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Abstract. We consider the following singularly perturbed Neumann problem

(Lin-Ni-Takagi problem)

ε2∆u− u+ up = 0 , u > 0 in Ω,
∂u

∂ν
= 0 on ∂Ω,

where p > 2 and Ω is a smooth and bounded domain in R2. We construct a
new class of solutions which consist of large number of spikes concentrating on

a segment of the boundary which contains a strict local minimum point of

the mean curvature function and has the same mean curvature at the two end
points. We find a continuum limit of ODE systems governing the interactions

of spikes and show that the derivative of mean curvature function acts as

friction force. Our construction is partly motivated by the construction of
CMC surfaces on broken geodesics by Butscher and Mazzeo [10].
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1. Introduction and statement of main results

1.1. Introduction and Main Results. In this paper, we establish new concen-
tration phenomena for the following singularly perturbed elliptic problem

0ε2∆u− u+ up = 0 in Ω,
u > 0 in Ω,

∂u
∂ν = 0 on ∂Ω,

(1.1)

where Ω is a smooth bounded domain in R2 with its unit outer normal ν, and
the exponent p is greater than 2, and ε > 0 is a small parameter. We prove the
existence of solutions concentrating on a segment of ∂Ω.

This equation is known as the stationary equation of the nonlinear Schrödinger
equation:

ih̃
∂ψ

∂t
= − h̃2

2m
∆ψ + V ψ − γ̃|ψ|p−2ψ (1.2)

where h̃ is the Plank constant, V is the potential and γ̃,m are positive constants.

Then standing waves of (1.2) can be found by setting ψ = eiEt/h̃v(x) where E is a
constant and the real function v satisfies the elliptic equation:

− h̃2∆v + Ṽ v = |v|p−2v (1.3)

for some modified potential Ṽ . If we consider h̃→ 0, the above equation becomes
a singularly perturbed one.
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It can also be viewed as a stationary equation of Keller-Segel system in chemo-
taxis ([27]) and the Gierer-Meinhardt biological pattern formation system ([21]).
In particular, Lin-Ni-Takagi [31] first derived this problem from Keller-Segel sys-
tem and initiated the study of the quantitative properties of its solutions. In the
literature this is also called Lin-Ni-Takagi problem ([17]).

Although problem (1.1) is simple-looking, it has a rich and interesting structure
of solutions. For the last twenty years, it has received considerable attention. In
particular, various concentration phenomena exhibited by the solutions of (1.1)
seem both mathematically intriguing and scientifically useful. We refer to three
survey articles [38], [39] and [44] for more backgrounds and references.

In the subcritical case, problem (1.1) admits spike layer solutions, concentrating
at one or multiple points of Ω̄. It was first established in [40],[41] by Ni and Takagi
the existence of least energy (mountain pass) solutions to (1.1), that is, a solution
uε with minimal energy. They showed in [40, 41] that, for each ε > 0 sufficiently
small, uε has a spike at the most curved part of the boundary, i.e., the region where
the mean curvature attains maximum value.

Since the publication of [41], further studies on spike-layer solutions (for the
Dirichlet problem and mixed boundary problem as well) have been made. For
spike solutions, solutions with multiple boundary spikes as well as multiple interior
spikes and mixed interior and boundary spikes have been established . (See [4],
[6], [7], [14]-[18], [22]-[25], [28]-[29], [42], [43], [45]-[46] and the references therein.)
Thanks to these works, the phenomenon of concentration at points is now well-
understood. Necessary and sufficient conditions for the location of boundary and
interior spikes are available.

In particular, concerning the interior spike layer solutions, Lin, Ni and Wei [30]
showed that there are at least CN

(ε| log ε|)N number of interior spikes and recently the

first author and the third author and Zeng [5] extended their result and obtained
the optimal bound of number of interior spikes CN

εN
for general smooth domain in

RN .

A general principle is that for interior spike solutions, the distance function from
the boundary ∂Ω plays an important role, while for the boundary spike solutions,
the mean curvature function of the boundary plays an important role.

Besides the spike-layer solutions, it has been conjectured for a long time that
problem (1.1) should possess solutions which have m−dimensional concentration
sets for every 0 ≤ m ≤ N − 1. (See e.g. [38].) The case of m = N is excluded since
(1.1) is not expected to exhibit phase transitions.

Under symmetry conditions, some results have been obtained in [1], [2], [8], [9],
[11] for problem (1.1) as well as the Dirichlet problem and the nonlinear Schrödinger
equation.

In the general case, progress although still limited, has also been made in [19],
[20], [32], [34], [35], [36], [37], [47], [48]. For solutions concentrating on interior
higher dimensional sets, results were first obtained in [47], [48] where the third
author and Yang constructed solutions concentrating on line segment in the interior
of the domain Ω. For boundary concentration solutions, in a series of papers of
Malchiodi and Montenegro [34]-[36], they proved the the existence of solutions
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concentrating on the whole boundary or arbitrary components of ∂Ω when Ω ⊂ RN ,
and solutions concentrating on closed geodesics of ∂Ω when Ω ⊂ R3 and later
Mahmoudi and Malchiodi [19] extended the results and obtained the existence
of solutions concentrating on the k submanifold of ∂Ω ⊂ RN provided that the
sequence ε satisfies some gap condition. The latter condition is called resonance.

In [3], the first and third authors and Musso removed the resonance condition
in [47] and proved the existence of solutions concentrating on the interior straight
line by putting a large number of spikes distributing along the line. It is natural
to ask that whether one can remove the resonance condition for the boundary
concentration solutions using similar ideas. Also in all the above mentioned papers,
for higher dimensional boundary concentration solutions, the concentration sets
are either the whole boundary or closed submanifold of the boundary. A natural
question is:

Does problem (1.1) have solutions which concentrate on a broken segment of the
boundary for all ε→ 0 ?

In this paper, we give an affirmative answer to the above question. We construct
solutions concentrating on a broken segment γ of the boundary ∂Ω ⊂ R2 for all
ε→ 0 if γ satisfies the following condition:

(H1). Let γ = γ([0, b]) be the segment parametrized by arc length, and H(q) be
the curvature of ∂Ω at q. Denote by

H ′(γ(s)) =
d

ds
H(γ(s)), H ′′(γ(s)) =

d2

ds2
H(γ(s)).

Assume that H ′′(γ(s)) ≥ c0 > 0 for all s ∈ [0, b], and H(γ(0)) = H(γ(b)).

Remark 1. From assumption (H1), one can see that γ must contain a non degen-
erate local minimum point of the curvature H and that the curvature at the two
end points of γ must be the same.

Our main result in this paper states as follows:

Theorem 1.1. Assume that γ satisfies (H1), then there exists ε0 > 0 such that
for ε < ε0, there exists boundary spike solutions to (1.1) concentrating on γ.

Remark 2. In the paper [24], Gui, Winter and the third author proved the exis-
tence of multiple spike solutions concentrating at the local minimum point of the
curvature H(p). In this paper, we proved the existence of spike solutions concen-
trating on the segment which contains a local minimum of H(p). Theorem 1.1
extends their result to a segment containing a local minimum point of H.

1.2. Description of the construction. The solutions we construct consist of
large number (O( 1

ε ln ε )) of spikes distributed along the segment γ whose inter dis-
tance is sufficiently small (O(ε ln ε)).

At first glance one may discard such kind of solutions as there seems to be no
balancing force at the end points of the segment. In the following we will show
that the derivative of the mean curvature function acts as friction force. This new
phenomena was first discovered in the construction of CMC surfaces by Butscher
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and Mazzeo [10] in which they constructed CMC surfaces condensing to a finite
geodesic segment. We will comment more on this later.

In this subsection, we will briefly describe the solutions to be constructed later
and will give the main idea in the procedure of the construction.

More precisely let w be the unique solution of the following equation: ∆w − w + wp = 0 in R2,
w > 0, w(0) = maxy∈R2 w(y),
w → 0 as |y| → ∞.

(1.4)

It is well-known (see [26]) that w is radial, i.e., w = w(r) and w′(r) < 0 and has
the following asymptotic behaviour:

w(y) = cN,p|y|−
N−1

2 e−|y|(1 + o(1)) (1.5)

and

w′(y) = −(1 + o(1))w(y) as |y| → ∞. (1.6)

For q ∈ ∂Ω, we set

Ωε = {z : εz ∈ Ω}, Ωε,q = {z : εz + q ∈ Ω},
and

Pwq(z) = PΩε,qw(z − q

ε
), wq(z) = w(z − q

ε
), z ∈ Ωε,

where PΩε,qw(z − q
ε ) is defined to be the unique solution of

∆u− u+ w(· − q

ε
)p = 0 in Ωε,q,

∂u

∂ν
= 0 on ∂Ωε,q (1.7)

We will put large number of boundary spikes along γ. Let the location of spikes
be (γ(s1), · · · , γ(sk)). We define

U =

k∑
i=1

PΩε,γ(si)
w(z − γ(si)

ε
)

to be an approximate solution.

A natural and central question is how to choose si such that U is indeed a good
approximation. By formal calculation, one has the following energy expansion for
the energy functional corresponding to (1.1):

J(U) =
k

2
I(w)− εγ0

k∑
i=1

H(γ(si))−
γ1

2
w(
γ(si)− γ(sj)

ε
) + o(ε)

where γ0, γ1 are positive constants. One needs to find a critical point (s1, · · · , sk)
of J in order to get a solution of (1.1), i.e. ∂

∂si
J = 0 for all i. The main point

in this paper is to exploit the contribution of H ′(γ(s)) in ∂J
∂si

. The novelty of this
paper is the new method of constructing balance approximate spike solutions, i.e.
the configuration space {(s1, · · · , sk)}, such that ∂J

∂si
is almost 0.

