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Abstract. We construct infinite time blow-up solution to the following heat equation with Sobolev
critical exponent and drift termsut = ∆u + ∇b(x) · ∇u + u

n+2
n−2 in Rn × (0,+∞),

u(·, 0) = u0 in Rn,

where b(x) is a smooth bounded function in Rn with n ≥ 5 and the initial datum u0 is positive and

smooth. Let qj ∈ Rn, j = 1, · · · , k, be distinct nondegenerate local minimum points of b(x). Assume
that an eigenvalue condition (1.6) is satisfied. We prove the existence of a positive smooth solution

u(x, t) which blows up at infinite time near those points with the form

u(x, t) ≈
k∑

j=1

αn

(
µj(t)

µj(t)2 + |x− ξj(t)|2

)n−2
2

, as t→ +∞.

Here ξj(t)→ qj and 0 < µj(t)→ 0 exponentially as t→ +∞.

1. Introduction and main results

In this paper, we consider the following anisotropic heat equation with Sobolev critical exponent{
ut = ∆u+∇b(x) · ∇u+ u

n+2
n−2 in Rn × (0,+∞),

u(·, 0) = u0 in Rn,
(1.1)

where we write b(x) = log a(x) and a(x) is a positive smooth bounded function in Rn(n ≥ 5), u0 is a
positive smooth function. Anisotropic elliptic and parabolic equations have attracted much attention
in recent years. The anisotropic differential operator of the divergence form is defined by

∆au =
1

a(x)
div(a(x)∇u) = ∆u+∇ log a(x) · ∇u.

For instance, the Green’s function of ∆a in a smooth bounded domain was investigated in [30].
Anisotropic equations have a wide range of applications in mathematical modeling of physical and
mechanical processes in anisotropic continuous medium. Concentration phenomena have been found
in many anisotropic elliptic problems. The role of the anisotropic coefficient a(x) in elliptic bubbling
phenomena has been known for a long time. Generally speaking, the bubbling location is determined
by the anisotropic coefficient a(x). See for example [24, 25, 29, 55, 57–59] and the references therein.
Inspired by these results, we consider the related problem in a parabolic setting, namely the problem
(1.1). We will construct infinite time blow-up solutions to problem (1.1), which rely on the anisotropic
coefficient a(x).

For the semilinear parabolic problem with gradient term{
ut = ∆u+ up + g(x, t, u,∇u), in Rn × (0,+∞),

u(·, 0) = u0, in Rn,

where p > 1, the asymptotic behavior and the blow-up rate may be influenced by the gradient per-
turbations. Related results can be found in the survey [52] and the book [46]. For a special case
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g(x, t, u,∇u) = a · ∇(uq), in [1], Aguirre and Escobedo gave conditions which guarantee the existence
of finite time blow-up solutions.

When a(x) is a constant, problem (1.1) becomes a special case of the Fujita equation{
ut = ∆u+ up, in Rn × (0,+∞),

u(·, 0) = u0, in Rn,
(1.2)

with p > 1. After Fujita’s seminal work [27], a lot of literatures have been devoted to studying this
problem about the blow-up rates, sets and profiles. See, for example, [8, 33, 34, 36–39, 53] and the
references therein. Solutions with multiple type I blow-up were first built in the real line in [40].
In particular, the values of the exponent p in problem (1.2) have fundamental effect on the blow-up
phenomena. The critical case p = n+2

n−2 is very special in various ways. For the subcritical case p < n+2
n−2 ,

in [42] Merle and Zaag found multiple-point, finite time type I blow-up solution and studied its stability.
For the supercritical case p > n+2

n−2 , Matano and Merle classified the radial blow-up solutions in [39].
Define the Joseph-Lundgren exponent

pJL(n) :=

{
∞ for 3 ≤ n ≤ 10,

1 + 4
n−4−2

√
n−1

for n ≥ 11.

For n+2
n−2 < p < pJL, no type II blow-up is present for radial solutions in the case of a ball or in

entire space under additional assumptions [37, 38, 43]. In [21], del Pino, Musso and Wei constructed
non-radial type II blow-up solutions in the range n+2

n−2 < p < pJL. For the critical case p = n+2
n−2 ,

Collot, Merle and Raphaël proved classification results near the ground state of the energy critical
heat equation in Rn with n ≥ 7 in [7]. In [51], by using the energy method, Schweyer constructed
the radial, type II finite time blow-up solution to the energy critical heat equation in R4. In [22], del
Pino, Musso and Wei found the existence of finite time type II blow-up solution for the energy critical
heat equation in R5. Concerning infinite time blow-up, in a very interesting paper [26], Fila and King
studied problem (1.2) with p = n+2

n−2 and provided insight on the question of infinite time blow-up
in the case of a radially symmetric, positive initial condition with an exact power decay rate. Using
formal matching asymptotic analysis, they demonstrated that the power decay determines the blow-up
rate in a precise manner. Intriguingly enough, their analysis leads them to conjecture that infinite
time blow-up should only happen in low dimensions 3 and 4, see Conjecture 1.1 in [26]. Recently this
is confirmed and rigorously proved in [20]. Bubbling phenomena are present in many other critical
contexts, for example, Keller-Segel chemotaxis system, harmonic map heat flow, Schrödinger map and
various geometric flows. We refer the readers for instance to [10–13,28,31,32,35,41] and the references
therein.

In [9], Cortázar, del Pino and Musso investigated the energy critical heat equation
ut = ∆u+ u

n+2
n−2 , in Ω× (0,+∞),

u = 0, on ∂Ω× (0,+∞),

u(·, 0) = u0, in Ω,

(1.3)

where Ω is a smooth bounded domain in Rn with n ≥ 5, and the initial datum u0 is positive and
smooth. Cortázar, del Pino and Musso constructed solutions exhibiting infinite time blow-up at
prescribed points q1, · · · , qk such that the matrix

G(q) =


H(q1, q1) −G(q1, q2) · · · −G(q1, qk)
−G(q2, q1) H(q2, q2) · · · −G(q2, qk)

...
...

. . .
...

−G(qk, q1) −G(qk, q2) · · · H(qk, qk)

 (1.4)

is positively definite, where G(x, y) is the Dirichlet Green’s function of −∆ in Ω and H(x, y) is its
regular part. More precisely, they proved the existence of an initial datum u0 and smooth parameters
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ξj(t) → qj , 0 < µj(t) → 0, as t → +∞, j = 1, · · · , k, such that there exists an infinite time blow-up
solution uq to (1.3) of the following approximate form

uq ≈
k∑
j=1

αn

(
µj(t)

µj(t)2 + |x− ξj(t)|2

)n−2
2

with αn = [n(n − 2)]
n−2

4 and µj(t) = βjt
− 1
n−4 (1 + o(1)) for certain positive constant βj . We remark

that, after the pioneering works [4,5], there has been a lot of literature devoted to studying the role of
Green’s function and its regular part in elliptic bubbling phenomena for perturbations of the critical
problem. See [15,45,47,48] and the references therein.

In this paper, we consider the anisotropic heat equation (1.1) in Rn (n ≥ 5). As mentioned before,
in the absence of the vector fields, infinite time blow-up may not exist for dimensions n ≥ 5 ( [26]). The
main aim of this paper is to show that the existence of vector fields can produce infinite time blow-up
in all dimensions n ≥ 5. It turns out that the anisotropic coefficient a(x) will play an important role
in the sense that it basically determines the location of blow-up points and the blow-up rates. More
precisely, the blow-up points q1, · · · , qk are distinct critical points of a(x) such that the Hessian matrix

∇2 log a(qj) := A(qj)

is positively definite for j = 1, · · · , k. The Hessian matrix A(qj) will play a similar role as G(q) given
in (1.4). We denote Pj by the invertible matrix such that

PjA(qj)Pj
T = diag

(
σ

(j)
1 , σ

(j)
2 , · · · , σ(j)

n

)
, for j = 1, · · · , k, (1.5)

where all the eigenvalues σ
(j)
1 , · · · , σ(j)

n of the matrix A(qj) are positive. Define

σ̄j :=

n∑
i=1

σ
(j)
i

n
, j = 1, · · · , k.

We shall assume that there exists a small positive number σ � 1, such that eigenvalues σ
(j)
i and σ̄j

satisfy the following condition

σ
(j)
i < (1 + σ)

3n

n+ 2
σ̄j , i = 1, · · · , n, j = 1, · · · , k. (1.6)

The above restriction (1.6) is required to guarantee the solvability of our final reduced equations for
parameter functions ξj(t), j = 1, · · · , k. See Section 5 for details.

Our main result is stated as follows.

Theorem 1. Assume that n ≥ 5, q1, · · · , qk are distinct critical points of a(x) such that the Hessian

matrix A(qj) is positively definite and the eigenvalues σ
(j)
i (i = 1, · · · , n, j = 1, · · · , k) satisfy the

condition (1.6). Then there exist smooth functions µj(t), ξj(t), j = 1, · · · , k and an initial datum u0,
such that problem (1.1) has a solution of the form

u(x, t) =

k∑
j=1

αn

(
µj(t)

µj(t)2 + |x− ξj(t)|2

)n−2
2 (

1 + o(1)
)
,

where αn = [n(n− 2)]
n−2

4 and o(1)→ 0 as t→ +∞, uniformly away from the points qj, and

µj(t) = e−κjt(1 + o(1)), |ξj(t)− qj | = O(e−κj(1+σ)t), as t→ +∞,
for certain positive constant κj defined in (2.25). Moreover, there exists a codimension-k submanifold
M in X :=

{
u ∈ C1(Rn) : lim

|x|→∞
u(x) = 0

}
containing uq(x, 0) such that, if u0 is a small perturbation
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of uq(x, 0) in M, then the solution u(x, t) of (1.1) still takes the form

u(x, t) =

k∑
j=1

αn

(
µ̃j(t)

µ̃j(t)2 + |x− ξ̃j(t)|2

)n−2
2

(1 + o(1)) ,

where the point q̃j is close to qj for j = 1, · · · , k.

We make several remarks as follows.

Remark 1.1.

(1) A specific example of the anisotropic function a(x) is a(x) = e−e
−|x|2

. In this case, the infinite
blow-up occurs at the origin O = (0, · · · , 0), which is the local minimum of b(x) = log a(x).
Moreover, the eigenvalue condition (1.6) is satisfied since the Hessian is a diagonal matrix
A(O) = diag(2, · · · , 2) and (1 + σ) 3n

n+2 > 1 for n ≥ 5.

(2) In fact, the case in which the anisotropic function a(x, t) depends also on time can be dealt
with similarly. More precisely, the dynamics for µ0j(t) (c.f. (2.23)) now become

c0 µ̇0j(t) + cj(t)µ0j(t) = 0, j = 1, · · · , k,
where cj(t) is a function depending on a(x, t) and also the blow-up points. Then suitable scaling
parameter µ0j(t) can be chosen by the above ODE. Another aspect is that the key estimates in
the linear heat equation (Section 4.1) can be obtained similarly due to the work of Aronson [2]
as long as similar regularity assumptions are imposed on a(x, t).

