Q2 = Q2(¢,1)2) respectively. Then equation (5.6) and (5.7)
reduces to

(5.10) (A =1 =@y

(5.11) (A =1)ihy = Q2

We will call (5.10) and (5.11) as background system. We will first solve the back-
ground system. Then given solution (¢1,1)2) we solve the initial equations (5.4)
and (5.5).

5.2. Error of the initial approximation. For 0 < p < 1, we define the weighted
norms

Il ey = sup,  (cosha)”(cosh ) lllonu o )
7 ic
We also define the norms
oo —1
ol = sup ( e“mw‘l') (. )
(z,2)€ER? ;
and

XZ(X].J“‘7Xk7.‘.)'
lIxIl = max a™xil

Proposition 5.2.1. Fori=1,2; S(w®) = S(w,v,h® e § x@) is a continu-
ous function of v,0 and satisfies

(5.12) 1X* (S (W) lcos oy < Cor
Moreover, it is a Lipschitz function of h, e and x;
IOy IS D)~ (X)Wl g0 r) < CURD = Bz,

(5.13) e = el gz + allx® — xa)-
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So far we have estimated the error near the bump line. The other two propo-
sitions deal with the estimate of the norm in the complement of the set supp p
and the estimation of the error near the spikes. Note that in R? \ V; we have
S(w) = S(3_;2, wj)- Let us denote

(5.14) VCJ‘ = V¢ \ supp 7.
Proposition 5.2.2. Then we have in V-

§0’
(5.15) ||S(w)||cg,p(VCL) < Caltio,
Moreover,

HSOD) = SOy 1) < Cat (I = KOl
(5:16)  + [l = ePllganyay +alx = xPla)-
Proposition 5.2.3. In R? \ V; we have

(5.17) 1S(w)lls < Ca.
Moreover,
(5.18) 1(S(wh) = S(w®)[|, < Callx™ = xPa-
Proof of Propositions 5.2.1, 5.2.2, 5.2.3 . We write
(5.19) S(w) = pS(w) + > piS(w)
j=1

Let Uy := Ve N {x+z > 0}. Then using the approximation we have
oo

(5.20) w=w+e(z)Z(x)+ Z wj
j=1

and using the fact Aw; + F(w;) = 0. As a result, we have
S(w) = Aw+ F(w)
= Aw+ F(w)+ (A + F'(w))e(z)Z

/ ~ v
~~ ~~

+ {F(w) - ZF(%) — F(w) — F'(w)eZ}

- =1 _
(5.21) = FE; + E>+ Es.
Using Taylor’s expansion we obtain
wP = Bwf + Eow? + (ws + E(ws —w))? — E(ws + (ws — w))P — Egw?
(5.22) = Ewl + Zw? + Oco. () (0%)(coshx) *(coshz) .
Also note that
(5.23) 0,2(z) = E/(z), 022(z) = Z"(z)

with |§] < a'*T*4 and since w is not a function of z we obtain d,w = 0. Moreover, if
we denote the operator S = A — 82 — 92 then we have

El = S(Ew5 -+ Eow) + 2[8x58xw5 + 6z508zw]
(5.24) +  2[02Ews + O2Eow] + Oce(r2) (|6*)(coshx) ~%(cosh z) ~*
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Note that the first term in the above expression is of the order « due to the fact of
(2.43). Hence we have

||E1||0335(U1) <Ca
Moreover,
1+3
||E1||CS:H(VCJ_) S Ca 19

and this follows due to the fact that Vi- = V¢ \ Ve we have [x| > $log L. The

estimate for F5 follows similarly.
Now we estimate E3. For (x,z) € V; we have w >> e(z)Z + w; and hence

(5.25) F(w) = F(w) + F'(w)(w — w) + O(w?(w — w)P™?%)

Hence we have

F(wj)} + O(wP™?(w —w)?)