In this paper, we will establish a method to find such balance approximate solu-
tions. It turns out that the number of spikes and their positions are determined by
some nonlinear equations which involves the interaction of spikes and also the effect
of the boundary curvature. To explain this, we need to introduce the interaction
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function Ψ(s) (to describe the interactions of different spikes) which is defined for
all s ∈ R by

Ψ(s) = −
∫
R2

+

w(y − (s, 0))pwp−1 ∂w

∂y1
dy.

It turns out that γ(si) are determined by the following non-linear system:

Ψ( |s2−s1|ε ) + ε2H ′(γ(s1)) = O(ε3),

Ψ( |s3−s2|ε )−Ψ( |s2−s1|ε ) + ε2H ′(γ(s2)) = O(ε3),
· · ·
Ψ( |sk−sk−1|

ε )−Ψ( |sk−1−sk−2|
ε ) + ε2H ′(γ(sk−1)) = O(ε3),

−Ψ( |sk−sk−1|
ε ) + ε2H ′(γ(sk)) = O(ε3),

(1.8)

and the number of spikes depending on ε is given by k = kε = [ b
|ε ln ε| ] + 1.

One can see from the above equations that it is possible to balance the two end
points of the segment using the derivative of the curvature function. But in general,
the above nonlinear system is difficult to solve. Our new idea is to consider this
non-linear system as a discretization of its continuum limiting ODE system (as the
step size h = ε| ln ε| tends to 0):

dx
dt = − 1

ln εΨ−1( ε
ln ερ(t)),

dρ
dt = H ′(γ(x(t))), 0 < t < bε,
ρ(0) = 0, ρ(bε) = ρb,
x′(bε) = − 1

ln εΨ−1(ε2H ′(γ(x(bε))))

(1.9)

where Ψ−1 is the inverse function of Ψ, and bε = (kε − 1)h = b+O(h) and ρb < 0
is a small constant depending on ε. The above overdetermined ODE is solvable
under the assumption of the segment γ in (H1).

To describe the configuration space of γ(si), we solve the ODE system (1.9) first
and denote the solution as x(t). Then we define the positions of spikes by midpoint
approximation:

s0
i = x(

ti + ti+1

2
) for i = 1, · · · , k − 1 (1.10)

and
s0
k = s0

k−1 + εΨ−1(ε2H ′(
ε

ln ε
ρb)) (1.11)

where
ti = (i− 1)|ε ln ε|, i ≥ 1 (1.12)

The method to determine the approximate positions, i.e. s0
i is the main contri-

bution of this paper which is contained in Section 6. The position defined in this
way is indeed an almost balance one. We will find real solutions by perturbing
these spike points.

Letting yi ∈ R, we define

si = s0
i + yi, for i = 1, · · · , k, (1.13)

and yi satisfies{ |y1| ≤ C|ε ln(− ln ε)|,
|(si+1 − si)− (si − si−1)| ≤ Cε3

min{Ψ(
s0
i
−s0
i−1
ε ),Ψ(

s0
i
−s0
i+1
ε )}

(1.14)

for i = 2, · · · , k − 1 for some constant C > 0 large.
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With these notations, we can define the configuration space of (s1, · · · , sk) by

Λk = {(s1, · · · , sk) ∈ Rk|si is defined by (1.13) and satisfies (1.14)} (1.15)

The reason to define the configuration space in this way will be made clear in
Section 3.

Moreover, from the analysis of the ODE (1.9) in Section 6, one can get that

|si − si−1| ≥ (1 + o(1))|ε ln ε|, w(
si − si−1

ε
) ≤ cε

| ln ε|
(1.16)

for i = 2, · · · , k and

|si − si−1| = 2(1 + o(1))|ε ln ε|| (1.17)

for i = 2, k.

We will prove Theorem 1.1 by showing the following result:

Theorem 1.2. Assume γ be a segment of ∂Ω and satisfies (H1). Then there exists
ε0 such that for ε < ε0, there exists positive number k = kε,γ = [ b

|ε ln ε| ] + 1 and

k points (γ(s1), · · · , γ(sk)) on γ, where (s1, · · · , sk) ∈ Λk such that there exists a
solution uε to problem (1.1) and uε has the following form:

uε(x) =

k∑
i=1

PΩε,γ(si)
w(
x− γ(si)

ε
) + o(1) (1.18)

where o(1)→ 0 as ε→ 0 uniformly.

Remark 3. The motivation of our construction comes from the study of the con-
stant mean curvature surface. In [10], Butscher and Mazzeo constructed CMC
surface condensing to a geodesic segments by connecting large number (O( 1

r )) of
spheres of radius r distributing along the geodesic segment. Such surfaces can not
exist in Euclidean space, but they are able to show that the gradient of the ambi-
ent scalar curvature acts as ‘friction term’ which permits the existence of balance
surface. So the gradient of scalar curvature plays the same role as the gradient of
the mean curvature in our case. In their paper, they require the symmetry con-
dition on the geodesic segment. In our main theorem 1.1, if we further require
that Ω is symmetric, it is easy to see that (H1) can always be satisfied near the
non-degenerate minimum point of the curvature H(γ(s)). Since we don’t require
any symmetry of the segment in Theorem 1.1, we believe that our idea can be used
to construct CMC surface condensing to geodesic segments without the symmetry
condition. This is the main contribution of our paper. We will discuss this in a
forthcoming paper. (A. Butscher announced this result in a preprint [13] but the
full details have not appeared.)

1.3. Sketch of the proof of Theorem 1.2. We will use the Lyapunov-Schmidt
reduction method and perturbation argument to construct the solutions to (1.1).
The perturbation argument used to produce a real solution is not so different from
the ones appearing elsewhere in the literature, as we mentioned before, the main
contribution of this paper is the new idea of constructing balanced approximate
solutions. In the following, we give the sketch of the proof.
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We introduce some notations first. Since after scaling x = εz, the original
problem becomes 

∆u− u+ up = 0 in Ωε
u > 0 in Ωε
∂u
∂ν = 0 on ∂Ωε

(1.19)

Fixing s = (s1, · · · , sk) ∈ Λk, we denote by

P = (P1, · · · , Pk) = (
γ(s1)

ε
, · · · , γ(sk)

ε
)

and define the sum of k spikes as

U =

k∑
i=1

PΩε,Pi
w(z − Pi).

Define the operator
S(u) = ∆u− u+ up.

We also define the following functions as the approximate kernels

Zi =
∂PΩε,Pi

w(z − Pi)
∂τPi

, i = 1, · · · , k.

Using U as the approximate solution, and performing the Lyapunov-Schmidt
reduction, we can show that there exists ε0 such that for ε < ε0, we can find a ψ
of the following projected problem:

S(U + ψ) =

k∑
i=1

ciZi,

∫
Ωε

ψZi = 0, i = 1, · · · , k,

where ci are constants depending on the form of ψ,Zi.

Next, we need to solve the reduced problem

ci = 0, i = 1, · · · , k
by adjusting the points in Λk.

There are two main difficulties in solving the reduced problem. First we need to
control the error projection produced by ψ. In order to control this projection, we
need to work in a weighted norm, which estimates ψ locally (see Section 3), and
also we need a further decomposition of ψ which is given in Section 4 from where
one can see why we define the configuration space of si in (1.15). The reason that
one needs to obtain a further decomposition of ψ is that the inter distance of spikes
at main order is not the same. In fact, near the two end points, the inter distance
of two neighbored spikes is 2(1 + o(1))ε| ln ε|, while in the more central part, the
inter distance of two neighbored spikes is (1+o(1))ε| ln ε|. Thus the global estimate
for ψ is not enough for our estimates. We need a further decomposition near each
spike. Second, we need to solve a non-linear system of the form (1.8), for which we
use the discretezation of the ODE equation (1.9).

Finally, the paper is organized as follows. Some preliminary facts and useful
estimates are explained in Section 2. Section 3 contains the standard Lyapunov-
Schmidt reduction process: we study the linearized projected problem in 3.1 and
then solve a non-linear projected problem in 3.2. In Section 4, we obtain a further
asymptotic behavior of ψ which gives an expansion in ε. In Section 5, we derive
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the reduced nonlinear system of algebraic equations for the location. Section 6 is
devoted to solving the reduced problem.

Acknowledgments. The research of J. Wei is partially supported by NSERC of
Canada.

2. Technical Analysis

In this section, we introduce a projection and derive some useful estimates. Most
of the results in this section are quite standard now and has been extensively used
in the literature (see [22], [23], [24], [40], [43], [45]).

Throughout this paper, we shall use the letter C to denote a generic positive
constant which may vary from term to term. By the following rescaling

x = εz, z ∈ Ωε := {εz ∈ Ω}, (2.1)

equation (1.1) becomes {
∆u− u+ up = 0, in Ωε
∂u
∂ν = 0 on ∂Ωε.

(2.2)

We denote by R2
+ = {(y1, y2)|y2 > 0}. Recall that w is the unique solution of

(1.4).