(3) We believe the infinite time blow-up also exists for the low dimensions n = 3, 4. But difficulties
may arise when solving the scaling parameter µ0j due to the slow decay of the error. We will
return to this topic in a future work.

The proof of Theorem 1 is mainly based on the inner–outer gluing procedure. The inner–outer
gluing procedure has been a very powerful tool in constructing solutions in various elliptic problems,
see for instance [13,16–18] and the references therein. Also, this method has been successfully applied
to many parabolic equations recently, such as the harmonic map flow from R2 to S2 [12], the infinite
time blow-up [9,20,22,23] and infinite time bubble towers [19] in energy critical heat equations, type II
finite time blow-up along curve for supercritical heat equation [21], vortex dynamics in Euler flows [11],
and others arsing from geometry and fractional context [10,44,49,50]. We refer the readers to a survey
by del Pino [14] for more results in parabolic settings.

Before we proceed to the proof, we sketch some of the main ideas used in our analysis. In Section 2,
we shall construct the first approximation of the form (2.3) and compute the error. In order to improve
the approximation, solvability conditions are required for the elliptic linearized operator around the
bubble, which will imply the scaling parameter functions µj(t) at main order. After the correction
has been added, we set up the inner–outer gluing scheme in Section 3, in which we decompose the

small perturbation in the form
∑k
j=1 ηj,Rφ̃j + ψ where ηj,R is a smooth cut-off function supported

near the concentration point qj . The tuple (φ̃j , ψ) will satisfy a coupled nonlinear system: the outer

problem for ψ and the inner problem for φ̃j . Basically, the outer problem is a heat equation with

coupling from the inner solution φ̃j , while the inner problem is the linearized equation around the
bubble. In Section 4, we will use the contraction mapping theorem to solve the outer problem (4.1)
for ψ. The key ingredient of the proof is to derive a priori estimates for associated linear problem of
the outer problem. In [9] bounded domain case, the a priori estimates are established by a well-chosen
comparison function and the parabolic estimates. Due to the extra gradient term in our case, the a
priori estimates are achieved by the Duhamel’s formula. As a consequence, the a priori estimates we
get appear more in parabolic nature. More precisely, the solution to the linear outer problem behaves
differently inside and outside the self-similar region. From the linear theory developed in [9, Section
7], the inner problem can be solved, provided that certain orthogonality conditions are satisfied, by
means of the contraction mapping theorem. This will be the context of Section 6. The orthogonality
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conditions will be achieved by adjusting higher order terms of the parameter functions µj(t) and ξj(t)
in Section 5.2.

Notation. In the sequel, we shall use the symbol “ . ” to denote “ ≤ C ” for a positive constant C
independent of t and t0, and C may change from line to line. Here t0 > 0 is a constant fixed sufficiently
large.

2. Construction of the approximate solution and error estimates

The aim of this Section is to construct the approximate solution u∗µ,ξ (see (2.28)) and then evaluate

its error S[u∗µ,ξ], where the error operator S is defined as

S[u] : = −ut + ∆u+∇ log a(x) · ∇u+ up

with p = n+2
n−2 .

It is well known that all positive entire solutions of the equation

∆U + U
n+2
n−2 = 0 in Rn

are given by the Aubin-Talenti bubbles

Uµ,ξ(x) = µ−
n−2

2 U

(
x− ξ
µ

)
= αn

(
µ

µ2 + |x− ξ|2

)n−2
2

,

which are extremals of the Sobolev’s embedding (see [3, 54]), where αn = [n(n− 2)]
n−2

4 .
To explain the idea, we sketch the major steps of Section 2 here:

Step 1 (First approximate solution)

Our first approximate solution to problem (1.1) is

uµ,ξ(x, t) =

k∑
j=1

Uµj(t),ξj(t)(x)

with ξj(t) → qj and 0 < µj(t) → 0 as t → ∞. Near each concentration point qj for j = 1, · · · , k, the
error of uµ,ξ can be computed as

S[uµ,ξ](x, t) = µ
−n+2

2
j E0j [µj , µ̇j ](yj , t) + h.o.t., yj =

x− ξj(t)
µj(t)

,

with the main error

E0j [µj , µ̇j ](yj , t) = µj µ̇jZn+1(yj) + µ2
jA(qj)yj · ∇U(yj). (2.1)

Here Zn+1 = n−2
2 U(y) + y · ∇U(y). We assume that

µj(t) = bjµ0j(t) + λj(t), |ξj(t)− qj | = O(µ1+σ
0j (t)),

where bj are positive constants (we shall take bj = 1 in the sequel) and the function λj(t) → 0 as
t→∞. Then we see that the main order of (2.1) is given by

E0j [µ0j , µ̇0j ](yj , t) := b2jµ0j µ̇0jZn+1(yj) + b2jµ
2
0jA(qj)yj · ∇U(yj).

Step 2 (Second approximate solution with correction)

In order to improve the approximate solution, we add a correction

Φ̌(x, t) :=

k∑
j=1

µ
−n−2

2
j Φj

(
x− ξj
µj

, t

)
to cancel out the main order of the error µ

−n+2
2

j E0j [µ0j , µ̇0j ](yj , t), namely, Φj solves the following
elliptic equation

∆Φj + pUp−1Φj = −E0j [µ0j , µ̇0j ] in Rn, Φj(yj , t)→ 0 as |yj | → ∞. (2.2)
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Problem (2.2) is solvable if and only if the orthogonality conditions∫
Rn
E0j [µ0j , µ̇0j ](yj , t)Zn+1(yj) dyj = 0, j = 1, · · · , k

hold. The scaling parameters µ0j(t) at main order are derived from the above orthogonality conditions.
So we choose a better approximate solution

u∗µ,ξ(x, t) := uµ,ξ(x, t) + Φ̌(x, t).

Step 3 (Estimates of the new error S[u∗µ,ξ])

Near the concentration point qj for fixed j ∈ {1, · · · , k}, we shall evaluate the new error

S[u∗µ,ξ] =µ
−n+2

2
j

{(
µ0j λ̇j + λjµ̇0j + λj λ̇j

)
Zn+1(yj) +

(
2µ0jλj + λ2

j

)
A(qj)yj · ∇U(yj)

+ µj
(
ξ̇j · ∇U(yj) + A(qj)(ξj − qj) · ∇U(yj)

)}
+ h.o.t.,

while in the region away from each concentration point, the error S[u∗µ,ξ] is of smaller size compared
to the error in the region near qj .

2.1. The first approximate solution. Given k distinct points q1, · · · , qk ∈ Rn, our first approximate
solution of problem (1.1) is

uµ,ξ(x, t) =

k∑
j=1

Uµj(t),ξj(t)(x) =

k∑
j=1

µ
−n−2

2
j (t)U

(x− ξj(t)
µj(t)

)
(2.3)

with ξj(t) → qj and 0 < µj(t) → 0 as t → ∞ for each j = 1, · · · , k. The functions ξj and µj
cannot of course be arbitrary. More precisely, we assume that µj(t) and ξj(t) take the following forms
respectively

µj(t) = bjµ0j(t) + λj(t),
∣∣ξj(t)− qj∣∣ = O(µ1+σ

0j (t)), (2.4)

where bj are positive constants (in the following, we will choose bj to be 1). Moreover, we assume that

λj satisfies |λj(t)|+ |λ̇j(t)| � µ0j(t) and λj(t)→ 0 as t→∞.
The error of the first approximation uµ,ξ(x, t) is

S[uµ,ξ] =−
k∑
j=1

∂tUµj ,ξj +

k∑
j=1

∇x log a(x) · ∇xUµj ,ξj +
( k∑
j=1

Uµj ,ξj

)p
−

k∑
j=1

Upµj ,ξj .

We define

Bj :=
{
x ∈ RN , |x− ξj(t)| ≤ δ

}
, j = 1, · · · , k, (2.5)

where 0 < δ � 1
2 min
i 6=j
|qi−qj | is a small fixed number. In the following lemma, we will give a description

of the error S[uµ,ξ].

Lemma 2.1. Let yj =
x−ξj(t)
µj(t)

and 0 < α < 1. The error S[uµ,ξ](x, t) can be estimated as

S[uµ,ξ] =


µ
−n+2

2
j

{
E0j [µj , µ̇j ] + E1j [µj , ξj , ξ̇j ] +Rj

}
, if x ∈ Bj ,

k∑
j=1

(
µ
−n2 +1−α
0j µ̇jgj

1 + |yj |n−3+α
+
µ
−n2 +2−α
0j ξ̇j · ~gj
1 + |yj |n−3+α

+
µ
−n2 +2−α
0j g̃j

1 + |yj |n−3+α

)
, if x /∈ ∪kj=1Bj ,

(2.6)

with
E0j [µj , µ̇j ] = µj µ̇jZn+1(yj) + µ2

jA(qj)yj · ∇U(yj), (2.7)

E1j [µj , ξj , ξ̇j ] = µj ξ̇j · ∇U(yj) + µjA(qj)(ξj − qj) · ∇U(yj), (2.8)
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and

Rj =
∑
i 6=j

(µ0iµ0j)
n−2

2 O(|qj − qi|2−n)

1 + |yj |4
+
∑
i 6=j

(
µ0iµ0j

)n+2
2 O

(
|qj − qi|−(n+2)

)
+
∑
i 6=j

µ
n+2

2
0j

(
µ
n
2−2
i µ̇iO(|qj − qi|2−n) + µ

n
2−1
i ξ̇i · ~fi1

)
+

µ3
0jO(1)

1 + |yj |n−3

+
∑
i 6=j

µ
n−2

2
0i µ

n+2
2

0j O(|qj − qi|1−n),

(2.9)

where ~fi1 is a smooth and bounded function of (y, µ−1
0j µ, ξ, µjyj), gj, ~gj, g̃j are smooth and bounded

functions of (x, µ−1
0j µ, ξ). Here Zn+1(y) := n−2

2 U(y) + y · ∇U(y).

Proof. We discuss two different cases.

Case 1: x ∈ Bj for any fixed j ∈ {1, · · · , k}.

Recalling the definition of uµ,ξ as in (2.3) and yj =
x−ξj(t)
µj(t)

, we can write uµ,ξ as

uµ,ξ(x, t) =

k∑
j=1

µ
−n−2

2
j U(yj).

We decompose
S[uµ,ξ] := S1 + S2 + S3,

where

S1 = µ
−n+2

2
j

{(
µj µ̇jZn+1(yj) + µj ξ̇j · ∇U(yj)

)
+
∑
i6=j

(
µiµ
−1
j

)−n+2
2

(
µiµ̇iZn+1(yi) + µiξ̇i · ∇U(yi)

)}
,

S2 = µ
−n2
j

∇x log a(x) · ∇U(yj) +
∑
i 6=j

(
µiµ
−1
j

)−n2∇x log a(x) · ∇U(yi)

 ,

S3 =

 k∑
j=1

µ
−n−2

2
j U(yj)

p

−
k∑
j=1

µ
−n+2

2
j Up(yj),

and

Zn+1(y) :=
n− 2

2
U(y) + y · ∇U(y).

For i 6= j, we write

U(yi) =U
(x− ξi

µi

)
= U

(µjyj + ξj − ξi
µi

)
=

αnµ
n−2
i[

µ2
i + |µjyj + ξj − ξi|2

]n−2
2

=
αnµ

n−2
i

|µjyj + ξj − ξi|n−2

1(
1 +

µ2
i

|µjyj+ξj−ξi|2

)n−2
2

.