WE

By = {F'(w)(w-w)-

= pwp_l(iw]‘) —
7j=1

j
When 0 < o < (p—1) and by (1.12) and the fact that x ~ (z — f(z)) and z ~ z we
have,

e I

wf + O(wP™%(w — w)?).
=1

P-Dz-f@+lz-&l = olz—-f@)+@-1-0)le-f)|+]z-&
> ole = f(2)[ +min{(p — 1 —0), 1H{|z = f(2)| + |z = &}
> olz - f(z)] + min{(p — 1 - 0), 1}(f(2) — &, 2)|
= olz — f(z)| + min{(p — 1 - 0),1}\/(f(2) —iL)? + 22
> ol — f(z)| +min{(p—1-0), }VI* + 22
(5.26) > olz— f(z)] + min{p -1 —o, 1}% + 6|z

Also note that from (1.12) we have,

(p—o)l(z,2) —&&| = (p—o) (w—jL)2+z22(P—a)\/%

(p—o)L

(5.27) =

v

+6|z|.
Further note that
oo 2
W —w? = w0z + Y )
j=1

C(cosh x)~P=2) (@**2k2 (cosh 2) 7% (cosh x) ~PH1) 4 e=2I(@:2)=¢;21)
(5.28) Ca(coshx) " (coshz)~?

This implies that

2w =y, < O

Hence
||E3||02:§(U1) <Ca.
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Similarly we have

Ev
(529) ||E3||Cgilg(v€L) S Ca1+4 .
Now define

| b

4y ={ (5 e B s - .0l <
where j > 1. Then we have in R? \ V;
(5.30) S(w) =Y S(w)xa,

j21

|

and if we expand near the spike (&;,0) we have using mean value theorem

S(W) = S(ij)
j=1
= F( wj)—ZF(w])
j=1 j=1
o) P [
= (ZW) -2
j=1 j=1
~ prf 1w]
i)
~ pze—(P—l—U)\/($—51)2+226—0|(€0a2)—€jé'1|e—\§j—§i|
i#]
(5.31) n p Y e BT G el )
i

This implies

oo
|S(w)| < Ce™t Ze—vl(w,z)—éjéll
j=1
and hence we have
I1S(w)ll, < Ce™ = Ca.
d
5.3. Existence of solution for the background system. In order to solve

(5.10) and (5.11) we will use the Banach fixed point theorem. Moreover, we assume
that

o

(5.32) D lle! @8 | oo (ge) < +o00
j=1

and

(533) ||X*¢||C:”5(R2) < +00.

Lemma 5.1. Assume that (5.32) holds. Then there exists a unique solution of
(5.10) such that

(5.34) [¥allo + IV¥1llo < Cad?(a+ Y (165llo; + V5llo,5)-
j=1
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In addition vy is a continuous function of the parameter v,h,e,d and x and a
Lipschitz function of ¢; and also of the parameters e, h and x satisfies the following
estimates

[91(@1) = 91(@@)]|5 + |V (BD)) — Vapr (23)) ],
(5.35) < Cai’(|aV) — 8|, + Ve - ve?|,)

11 (B, €™ x M) — 4y (B, @ x|, < C’a%"(”h(l) — h(2)|lcg’”(R)
(5.36) + Nle® = e®llgap gy +allx™ = x?la)-

Proof. Define |||, = 3272, [|e”!(®#) =811 || ;o m2) and

Ve[, = lle” @762V 6| Lo (r2).
j=1
We have
(A=D1 = Q1.

For the time being we assume that ||Q1||, < +oo then

o0
Q1] < Cze—ol(w,ﬂ—f;‘jé‘ll‘

j=1

Using barrier and elliptic estimates we obtain

|1 (z, 2)| + |V (2, 2)| < C’Ze*“l(z’z)*gi‘é‘ll.
j=1
This implies that
1l + IVl < CllQ1llo-
Next we estimate the size of @1 and also its dependence on ® = (¢1, ¢s,---) and
h,e, x. We assume that

12]ls + [IV&[l; < +o00.

We now estimate ();. Then we have

Q] < C(al+%“+a%"2<||¢na,j+||v¢||a,j)+a%“||w1||a)
j=1
(537) X Z e—a\(w,z)—ﬁjé‘l\
j=1

This implies

(538)  [|Qill, < Cai® (a + 3 el + ||v¢||o,j>) + i,

j=1

Hence given ®, using a standard fixed point theorem there exists ¥ = 1 (P)
satisfying (5.10). Moreover,

(@), < caia(a 3 (Ul + ||v¢||a,j>).