Let q ∈ ∂Ω. We can define a diffeomorphism straightening the boundary. We
may assume that the inward normal to ∂Ω at q is pointing in the direction of the
positive x2 axis. Denote B′(R) = {|x1| ≤ R}, and Ω1 = Ω ∩ B(q,R) = {(x1, x2) ∈
B(q,R)|x2 − q2 > ρ(x1 − q1)} where B(q,R) = {x ∈ R2||x − q| < R}. Then since
∂Ω is smooth, we can find a constant R such that ∂Ω can be represented by the
graph of a smooth function ρq : B′(R)→ R where ρq(0) = 0, and ρ′q(0) = 0. From
now on, we omit the use of q in ρq and write ρ instead if this can be done without
confusion. So near q, ∂Ω can be represented by (x1, ρ(x1)). The curvature of ∂Ω at
q is H(q) = ρ′′(0). After scaling, we know that near Q = q

ε , ∂Ωε can be represented

by (z1, ε
−1ρ(εz1)), where (z1, z2) = ε−1(x1, x2). By Taylor’s expansion, we have

the following:

ε−1ρ(εz1) =
1

2
ρ′′(0)εz2

1 +
1

6
ρ(3)(0)ε2z3

1 +O(ε3z4
1). (2.3)

Recall that for a smooth bounded domain U , the projection PU of H2(U) onto
{u ∈ H2(U)|∂u∂ν = 0 at ∂U} is defined as follows: For v ∈ H2(U), let PUv be the
unique solution of the boundary value problem:{

∆u− u+ vp = 0, in U ,
∂u
∂ν = 0 on ∂U . (2.4)

Let hP (z) = w(z − P )− PΩε,Pw(z − P ). Then hP satisfies{
∆hP (z)− hP (z) = 0, in Ωε,
∂hP
∂ν = ∂

∂νw(z − P ) on ∂Ωε.
(2.5)

For z ∈ Ω1,ε, for P = (P1,P2), set now{
y1 = z1 −P1,
y2 = z2 −P2 − ε−1ρ(ε(z1 −P1)).

(2.6)



CONCENTRATIONS ON SEGMENTS 9

Under this transformation, the Laplace operator and the boundary derivative
operator become

∆z = ∆y + ρ(εz1)2∂y2y2 − 2ρ′(εz1)∂y1y2 − ερ′′(εz1)∂y2 ,

(1 + ρ′(εz1)2)
1
2
∂

∂ν
= ρ′(εz1)∂y1 − (1 + ρ′

2
(εz1))∂y2 .

First we need to get the expansion of hP (z) in terms of ε, from which one can
see the effect of the boundary curvature. In this paper, we need to expand it up to
O(ε2). To be more specific, let v(1) be the unique solution of{

∆v − v = 0, in R2
+

∂v
∂y2

= w′

|y|
ρ′′(0)

2 y2
1 on ∂R2

+,
(2.7)

where w′ is the radial derivative of w, i.e. w′ = wr(r), and r = |z − P |.

Let v(2) be the unique solution of{
∆v − v − 2ρ′′(0)y1

∂2v1
∂y1∂y2

= 0 in R2
+,

∂v
∂y2

= −ρ′′(0)y1
∂v1
∂y1

on ∂R2
+.

Let v(3) be the unique solution of{
∆v − v = 0, in R2

+,
∂v
∂y2

= w′

|y|
1
3ρ

(3)(0)y3
1 , on ∂R2

+.
(2.8)

Note that v(1), v(2) are even functions in y1 and v(3) is odd function in y1. More-
over, it is easy to see that |vi(y)| ≤ Ce−µ|y| for any 0 < µ < 1. Let χ(x) be a
smooth cut-off function, such that χ(x) = 1, x ∈ B(0, R0ε| ln ε|), and χ(x) = 0 for
x ∈ B(0, 2R0ε| ln ε|)c for R0 large enough, and χε(z) = χ(εz) for z ∈ Ωε. In this
case, one has w(R0| ln ε|) = O(εR0). Set

hP (z) = −(εv1(y) + ε2(v2(y) + v3(y)))χε(z − P ) + ε3ξP (z), z ∈ Ωε. (2.9)

Then we have the following estimate:

Proposition 2.1.

‖ξ(z)‖H1(Ωε) ≤ C. (2.10)

Proposition 2.1 was proved in [45] by Taylor expansion and a rigorous estimate
for the reminder using estimates for elliptic equations. Moreover, one can checked
that |ξ(z)| ≤ Ce−µ|z−P | for some 0 < µ < 1.

In our proof, only the evenness property in y1 of the functions v(1) and v(2) are
used. But for the function v(3), both the oddness property and equation it satisfied
will be used. In fact, it is from this term that the derivative of the curvature
function appears.

Similarly we know from [45] that

Proposition 2.2.

[
∂w

∂τP
−
∂PΩε,Pw

∂τP
](z − P ) = εη(y)χε(z − P ) + ε2η1(z), z ∈ Ωε, (2.11)
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where η is the unique solution of the following equation:{
∆η − η = 0 in R2

+,
∂η
∂y2

= − 1
2 ( w

′′

|y|2 −
w′

|y|3 )ρ′′(0)y3
1 − w′

|y|ρ
′′(0)y1 on ∂R2

+.
(2.12)

Moreover,

‖η1‖H1(Ωε) ≤ C. (2.13)

One can observe that η(y) is an odd function in y1. It can be seen that |ηi(y)| ≤
Ce−µ|y| for some 0 < µ < 1.

Finally, let

L0 = ∆− 1 + pwp−1(z). (2.14)

We have the following non degeneracy property:

Lemma 2.1.

Ker(L0) ∩H2
N (R2

+) = span{ ∂w
∂y1
}, (2.15)

where H2
N (R2

+) = {u ∈ H2(R2
+), ∂u∂y2 = 0 on ∂R2

+}.

Proof. See Lemma 4.2 in [40].
�

Next we state a useful lemma we will frequently use:

Lemma 2.2. If |q1 − q2| << |q1|, we have the following estimate:∫
R2

+

pw(y)p−1(w(y − q1e1) + w(y + q2e1))
∂w

∂y1
dy = O(|q1 − q2|w(|q1|) (2.16)

as |q1| → ∞ where e1 is the unite vector (1, 0).

Proof. By the oddness of ∂w
∂y1

in y1, one has∫
R2

+

pw(y)p−1(w(y − q1e1) + w(y + q2e1))
∂w

∂y1
dy

=

∫
R2

+

pw(y)p−1(w(y − q1e1)− w(y − q2e1))
∂w

∂y1
dy

=

∫
R2

pw(y)p−1| ∂w
∂y1
|O(w′(y − q1e1)|q1 − q2|)dy

= O(|q1 − q2|)w(|q1|).

�

Remark 4. In the following sections, we will denote by yi = (yi1, y
i
2) to be the trans-

formation defined by (2.6) centered at the point Pi and v
(j)
i be the corresponding

solutions in the expansion of hPi .
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3. Liapunov-Schmidt Reduction

In this section, we reduce problem (2.2) to finite dimension by the Liapunov-
Schmidt reduction method. The argument by now is quite standard. We leave most
of the proofs to the appendix. We first introduce some notations. Let H2

N (Ωε) be
the Hilbert space defined by

H2
N (Ωε) = {u ∈ H2(Ωε)|

∂u

∂ν
= 0 on ∂Ωε}. (3.1)

Define

S(u) = ∆u− u+ up (3.2)

for u ∈ H2
N (Ωε). Then solving equation (2.2) is equivalent to

S(u) = 0, u ∈ H2
N (Ωε). (3.3)

To this end, we first study the linearized operator

Lε(ψ) := ∆ψ − ψ + p(

k∑
i=1

PΩε,Pi
w(z − Pi))p−1ψ,

and define the approximate kernels to be

Zi =
∂PΩε,Pi

w(z − Pi)
∂τPi

,

for i = 1, · · · , k.

3.1. Linear projected problem. We first develop a solvability theory for the
linear projected problem: Lε(ψ) = h+

∑k
i=1 ciZi,∫

Ωε
ψZidz = 0, i = 1, · · · , k,

ψ ∈ H2
N (Ωε)

(3.4)

Given 0 < µ < 1, consider the norm

‖h‖∗ = sup
z∈Ωε

|(
∑
j

e−µ|z−Pi|)−1h(z)| (3.5)

where Pi ∈ Λk with Λk defined in (1.15).

The proof of the following Proposition on linearized operator, which we postpone
to the appendix, is by now standard.

Proposition 3.1. There exist positive numbers µ ∈ (0, 1), ε0 and C, such that for
all ε ≤ ε0, and for any points Pj, j = 1, . . . , k given by (1.15), there is a unique
solution (ψ, ci) to problem (3.4). Furthermore

‖ψ‖∗ ≤ C‖h‖∗. (3.6)

In the following, if ψ is the unique solution given by Proposition 3.1, we set

ψ = A(h). (3.7)

Estimate (3.6) implies

‖A(h)‖∗ ≤ C‖h‖∗. (3.8)
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3.2. Nonlinear projected problem. We are now in the position to solve the
nonlinear equation:  Lε(ψ) + E +N(ψ) =

∑k
i=1 ciZi,∫

Ωε
ψZi = 0 for i = 1, · · · , k,

ψ ∈ H2
N (Ωε)

(3.9)

where E is the error of the approximate solution U :

E = ∆(

k∑
i=1

PΩε,Pi
w(z − Pi))− (

k∑
i=1

PΩε,Pi
w(z − Pi)) (3.10)

+(

k∑
i=1

PΩε,Pi
w(z − Pi))p,

and N(ψ) is the nonlinear term:

N(ψ) = ((

k∑
i=1

PΩε,Pi
w(z − Pi)) + ψ)p − (

k∑
i=1

PΩε,Pi
w(z − Pi))p (3.11)

−p(
k∑
i=1

PΩε,Pi
w(z − Pi))p−1ψ.

By Proposition 3.1, we can rewrite (3.9) as

ψ = −A (E +N(ψ)) (3.12)

where A is the operator introduced in (3.7). In other words, ψ solves (3.9) if and
only if ψ is a fixed point for the operator

T (ψ) := −A (E +N(ψ)) .

We are going to show that the operator T defined above for ψ ∈ H2
N (Ωε) is a

contraction on

B = {ψ ∈ H2
N (Ωε) : ‖ψ‖∗ ≤ Cε,

∫
Ωε

ψZi = 0}

for some C > 0 large enough.