Then by direct Taylor expansion and yj =
x−ξj
µj

, we get the following estimates

U(yi) = µn−2
i O(|qj − qi|2−n). (2.10)
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Similarly, we can get
yi · ∇U(yi) = µn−2

i O
(
|qj − qi|2−n

)
. (2.11)

First, we will give the estimate of the terms in S1. Using (2.10) and (2.11), for i 6= j, we get

µiµ̇iZn+1(yi) + µiξ̇i · ∇U(yi) = µiµ̇i

(
n− 2

2
U(yi) + yi · ∇U(yi)

)
+ µiξ̇i · ∇U(yi)

= µ̇iµ
n−1
i O(|qj − qi|2−n) + µni ξ̇i · ~fi1,

where ~fi1 is a smooth function with order |~fi1| = O
(
|qj − qi|1−n

)
and thus

S1 = µ
−n+2

2
j

{
µj µ̇jZn+1(yj) + µj ξ̇j · ∇U(yj)

+
∑
i 6=j

µ
n+2

2
0j

(
µ
n
2−2
i µ̇iO(|qj − qi|2−n) + µ

n
2−1
i ξ̇i · ~fi1

)}
.

Next we consider S2. Using Taylor expansion, we can rewrite ∇x log a(µjyj + ξj) in the following
form

∇x log a(µjyj + ξj) =µjA(qj)yj + A(qj)(ξj − qj) + ~fj2,

where ~fj2 is a smooth function with order |~fj2| = O
(
|µjyj+ξj−qj |2

)
and we have used the assumption

that ∇x log a(qj) = 0 and the Hessian matrix A(qj) is positively definite. Then, the component S2 can
be written in the form by using (2.4)

S2 = µ
−n+2

2
j

{
µ2
jA(qj)yj · ∇U(yj) + µjA(qj)(ξj − qj) · ∇U(yj)

+
µ3
j

1 + |yj |n−3
O(1)

}
+
∑
i6=j

µ
n−2

2
i O(|qj − qi|1−n).

Finally we estimate S3. We further write

S3 =µ
−n+2

2
j

{[(
U(yj) + ϑj

)p − Up(yj)]−∑
i 6=j

(
µiµ
−1
j

)−n+2
2 Up(yi)

}
:=µ

−n+2
2

j

(
S31 + S32

)
,

where

ϑj =
∑
i 6=j

(
µjµ

−1
i

)n−2
2 U(yi).

By Taylor expansion, we have

S31 =
[
U(yj) + ϑj

]p − Up(yj)
= pUp−1(yj)ϑj + p(p− 1)ϑ2

j

∫ 1

0

(1− s)
[
U(yj) + sϑj

]p−2
ds.

From (2.10) and (2.11), we obtain

ϑj =
∑
i 6=j

(µjµi)
n−2

2 O
(
|qj − qi|2−n

)
. (2.12)

Since x ∈ Bj , we notice that |ϑj | . (µ0jµ0i)
n−2

2 uniformly in small δ, where δ is the radius given in
(2.5). Thus the second term in S31 is of smaller order compared with pUp−1(yj)ϑj . On the other
hand, we have that

S32 = −
∑
i 6=j

(
µiµ
−1
j

)−n+2
2 Up(yi) =

∑
i 6=j

(
µ0iµ0j

)n+2
2 O

(
|qj − qi|−(n+2)

)
. (2.13)
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Therefore, by (2.12) and (2.13), we obtain

S3 = µ
−n+2

2
j

∑
i6=j

(µ0iµ0j)
n−2

2

1 + |yj |4
O
(
|qj − qi|2−n

)
+
∑
i 6=j

(
µ0iµ0j

)n+2
2 O

(
|qj − qi|−(n+2)

) .
Collecting the above estimates for S1, S2 and S3, we get the estimate of S[uµ,ξ] for x ∈ Bj .

Case 2: x /∈ ∪kj=1Bj .

Recall that

S[uµ,ξ] =

k∑
j=1

µ
−n+2

2
j

(
µj µ̇jZn+1(yj) + µj ξ̇j · ∇U(yj)

)
+

k∑
j=1

µ
−n2
j ∇x log a(x) · ∇U(yj)

+

 k∑
j=1

µ
−n−2

2
j U(yj)

p

−
k∑
j=1

µ
−n+2

2
j Up(yj).

From (2.10) and (2.11), the error estimate of the approximation uµ,ξ in the region far away from the
concentration point qj (j = 1, · · · , k) is a direct consequence of Taylor expansion similar to the first
case. Indeed, we take the first term in S[uµ,ξ] as an example

k∑
j=1

µ
−n2
j µ̇jZn+1(yj) =

k∑
j=1

µ
−n2 +1−α
0j µ̇j

1 + |yj |n−3+α
O(|x− qj |α−1),

where we have used Zn+1(y) ∼ 1
1+|y|n−2 . The estimates for the rest terms can be carried out in a

similar manner. �

For a solution with the following form

u(x, t) = uµ,ξ(x, t) + ϕ̌(x, t),

we now derive some useful formulas needed later on. The new error of u(x, t) is

S[uµ,ξ + ϕ̌] = −∂tϕ̌+ ∆ϕ̌+∇ log a(x) · ∇ϕ̌+ pup−1
µ,ξ ϕ̌+ S[uµ,ξ] + Ňµ,ξ(ϕ̌),

where Ňµ,ξ(ϕ̌) = (uµ,ξ + ϕ̌)p − upµ,ξ − pu
p−1
µ,ξ ϕ̌. We write

ϕ̌(x, t) :=

k∑
j=1

µ
−n−2

2
j ϕj

(
x− ξj
µj

, t

)
=

k∑
j=1

µ
−n−2

2
j ϕj(yj , t). (2.14)

Then, it follows that

S[uµ,ξ + ϕ̌] = S[uµ,ξ] +

k∑
j=1

µ
−n+2

2
j [∆ϕj(yj , t) + pUp−1(yj)ϕj(yj , t)] + A[ϕ̌], (2.15)

where

A[ϕ̌] =

k∑
j=1

µ
−n+2

2
j

{
− µ2

j∂tϕj(yj , t) + µj µ̇j

[ n− 2

2
ϕj(yj , t) + yj · ∇ϕj(yj , t)

]

+ µj ξ̇j · ∇ϕj(yj , t)

}
+

k∑
j=1

µ
−n2
j ∇x log a(x) · ∇ϕj(yj , t)

+
(
uµ,ξ +

k∑
j=1

µ
−n−2

2
j ϕj

)p
− upµ,ξ − p

k∑
j=1

µ
−n+2

2
j Up−1(yj)ϕj(yj , t).

(2.16)

In order to reduce the size of the error S[uµ,ξ], it is reasonable to assume that the correction term
ϕj(yj , t), j = 1, · · · , k decays in the yj variable and for large t the terms in A[ϕ̌] are comparatively
small.
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2.2. The second approximate solution with correction. In order to improve the approximation,
we should cancel out the main order components of the largest term in the expansion of the error

µ
n+2

2
j S[uµ,ξ] given in (2.6), i.e., E0j [µj , µ̇j ] defined in (2.7).

Recall that
µj(t) = bjµ0j(t) + λj(t), |ξj(t)− qj | = O

(
µ1+σ

0j (t)
)
,

where λj(t) is a small perturbation term of µ0j(t). Then, from (2.7) we obtain that

E0j [µj , µ̇j ] = E0j [µ0j , µ̇0j ] + (bjµ0j λ̇j + bjλj µ̇0j + λj λ̇j)Zn+1(yj)

+ (2bjµ0jλj + λ2
j )A(qj)yj · ∇U(yj),

(2.17)

where E0j [µ0j , µ̇0j ] is the leading order term of E0j [µj , µ̇j ]
E0j [µ0j , µ̇0j ] := b2jµ0j µ̇0jZn+1(yj) + b2jµ

2
0jA(qj)yj · ∇U(yj). (2.18)

An improvement of the approximation can be obtained if we solve the elliptic equation

∆φ+ pUp−1φ = −E0j [µ0j , µ̇0j ] in Rn, φ(y, t)→ 0 as |y| → ∞. (2.19)

The decay condition is added in order not to essentially modify the size of the error far away from the
qj ’s.

We first consider the associated linear problem of (2.19)

L0(φ) := ∆φ+ pUp−1φ = h in Rn, φ(y, t)→ 0 as |y| → ∞. (2.20)

It is well known (see for example [6]) that all bounded solutions to L0(ψ) = 0 in Rn consist of the
linear combinations of the functions Z1, · · · , Zn+1 defined by

Zi(y) :=
∂U

∂yi
(y), i = 1, · · · , n, Zn+1(y) :=

n− 2

2
U(y) + y · ∇U(y), (2.21)

and for a function h(y) = O(|y|−m), m > 2, the problem (2.20) is solvable if and only if the following
orthogonality conditions hold∫

Rn
h(y)Z`(y) dy = 0 for all ` = 1, · · · , n+ 1.

By the definition (2.18), E0j [µ0j , µ̇0j ] is even in yj . Notice from (2.21) that Z1(y), · · · , Zn(y) are
odd in y, while Zn+1(y) is even in y. Thus, the orthogonality conditions∫

Rn
E0j [µ0j , µ̇0j ]Z`(yj) dyj = 0, ` = 1, · · · , n+ 1, j = 1, · · · , k (2.22)

imply
c0 µ̇0j(t) + cj µ0j(t) = 0, j = 1, · · · , k, (2.23)

where

c0 =

∫
Rn
|Zn+1(y)|2 dy, cj =

∫
Rn

A(qj)y · ∇U(y)Zn+1(y) dy, j = 1, · · · , k. (2.24)

Note that c0 < +∞ thanks to our assumption n ≥ 5. By direct computations, we have

cj =

∫
Rn
∇U(y) · (A(qj)y)Zn+1(y) dy

=

∫
Rn
∇U(y) ·

(
σ

(j)
1 y1, · · · , σ(j)

n yn
)
Zn+1(y) dy

=
∑
i

σ
(j)
i

n

∫
Rn
∇U(y) · y Zn+1(y) dy :=

∑
i

σ
(j)
i

n
c̃,

where c̃ :=
∫
Rn ∇U(y) · y Zn+1(y) dy.
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Define Iqp :=
∫ +∞

0
rq

(1+r)p dr with p − q > 1. By using the properties (see for instance [13, Remark

4.1])

Iqp+1 =
p− q − 1

p
Iqp and Iq+1

p+1 =
q + 1

p− q − 1
Iqp+1,

we obtain

c̃ = α2
n

3(n− 2)2

2(n− 4)
ωnI

n/2
n and c0 = α2

n

(n− 2)2(n+ 2)

2n(n− 4)
ωnI

n/2
n ,

where αn = [n(n− 2)]
n−2

4 and ωn is the area of the sphere Sn−1. It then follows that

c̃ =
3n

n+ 2
c0.