Jj=1
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Since Q1(®, .) is a uniform contraction in the second variable and it is continuous we
conclude that 1), is also a continuous function and we conclude that v, is continuous
function of v, h, e, d and x. Moreover, it easily follows

41 (V) = 91 (@) |, + V1 (@D) = Ve (8P|, < Caio(||eM) — 8|,
+ [[ve® —ve®|,)
O

Lemma 5.2. Assume that (5.38) holds. Then there exists a unique solution of
(5.11) such that

3q *
(5.39) ||(COShZ)9’(/}2||C2,p(R2) < Ca:* (Oé + ||X (,25”03,!5(]1{2)).

In addition 15 is a continuous function of the parameter v, h,e,é and x and a Lip-
schitz function of ¢ and also of the parameters e, h and x and satisfy the following
estimates

(540) W2(¢™) = (6 (cosh )l n) < Cat X6V = 6z e

(2B, D) (b, e®))(cosh2)’[lcammsy < Cat?(BD — bl 2 g,
(5.41) e = el gznge +allx® = x* )

Proof. We have
(A =1)¢p2 = Qo.

For the time being consider
(5.42) [|(cosh 2)? Q2| co.r =2y < +00.
Then by regularity theory we have

lh2llc2im2) < CllQ2llco.n(r2)

We are required to prove that

(5.43) [[2(cosh 2)° || g2, =2y < Cl|Q2(coshz)’[|co.u(r)

In order to so we define a barrier of the form
¥, = (coshz(z))~? + v [cosh ; + cosh g]

where v > 0 is sufficiently small. In fact we have

1
(5.44) (A~ <~
and hence 1, is a super solution of A — 1. Moreover define
(5.45) Jum = M||Qz(coshz)’ || conmaythy +

where M > 0 is large such that

M
A-1)0,m < —Z||Q2(COShZ)9||CO)#(R2)¢u + Q2

IN

M
(5.46) — |Q2(cosh 2)’|| co.n 2y + [|Q2(cosh 2)’||co.u(r2) (cosh z) ™

<0
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Letting v — 0 we obtain
o (coshz)? < C||Q2(cosh Z)0||CO,[.L(R2)

The lower estimate for (5.43) can be obtained in a similar way. Now we estimate
(2. Note that in supp ()2 we have

x| > Zlog é.
Note that we have already estimated the error S(w) and hence
(5.47) [|(cosh z)? S(w)||comrz) < Caltie.
Moreover, using the fact that support of Vp we have
(5.48) [[(coshz)” (L(ng) — nL(#))llcon(ze) < Ca%J”X*¢”03:g(R2)
and
(5.49) pw?iha| < Cat?||(coshz)? || gom ey (coshz)

which finally yields
[|(coshz)’ Q2 (¢, 12 )| com 2y < 004%0{04+||X*¢||0335(R2)}+Ca%a||(005h 2)" | co.n(r2)

Hence given ¢ using a standard fixed point theorem there exists 12 = 12(¢) satis-
fying (5.11). Moreover,

l(cosh2)*(@)llconmey < Cat? (@ + X" Bl oo )

Since Q2(¢,.) is a uniform contraction in the second variable and it is continuous
and we conclude that ), is continuous function of v,h,e,d and x. Moreover, it
easily follows

I(cosh 2)’ (42(#")) = Ya(¢™)llconrz) < Car?lIX*$D — X*¢ | g ga)-
O

5.4. Existence of solution for the initial problems. For the time being con-
sider &; = (z,2) — §;é1, j €N

Lemma 5.3. Assume that ||k;||,,; = |le1i/kj||o < +00. Then there exists C >0
independent of j and o € [0,1) such that (5.54) with (5.56) satisfies

(5.50) 8illo.s + IV 5llo.; < Clik;llo.;-
Moreover, we have
(5.51) lej| < Cllk;llo,s-
Proof. We have L(yp) = k;. Define

- ¢

¢ =

13l

Then we have L(¢) = k; where h = I kk-j||,,' Note that it is enough to show that the