In fact we have the following lemma:

Lemma 3.1. There exist µ ∈ (0, 1), and positive numbers ε0, C, such that for all
ε ≤ ε0, for any points Pj, j = 1, . . . , k given by (1.15), the following estimates hold:

‖E‖∗ ≤ Cε (3.13)

and

‖N(φ)‖∗ ≤ C‖φ‖2∗ (3.14)

Proof. We start with the proof for (3.13). Fix j ∈ {1, . . . , k} and consider the region

|z − Pj | ≤ min{|Pj−Pj−1|,|Pj−Pj+1|}
2 . In this region the error E, whose definition is

in (3.11), can be estimated in the following way

|E(z)| ≤ Cwp−1(z − Pj)[
∑
Pi 6=Pj

w(z − Pi) +
∑
i

hPi(z)]

≤ C(ε+ ε
p−µ
2 )e−µ|z−Pj | ≤ Cεe−µ|z−Pj | (3.15)
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if we choose µ small enough such that p− µ > 2.

Consider now the region |z − Pj | > min{|Pj−Pj−1|,|Pj−Pj+1|}
2 , for all j. From the

definition of E, we get in the region under consideration

|E(z)| ≤ C

[∑
i

hPi(z) + (

k∑
i=1

PΩε,Pi
w(z − Pi))p −

∑
i

w(x− Pi)p
]

≤ C
∑
i

e−µ|z−Pi|(ε+ ε
p−µ
2 )

≤ Cε
∑
i

e−µ|z−Pi|. (3.16)

From (3.15) and (3.16) we get (3.13).

We now prove (3.14). Let ψ ∈ B. Then

|N(ψ)| ≤ |((
k∑
i=1

PΩε,Pi
w(z − Pi)) + ψ)p − (

k∑
i=1

PΩεw(z − Pi))p

− p(

k∑
i=1

PΩε,Pi
w(z − Pi))p−1ψ| ≤ Cψ2.

Thus we have
|(
∑
j e
−µ|x−Pj |)−1N(ψ)| ≤ C‖ψ‖2∗

This gives (3.14).
�

Using the above estimates, we have the validity of the following result:

Proposition 3.2. There exist µ ∈ (0, 1), and positive numbers ε0, C, such that for
all ε ≤ ε0, for any points Pj, j = 1, . . . , k given by (1.15), there is a unique solution
(ψ, ci) to problem (3.9). This solution depends continuously on the parameters of
the construction (namely Pj, j = 1, . . . , k) and furthermore

‖ψ‖∗ ≤ Cε. (3.17)

Proof. As we mentioned before, we are going to show that the operator T is a
contraction mapping in B.

By the estimates in Lemma 3.1, (3.13) and (3.14) and taking into account (3.8),
we have for any ψ ∈ B

‖T (ψ)‖∗ ≤ C [‖E +N(ψ)‖∗] ≤ C(ε+ ε2)
≤ C1ε

for a proper choice of C1 in the definition of B. Take now ψ1 and ψ2 in B. Then it
is straightforward to show that

‖T (ψ1)− T (ψ2)‖∗ ≤ C‖N(ψ1)−N(ψ2)‖∗

≤ C [‖ψ1‖∗ + ‖ψ2‖∗] ‖ψ1 − ψ2‖∗

≤ o(1)‖ψ1 − ψ2‖∗
This means that T is a contraction mapping from B into itself.
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The existence of a fixed point ψ now follows from the contraction mapping
principle, and ψ is a solution of (3.9) and satisfies (3.17).

A direct consequence of the fixed point characterization of ψ given above together
with the fact that the error term E depends continuously (in the *-norm) on the
parameters Pj , j = 1, . . . , k is that the map (P1, · · · , Pk)→ ψ into the space C(Ω̄ε)
is continuous (in the ∗-norm). This concludes the proof of the Proposition.

�

4. Further expansion of the error

In the previous section, we obtained a solution ψ to (3.9), which satisfies ‖ψ‖∗ ≤
Cε. But this estimate is not enough in solving the reduced problem. For later pur-
pose, we need to obtain the asymptotic behaviour of the function ψ as ε→ 0. This
is needed to compute the neighboring interactions. The idea is that although the
‖ · ‖∗ norm of ψ is not small enough, but we can get a more accurate decomposition
such that the projection with respect to Zi is small enough for our purpose.

Before we state the result, we first consider the following equation:
∆φ− φ+ pw(y)p−1φ = h+ d∂w(y)

∂y1
in R2

+,
∂φ
∂y2

= 0 on ∂R2
+,∫

R2
+
φ∂w(y)

∂y1
dy = 0

(4.1)

where d = −
∫
R2
+
h ∂w∂y1∫

R2
+

( ∂w∂y1
)2

. We consider the above equation in the space {‖h‖∗∗ < +∞},

where ‖h‖∗∗ = supy∈R2
+
|eµ1|y|h| for some 0 < µ1 < 1. It is quite standard to show

the solvability of the above equation and φ will satisfy the following estimate:

‖φ‖∗∗ ≤ C‖h‖∗∗. (4.2)

Now we decompose ψ as follows:

Proposition 4.1.

ψ =

k∑
i=1

χε(z − Pi)φi + ε2ψ1, (4.3)

where
‖ψ1‖∗ ≤ C. (4.4)

and φi = φi(y
i) is the unique solution of

∆φi − φi + pw(yi)p−1φi = Hi + di
∂w(yi)
∂yi

in R2
+,

∂φi
∂y2

= 0 on ∂R2
+,∫

R2
+
φi
∂w(yi)
∂y1

dy = 0

(4.5)

where di is defined such that the right hand side of the above equation is orthogonal

to ∂w(yi)
∂y1

in L2 norm, and

Hi = −pw(yi)p−1[w(yi − si−1 − si
ε

e1) + w(yi − si+1 − si
ε

e1) + εv
(1)
i ], (4.6)

for i = 2, · · · , k − 1 and

H1 = −pw(y1)p−1[w(y1 − s2 − s1

ε
e1) + εv

(1)
1 ], (4.7)
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and

Hk = −pw(yk)p−1[w(yk − sk−1 − sk
ε

e1) + εv
(1)
k ], (4.8)

and we denote

v
(1)
i = v

(1)
Pi

(yi) (4.9)

are the solutions obtained in Section 1.2 centered at the point Pi.

Proof. First by the definition of di, there holds

di =

∫
R2

+

Hi
∂w(yi)

∂y1
dy. (4.10)

Then from Lemma 2.2, and the evenness of v
(1)
i with respect to yi1, and the definition

of the configuration space (1.15), we know that for i = 2, · · · , k − 1

|di| ≤ Cε−1||si+1−si|−|si−si−1|min{w(
si − si+1

ε
), w(

si − si−1

ε
)} ≤ Cε2, (4.11)

and for i = 1, k,

|d1| = O(w(
s1 − s2

ε
)) = O(ε2) and |dk| = O(w(

sk − sk−1

ε
)) = O(ε2). (4.12)

Moreover, from (4.1), we have the following estimate:

‖φi‖∗∗ ≤ Cε if p > 2 + µ1. (4.13)

Our strategy to estimate ψ1 is to decompose ψ1 into three parts and show that
each of them is bounded in ‖ · ‖∗ as ε→ 0. We write ψ1 as

ψ1 = ψ11 + ψ12 + ψ13, (4.14)

where ψ11 satisfies {
∆ψ11 − ψ11 = 0, in Ωε
∂ψ11

∂ν = − 1
ε2
∂
∑k
i=1 χε(z−Pi)φi

∂ν on ∂Ωε.
(4.15)

Define ψ12 by

ψ12 =
1

ε2

k∑
i=1

siZi, (4.16)

and si is determined by

M(si) = −
∫

Ωε

(

k∑
i=1

χε(z − Pi)φi + ε2ψ11)Zi. (4.17)

Finally define ψ13 to be the solution of the following equation:
Lε(ψ13) = 1

ε2Lε(ψ −
∑k
i=1 χε(z − Pi)φi − ε2(ψ11 + ψ12)) in Ωε

∂ψ13

∂ν = 0 on ∂Ωε∫
Ωε
ψ13Zidz = 0.

(4.18)
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Next we will estimate ψ11, ψ12, ψ13 term by term. First we estimate g1ε =
1
ε2
∂
∑k
i=1 χε(z−Pi)φi

∂ν . By direct calculation

g1ε =
1

ε2

k∑
i=1

(χε(z − Pi)
∂φi
∂ν

+ φi
∂χε(z − Pi)

∂ν
)

=
1

ε2

k∑
i=1

εe−µ1|y−
si
ε |
∂χε(z − Pi)

∂ν
+O(ε2)

= O(ε−2e−(µ1−µ)R0| ln ε|)

k∑
i=1

e−µ|z−Pi|

≤ C

k∑
i=1

e−µ|z−Pi|

if we choose µ1 > µ and the cutoff function in such a way that (µ1 − µ)R0 ≥ 1. In
the above estimate, we use the definition of φi and the Neumann boundary satisfied
by it and the definition of the cut-off function χ. Thus we have that ‖g1ε‖∗ ≤ C,
therefore, there exists constant C > 0, such that

‖ψ11‖∗ ≤ C. (4.19)

By the definition of ψ12, φi and the estimate on ψ11, one can obtain that∫
Ωε

(

k∑
j=1

χε(z − Pj)φj + ε2ψ11)Zidz

=

∫
Ωε

χε(z − Pi)φiZidz +
∑

j=i−1,i+1

χε(z − pj)φjZidz

+O(ε1+(1+µ)(1+o(1))) +O(ε2)

In order to estimate the above term, we first consider a general function which
is the solution of the following equation:

∆φ− φ+ pw(y)p−1φ

= −pw(y)p−1(w(y − q1e1) + w(y + q2e1) + εv(1)) + d∂w(y)
∂y1

in R2
+,

∂φ
∂y2

= 0 on ∂R2
+,∫

R2
+
φ∂w(y)

∂y1
dy = 0

(4.20)

We can decompose it as

φ = φ1 + φ2, (4.21)

where
∆φ1 − φ1 + pw(y)p−1φ1

= −pw(y)p−1(w(y − q1e1) + w(y + q1e1) + εv(1)) + d1
∂w(y)
∂y1

in R2
+,

∂φ1

∂y2
= 0 on ∂R2

+,∫
R2

+
φ1 ∂w(y)

∂y1
dy = 0

(4.22)
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and 
∆φ2 − φ2 + pw(y)p−1φ2

= −pw(y)p−1(w(y + q2e1)− w(y + q1e1)) + d2
∂w(y)
∂y1

in R2
+,

∂φ2

∂y2
= 0 on ∂R2

+,∫
R2

+
φ2 ∂w(y)

∂y1
dy = 0

(4.23)

where di are defined such that the right hand sides of the above equations are
orthogonal to ∂w

∂y1
in L2 norm It is easy to see that φ1 is even in y1 and by Lemma

2.2, φ2 satisfies

‖φ2‖∗∗ ≤ Cw(q1)|q1 − q2|,
if |q1 − q2| << |q1| and |q1| → ∞.