Therefore, we obtain that

κj :=
cj
c0

=
3n

n+ 2
σ̄j , j = 1, · · · , k, (2.25)

where σ̄j :=
n∑
i=1

σ
(j)
i

n > 0 by the assumption. Therefore, we can choose

µ0j(t) = e−κjt, j = 1, · · · , k, (2.26)

such that the orthogonality conditions (2.22) are satisfied. From the choice of the parameter function
µ0j(t), we have

−E0j [µ0j , µ̇0j ] = µ2
0j(t)

[
κj b

2
j Zn+1(yj) − b2j A(qj) yj · ∇U(yj)

]
:= µ2

0j(t)ωj(yj)

with
∫
Rn ωj(yj)Z`(yj) dyj = 0, ` = 1, · · · , n+ 1, j = 1, · · · , k. Here ωj(yj) is even in yj .

By (2.18), the orthogonality conditions (2.22) hold for any bj > 0. So we can simply let bj = 1 for
j = 1, · · · , k. Let pj(yj) be a decaying solution to

∆ypj(yj) + pU(yj)
p−1pj(yj) = ωj(yj) in Rn, pj(yj)→ 0 as |yj | → ∞.

From (2.21), we have

|ωj(yj)| .
1

1 + |yj |n−2
.

Then from standard elliptic theory, it holds that

|pj(yj)| .
1

1 + |yj |n−4
as |yj | → ∞.

Therefore
Φj(yj , t) := µ2

0j(t) pj(yj) (2.27)

is a solution to (2.19) with

|Φj(yj , t)| .
µ2

0j(t)

1 + |yj |n−4
and |∇Φj(yj , t)| .

µ2
0j(t)

1 + |yj |n−3
.

Thus, to reduce the size of the error S[uµ,ξ], in (2.14) we can choose ϕj = Φj . More precisely, we
define the corrected approximate solution as

u∗µ,ξ(x, t) := uµ,ξ(x, t) + Φ̌(x, t) with Φ̌(x, t) :=

k∑
j=1

µ
−n−2

2
j Φj

(
x− ξj
µj

, t

)
. (2.28)
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2.3. Estimating the new error S[u∗µ,ξ]. By the previous computations (2.15) and (2.16), we obtain
the new error of approximate solution u∗µ,ξ in the form

S[u∗µ,ξ] = S[uµ,ξ]− µ
−n+2

2
j E0j [µ0j , µ̇0j ]−

k∑
i 6=j

µ
−n+2

2
i E0i[µ0i, µ̇0i] + A[Φ̌]

:= A1 + A2,

(2.29)

where A[Φ̌] is defined in (2.16),

A1 = S[uµ,ξ]− µ
−n+2

2
j E0j [µ0j , µ̇0j ],

and

A2 = −
k∑
i 6=j

µ
−n+2

2
i E0i[µ0i, µ̇0i] + A[Φ̌].

The expansion for the new error S[u∗µ,ξ] is given by the following lemma.

Lemma 2.2. Assume µj(t) = µ0j(t) + λj(t) with |λj(t)| . µ1+σ
0j (t) for some σ > 0 small and |ξj(t)−

qj | . µ1+σ
0j (t). It holds that for t large

S[u∗µ,ξ] =


Sµ,ξ,j + S

(2)
µ,ξ, if x ∈ Bj ,

S
(3)
µ,ξ, if x /∈ ∪kj=1Bj ,

(2.30)

with

Sµ,ξ,j = µ
−n+2

2
j

{
(µ0j λ̇j + λj µ̇0j + λj λ̇j)Zn+1(yj) + (2µ0jλj + λ2

j )A(qj)yj · ∇U(yj)

+ µj

(
ξ̇j · ∇U(yj) + A(qj)(ξj − qj) · ∇U(yj)

)}
, (2.31)

S
(2)
µ,ξ =µ

−n+2
2

j Rj +

k∑
j=1

µ
−n+2

2
j

{
µ3

0j µ̇0jO(1)

1 + |yj |n−4
+
µ3

0j |ξ̇j |O(1)

1 + |yj |n−3
+

µ3
0jO(1)

1 + |yj |n−3

}

+

k∑
i 6=j

µ
n−2

2
0i O(|qj − qi|2−n) + L2,

(2.32)

and

S
(3)
µ,ξ =

k∑
j=1

(
µ
−n2−α
0j (µ0j λ̇j + λj µ̇0j + λj λ̇j)hj

1 + |yj |n−3+α
+
µ
−n2 +2−α
0j ξ̇j · ~hj
1 + |yj |n−3+α

+
µ
−n2 +2−α
0j h̃j

1 + |yj |n−3+α

)

+

k∑
j=1

(
µ
−n2 +2
0j µ̇jhj

1 + |yj |n−4
+
µ
−n2 +2
0j ξ̇j · ~hj
1 + |yj |n−3

+
µ
−n2 +2
0j h̃j

1 + |yj |n−3

)
,

(2.33)

where x = ξj +µjyj, 0 < α < 1 and L2, Rj are defined in (2.37)and (2.9), respectively. Moreover, hj,
~hj, h̃j are smooth, bounded functions of (x, µ−1

0j µ, ξ).

Proof. We consider two cases.

Case 1: x ∈ Bj for any fixed j ∈ {1, · · · , k}.
We need to estimate S[u∗µ,ξ] = A1 + A2. By (2.6), (2.29) and (2.17), one has

A1 = µ
−n+2

2
j

{
E0j [µj , µ̇j ]− E0j [µ0j , µ̇0j ] + E1j [µj , ξj , ξ̇j ] +Rj

}
= µ

−n+2
2

j

{
(µ0j λ̇j + λj µ̇0j + λj λ̇j)Zn+1(yj) + (2µ0jλj + λ2

j )A(qj)yj · ∇U(yj)

+ µj

(
ξ̇j · ∇U(yj) + A(qj)(ξj − qj) · ∇U(yj)

)
+Rj

}
,

(2.34)
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We then estimate A2 in the region x ∈ Bj . By (2.10) and (2.11), we get

E0i[µ0i, µ̇0i] = µn0iO(|qj − qi|2−n).

According to the expression of A as in (2.16), we express

A[Φ̌] := L1 + L2,

where

L1 =

k∑
j=1

µ
−n+2

2
j

{
− µ2

j∂tΦj(yj , t) + µj µ̇j

[ n− 2

2
Φj(yj , t) + yj · ∇Φj(yj , t)

]

+ µj ξ̇j · ∇Φj(yj , t)

}
+

k∑
j=1

µ
−n2
j ∇x log a(x) · ∇Φj(yj , t)

and

L2 =
(
uµ,ξ +

k∑
j=1

µ
−n−2

2
j Φj

)p
− upµ,ξ − p

k∑
j=1

µ
−n+2

2
j U(yj)

p−1Φj(yj , t).

By (2.27), we obtain

L1 =

k∑
j=1

µ
−n+2

2
j

(
µ3

0j µ̇0jO(1)

1 + |yj |n−4
+
µ3

0j |ξ̇j |O(1)

1 + |yj |n−3
+

µ3
0jO(1)

1 + |yj |n−3

)
.

We can rewrite L2 as

L2 =
(
uµ,ξ +

k∑
j=1

µ
−n−2

2
j Φj

)p
− upµ,ξ − p(uµ,ξ)

p−1
k∑
j=1

µ
−n−2

2
j Φj

+ p(uµ,ξ)
p−1

k∑
j=1

µ
−n−2

2
j Φj − p

k∑
j=1

µ
−n+2

2
j U(yj)

p−1Φj

= L21 + L22

(2.35)

with

L21 :=
(
uµ,ξ +

k∑
j=1

µ
−n−2

2
j Φj

)p
− upµ,ξ − p(uµ,ξ)

p−1
k∑
j=1

µ
−n−2

2
j Φj

= O(1)


up−2
µ,ξ

( k∑
j=1

µ
−n−2

2
j Φj

)2

, for n = 5, 6,

( k∑
j=1

µ
−n−2

2
j Φj

)p
, for n ≥ 7,

(2.36)

where we have used the fact that
∑k
j=1 µ

−n−2
2

j Φj . uµ,ξ for x ∈ Bj . For L22, we write

p(uµ,ξ)
p−1

k∑
j=1

µ
−n−2

2
j Φj − p

k∑
j=1

µ
−n+2

2
j U(yj)

p−1Φj

= p

µ−n−2
2

j U(yj) +

k∑
i6=j

µ
−n−2

2
i U(yi)

p−1µ−n−2
2

j Φj +

k∑
i 6=j

µ
−n−2

2
i Φi


− p

µ−n+2
2

j U(yj)
p−1Φj +

k∑
i 6=j

µ
−n+2

2
i U(yi)

p−1Φi


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which turns out to be small by a similar argument as in Lemma 2.1. By (2.27), (2.35) and (2.36), we
obtain

L2 = O(1)



k∑
i=1

µ
6−n

2
i

1 + |yi|n−2
, for n = 5, 6,

k∑
i=1

µ
−n+2

2 +
2(n+2)
n−2

i

1 + |yi|
(n+2)(n−4)

n−2

, for n ≥ 7.

(2.37)

Note that in (2.37) for the case n = 5, we have used the fact that x ∈ Bj such that all terms in the
summation i 6= j are essentially of smaller order. Therefore, we conclude that for x ∈ Bj

A2 =

k∑
j=1

µ
−n+2

2
j O(1)

(
µ3

0j µ̇0j

1 + |yj |n−4
+

µ3
0j |ξ̇j |

1 + |yj |n−3
+

µ3
0j

1 + |yj |n−3

)

+

k∑
i6=j

µ
n−2

2
0i O(|qj − qi|2−n) + L2.

(2.38)

Collecting (2.34) and (2.38), we get the desired estimate.

Case 2: x /∈ ∪kj=1Bj .