J
estimate holds for sufficiently large |&| = |(z, 2)|- Then there exists a R > 0 such

that for |Z| > R we have

1-02

2

1A
pwp (|2]) <
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Moreover, define

$(@) = e~l7!
Then
Li(¢— M) >0
if |z| > R and |p| < MG(R) = Me“F on |&| = R. Hence by maximum principle we
obtain |¢| < M|¢|. Hence || < M||k;||l,e~?%l. As a result we obtain

ll¢lle < M|kjlo-
For the gradient estimate we define ¢ = e~?#/¢. Then we have
(5.52) Li(¢) + B(y) = kje” @

where B is an operator containing terms involving gradient and zero order terms,
such that || B|| is very small. Using local C! estimates we obtain

IV < Cllkjllo-
Hence for small ¢ we obtain
e~ 1¥Vg| < Cllkjlo-
Hence the result. Multiplying by w; ,, we have on integration by parts,

0=/ Li(p)wizdedz =
R2

Hence we have

2
kj(z, 2)w; ¢ +ci/ w; zdzdz
R2 R2

ol < [ @l
R2
< Cllkjlls
Hence the inequality follows easily. |

Remark 5.4. For p > 2, using the inequality
(5.53) lla +b|” — [b]? — pla[*~"b] < C(p) max{|a[P~*[b]*, [b]*}.
5.5. Existence of solution for 5.4. As described earlier the derivation of solution

of (5.4) is given by the linear theory of L.
Note that we can write (5.4) as

(5.54) (A —1+p? ) = kj + cjwjo
where
(5.55) kj = (S(w) + N)pj +pwP Yp1p; + (pw? ' — pwl™")gp;

with the condition of orthogonality as
(5.56) oz, 2)wj o (z, 2)dxdz =0
R2
for all j € N. Hence there exists a C > 0 such that given ||h||, < +00 and for some

o € (0,1), there exists a unique bounded solution ® = T(h) to (5.54) and (5.56)
which defines a bounded linear operator of h satisfying

2[ls + IV@[l; < ClA]lo-
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This follows trivially by using the Fredholm alternative. Hence we write the linear

operator 7 = (Ty,---,---) such that for each j € N such that ¢; = T;(h).
Hence we can write
(5.57)

¢; = Tj(p;S(W) + piN($) + cjpjwiz + (L — A+ D)1p; + (pw? ' — p? 1)g;)p;
for some linear operator Tj; j € N. Let k = (ky, k2, --).

Lemma 5.5. Assume that
(o]

(5.58) Y- Uleslle +1V85l0) < aie.

j=1
Then we have for all j € N

(5.59) 1kl < Ca +0a3”(2 1511, + ||V¢,-||<,).

Jj=1
Moreover, the function k; is a Lipschitz function of ® and satisfy
(5.60) Ik (@M) = ks (@], < Cato (|8 = 8|, +[VED — VC,).
Furthermore, we have
(5.61) llello < CllKllo-
Proof. From (5.55) we have
oS, < Ca.
Now
piN(p) = piN(nj¢; + ¢1) = N(pjd; + 11)-
Hence from (5.53)
(5.62) lpiN (@) < C(165]7 + [91]?).

As a result we have
lo;iN (@)l < CIS5112 + lleoall2)-

and hence
35 .

lo;iN@le < C1®]ls + IVB[|)? + @17 (a + (|®]l, + [[VE],))?)
(5.63) < Ca+Cai(|®], +[IV3|,).
Then (5.34) implies

Ikille < Ca+Ca'™37 3 (lgslls + IV5l)
j=1

(5.64) + ||¢j||g<ze—<p—2—a>|sj—si n e—(p—Q—a)f(z)—m)_

J#i
This implies that
3 —2—0
Ikille < Ca+Cai?(|@], +[IVel,) +a? 27" (| @], + [|Ve]|,)
(5.65) < Ca+Cai®(||@], +[[VE|,)

provided we choose ¢ is chosen small. The Lipschitz dependence follows in a stan-
dard way. a
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Lemma 5.6. The problem (5.57) and (4.4) has a unique solution ¢ such that
(5.66) 2]l + [|IV®|l, < Ca.