Using the above estimates, we can decompose φi as

φi = φi,1 + φi,2 (4.24)

and φi,1 is even in yi1 and

‖φi,2‖∗∗ ≤ C||
si − si−1

ε
| − |si − si+1

ε
||min{w(

si − si−1

ε
), w(

si − si+1

ε
)} ≤ Cε2.

(4.25)
Then by the above estimate and the decomposition in Proposition 2.2, we have∫

Ωε

χε(z − Pi)φiZidz = O(ε2), (4.26)

and similar to the decomposition of φi, one can also decompose φi−1 + φi+1 as an
even function of yi1 and an O(ε2) function, so we get that∑

j=i−1,i+1

∫
Ωε

χε(z − Pj)φjZidz

=

∫
R2

+

(φi−1 + φi+1)
∂w(yi)

∂y1
dy +O(ε2)

= O(ε2)

Moreover, since |s1 − s2| = 2(1 + o(1))|ε ln ε| and |sk−1 − sk| = 2(1 + o(1))|ε ln ε|,
one can get that∫

Ωε

χε(z − P2)φ2Z1dz = O(ε2),

∫
Ωε

χε(z − Pk−1)φk−1Zkdz = O(ε2). (4.27)

Thus we have

|si| ≤ Cε2. (4.28)

Next we estimate ψ13. Denote by

fε = Lε(ψ −
k∑
i=1

χε(z − pi)φi − ε2(ψ11 + ψ12)).

Claim:

‖fε‖∗ ≤ Cε2. (4.29)

Proof of the Claim:
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By the definition of fε, we have

fε(z) = Lε(ψ −
k∑
i=1

χε(z − Pi)φi − ε2(ψ11 − ψ12))

= E +N(ψ) +
∑
i

ciZi −
∑
i

Lε(χε(z − Pi)φi)− ε2L(ψ11 + ψ12)

= (
∑
i

PΩε,Pi
w(z − Pi))p −

∑
i

w(z − Pi)p +N(ψ) +
∑
i

ciZi

−
∑
i

χε(z − Pi)(∆yφi − φi + p((
∑
i

PΩεw(z − Pi))p−1 +O(ε))φi)

+
∑
i

(2∇φi∇(χε(z − Pi)) + φi∆χε(z − Pi))− ε2Lε(ψ11 + ψ12)

= (
∑
i

PΩε,Pi
w(z − Pi))p −

∑
i

w(z − Pi)p +N(ψ) +
∑
i

ciZi

−
∑
i

χε(z − Pi)(p((
∑
i

PΩε,Pi
w(z − Pi))p−1 − w(y − Pi)p−1)φi

−pw(y − Pi)p−1(w(y − Pi−1) + w(y − Pi+1) + εv1i(y)) + diZi)

+
∑
i

O(ε)φi +
∑
i

(2∇φi∇(χε(z − pi)) + φi∆χε(z − Pi))− ε2Lε(ψ11 + ψ12).

From the definition and estimates of φi, ψ11, ψ12, χ, and the configuration space,
we know that |ci| = O(ε2), so

‖fε‖∗ ≤ Cε2.

By the a priori estimate, we know that

‖ψ13‖∗ ≤ C,

thus we have

‖ψ1‖∗ ≤ C.

We thus finish the proof.
�

Given points Pj defined by (1.15), Proposition 3.2 guarantees the existence (and
gives estimates) of a unique solution ψ, ci, i = 1, . . . , k, to problem (3.9). It is
clear then that the function u = U + ψ is an exact solution to our problem (1.1),
with the required properties stated in Theorem 1.2 if we show that there exists a
configuration for the points Pj that gives all the constants ci in (3.9) equal to zero.
In order to do so we first need to find the correct conditions on the points to get
ci = 0. This condition is naturally given by projecting in L2(Ωε) the equation in
(3.9) into the space spanned by Zi, namely by multiplying the equation in (3.9) by
Zi and integrate all over Ωε. We will do it in details in the next section.

5. The Reduced Problem

In this section, we keep the notations and assumptions in the previous sec-
tions. As explained in the previous section, we have obtained a solution u =
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i=1 PΩε,Pi

w(z − Pi) +
∑k
i=1 χε(z − Pi)φi + ε2ψ1 of the following equation

{
∆u− u+ up =

∑k
i=1 ciZi in Ωε

∂u
∂ν = 0 on ∂Ωε

(5.1)

In this section, we are going to solve ci = 0 for all i by adjusting the position of
the spikes, i.e. Pi. First, multiplying the above equation (5.1) by Zi, i = 1, · · · , k
and integrating over Ωε, we get that

M


c1
c2
...
ck

 =


∫

Ωε
(∆u− u+ up)Z1∫

Ωε
(∆u− u+ up)Z2

...∫
Ωε

(∆u− u+ up)Zk

 (5.2)

Recall thatM is invertible, so ci = 0, i = 1, · · · , k is reduced to solve the following
system: 

∫
Ωε

(∆u− u+ up)Z1∫
Ωε

(∆u− u+ up)Z2

...∫
Ωε

(∆u− u+ up)Zk

 = 0. (5.3)

We have the following estimates:

Lemma 5.1. Under the assumption of Proposition 3.2, for ε small enough, the
following expansion holds:

∫
Ωε

(∆u− u+ up)Z1dz = −Ψ(
s1 − s2

ε
)− ε2ν2H

′(γ(s1)) +O(ε3), (5.4)

and for i = 2, · · · , k − 1,

∫
Ωε

(∆u−u+up)Zidz = Ψ(
si − si−1

ε
)−Ψ(

si − si+1

ε
)−ε2ν2H

′(γ(si))+O(ε3) (5.5)

and ∫
Ωε

(∆u− u+ up)Zkdz = Ψ(
sk − sk−1

ε
)− ε2ν2H

′(γ(sk)) +O(ε3) (5.6)

where ν2 > 0 is a constant defined in (5.12).
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Proof. First, by direct calculation, one can get the following expansion:

∆u− u+ up

=
[
∆(U +

k∑
i=1

χε(z − Pi)φi)− (U +

k∑
i=1

χε(z − Pi)φi) + (U +
∑
i

χε(z − Pi)φi)p
]

+
[
ε2(∆ψ1 − ψ1 + p(U +

k∑
i=1

χε(z − Pi)φi)p−1ψ1)
]

+
[
(U +

k∑
i=1

χε(z − Pi)φi + ε2ψ1)p − (U +

k∑
i=1

χε(z − Pi)φi)p −

p(U +

k∑
i=1

χε(z − Pi)φi)p−1ε2ψ1

]
:= I1 + I2 + I3.

Next we calculate I1 to I3 term by term. First from the estimate on ψ1 in (4.4)∫
Ωε

I2Zi = ε2

∫
Ωε

(∆ψ1 − ψ1 + p(U +
∑
i

χε(z − pi)φi)p−1ψ1)Zi

= ε2

∫
Ωε

−pw(z − Pi)p−1 ∂w(z − Pi)
∂τ

ψ1 + p(U +
∑
i

χε(z − Pi)φi)p−1Ziψ1

= ε2

∫
Ωε

p(p− 1)w(z − Pi)p−2 ∂w(z − Pi)
∂τ

ψ1(
∑
j 6=i

∂w(z − Pj)
∂τ

+O(ε))dz

= O(ε3). (5.7)

Moreover∫
Ωε

I3Zi =

∫
Ωε

[
(U +

∑
i

χε(z − Pi)φi + ε2ψ1)p − (U +
∑
i

χε(z − Pi)φi)p

−p(U +
∑
i

χε(z − Pi)φi)p−1ε2ψ1

]
Zi

≤ C

∫
Ωε

ε4|ψ1|2|Zi| = O(ε3). (5.8)

Next from the equation satisfied by φi and the definition of the cutoff function χ,
we get that∫

Ωε

I1Zi =

∫
Ωε

(∆U − U + Up)Zi +
∑
j

∫
Ωε

χε(z − Pj)(∆φj − φj + pUp−1φj)Zi

+[(U +
∑
i

χε(z − Pi)φi)p − Up − pUp−1
∑
i

χε(z − pi)φi]Zi +O(ε3)

=

∫
Ωε

(∆U − U + Up)Zi + I11 + I12 +O(ε3). (5.9)