Due to the spatial decay of Φj , the size of Φ̌ is µ2
0j-times smaller than that of uµ,ξ in the region far

away from qj . A direct consequence of Lemma 2.1 and (2.27) is that, if x /∈ ∪kj=1Bj , the error S[u∗µ,ξ]
can be described as follows

S[u∗µ,ξ] =

k∑
j=1

(
µ
−n2−α
0j (µ0j λ̇j + λj µ̇0j + λj λ̇j)hj

1 + |yj |n−3+α
+
µ
−n2 +2−α
0j ξ̇j · ~hj
1 + |yj |n−3+α

+
µ
−n2 +2−α
0j h̃j

1 + |yj |n−3+α

)

+

k∑
j=1

(
µ
−n2 +2
0j µ̇jhj

1 + |yj |n−4
+
µ
−n2
0j ξ̇j · ~hj

1 + |yj |n−3
+

µ
−n2 +2
0j h̃j

1 + |yj |n−3

)
,

where hj , ~hj , h̃j are smooth, bounded functions of (x, µ−1
0j µ, ξ). Indeed, for x /∈ ∪kj=1Bj , by (2.10)

and (2.11), we have

S[uµ,ξ]− µ
−n+2

2
j E0j [µ0j , µ̇0j ]−

k∑
i 6=j

µ
−n+2

2
i E0i[µ0i, µ̇0i]

=

k∑
j=1

(
µ
−n2−α
0j (µ0j λ̇j + λjµ̇0j + λj λ̇j)hj

1 + |yj |n−3+α
+
µ
−n2 +2−α
0j ξ̇j · ~hj
1 + |yj |n−3+α

+
µ
−n2 +2−α
0j h̃j

1 + |yj |n−3+α

)
,

where 0 < α < 1, and

A[Φ̌] =

k∑
j=1

(
µ
−n2 +2
0j µ̇jhj

1 + |yj |n−4
+
µ
−n2 +2
0j ξ̇j · ~hj
1 + |yj |n−3

+
µ
−n2 +2
0j h̃j

1 + |yj |n−3

)
,

where we have used Lemma 2.1, and hj , ~hj , h̃j are smooth and bounded in the expansions.
Collecting all the estimates for the two different cases, we complete the proof. �
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3. The inner–outer gluing procedure

Let t0 > 0. We consider the problem

ut = ∆u+∇ log a(x) · ∇u+ up, in Rn × [t0,+∞). (3.1)

In this Section, we shall set up the inner–outer gluing scheme to find a solution u to problem (3.1). Then
u(x, t− t0) is a solution to the original problem (1.1) with suitable initial condition to be determined
later.

We introduce a smooth cut-off function η with η(s) = 1 for s < 1 and η(s) = 0 for s > 2. Define

ηj,R(x, t) = η

(
x− ξj(t)
Rµ0j(t)

)
, (3.2)

where R is sufficiently large and independent of t. For convenience, we take R := eρt0 , where ρ > 0 is
small enough and t0 is the initial time.

For a small perturbation w(x, t), the function u(x, t) = u∗µ,ξ(x, t) + w(x, t) solves problem (3.1) if

∂tw = ∆w + ∇ log a(x) · ∇w + p(u∗µ,ξ)
p−1w + N(w) + S[u∗µ,ξ] in Rn × [t0,∞) (3.3)

where
N(w) := (u∗µ,ξ + w)p − (u∗µ,ξ)

p − p(u∗µ,ξ)p−1w, (3.4)

S[u∗µ,ξ] = − ∂tu∗µ,ξ + ∆u∗µ,ξ +∇ log a(x) · ∇u∗µ,ξ + (u∗µ,ξ)
p. (3.5)

According to the expression of the error S[u∗µ,ξ] as in Lemma 2.2, for x ∈ Bj , we can decompose

S[u∗µ,ξ] into

S[u∗µ,ξ] = ηj,RSµ,ξ,j + Soutµ,ξ,j , x ∈ Bj ,
where Sµ,ξ,j defined in (2.31) is the leading part in S[u∗µ,ξ], and

Soutµ,ξ,j = (1− ηj,R)Sµ,ξ,j + S
(2)
µ,ξ, x ∈ Bj

with S
(2)
µ,ξ defined in (2.32). In this way, Soutµ,ξ encodes the information of the error of S[u∗µ,ξ] regarding

the smaller order terms and the part in the region far away from the concentrating points qj , j =
1, · · · , k. Note that for x /∈ ∪kj=1Bj , the error S[u∗µ,ξ] given in Lemma 2.2 is smaller compared with
Sµ,ξ,j , and it also carries part of the information for the region away from qj , j = 1, · · · k. In the
notation of Lemma 2.2, we denote

Soutµ,ξ =

{
Soutµ,ξ,j , x ∈ Bj ,

S
(3)
µ,ξ, x /∈ ∪

k
j=1Bj ,

(3.6)

where S
(3)
µ,ξ is defined in (2.33).

We look for w in the following inner and outer profiles

w(x, t) = ψ(x, t) + φin(x, t)

with

φin(x, t) :=

k∑
j=1

ηj,R(x, t)φ̃j(x, t), φ̃j(x, t) := µ
−n−2

2
0j φj

(
x− ξj(t)
µ0j(t)

, t

)
. (3.7)

A main observation we make is that w(x, t) solves problem (3.3) if (ψ, φ̃j) solves the following coupled
system:

• ψ solves the so-called outer problem

∂tψ = ∆ψ +∇ log a(x) · ∇ψ + Vµ,ξψ +

k∑
j=1

∇ log a(x) · ∇ηj,Rφ̃j

+

k∑
j=1

[
2∇ηj,R · ∇φ̃j + φ̃j(∆− ∂t)ηj,R

]
+ N(w) + Soutµ,ξ in Rn × [t0,+∞),

(3.8)
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with

Vµ,ξ := p

k∑
j=1

(∣∣u∗µ,ξ∣∣p−1 −
∣∣∣µ−n−2

2
j U

(x− ξj
µj

)∣∣∣p−1)
ηj,R + p

(
1−

k∑
j=1

ηj,R

)∣∣u∗µ,ξ∣∣p−1
. (3.9)

• φ̃j solves the so-called inner problem for j = 1, · · · , k,

∂tφ̃j = ∆φ̃j + pUp−1
j φ̃j + pUp−1

j ψ +∇ log a(x) · ∇φ̃j + Sµ,ξ,j

+ p
[
(u∗µ,ξ)

p−1 − Up−1
j

]
φ̃j , in B2Rµ0j

(ξj)× [t0,+∞),
(3.10)

where Uj = µ
−n−2

2
j U(

x−ξj
µj

).

In terms of φj(y, t) as in (3.7), the equation (3.10) becomes

µ2
0j∂tφj = ∆yφj + pU(y)p−1φj + µ

n+2
2

0j Sµ,ξ,j(ξj + µ0jy, t)

+ pµ
n−2

2
0j

µ2
0j

µ2
j

∣∣∣U(µ0j

µj
y
)∣∣∣p−1

ψ(ξj + µ0jy, t) +B1
j [φj ] +B2

j [φj ] +B3
j [φj ],

(3.11)

where

B1
j [φj ] := µ0j µ̇0j

(n− 2

2
φj + y · ∇yφj

)
+ µ0j ξ̇j · ∇yφj , (3.12)

B2
j [φj ] := p

[ ∣∣∣U(µ0j

µj
y
)∣∣∣p−1

− Up−1(y)
]
φj + p

(µ2
0j

µ2
j

− 1
) ∣∣∣U(µ0j

µj
y
)∣∣∣p−1

φj , (3.13)

B3
j [φj ] := pµ2

0j

[
(u∗µ,ξ)

p−1 − Up−1
j

]
φj + µ0j∇x log a(ξj + µ0jy) · ∇yφj . (3.14)

The reason for choosing such scaled spatial variable
x−ξj(t)
µ0j(t)

is the following. In Section 4 and

Section 5, when we develop the linear theories for the outer and inner problems (see Lemma 4.1 and
Proposition 5.1), the behavior of the scaling parameter µj(t) is needed. At this stage, we only know
the leading order µ0j(t) of µj(t) as we shall solve the remainder λj(t) in Section 5 (see Proposition
5.2). Observe that

x− ξj
µj

=
x− ξj
µ0j

(1 + o(1))

so that the remainder term is essentially of smaller order. It is then reasonable to rescale the spatial

variable as
x−ξj
µ0j

. Moreover, in Proposition 5.2, we shall show that the remainder λj(t) is indeed of

smaller order
λj(t) ∼ µ1+σ

0j (t) for some σ > 0.

We next describe precisely our strategy to solve the outer problem (3.8) and inner problems (3.10).

For given parameters λ, ξ, λ̇, ξ̇ and functions φj fixed in proper range, we first solve for ψ in problem

(3.8), in the form of a nonlocal operator ψ = Ψ(λ, ξ, λ̇, ξ̇, φ). We will solve it by means of a priori
estimates of the associated linear problem and fixed point arguments. This will be done in full details
in Section 4. After we solve the outer problem, the inner problem is then reduced to a nonlinear
and nonlocal problem. In order to solve the reduced inner problem, a linear theory concerning the
solvability and estimates of the associated linear problem with certain orthogonality conditions is
required. The orthogonality conditions will be achieved by adjusting the parameter functions λ and
ξ. Finally we shall solve the inner problem by the linear theory and the fixed point argument. See
Section 5 and Section 6 for full details.
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4. Solving the outer problem

The aim of this Section is to solve the outer problem (3.8) for given parameters λ, ξ, λ̇, ξ̇ satisfying
(4.8) and (4.9), and for small function φ satisfies (4.11). We consider the problem{

∂tψ = ∆ψ +∇ log a(x) · ∇ψ + f(ψ, φ, λ, ξ) in Rn × [t0,+∞),

ψ(·, t0) = 0 in Rn,
(4.1)

where

f :=

k∑
j=1

[
2∇ηj,R · ∇φ̃j + φ̃j(∆− ∂t)ηj,R +∇ log a(x) · ∇ηj,Rφ̃j

]
+ Vµ,ξψ + N(w) + Soutµ,ξ . (4.2)

We will use the contraction mapping theorem to solve the nonlinear equation (4.1). For our purpose,
we first consider a linear model problem in Subsection 4.1.

4.1. The linear heat equation. In this Subsection, we consider the following linear heat equation{
ψt(x, t) = ∆ψ(x, t) +∇ log a(x) · ∇ψ(x, t) + f(x, t) in Rn × [t0,+∞),

ψ(·, t0) = 0 in Rn,
(4.3)

where function f(x, t) is smooth. We assume that for two real numbers β, γ, the nonhomogeneous term
f(x, t) satisfies

|f(x, t)| ≤ M

k∑
j=1

µ−2
0j (t)µβ0j(t)

1 + |yj |2+γ
, yj =

x− ξj(t)
µj(t)

. (4.4)

The norm ‖f‖∗,β,2+γ is defined as the least number M > 0 such that (4.4) holds. By the ansatz of
µj(t) in (2.4) we know

x− ξj(t)
µj(t)

=
x− ξj(t)
µ0j(t)

(1 + o(1)).

Then it is reasonable to use the rescaled spatial variable
x−ξj(t)
µ0j(t)

since the remainder produced by λj(t)

is essentially of smaller order. In the sequel, if there is no confusion, we write

yj =
x− ξj(t)
µ0j(t)

due to the discussion above. Using the heat kernel (see [2]), we know that the solution ψ(x, t) of
problem (4.3) satisfies

|ψ(x, t)| .
∣∣∣∣∫ +∞

t

∫
Rn

1

(s− t)n/2
e−
|x−y|2
s−t f(y, s) dy ds

∣∣∣∣ . (4.5)

Remark 4.1. Note that the heat kernel bounds given in [2] are global and independent of time T .
More precisely, the upper bound does not depend on time T , while the lower bound dependence on T
can be removed by choosing a constant in the argument. See [2, Section 5]. In our case, we only need
the upper Gaussian bound for the heat kernel.