Moreover, the solution is a continuous function of v,h,e,d and x and a Lipschitz
function of h, e and x. Furthermore, for every j € N, there exists C > 0 indepen-
dent of j such that

165 (R, e x W) — (AP @ x|,
(5.67) < O(IRY = h [l gom gy + €D = @] g2 gy + allx® = xPla)-

Proof. First note that from (5.58) we have

> lillo + 1V45llo < Ca+ai” (Z llillo + ||V¢>jlla>
j=1 j=1

which implies
o0

> lIg5lle +1V5lls) < Ca

j=1
which implies that the operator Tj; j > 1 in (5.68) is a uniform contraction in the
set of functions satisfying (5.58) as long as (2.30), (2.31), (2.44) and (2.45) hold.
In fact ¢; is a continuous function of v, h,e,d and x and a Lipschitz function of A,
e and x which follows from Lemma (5.1) and Proposition 5.2.1. Hence by Banach
fixed point theorem we obtain (5.66). O

5.6. Existence of solution for 5.54. As described in the linear theory the deriva-
tion of solution of the (5.54) is given in the linear theory of the operator in Lgy. This
problem is basically reduced to a problem of fixed point

(5.68) X*¢=T(X*k+ X*(dpw') + X*(mpZ))
where d, m satisfy
(5.69) d / X*(w')?pdx = — / X*w'kpdx
R R
(5.70) m/ X*Z?%pdx = — / X*Zkpdx
R R
respectively.

Lemma 5.7. Assume that

(5.71) ||X*¢||C§:Z(R2) < ai’.

Then we have

(5.72) IX*Hlc25me) < Cla+ a7 IX "6l 2y )

Moreover, the function X*k is a Lipschitz function of ¢ and satisfy

(5.73) X k(D) = X ROz ey < Cas X = X6 |2 .
Furthermore, we have

(5.74) ||d||02"‘(R) + ||m||cg’“(m) < C”X*k”cg:g(R?)'
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Proof. The proof of the Lipschitz property (5.73) is quite standard and left for an
interested reader. We know that

1 (oS (W)l oy < C
We need to estimate X*k given by (5.9). We can rewrite (5.9) as

X%k = X* [pS<w) ¥ pN(anqu Tné+ ¢>] — XM[p(L = A+ 1))
— X*p(L(9) + X*pl05 +0; — F'(w)]X*¢
Using Lemma 5.2 we obtain
(5.75) 1X* (o)) (cosh 2)° |z () < Ca™T7 (o + X"l 2 (m2))-
Note that using the definition of p and i we have

pN(ZWb]‘ +n¢+w> = pN(n¢ +12).
j=1
We obtain from (5.53)
(5.76) X*pN| < CX*6f + X (o) ).
Note that
supp (X*p) C |x|<§10 1
pp (X*p <glos. (-
We have from (5.75)

I(coshx) (coshz)’ X* (o) [Zoemzy < Ca™ % 7[|(coshz)’ X*(po) 20 g
< T TR (0 [|X 4Gl onn re)?
< Ca™ F(a+[|X*¢l|loen(re)?
(5.77) < Ca’%’(a+||X*¢||Cz,H(R2))2,

Hence from (5.77) we have
_3, _3,
(578) X 0Nllcosn < O3 + X920 o) + 31X 0l )

Next we estimate the term X*(pf’(w)i)s). Note that X*(pwP~!) decays in the x
variable like (coshx)~(—1) we obtain

IX*(pf' (W)¢allcor@sy < Cli(coshz)’ X*(otha)llcor )

(5.79) < aF(a+t ||X*¢||c§1{;(R2))-
In order to estimate the last terms we use (2.40) to obtain

(580 1 Tp(A = 0 = 02)]6llcay sy < CallX*Blcay e
and | |
(5.81) IX*[p(f'(w) = (@)@l o ey < CallX Bl mz)-

Orthogonality conditions (5.69) and (5.70) imply
ldll g ey + Imllos. sy < CIX*Hllos.s oy
The Lipschitz dependence follows in a standard way. a
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Lemma 5.8. The problem (5.68), (5.69) and (5.70) has a unique solution ¢ such
that

(5.82) ||X*¢||C’3:§(R2) <Ca.