In the following, we will show that, although φi is of O(ε), but after projection
with respect to Zi, the terms containing φi is indeed O(ε3).
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Similar to the estimate in (4.26), using the equation satisfied by φi, we have for
i = 2, · · · , k − 1∑

j

∫
Ωε

χε(z − Pj)(∆φj − φj + pUp−1φj)Zi

=

∫
Ωε

χε(z − Pi)(∆φj − φj + pUp−1φj)Zi

+
∑
j 6=i

∫
Ωε

χε(z − Pj)(∆φj − φj + pUp−1φj)Zi

=

∫
Ωε

p(Up−1 − wp−1
i )φiZi +O(ε3)

+
∑

j=i−1,i+1

∫
Ωε

χ(z − Pj)(∆φj − φj + pUp−1φj)Zi +O(ε3)

=

∫
Ωε

p(p− 1)wp−2
i (wi+1 + wi−1)φiZi

+
∑

j=i−1,i+1

∫
Ωε

χε(z − Pj)(∆φj − φj + pUp−1φj)Zi +O(ε3)

= O(ε||si − si−1

ε
| − |si − si+1

ε
||min{w(

si − si−1

ε
), w(

si − si+1

ε
)}) +O(ε3)

= O(ε3)

and similarly we can always decompose

k∑
j=1

χε(z − Pj)φj = εψ1,i +O(ε2)

where ψ1,i is a function even in yi1, and by Proposition 2.2, we have

Zi =
∂w(yi)

∂y1
+ εηi +O(ε2)

where ηi is odd in yi1. Thus we have

I12 ≤ C
∫

Ωε

p(p− 2)wp−2
i (

k∑
j=1

χε(z − Pj)φj)2Zidz +O(ε3)

≤ Cε3.

For the case i = 1, k, recall that w( s1−s2ε ), w( sk−sk−1

ε ) = O(ε2), one can also get
that

I11 + I12 = O(ε3). (5.10)

Thus we have the following:∫
Ωε

I1Zidz =

∫
Ωε

(∆U − U + Up)Zi +O(ε3).
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Next for i = 2, · · · , k − 1∫
Ωε

(∆U − U + Up)Zi (5.11)

=

∫
Ωε

[
(
∑
i

PΩε,Pi
w(z − Pi))p −

∑
i

w(z − Pi)p
]
Zi

=

∫
Ωε

[
(w(z − Pi) + εv

(1)
i + ε2(v

(2)
i + v

(3)
i )

+
∑
j 6=i

PΩε,Pi
w(z − Pj) +O(ε3))p −

∑
i

w(z − Pi)p
]
Zi

=

∫
Ωε

pw(z − Pi)p−1
(
εv

(1)
i + ε2(v

(2)
i + v

(3)
i )

+w(z − Pi−1) + w(z − Pi+1)
)∂w(z − Pi)

∂τ
+O(ε3)

=

∫
R2

+

pw(y)(w(y − si−1 − si
ε

e1) + w(y − si+1 − si
ε

e1))
∂w(y)

∂y1

+ε2

∫
R2

+

pw(y)p−1 ∂w(y)

∂y1
v

(3)
i +O(ε3)

Similarly, one has for i = 1, k,∫
Ωε

(∆U − U + Up)Z1

=

∫
R2

+

pw(y)w(y − s2 − s1

ε
e1)

∂w(y)

∂y1

+ε2

∫
R2

+

pw(y)p−1 ∂w(y)

∂y1
v

(3)
1 +O(ε3),

and ∫
Ωε

(∆U − U + Up)Zk

=

∫
R2

+

pw(y)w(y − sk−1 − sk
ε

e1)
∂w(y)

∂y1

+ε2

∫
R2

+

pw(y)p−1 ∂w(y)

∂y1
v

(3)
k +O(ε3).

Next by the definition of v
(3)
i , we can get that∫

R2
+

pw(y)p−1 ∂w(y)

∂y1
v

(3)
i dy =

∫
R2

+

−(∆− 1)
∂w(y)

∂y1
v

(3)
i

= −
∫
∂R2

+

∂w(y)

∂y1

∂v
(3)
i

∂y2
− v(3)

i

∂

∂y2

∂w(y)

∂y1
dy

= −1

3

∫
R

(
w′(|y|)
|y|

)2ρ(3)(Pi)y
4
1dy1

= −ν2ρ
(3)(Pi) = −ν2H

′(γ(si)), (5.12)
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where ν2 = 1
3

∫
R(w

′

|y| )
2y4

1 > 0 is a positive constant.

Recall that the interaction function is defined by

Ψ(s) = −
∫
R2

+

pw(y − (s, 0))w(y)p−1 ∂w(y)

∂y1
dy, (5.13)

Combining (5.9), (5.10),(5.11), (5.12) and (5.13), we know that∫
Ωε

I1Z1dz = −Ψ(|s1 − s2

ε
|)− ε2ν2H

′(γ(s1)) +O(ε3) (5.14)

and for i = 2, · · · , k − 1∫
Ωε

I1Zidz = Ψ(|si − si−1

ε
|)−Ψ(|si − si+1

ε
|)− ε2ν2H

′(γ(si)) +O(ε3) (5.15)

and ∫
Ωε

I1Zkdz = Ψ(|sk − sk−1

ε
|)− ε2ν2H

′(γ(si)) +O(ε3). (5.16)

The results follows from (5.7), (5.8) and (5.14)-(5.16).
�

From Lemma 5.1, the problem (5.3) is reduced to the following system:

Ψ1(| s1−s2ε |) + ε2H ′(γ(s1)) = O(ε3),
Ψ1(| s3−s2ε |)−Ψ1(| s2−s1ε |) + ε2H ′(γ(s2)) = O(ε3),

...

Ψ1(| sk−sk−1

ε |)−Ψ1(| sk−1−sk−2

ε |) + ε2H ′(γ(sk−1)) = O(ε3),

−Ψ1(| sk−sk−1

ε |) + ε2H ′(γ(sk)) = O(ε3).

where we denote by

Ψ1(s) = ν−1
2 Ψ(s). (5.17)

By summing up the first i equations, one has{
Ψ1( si+1−si

ε ) +
∑i
j=1 ε

2H ′(γ(sj)) = O(iε3) for i = 1, · · · , k − 1,∑k
i=1 ε

2H ′(γ(si)) = O(kε3).
(5.18)

We need to find a solution of (5.18 ) in (1.15).

6. Solving the nonlinear system

Our aim in the rest of this paper is to find a solution {si} to the above non-linear
system (5.18) in (1.15).

Observe that the linearized matrix of the above system at main order is degen-
erate, thus the terms containing H ′(γ(s)) will play an important role. We will
explain how we solve system (5.18). The novelty of this paper is to consider the
above system as a discretization of an ODE system. In order to explain this idea,
we first introduce some notations.

Let

s = G(b)
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be the solution of Ψ1(s) = b. Since Ψ1(s) = Cns
− 1

2 e−s(1 + o(1)) as s → ∞, using
this asymptotic behaviour of Ψ1, one has the following:

G(b) = −(1 +O(
ln(− ln b)

ln b
)) ln b, as b→ 0. (6.1)

Then the above reduced system (5.18) is equivalent to the following system:{
si+1 − si = εG(−

∑i
j=1 ε

2H ′(γ(sj)) +O(ε3i)), for i = 1, · · · , k − 1

sk − sk−1 = εG(ε2H ′(γ(sk)) +O(ε3k)).
(6.2)

Let h = −ε ln ε be the boot size, if we denote by si = x(ti) where ti = (i− 1)h,
then from the above system (6.2),{

x(ti+1)−x(ti)
h = − 1

ln εG(− ε
ln ε (−

∑i
j=1H

′(γ(x(tj)))h) +O(ε3i)),
x(tk)−x(tk−1)

h = − 1
ln εG(ε2H ′(γ(x(tk))) +O(ε3k)).

(6.3)

In order the solve the above system, we consider the limiting case of the above

system, i.e. view x(ti+1)−x(ti)
h as x′(t) and

∑i
j=1H

′(γ(x(tj)))h as
∫ t

0
H ′(γ(x(t)))dt,

and introduce the following ODE:
dx
dt = − 1

ln εG( ε
ln ερ(t)),

dρ
dt = H ′(γ(x(t))),
ρ(0) = 0, ρ(bε) = ρb,
x′(bε) = − 1

ln εG(ε2H ′(γ(x(bε)))),

(6.4)

where bε = (k − 1)h = [ bh ]h = b+O(h).

One can see that the above second order ODE has three initial conditions. Be-
sides the two end point initial values, there is an extra condition, i.e. the last
equation of (6.4), which in fact comes from the last equation of (6.2). This ODE
with extra initial condition is not always solvable. It turns out that this extra con-
dition corresponds to some balancing condition of the curvature of the segment γ.
In order to solve this ODE, we need assumption (H1) on γ. For this ODE, we have
the following existence result:

Lemma 6.1. Under the assumption (H1), there exists ε0 > 0, such that for every
ε < ε0, there exist ρb = ρb(ε) < 0, such that the above ODE (6.4) is solvable.
Moreover, ρb satisfies the following asymptotic behaviour:

ρb = −(H ′(γ(bε)) +O(
ln(− ln ε)

ln ε
))h. (6.5)

Proof. From the asymptotic behaviour of G, we know that the first equation of
(6.4) is

dx

dt
= − 1

ln ε
G(

ε

ln ε
ρ(t))

= (1 +O(
ln(− ln ε)

ln ε
))(a1 ln(−ρ(t)) + a2)

where

a1 =
1

ln ε
, a2 = 1− ln(− ln ε)

ln ε
.
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Integrating the above equation from bε to t, one has

x(t)− x(bε) =

∫ t

bε

− 1

ln ε
G(

ε

ln ε
ρ(t))dt

= (1 +O(
ln(− ln ε)

ln ε
))[a2(t− bε) + a1

∫ t

bε

ln(−ρ(t))dt].