Then, we have the following estimate of the solution ψ(x, t) to the linear heat equation (4.3).

Lemma 4.1. Assume that ‖f‖∗,β,2+γ < +∞, 0 < γ < n − 2 and β + γ > 0. Let ψ(x, t) be the

solution to problem (4.3). Then, for all (x, t) ∈ Rn × [t0,+∞), it holds that for yj =
x−ξj(t)
µ0j(t)

|ψ(x, t)| . ‖f‖∗,β,2+γ


k∑
j=1

µβ0j(t)

1+|yj |γ if |yj | < µ−1
0j (t),

k∑
j=1

µ−2
0j (t)µβ0j(t)

1+|yj |2+γ if |yj | > µ−1
0j (t).
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Proof. Since yj =
x−ξj(t)
µ0j(t)

and
ξj(t)−qj
µ0j(t)

= o(1), we have

|f(x, t)| ≤ ‖f‖∗,β,2+γ

k∑
j=1

µ−2
0j (t)µβ0j(t)

1 + |yj |2+γ

. ‖f‖∗,β,2+γ

k∑
j=1

µβ+γ
0j (t)

µ2+γ
0j (t) + |x− qj |2+γ

.

(4.6)

Then, if we define x̃ = x− qj and ỹ = y − qj , from (4.5) and (4.6), we obtain

|ψ(x, t)| . ‖f‖∗,β,2+γ

k∑
j=1

∫ +∞

t

∫
Rn

1

(s− t)n/2
e−
|x̃−ỹ|2
s−t

µβ+γ
0j (s)

µ2+γ
0j (s) + |ỹ|2+γ

dỹ ds

= ‖f‖∗,β,2+γ

k∑
j=1

{∫ t+1

t

+

∫ +∞

t+1

}∫
Rn

1

(s− t)n/2
e−
|x̃−ỹ|2
s−t

µβ+γ
0j (s)

µ2+γ
0j (s) + |ỹ|2+γ

dỹ ds

:= ‖f‖∗,β,2+γ (I1 + I2).

First, we consider the case |yj | < µ−1
0j (t), for all j = 1, · · · , k. In order to estimate the term I1, we

perform the change of variable p = x̃−ỹ√
s−t ,

ds
2(s−t) = − 1

pdp and we get

I1 .
k∑
j=1

µβ+γ
0j (t)

∫ t+1

t

∫
Rn

1

(s− t)n/2
e−
|x̃−ỹ|2
s−t

1

µ2+γ
0j (t+ 1) + |ỹ|2+γ

dỹ ds

.
k∑
j=1

µβ+γ
0j (t)

∫
Rn

1

|x̃− ỹ|n−2

1

µ2+γ
0j (t+ 1) + |ỹ|2+γ

dỹ

∫ +∞

|x̃−ỹ|
pn−3e−p

2

dp

.
k∑
j=1

µβ+γ
0j (t)

∫
Rn

1

|x̃− ỹ|n−2

1

µ2+γ
0j (t+ 1) + |ỹ|2+γ

dỹ

=

k∑
j=1

µβ+γ
0j (t)

µ2+γ
0j (t+ 1)

∫
Rn

1

µn−2
0j (t+ 1)| x̃−ỹ

µ0j(t+1) |n−2

1

1 + | ỹ
µ0j(t+1) |2+γ

dỹ

=

k∑
j=1

µβ+γ
0j (t)µ2

0j(t+ 1)

µ2+γ
0j (t+ 1)

∫
Rn

1

|x̌− y̌|n−2

1

1 + |y̌|2+γ
dy̌

.
k∑
j=1

µβ+γ
0j (t)µ2

0j(t+ 1)

µ2+γ
0j (t+ 1)

1

1 + |x̌|γ
.

k∑
j=1

µβ0j(t)

1 + |yj |γ
,

where x̌ := x̃
µ0j(t+1) , y̌ := ỹ

µ0j(t+1) and we have used the fact that for 0 < γ < n− 2∫
Rn

1

|x̌− y̌|n−2

1

1 + |y̌|2+γ
dy̌ .

1

(1 + |x̌|)γ
.

See [56, Lemma B.2] for instance.

Next, we compute the term I2. If we define x̄ = x̃(s− t)− 1
2 , ȳ = ỹ(s− t)− 1

2 , we then obtain

I2 .
k∑
j=1

∫ +∞

t+1

∫
Rn
e−|x̄−ȳ|

2 µβ+γ
0j (s)

µ2+γ
0j (s) + (

√
s− t)2+γ |ȳ|2+γ

dȳ ds

=

k∑
j=1

∫ +∞

t+1

(∫
|ȳ|>2|x̄|

+

∫
|ȳ|≤2|x̄|

)
e−|x̄−ȳ|

2 µβ+γ
0j (s)

µ2+γ
0j (s) + (

√
s− t)2+γ |ȳ|2+γ

dȳ ds

:=I21 + I22.
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For I21, we have the following estimate

I21 .
k∑
j=1

∫ +∞

t+1

µβ+γ
0j (s)

∫
|ȳ|≥2|x̄|

e−
|ȳ|2

4
1

|ȳ|2+γ
dȳ ds

.
k∑
j=1

µβ+γ
0j (t) .

k∑
j=1

µβ0j(t)

1 + |yj |γ
.

For I22, we have

I22 ≤
k∑
j=1

∫ +∞

t+1

µβ+γ
0j (s)

∫
|ȳ|≤2|x̄|

1

|ȳ
√
s− t|2+γ

dȳ ds

.
k∑
j=1

∫ +∞

t+1

µβ+γ
0j (s)

|x̄|n−2−γ

|
√
s− t|2+γ

ds

.
k∑
j=1

µβ+γ
0j (t)

∫ +∞

t+1

1

(
√
s− t)n

ds

.
k∑
j=1

µβ+γ
0j (t) .

k∑
j=1

µβ0j(t)

1 + |yj |γ
.

Next, we will consider the case |yj | > µ−1
0j (t), for all j = 1, · · · , k. We compute

|ψ(x, t)| . ‖f‖∗,β,2+γ

k∑
j=1

∫ +∞

t

∫
Rn

1

(s− t)n/2
e−
|x̃−ỹ|2
s−t

µβ+γ
0j (s)

µ2+γ
0j (s) + |ỹ|2+γ

dỹ ds

= ‖f‖∗,β,2+γ

k∑
j=1

∫ +∞

t

(∫
B |x̃|

2

(x̃)

+

∫
BC|x̃|

2

(x̃)

) 1

(s− t)n/2
e−
|x̃−ỹ|2
s−t

µβ+γ
0j (s)

µ2+γ
0j (s) + |ỹ|2+γ

dỹ ds

:= ‖f‖∗,β,2+γ

(
J1 + J2

)
.

Denote x̄ = x̃(s− t)− 1
2 , ȳ = ỹ(s− t)− 1

2 . Straightforward computations imply that

J1 .
k∑
j=1

1

|x̃|2+γ

∫ +∞

t

µβ+γ
0j (s)

∫
B |x̃|

2

(x̃)

1

(s− t)n2
e−
|x̃−ỹ|2
s−t dỹ ds

.
k∑
j=1

1

|x̃|2+γ

∫ +∞

t

µβ+γ
0j (s)

∫
B |x̄|

2

(x̄)

e−|x̄−ȳ|
2

dȳ ds

.
k∑
j=1

1

|x̃|2+γ

∫ +∞

t

µβ+γ
0j (s)

∫ +∞

0

e−r
2

rn−1 dr ds

.
k∑
j=1

µβ+γ
0j (t)

|x̃|2+γ
.

k∑
j=1

µ−2
0j (t)µβ0j(t)

1 + |yj |2+γ
,

where we have used the facts that
∫ +∞

0
e−r

2

rn−1 dr < +∞, β + γ > 0 and (2.26). Similarly, we have

J2 =

k∑
j=1

∫ +∞

t

(∫
B2|x̄|(x̄)\B |x̄|

2

(x̄)

+

∫
BC

2|x̄|(x̄)

) e−|x̄−ȳ|
2

µβ+γ
0j (s)

µ2+γ
0j (s) + (

√
s− t)2+γ |ȳ|2+γ

dȳ ds

:= J21 + J22.
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Moreover, one has

J21 .
k∑
j=1

∫ +∞

t

∫ 3|x̄|

0

e−
|x̄|2

4

µβ+γ
0j (s)

µ2+γ
0j (s) + (

√
s− t)2+γr2+γ

rn−1 dr ds

=

k∑
j=1

∫ +∞

t

µβ+γ
0j (s)

1

|x̃|2+γ

|x̃|2+γ

(
√
s− t)2+γ

e−
|x̄|2

4 |x̄|n−2−γ ds

.
k∑
j=1

∫ +∞

t

µβ+γ
0j (s)

1

|x̃|2+γ
e−
|x̄|2

4 |x̄|n ds

.
k∑
j=1

µβ+γ
0j (t)

|x̃|2+γ
.

k∑
j=1

µ−2
0j (t)µβ0j(t)

1 + |yj |2+γ

and

J22 ≤
k∑
j=1

∫ +∞

t

µβ+γ
0j (s)

(
√
s− t)2+γ |x̄|2+γ

ds

∫
BC

2|x̄|(x̄)

e−|x̄−ȳ|
2

dȳ

.
k∑
j=1

µβ+γ
0j (t)

|x̃|2+γ
.

k∑
j=1

µ−2
0j (t)µβ0j(t)

1 + |yj |2+γ
.

Combining all the estimates above, we complete the proof of Lemma 4.1. �

4.2. Solving the outer problem. Let σ � 1 be a small positive constant satisfying the constraint
(1.6). For a given function h(t) = (h1(t), · · · , hk(t)) : (t0,∞)→ Rk and δ > 0, we define the weighted
L∞-norm as

‖h(t)‖δ := max
j=1,··· ,k

‖µ−δ0j (t)hj(t)‖L∞(t0,+∞). (4.7)

In what follows we assume that the parameter functions λ(t), ξ(t), λ̇(t), ξ̇(t) satisfy the constraints

‖λ̇(t)‖1+σ + ‖ξ̇(t)‖1+σ ≤ C, (4.8)

‖λ(t)‖1+σ + ‖ξ(t)− q‖1+σ ≤ C (4.9)

with some positive constant C independent of t, t0 and R.
Define

‖φ‖2+σ,n−5+a = max
j=1,··· ,k

‖φj‖2+σ,n−5+a,

where ‖φj‖2+σ,n−5+a is the least number M > 0 such that

(1 + |y|)|∇φj(y, t)|+ |φj(y, t)| ≤ M
µ2+σ

0j (t)

1 + |y|n−5+a
, j = 1, · · · , k, (4.10)

holds, where 0 < a < 1.
We assume that φ = (φ1, · · · , φk) satisfies the constraint

‖φ‖2+σ,n−5+a ≤ c e− εt0 , (4.11)

for some constant ε > 0 small enough. Then we have the following result.