Proof. From (5.68) we obtain by the fixed point theorem
X Bllospmn < CIXMloss e + CIX"pde! sy e

+

ClIX"pmZl| oom )

(5.83) C||X*k||cgjg(m2)-

IN

Using the Lemma 5.7 we obtain,
IX* Gl ey < Cla+as” | X*6llczprs).
This implies
||X*¢||o§1’;(m2) < Ca.
O

Lemma 5.9. The solution of (5.68), (5.69) and (5.70) is a continuous function of
v, h,e,0 and x and a Lipschitz function of h, e and x. Moreover, we have

|X*o(h) | e(l)ax(l)a')_X*¢(h(2)ae(2),x(2)")||03§Z(R2)
(5.84) < Ol = Rl gan gy + Clle® — €@l gon gy + Callx® = x|l

Proof. First note that from Lemma 5.8 we have || X*¢|| creme) S @ which implies
that the operator T in (5.68) is a uniform contraction in the set of functions satisfy-
ing (5.71) as long as (2.30), (2.31), (2.44) and (2.45) hold. In fact ¢ is a continuous
function of v, h, e, and x and Lipschitz function of h, e and x which follows from

Lemma 5.2 and Proposition 5.2.1 hence by Banach fixed point theorem we obtain
(5.82). d

6. DERIVATION OF THE REDUCED EQUATIONS

In order to finish the proof of theorem (1.1) we need to adjust the parameter in
such a way that d(z) = m(z) =¢; = 0.

(6.1) / X*kw'dx = 0.
R

(6.2) / X*kZdx = 0.
R

(6.3)

. pj[N(SO)+5(W)]wj,z+/R2[PWpfl—ow_llpmjwj,zdﬂfﬂn/w piw? M Pw; . = 0.

for all j € N. We will call (6.1), (6.2) and (6.3) as the reduced system. In other
words our main idea is to estimate the lower order terms of (6.1), 6.2 and (6.3).
We show that (6.1) and (6.2) is equivalent to a nonlocal nonlinear system of sec-
ond order differential equations with in variable h, e and x. From (6.3) we ob-
tain an infinite dimensional Toeplitz matrix. Choose 0 < p < 1. Define v =
min{kla k2; k35 k47 k55 %U}
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Proposition 6.0.1. Then (6.1) is equivalent to the following differential equation:

ov
(6.4) cr(h+v)" — a—;(h+v) —Pp
where P satisfies the following inequality
(6.5) ||’P||cg’f‘(R) < Ca't”.

Moreover, P satisfies Lipschitz property
||’P(h(1),e(1),x(1), )= P(h(z),e@),x(z), _)||03,H(R) < C(||h(1) _ hm”cg’“(m)

(6.6) + (e — el gz +allx® = xPla)-
Proof. Tt is easy to check that the main term in the projection of X*k on w' is

given by X*(pS(w)). We express the laplacian in the local coordinates, using the
notation of (2.40), and neglecting the higher order terms in a. Then we have

(6.7) / X*(pS(w))o ) ~ / by (Buw)dx + S p / PV Bwdx.

R R - IR
We will show in the later part of the proof that the difference of the left hand side
and the right hand side of (6.7) is very small in terms «. We first compute the
integral using (2.41) and we obtain

/R b (Oyw)2dx = /R (6Xw)2%(—nA2 C WA+ (W)2R — (x + h)h'K)dx
(6.8)

= U+ H) [ (@) + Oy Il + g )

Now we want to compute the terms involving the interaction between the spikes
and the front. Let j = 1. In fact it is easy to note that for j > 2 the terms involved
is of the higher order. Using the estimate in Section 2 we obtain

p/wpfl(x)wl(w,z)axw(x)dx = —/wP(m)wl,m(w,z)d:c+OCS,F(R)(Q1+V)
R R
oYy,

= 6—f(h + 'U) + ch,ﬂ(R)(Oél-H/).