Plugging the expression for x(t) into the second equation,

ρ′(t) = H ′(γ(x(bε)) + (1 +O(
ln(− ln ε)

ln ε
))[a2(t− bε) + a1

∫ t

bε

ln(−ρ(t))dt]). (6.6)

By the boundary condition ρ(0) = 0, ρ(bε) = ρb, we have∫ 0

bε

H ′(γ(x(bε)+(1+O(
ln(− ln ε)

ln ε
))[a2(t−bε)+a1

∫ t

bε

ln(−ρ(t))dt]))dt = −ρb. (6.7)

By Taylor’s expansion,

H ′(γ(x(bε) + (1 +O(
ln(− ln ε)

ln ε
))[a2(t− bε) + a1

∫ t

b

ln(−ρ(t))dt]))

= H ′(γ(x(bε) + a2(t− b) +O(
ln(− ln ε)

ln ε
)))

= H ′(γ(x(bε) + a2(t− bε))) +O(
ln(− ln ε)

ln ε
).

So from (6.7) and the above equation, we have∫ 0

bε

H ′(γ(x(t)))dt =

∫ 0

bε

H ′(γ(x(bε) + a2(t− b)))dt+O(
ln(− ln ε)

ln ε
)

= H(γ(x(bε)− a2bε))−H(γ(x(bε))) +O(
ln(− ln ε)

ln ε
)

= ρb. (6.8)

Since by the third boundary condition

x′(bε) = − 1

ln ε
G(ε2H ′(γ(x(bε)))), (6.9)

one can get that

ρb = H ′(γ(x(bε)))ε ln ε. (6.10)

We assume that

ρb = (H ′(γ(bε)) + ρε)ε ln ε, (6.11)

then

x(bε) = bε +
(1 + o(1))ρε
H ′′(γ(bε))

. (6.12)

Using (6.12), (6.8) is reduced to the following:

H(γ(0))−H(γ(bε)) +
H ′(γ(0))−H ′(γ(bε))

H ′′(γ(bε))
ρε (6.13)

+o(ρε) +O(ρ2
ε) = O(

ln(− ln ε)

ln ε
).

By the assumption (H1)

H(γ(0)) = H(γ(b)), H ′(γ(0)) 6= H ′(γ(b)), (6.14)
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and
H ′′(γ) ≥ c0 > 0, bε = b+O(h), (6.15)

the above equation is uniquely solvable with

ρε = O(
ln(− ln ε)

ln ε
). (6.16)

So there exists unique ρb = (H ′(γ(bε)) + O( ln(− ln ε)
ln ε ))ε ln ε such that (6.4) is

solvable, and we have

x(0) = O(
ln(− ln ε)

ln ε
), x(bε) = bε +O(

ln(− ln ε)

ln ε
). (6.17)

�

We will use the solution of the ODE to approximate the solution of (6.2). In
order to obtain a good approximate solution, one need to control the error of

i∑
j=1

H ′(γ(x(tj)))h−
∫ ti+1

0

H ′(γ(x(t)))dt.

So we will use the midpoint Riemann sum approximation of integrals which will
give us

i∑
j=1

H ′(γ(x(tj)))h−
∫ ti+1

0

H ′(γ(x(t)))dt = O(h2). (6.18)

To be more specific, we will choose the approximate solution to be the following:

x0
i = x(t̄i), t̄i =

ti + ti+1

2
, i = 1, · · · , k − 1, (6.19)

and

x0
k = x0

k−1 + εG(
ε

ln ε
ρb) (6.20)

where x(t) is the solution determined by the ODE (6.4).

We want to find the solution to (6.2) of the form

si = x0
i + yi. (6.21)

Then yi will satisfy the following equation:
yi+1 − yi = −Ei + ε

(
G(−ε2

∑i
j=1H

′(γ(x0
j + yj)) +O(ε3i))−G(−ε2

∑i
j=1H

′(γ(x0
j )))

)
,

for i = 1, · · · , k − 1

ε2
∑k
j=1H

′′(γ(x0
j ))yj +O(ε2)

∑k
j=1 |yj |2 = −Ek +O(ε3k),

(6.22)
where

Ei = x0
i+1 − x0

i − εG(−ε2
i∑

j=1

H ′(γ(x0
j )))

for i = 1, · · · , k − 1, and

Ek = ε2
k∑
j=1

H ′(γ(x0
j )).

First we show that the approximate solution we choose is indeed a good approx-
imate solution, i.e. the error Ei is small enough. In fact, we have the following
error estimate:
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Lemma 6.2.

Ei = x0
i+1 − x0

i − εG(−ε2
i∑

j=1

H ′(γ(x0
j ))) = O(ε) (6.23)

for i = 1, · · · , k − 1, and

Ek = ε2
k∑
j=1

H ′(γ(x0
j )) = O(ε2 ln(− ln ε)

ln ε
). (6.24)

Moreover, the following estimate holds:

k−1∑
i=1

|Ei| = O(ε). (6.25)

Proof. First for i = k − 1, we have

x0
k − x0

k−1 − εG(−ε2
k−1∑
j=1

H ′(γ(x0
j )))

= εG(
ε

ln ε
ρb)− εG(−ε2

k−1∑
j=1

H ′(γ(x0
j )))

= O(
ε

ρb
)|ρb −

k−1∑
j=1

H ′(γ()x0
j )h|

Since we choose the midpoint approximation, we have for i = 1, · · · , k − 2,

ρ(ti+1)−
i∑

j=1

H ′(γ(x0
j ))h = O(h2), (6.26)

and

k∑
j=1

H ′(γ(x0
j ))h = (

k−1∑
j=1

H ′(γ(x0
j ))h− ρ(tk)) + (H ′(γ(x0

k))h+ ρ(tk))

= O(h2) +O(
ln(− ln ε)

ln ε
)h = O(

ln(− ln ε)

ln ε
)h. (6.27)

By (6.26) and (6.27), and recall that ρb = O(h), one can obtain that

Ek−1 = x0
k − x0

k−1 − εG(−ε2
k−1∑
j=1

H ′(γ(x0
j ))) = O(εh)

and

Ek = O(ε2 ln(− ln ε)

ln ε
). (6.28)

Next by the equation satisfied by ρ(t), we can get that

ρ(ti) = O(min{i, k − i+ 1}h) (6.29)
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so for i = 1, · · · , k − 2

x0
i+1 − x0

i − εG(−ε2
i∑

j=1

H ′(γ(x0
j )))

=

∫ t̄i+1

t̄i

− 1

ln ε
G(

ε

ln ε
ρ(t))dt− εG(−ε2

i∑
j=1

H ′(γ(x0
j )))

= − 1

ln ε
G(

ε

ln ε
ρ(ti+1))h− εG(−ε2

i∑
j=1

H ′(γ(x0
j ))) +O(

ρ′′ρ− (ρ′)2

| ln ε|ρ2
(ti+1))h3

= ε(G(
ε

ln ε
ρ(ti+1))−G(−ε2

i∑
j=1

H ′(γ(x0
j )))) +O(

ρ′′ρ− (ρ′)2

| ln ε|ρ2
(ti+1))h3

= O(
ε

ρ(ti+1)
)(ρ(ti+1)−

i∑
j=1

H ′(γ(x0
j ))h) +O(

ρ′′ρ− (ρ′)2

| ln ε|ρ2
(ti+1))h3

= O(
εh

min{i, k − i+ 1}
) +O(ε)(

1

min{i, k − i+ 1}2
+

h

min{i, k − i+ 1}
)

= O(ε).

Morevore, from the above estimate, we have

i∑
j=1

Ej = O(ε), for i = 1, · · · , k − 1.

�

Finally, we will show that equation (6.22) is solvable.

Lemma 6.3. There exists ε0 > 0, such that for ε < ε0, there exists a solution
{yi}1≤i≤k to (6.22) such that

‖y‖∞ ≤ Cε ln(− ln ε). (6.30)

Proof. For ‖y‖∞ << ε| ln ε|, we have

εG(−ε2
i∑

j=1

H ′(γ(x0
j + yj)) +O(ε3i))− εG(−ε2

i∑
j=1

H ′(γ(x0
j )))

= −ε(
∑i
j=1H

′′(γ(x0
j ))yj∑i

j=1H
′(γ(x0

j ))
) +O(

εi|y|2j≤i∑i
j=1H

′(γ(x0
j ))

) +O(
ε2i∑i

j=1H
′(γ(x0

j ))
)

The equations (6.22) for yi can be rewritten as follows:
yi+1 − yi + ε

∑i
j=1H

′′(γ(x0
j ))yj∑i

j=1H
′(γ(x0

j ))
= −Ei +O(

εi|y|2j≤i∑i
j=1H

′(γ(x0
j ))

) +O( ε2i∑i
j=1H

′(γ(x0
j ))

)

for i = 1, · · · , k − 1∑k
j=1H

′′(γ(x0
j ))yj +

∑k
j=1H

′′′(γ(x0
j ))y

2
j = O(εk) +O( ln(− ln ε)

ln ε ).

(6.31)
We will show that one can first solve y2 to yk in terms of y1 from the first k − 1
equations, and finally solve y1 by the k-th equation of (6.31).
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For 1 ≤ l ≤ i0 = (1− δ)k where δ > 0 is a small number to be determined later,
we have

yl+1 − y1 + ε

l∑
i=1

∑i
j=1H

′′(γ(x0
j ))yj∑i

j=1H
′(γ(x0

j ))

=

l∑
i=1

Ei +

l∑
i=1

εi∑i
j=1H

′(γ(x0
j ))
|y|2i≤l +

l∑
i=1

ε2i∑i
j=1H

′(γ(x0
j ))

= O(ε) +

l∑
i=1

εi|y|2i≤l
min{i, k − i+ 1}

+

l∑
i=1

O(
ε2i

min{i, k − i+ 1}
)

= O(ε) +O(
εl

δ
)|y|2i≤l.

where we denote by

|y|i1≤i≤i2 = sup
i1≤i≤i2

|yi|.