Proposition 4.1. Assume that the parameter functions λ, ξ, λ̇, ξ̇ satisfy (4.8) and (4.9), and the
vector function φ = (φ1, · · · , φk) satisfies (4.11). Then there exists t0 sufficiently large such that the

outer problem (4.1) has a unique solution ψ(x, t) = Ψ(λ, ξ, λ̇, ξ̇, φ) (x, t). Moreover, for yj =
x−ξj(t)
µ0j(t)
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and 1/2 < α < a < 1, there exists σ ∈ (0, 1) sufficiently small such that the solution ψ satisfies the
following estimates,

|ψ(x, t)| .


k∑
j=1

µ
−n−2

2
0j (t)µ2+σ

0j (t)

1+|yj |n−5+α , if |yj | < µ−1
0j (t),

k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1+|yj |n−3+α , if |yj | > µ−1
0j (t),

(4.12)

and

|∇ψ(x, t)| .


k∑
j=1

µ
−n−2

2
0j (t)µ2+σ

0j (t)µ−1
0j (t)

1+|yj |n−4+α , if |yj | < µ−1
0j (t),

k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)µ−1

0j (t)

1+|yj |n−2+α , if |yj | > µ−1
0j (t).

(4.13)

Proof. Recall that Lemma 4.1 defines a linear operator T such that ψ = T (f) is the solution to the
linear problem (4.3). We establish the existence of a solution ψ to problem (4.1), as a fixed point
problem

ψ = A(ψ), A(ψ) := T (f(ψ)), (4.14)

where f(ψ) is defined in (4.2). By the contraction mapping theorem, we will prove that there exists a
fixed point ψ for A in the following function space

B =
{
ψ : ‖ψ‖∗ ≤ C e−εt0

}
(4.15)

for some sufficiently large C > 0. Here ε is some positive number. We denote ‖ψ‖∗ as the least number
M > 0 such that the following inequality holds

|ψ(x, t)| ≤ M


k∑
j=1

µ
−n−2

2
0j (t)µ2+σ

0j (t)

1+|yj |n−5+α , if |yj | < µ−1
0j (t),

k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1+|yj |n−3+α , if |yj | > µ−1
0j (t).

(4.16)

In order to prove A is a contraction map, we will estimate

f =

k∑
j=1

[
2∇ηj,R · ∇φ̃j + φ̃j(∆− ∂t)ηj,R +∇ log a(x) · ∇ηj,Rφ̃j

]
+ Vµ,ξψ + N(w) + Soutµ,ξ

term by term.
We first consider the term ∇ηj,R · ∇φ̃j . Using the definition of φ̃j(x, t) in (3.7) and the assumption

(4.11), we obtain

∣∣(∇ηj,R · ∇φ̃j)(x, t)∣∣ . µ
−n−2

2
0j (t)

η′
(∣∣∣ x−ξj(t)Rµ0j(t)

∣∣∣)
Rµ0j(t)

|∇yφj |
µ0j(t)

.
µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

R(1 + |yj |n−4+a)
‖φ‖2+σ,n−5+aχ{R≤|yj |≤2R} (4.17)

. Rα−a‖φ‖2+σ,n−5+a

k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α

. e−εt0‖φ‖2+σ,n−5+a

k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α
,
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where we have used the fact that α < a. Now, we consider the term φ̃j(∆ − ∂t)ηj,R. A direct
computation gives that∣∣φ̃j(∆− ∂t)ηj,R∣∣ . {∣∣∣ η′′

R2µ2
0j(t)

∣∣∣+
∣∣∣η′[−ξ̇j(t)Rµ0j(t)− (x− ξj(t))Rµ̇0j(t)]

R2µ2
0j(t)

∣∣∣} |φ̃j |
.Rα−a‖φ‖2+σ,n−5+a

k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α

. e−εt0‖φ‖2+σ,n−5+a

k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α
,

(4.18)

where we used the assumption (4.11) and the fact that only in the region R ≤ |yj | ≤ 2R, η′(|x−ξjRµ0j
|) 6= 0.

Similarly, we can get the estimate of ∇ log a(x) · ∇ηj,Rφ̃j

|∇ log a(x) · ∇ηj,Rφ̃j | .Rα−a‖φ‖2+σ,n−5+a

k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α

. e−εt0‖φ‖2+σ,n−5+a

k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α
.

(4.19)

For the term Vµ,ξψ defined in (3.9), we evaluate

|Vµ,ξψ| .
k∑
j=1

(1− ηj,R)
µ−2

0j (t)

1 + |yj |4
|ψ|

. R−2‖ψ‖∗
k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α

. e−εt0‖ψ‖∗
k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α
.

(4.20)

For the nonlinear term N(w) defined in (3.4), we get

|N(w)| =

∣∣∣∣∣∣N
(
ψ +

k∑
j=1

ηj,Rφ̃j

)∣∣∣∣∣∣ .


(u∗µ,ξ)
p−2
[
|ψ|2 +

k∑
j=1

|ηj,Rφ̃j |2
]
, if n = 5, 6,

|ψ|p +
k∑
j=1

|ηj,Rφ̃j |p, if n ≥ 7.

First, we consider the case n = 5, 6. Direct computation implies

∣∣(u∗µ,ξ)p−2(ηj,Rφ̃j)
2
∣∣ . ‖φ‖22+σ,n−5+a

k∑
j=1

µ
n−6

2
0j (t)

(1 + |yj |2)
6−n

2

µ
−(n−2)
0j (t)µ4+2σ

0j (t)

(1 + |yj |n−5+a)2
χ{|yj |≤2R}

. e−εt0 ‖φ‖22+σ,n−5+a

k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α
.

(4.21)

Recall the definition of ‖ψ‖∗ as in (4.16).
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• If |yj | < µ−1
0j (t) for j = 1, · · · , k, then we have the following estimate

∣∣(u∗µ,ξ)p−2ψ2
∣∣ . (u∗µ,ξ)

p−2‖ψ‖2∗
k∑
j=1

(µ−n−2
2

0j (t)µ2+σ
0j (t)

1 + |yj |n−5+α

)2

. ‖ψ‖2∗
k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α

µ2+σ
0j (t)

(1 + |yj |2)
6−n

2

1 + |yj |n−3+α

(1 + |yj |n−5+α)2︸ ︷︷ ︸
.µ1+σ+α

0j (t)

. e−εt0 ‖ψ‖2∗
k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α
. (4.22)

• If |yj | > µ−1
0j (t) for j = 1, · · · , k, then we have the following estimate

∣∣(u∗µ,ξ)p−2ψ2
∣∣ . (u∗µ,ξ)

p−2‖ψ‖2∗
k∑
j=1

(µ−n−2
2

0j (t)µ−2
0j (t)µ2+σ

0j (t)

1 + |yj |n−3+α

)2

. ‖ψ‖2∗
k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α

µ
n−6

2
0j (t)

(1 + |yj |2)
6−n

2

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α︸ ︷︷ ︸
.µ1+σ+α

0j (t)

. e−εt0
k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α
. (4.23)

Then we consider the case n ≥ 7. Due to the cut-off function ηj,R, we get

∣∣ηj,Rφ̃j∣∣p . ‖φ‖p2+σ,n−5+a

k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ
(2+σ)p
0j (t)

(1 + |yj |n−5+a)p
χ{|yj |≤2R}

. ‖φ‖p2+σ,n−5+a

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α

(
1 + |yj |n−3+α

)
µ

(2+σ)(p−1)
0j (t)

(1 + |yj |n−5+a)p
χ{|yj |≤2R}

. e−εt0 ‖φ‖p2+σ,n−5+a

k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α
.

(4.24)

Indeed, if we choose α ∈ ( 1
2 , 1) in the case n ≥ 7, then we have n− 3 + α ≤ (n− 5 + α)p and(

1 + |yj |n−3+α
)
µ

(2+σ)(p−1)
0j (t)

(1 + |yj |n−5+a)p
. µ

(2+σ)(p−1)
0j (t)

since α < a.

Next, we shall estimate the term |ψ|p . We discuss two cases.

• If |yj | < µ−1
0j (t) for j = 1, · · · , k, then we get

|ψ|p . ‖ψ‖p∗
k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α

µ
(2+σ)(p−1)
0j (t)(1 + |yj |n−3+α)

(1 + |yj |n−5+α)p︸ ︷︷ ︸
.µ

(2+σ)(p−1)
0j (t)

. e−εt0 ‖ψ‖p∗
k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α
.

(4.25)
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• If |yj | > µ−1
0j (t) for j = 1, · · · , k, then similarly we obtain

|ψ|p . ‖ψ‖p∗
k∑
j=1

µ
−n−2

2
0j µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α

µ−2p
0j (t)µ

(2+σ)(p−1)
0j (t)

(1 + |yj |n−3+α)p−1︸ ︷︷ ︸
.µ

2(n−4+2α+2σ)
n−2

0j (t)

. e−εt0 ‖ψ‖p∗
k∑
j=1

µ
−n−2

2
0j µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α
.

(4.26)

In conclusion, we get from (4.21)–(4.26) that

|N(w)| . e−εt0



(
‖φ‖22+σ,n−5+a + ‖ψ‖2∗

) k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α
, if n = 5, 6,

(
‖φ‖p2+σ,n−5+a + ‖ψ‖p∗

) k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α
, if n ≥ 7.

(4.27)

To estimate Soutµ,ξ , we first consider the case x ∈ Bj for fixed j ∈ {1, · · · , k}, namely |yj | < δµ−1
0j (t).

In this case, we recall from (3.6) that

Soutµ,ξ = (1− ηj,R)Sµ,ξ,j + S
(2)
µ,ξ

with S
(2)
µ,ξ and Sµ,ξ,j defined in (2.32) and (2.31) respectively. For S

(2)
µ,ξ, using (2.9) and the fact that

|yj | < δµ−1
0j (t), we have∣∣∣µ−n+2

2
j Rj

∣∣∣ . e−εt0
k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α
µ1−α−σ

0j (t)

. e−εt0
k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α

(4.28)

for small σ such that σ < 1 − α. Moreover, according to the estimate of L2 as in (2.37), we have in
the case n = 5, 6,

|L2| .
k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α
µ2−σ

0j (t)

. e−εt0
k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α
,

(4.29)

while in the case n ≥ 7,

|L2| .
k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α

µ
8

n−2−σ
0j (t)(1 + |yj |n−3+α)

1 + |yj |
(n+2)(n−4)

n−2︸ ︷︷ ︸
.µ

8
n−2

−σ
0j (t)

. e−εt0
k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α

(4.30)
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for σ < 8
n−2 . Therefore, from (4.28)–(4.30) we obtain

∣∣S(2)
µ,ξ(x, t)

∣∣ =

∣∣∣∣∣
k∑
j=1

µ
−n+2

2
j

{
Rj +

µ3
0j µ̇0jO(1)

1 + |yj |n−4
+
µ3

0j |ξ̇j |O(1)

1 + |yj |n−3
+

µ3
0jO(1)

1 + |yj |n−3

}

+

k∑
i 6=j

µ
n−2

2
0i O(|qj − qi|2−n) + L2

∣∣∣∣∣
. e−εt0

k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α
.