Now we precisely calculate some of the terms involved in estimating
| X*(esw))ax.
We first calculate the :
(6.9) /amEp(@z,zwg)wdx ~ tay/ A K6 sin(\/xz)E/dew
Now we estiﬂjnate the right hand side of (6.9). Then we hav]z
|6]||\/ A1k sin \/EZEHC(?,,‘(R) < CaPtheths — OCQ’”(R)(a2+V)'
(From (5.9) we have
X*(p(L = A+ 1)tha) ~ X*(pwP ™ hs)
Using (5.39) we obtain

/X*(pw”*lzbz)w'dx 130y,
R

Ot (®)



34 SANJIBAN SANTRA, JUNCHENG WEI

Moreover, the last term in (5.9)

L X" 0L0) + X*0102 + 02 = P 0l ~ [ XUplr'(w) = /()
Hence we have
I XP1p(s" 0= @)} dall gy < CIOIIX bl +Call X *dll ey < Cla*H+a?).

It is easy to check that the other terms are of the higher order in a. Hence we

obtain
oy

of
where ¢; = [, (w'(2))*dz. The continuity and the Lipschitz property of P can be

obtained in a standard way using the estimate of the error in Proposition 5.2.1, the
Lipschitz estimate of 12 and ¢. a

ci(h+v)" — (h+v) = (’)Og,u(R)(aH”)

Proposition 6.0.2. We have (6.2) is equivalent to the following differential equa-
tion:

(6.11) e+ e=R
where R satisfies the following inequality
(6.12) IRl con gy < Ca®t.

Moreover, R satisfies Lipschitz property
IR(AD, e, xD,.) =R, e, X llong, < CURY = h®| g2
(6.13) + 1le® = @[l gz gy + allx® = xPla).

Proof. Tt is easy to check that the dominating term in (6.11) is given by

(6.14) /R X*(pS(W)X*Z)dx ~ /R (02 + 82 + f(w(x))]e(z) Z(x)pZ(x)dx.

But we know that
{0+ fw))}Z =\ Z
and hence we have the right hand side of (6.14) reduces to

/[3,3 +8; + fw)le(@Zx)pZ(x)dx  ~ /(5‘z2 +A1)e(z)pZ?)
R R

(6.15) ~ (€"(2) + Aie) / pZ2ds.

This gives the reduced equation for e. The Lipschitz property follovljs in a standard

way. O
We have from (2.20)

(6.16) 0= /R ) /R X*(k2) Z(x) cos(v/ D z)dxdz = 0.

(From (6.16) we deduce the reduced equation for the parameter é.

Lemma 6.1. Moreover,

(6.17) 0 = ¢/ A6 + O(a ).
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Proof. From (6.16) we have
0= / /X* pS(w))Z(x) cos(V A1 z)dxdz + O(a' ")
R+
where w is defined in (2.48). But we have from
(6.18) X*(pS(w)) ~ 02w + 9w + F(w).
But using the fact that E + Z¢p = 1 we have
02w+ 2w+ F(w) ~ [E'ws+Efw]
+ 2[E'0,ws + E(O,w]

(6.19) = [E"(ws —wo)] + 25'0,ws
Further we have
(6.20) Oyws ~ —\/ A\ Zésin(y/ A1z)
(6.21) (ws — wo) ~ Zbcos(v/ A\12),
where the neglected terms are of higher order Oc¢eo(r)(|0|?)(coshx)™! and conse-
quently their contribution is small. Then from (6.18) we have

O~ ¢év/ M1 ='sin2(v/M\1z)dz = ¢/ A1 6

R+

where ¢ = [, pZ2. |

Proposition 6.0.3. We have (6.3) is equivalent to the following system of equa-
tions

(622) ’Yo(e_lgl_f(())‘xl - €_|E2_€1|(X2 - Xl)) = gl (Ua h; €, 65 X)
and for j > 2 we have
(6:23) (e @178 (g1 — xy) — €798 (5 = xj-1)) = Gj(v, hye, 6, %)
where G = {G;};>1 satisfies the following inequality
(6.24) IG]|e = maxa ¢|G;| < Calt™.
Moreover, G satisfies Lipschitz property
”g(h(l)a 6(1)7 X(l)a ) - g(h(2)7 6(2)7 X(2)7 -)”a < C(”h(l) - h(2) ||Cg”‘(R)
(6.25) e = el gom gy + allx™ = Xla).
and continuous in the remaining variables.