Moreover,

ε

l∑
i=1

∑i
j=1H

′′(γ(x0
j ))yj∑i

j=1H
′(γ(x0

j ))
= ε

l∑
i=1

O(
i|y|i≤l

min{i, k − i+ 1}
)

= O(
εl|y|i≤l
δ

) = o(1)|y|i≤l.

Thus one can get that for l ≤ i0

yl = y1 + o(1)|y|i≤i0 + o(1)|y|2i≤i0 +O(ε) (6.32)

So we can get that

yi = (1 + o(1))y1 +O(ε), i = 2, · · · , i0. (6.33)

For l > i0, we have the following:

yl+1 − y1 = −ε
l∑

i=i0+1

∑i
j=1H

′′(γ(x0
j ))yj∑i

j=1H
′(γ(x0

j ))

+ O(ε) +O(|y|2i0<i≤l) +O(
εl

δ
)|y|2i≤i0 + o(1)|y|i≤i0

= C0δ|y|i0<i≤l +O(|y|2i0<i≤l) +O(|y|i≤i0) +O(ε)

for some C0 independent of ε and δ. So for i0 < i ≤ k,

yi = O(y1) + C0δ|y|i0<i≤l +O(|y|2i0<i≤l) +O(ε) (6.34)

If δ > 0 is small such that C0δ <
1
4 , then the above system is solvable with

yi = O(y1) +O(ε). (6.35)
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From the last equation, we have

i0∑
i=1

H ′′(γ(x0
i ))yi +

k∑
i=i0+1

H ′′(γ(x0
i ))yi +O(k|y1|2) +O(kε2)

= (

i0∑
i=1

H ′′(γ(x0
i ))(1 + o(1))y1 +O(δk|y1|) +O(kε) +O(k|y1|2)

= O(
ln(− ln ε)

ln ε
).

Thus by the assumption (H1), the equation is reduced to

y1 = o(1)y1 +O(δ)|y1|+O(|y1|2) +O(ε ln(− ln ε))

If we further choose δ small enough but independent of ε such that O(δ)|y1| < 1
2 |y1|,

it is easy to see that by contraction mapping, the above equation has a solution
and satisfies

y1 = O(ε ln(− ln ε)). (6.36)

Thus we get that there exists a solution to (6.22) with

‖y‖∞ ≤ Cε ln(− ln ε) << ε| ln ε|.
Thus we have proved the existence of solution to (6.22). �

7. Appendix: Proof of Proposition 3.1

In this appendix, we shall give a proof of Proposition 3.1. The proof is rather
standard. It follows from argument in [5] and [30]. It is based on Fredholm Alter-
native Theorem for compact operator and an a-priori estimate.

First we need an estimate on the following matrix M defined by

Mij =

∫
Ωε

ZiZjdz, i, j = 1, · · · , k. (7.1)

Lemma 7.1. For ε sufficiently small, given any vector ~b ∈ Rk, there exists a unique

vector ~β ∈ Rk, such that M~β = ~b. Moreover,

‖~β‖∞ ≤ C‖~b‖∞ (7.2)

for some constant C independent of ε.

Proof. To prove the existence, it is sufficient to prove the a priori estimate (7.2).
Suppose that |βi| = ‖β‖∞, we have

k∑
i=1

Mijβj = bi.

For the entries Mij , from the definition of Λk, and the exponential decay property
of Zi, we know that

Mii =

∫
Ωε

Z2
i dz = (1 + o(1))

∫
R2

+

(
∂w

∂y1
)2dy > c0 > 0,

and ∑
j 6=i

|Mij | ≤ C
∑
j 6=i

e−
|Pi−Pj |

2 = o(1).
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Hence for ε small, we have

c0‖~β‖∞ ≤ c0|~βi| ≤
∑
j 6=i

|Mij ||~βj |+ |bi| ≤ o(1)‖~β‖∞ + ‖~b‖∞

from which the desired result follows. �

Next we need the following a priori estimate:

Lemma 7.2. Let h ∈ L2(Ωε) with ‖h‖∗ bounded and assume that (ψ, {ci}) is a
solution to (3.4). Then there exist positive numbers ε0 and C, such that for all
ε ≤ ε0, for any points Pi, i = 1, . . . , k given by (1.15) , one has

‖ψ‖∗ ≤ C‖h‖∗. (7.3)

Proof. We argue by contradiction. Assume there exists ψ solution to (3.4) and

‖h‖∗ → 0, ‖ψ‖∗ = 1.

We prove that
ci → 0 for i = 1, · · · , k. (7.4)

Multiplying the equation in (3.4) against Zj and integrating in Ωε, we get∫
Ωε

LεψZj(z) =

∫
Ωε

hZj +M(cj),

By the exponentially decay of Zi, we first know that

|
∫

Ωε

hZj | ≤ C‖h‖∗.

Here and in what follows, C stands for a positive constant independent of ε, as
ε→ 0 . Secondly, by the equation satisfied by PΩε,Pi

w(z − Pi),∫
Ωε

LεψZidz =

∫
Ωε

(∆ψ − ψ + p(

k∑
i=1

PΩε,Pi
w(z − Pi))p−1ψ)Zidz

=

∫
Ωε

(∆Zi − Zi + p(

k∑
i=−k

PΩε,Pi
w(z − Pi))p−1Zi)ψdz

=

∫
Ωε

p(

k∑
i=1

[PΩε,Pi
w(z − Pi))p−1

∂PΩε,Pi
w(z − Pi)
∂τ

− pw(z − Pi)p−1 ∂w(z − Pi)
∂τ

]ψdz

≤ C
∫
B| ln ε|(Pi)

|∂w(z − Pi)
∂τ

||O(ε) + w(z − Pi)p−2
∑
j 6=i

PΩε,Pi
w(z − Pj)||ψ|dz

+

∫
Ωε/B| ln ε|(Pi)

∂|w(z − pi)
∂τ

|[
k∑
j=1

wp−1
j +O(ε)

k∑
j=1

e−µ|z−Pj |]|ψ|dz

≤ C‖ψ‖∗(O(ε) +O(ε
p−η
2 ))

≤ Cε‖ψ‖∗
if we choose η small enough such that p− η > 2. This can be done since p > 2.

Since M is invertible and ‖M−1‖ ≤ C, we get that

|ci| ≤ C(‖h‖∗ +O(ε)‖ψ‖∗). (7.5)
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Thus we get the validity of (7.4), since we are assuming ‖ψ‖∗ = 1 and ‖h‖∗ → 0.

Let now µ ∈ (0, 1). It is easy to check that the function

W :=

k∑
i=1

e−µ |·−Pi|,

satisfies

LεW ≤
1

2
(µ2 − 1)W ,

in Ωε \ ∪j=1,...,kB(Pj , R) provided R is fixed large enough (independently of ε).
Hence the function W can be used as a barrier to prove the pointwise estimate

|φ|(x) ≤ C
(
‖Lε ψ‖∗ + sup

j
‖ψ‖L∞(B(pj ,R)∩Ωε)

)
W (x) , (7.6)

for all z ∈ Ωε \ ∪jB(Pj , R).

Granted these preliminary estimates, the proof of the result goes by contradic-
tion. Let us assume there exist a sequence of ε → 0 and a sequence of solutions
of (3.4) for which the inequality is not true. The problem being linear, we can
reduce to the case where we have a sequence ε(n) tending to 0 and sequences h(n),
ψ(n), c(n) such that

‖h(n)‖∗ → 0, and ‖ψ(n)‖∗ = 1.

But (7.4) implies that we also have

‖c(n)‖∗ → 0 .

Then (7.6) implies that there exists P
(n)
i such that

‖ψ(n)‖
L∞(B(P

(n)
i ,R))

≥ C, (7.7)

for some fixed constant C > 0. Using elliptic estimates together with Ascoli-

Arzela’s theorem, we can find a sequence P
(n)
i and we can extract, from the sequence

ψ
(n)
i (· −P (n)

i ) a subsequence which will converge (on compact) to ψ∞ a solution of{ (
∆− 1 + pwp−1

)
ψ∞ = 0 in R2

+,
∂ψ∞
∂y2

= 0, on ∂R2
+

which is bounded by a constant times e−µ |x|, with µ > 0. Moreover, since ψ
(n)
i

satisfies the orthogonality conditions in (3.4), the limit function ψ∞ also satisfies∫
R2

+

ψ∞
∂w

∂y1
dx = 0 .

But the solution w being non-degenerate, this implies that ψ∞ ≡ 0, which is cer-
tainly in contradiction with (7.7) which implies that ψ∞ is not identically equal to
0.

Having reached a contradiction, this completes the proof of the lemma. �

We can now prove Proposition 3.1.

Proof of Proposition 3.1. Consider the space

H = {u ∈ H2
N (Ωε) :

∫
Ωε

uZi = 0, i = 1, . . . , k}.
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Notice that the problem (3.4) in ψ gets re-written as

ψ +K(ψ) = h̄ in H (7.8)

where h̄ is defined by duality and K : H → H is a linear compact operator. Using
Fredholm’s alternative, showing that equation (7.8) has a unique solution for each
h̄ is equivalent to showing that the equation has a unique solution for h̄ = 0,
which in turn follows from Proposition 7.2. The estimate (3.6) follows directly
from Proposition 7.2. This concludes the proof of Proposition (3.1).
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