Proof. Without loss of generality let 7o = 71. Using the estimates (2.49) and (2.50)
we obtain (6.22) and (6.23). Now we estimate some of the terms involved in G.

(6.26) P/ WPl wj pdedz = O(a'+17H),
R2
and
(6.27) N(p)wjzdzdz < C/ lo2w; pdzdz = O(a2).
R?2 R2

Now we precisely calculate some of the terms involved in estimating (6.22)-(6.23)

(6.28) | X oS @)esaindsr | X*(pS(w))esixds
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thus neglecting the higher order term in a. We first calculate the lower order term
in the expression

/ |asZp(02 w5 )wj xldxdz < \/Ara g / wjeldadz = O(a?Hhathati),
R2 R2
O

7. SOLUTION OF THE REDUCED SYSTEMS AND PROOF OF THEOREM 1.1

7.1. Proof of Theorem 1.1. We now complete the proof of Theorem 1.1. To this
end we have to solve the following system of equations

(7.1) a(h+v) - %}C’Z)(hw) =P(v,h,e,d,x)
(7.2) e+ e=R(v,h,e,d,x)
(7.3) V1508 = O(v, h,e,6,X)
(e =IOy, —em®78l(x, — x1)) = G (v, by €, 6, %)

(7.4) { e

Yole™8+178il (x40 — xj) — e85 (x; — xj-1)) = Gj (v, hye, 8, X).

Proposition 7.1.1. The system (7.1)-(7.4) is a one parameter family of solutions
in the sense that for each choice of § € R, the system admits a solution containing
& and the functions v, h,e and the parameter x.

Proof. First we choose k; € (0,1),4 € (0,1) and 0 < 0 < min{p — 2,1} in such a
way that

3
(75) 1/=min{k1,k‘2,k3,k4,k5,za}.
Fix 6 and moreover assume that the parameter satisfy
1
(7.6) |0] < §a1+k4.

In order to complete the proof we need to go through the following steps.
e Firstly we define 4, h,é,5,%. We define § = § + 6§ and use this parameter &
to calculate the right hand sides of (7.1)-(7.4). Then these functions satisfy the
assertions of Propositions 6.0.1, 6.0.2 and Lemma 6.1. In particular, they are
Lipschitz functions of A, & and x; and continuous functions of ¥ and 4.
e We now apply Banach fixed point theorem to the solve (7.1)-(7.4) for h,e and x.
Also we note that

||h||cg’#(m) < C”,P”cg’#(]g) < Ca't?

||e||cg!ﬂ(R) < C”R”cg!#(m < Ca’t”
and it is easy to check that
[Ixlla < Ca™t|Glla < Ca”

and v, 0 satisfy
lolle < Ca'*”

6] < Ca'tv.
¢ Now we define a continuous map on a finite dimensional space £ x R
F:EXxR-EXR
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given by
(©,9) = (v,6).
By the choice of v, we can use Browder’s fixed point theorem to obtain a fixed point
of the map F.
O

7.2. Final remarks on the proofs of Solution 2 and Solution 3. Finally, we
show what modifications are needed for the proofs of Solution 2 and Solution 3 in
Section 1.2.
For Solution 2, we use approximate solution of the following form
(7.7
ur(z,2) = ur(z, —2) for all (z,2) € R?

us(e2) = (e = F2) = a2 )= P wn((e:2) = 6) ) 1+ 01 (1)

where the interaction function f satisfies
f'(z) = —¥L(f,2) in R
f(0)=0, f(0)=o0.

For Solution 3, we use approximate solution of the following form
(7.9)
ur(z,z) =ug(z,—2) for all (z,z) € R?

(7.8)

ur(z,2) = ur (-2, 2) for all (z,2) € R?

ur(z,2) = (w(;(a: — f(z) = hr(2),2) +ws(x + f(2) + he(2),2) + wo(x,z)> (1+o1))

where f satisfies (1.13).
The rest of the proofs remains the same.
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