(4.31)

From the definition of the cut-off function ηj,R in (3.2), we know that 1− ηj,R 6≡ 0 only for |x− ξj | >
µ0j(t)R, namely |yj | > R. Therefore, in the region x ∈ Bj , using assumptions (4.8) and (4.9), we have∣∣∣(1− ηj,R)Sµ,ξ,j

∣∣∣ . Rα−1
k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α

. e−εt0
k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α
.

(4.32)

For the case x /∈ ∪kj=1Bj , namely |yj | > δµ−1
0j (t), we can get the estimate of Soutµ,ξ by Lemma 2.2

similarly ∣∣Soutµ,ξ (x, y)
∣∣ . e−εt0

k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α
. (4.33)

By Lemma 4.1, for function f with ‖f‖∗,−n−2
2 +2+σ,n−3−α < +∞, we have

|ψ(x, t)| = |T (f)| . ‖f‖∗,−n−2
2 +2+σ,n−3+α


k∑
j=1

µ
−n−2

2
0j (t)µ2+σ

0j (t)

1+|yj |n−5+α , if |yj | < µ−1
0j (t),

k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1+|yj |n−3+α , if |yj | > µ−1
0j (t).

Here the norm ‖ · ‖∗,−n−2
2 +2+σ,n−3+α is defined in (4.4) by replacing β by −n−2

2 + 2 + σ and γ by

n − 5 + α. Therefore, by the estimates (4.17), (4.18), (4.19), (4.20), (4.27), (4.31), (4.32), (4.33) and
Lemma 4.1, it follows that the mapping A maps the set B to itself.

Then it suffices to show that A is a contraction mapping. We claim that for any ψ1, ψ2 ∈ B,

‖A(ψ1)−A(ψ2)‖∗ ≤ c ‖ψ1 − ψ2‖∗,
where 0 < c < 1. Indeed, we observe that

A(ψ1)−A(ψ2) = T
(
N(ψ1 + φin)−N(ψ2 + φin) + Vµ,ξ(ψ1 − ψ2)

)
(see (4.14)). Recalling the definition of N as in (3.4), we get

∣∣N(ψ1 + φin
)
−N

(
ψ2 + φin

)∣∣ .


(u∗µ,ξ)
p−2 |φin|

∣∣ψ1 − ψ2

∣∣, if n = 5, 6,

|φin|p−1
∣∣ψ1 − ψ2

∣∣, if n ≥ 7.

In the case n = 5, 6, we get

∣∣N(ψ1 + φin
)
−N

(
ψ2 + φin

)∣∣ . e−εt0 ‖φ‖2+σ,n−5+a‖ψ1 − ψ2‖∗
k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α
,
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while in the case n ≥ 7, we have

∣∣N(ψ1 + φin
)
−N

(
ψ2 + φin

)∣∣ . e−εt0‖φ‖p−1
2+σ,n−5+a‖ψ1 − ψ2‖∗

k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α
.

For the term Vµ,ξψ defined in (3.9), it is easy to derive that

|Vµ,ξ(ψ1 − ψ2)| ≤ e−εt0‖ψ1 − ψ2‖∗
k∑
j=1

µ
−n−2

2
0j (t)µ−2

0j (t)µ2+σ
0j (t)

1 + |yj |n−3+α
.

Hence
‖A(ψ1)−A(ψ2)‖∗ ≤ c ‖ψ1 − ψ2‖∗

holds with 0 < c < 1 when t0 is sufficiently large. Therefore, if t0 is sufficiently large, the operator A
is a contraction mapping in B. By the contraction mapping theorem, we get the existence of desired
solution in B. Estimate (4.13) follows similarly as (4.12) by standard parabolic theory. The proof is
completed. �

4.3. Lipschitz dependence of ψ on λ, ξ, λ̇, ξ̇ and φ. The function ψ = Ψ(λ, ξ, λ̇, ξ̇, φ) is a solution of

problem (4.1), which also depends on the parameter functions λ, ξ, λ̇, ξ̇, and φ. Next we want to clarify

this dependence, which is done by estimating for example ∂φΨ(λ, ξ, λ̇, ξ̇, φ)[φ̄] = ∂sΨ
[
λ, ξ, λ̇, ξ̇, φ +

sφ̄
]∣∣∣
s=0

as a linear operator between Banach spaces. We have the following proposition, whose proof

can be carried out after some minor modifications as in [9, Proposition 4.2]. We omit the details.

Proposition 4.2. Assume the validity of the hypotheses in Proposition 4.1. Then, Ψ depends smoothly
on λ, ξ, λ̇ , ξ̇, φ, and we have

‖Ψ[λ1, ξ, λ̇, ξ̇, φ]−Ψ[λ2, ξ, λ̇, ξ̇, φ]‖∗ . e−εt0 ‖λ1 − λ2‖1+σ, (4.34)

‖Ψ[λ, ξ1, λ̇, ξ̇, φ]−Ψ[λ, ξ2, λ̇, ξ̇, φ]‖∗ . e−εt0 ‖ξ1 − ξ2‖1+σ, (4.35)

‖Ψ[λ, ξ, λ̇1, ξ̇, φ]−Ψ[λ, ξ, λ̇2, ξ̇, φ]‖∗ . e−εt0 ‖λ̇1 − λ̇2‖1+σ, (4.36)

‖Ψ[λ, ξ, λ̇, ξ̇1, φ]−Ψ[λ, ξ, λ̇, ξ̇2, φ]‖∗ . e−εt0 ‖ξ̇1 − ξ̇2‖1+σ, (4.37)

‖Ψ[λ, ξ, λ̇, ξ̇, φ(1)]−Ψ[λ, ξ, λ̇, ξ̇, φ(2)]‖∗ . e−εt0 ‖φ(1) − φ(2)‖2+σ,n−5+a, (4.38)

where the above norms are defined in (4.7), (4.10) and (4.16), respectively.

5. Linear theory and choices of parameter functions λ(t), ξ(t)

After we get the outer solution ψ = Ψ[λ, ξ, λ̇, ξ̇, φ] as in Proposition 4.1 and Proposition 4.2, we
substitute the function ψ into the inner problem (3.11) and get a nonlinear and nonlocal equation of
φj . We perform a further change of variable in equation (3.11)

t = t(τj),
dt

dτj
= µ2

0j(t), j = 1, · · · , k,

namely
τj(t) = (2κj)

−1e2κjt = (2κj)
−1µ−2

0j (t). (5.1)

For simplicity, we write τj as τ in the following if there is no confusion. By the above change of
variable, equation (3.11) becomes

∂τφj = ∆yφj + pU(y)p−1φj +Hj [λ, ξ, λ̇, ξ̇, ψ, φ](y, τ) in B2R(0)× [τ0,+∞) (5.2)
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with t(τ0) = t0 and

Hj [λ, ξ, λ̇, ξ̇, ψ, φ](y, τ) = µ
n+2

2
0j Sµ,ξ,j

(
ξj + µ0jy, t(τ)

)
+B1

j [φj ] +B2
j [φj ] + B3

j [φj ]

+ pµ
n−2

2
0j

µ2
0j

µ2
j

∣∣∣U(µ0j

µj
y
)∣∣∣p−1

ψ
(
ξj + µ0jy, t(τ)

)
.

(5.3)

Next, let us explain formally how we solve problem (5.2). The linear operator Lτ (φ) := −φτ +∆φ+
pUp−1φ is certainly not invertible since all τ -independent elements of the kernel of L0(φ) := ∆φ +
pUp−1φ are also the elements of the kernel of Lτ . Thus, for solvability, we expect some orthogonality
conditions to hold. Moreover, the solution φj we look for cannot grow exponentially in time. Recall
that the operator L0 as in (2.20) has a positive radially symmetric bounded eigenfunction Z0 associated
to the only negative eigenvalue λ0 to the problem

L0(φ) + λφ = 0, φ ∈ L∞(Rn). (5.4)

Furthermore, λ0 is simple and Z0 has the asymptotic behavior Z0(y) ∼ |y|−n−2
2 e−

√
|λ0| |y| as |y| → ∞.

To avoid exponential growth in time due to the instability, we construct a solution to problem in the
class of functions that are parallel to Z0 in the initial time τ0.

The above formal argument leads us to construct a solution φ = (φ1, · · · , φk) of the system
∂τφj = ∆yφj + pU(y)p−1φj +Hj [λ, ξ, λ̇, ξ̇, ψ, φ](y, τ), in B2R(0)× [τ0,+∞),

φj(y, τ0) = e0Z0(y), y ∈ B2R(0),∫
B2R

Hj [λ, ξ, λ̇, ξ̇, ψ, φ](y, τ)Z`(y) dy = 0, ∀τ > τ0, j = 1, · · · , k, ` = 1, · · · , n+ 1,

(5.5)

for some constant e0. For ` = 1, · · · , n + 1, Z`(y) are the only bounded elements in the kernel of the
operator L0 . Moreover, the parameters λ and ξ (as functions of the given φ) will be chosen such that
the orthogonality conditions∫

B2R(0)

Hj [λ, ξ, λ̇, ξ̇, ψ, φ](y, τ)Z`(y)dy = 0, ∀τ > τ0, j = 1, · · · , k, ` = 1, · · · , n+ 1 (5.6)

are satisfied. The above k × (n + 1) orthogonality conditions imply a nonlinear nonlocal system of
k × (n + 1) ODEs. In Section 5.2, we will prove that the ODE system is solvable. After we solve
the ODEs of parameters λ, ξ, we will prove that problem (5.5) is solvable in the class of functions
φj satisfying (4.11). A central point of the construction is a linear theory developed in [9, Section 7],
which allows us to solve system (5.5) by means of the contraction mapping theorem. This will be the
context of Section 6.

5.1. The linear theory of inner problem. The key ingredient to solve the inner problem for
function φ satisfying (4.11) is the resolution of the linear problem: For a large number R > 0, we shall
construct a solution to an initial value problem of the form{

φτ = ∆φ+ pU(y)p−1φ+ h(y, τ) in B2R(0)× (τ0,+∞),

φ(y, τ0) = e0 Z0(y) in B2R(0),
(5.7)

provided that h satisfies certain space-time decay and certain orthogonality conditions. Here Z0 is the
positive radially symmetric bounded eigenfunction associated to the only negative eigenvalue to the
eigenvalue problem (5.4).

We recall that τj = τj(t) is given in (5.1), namely τj(t) = 1
2κj

µ−2
0j (t) for j = 1, · · · , k. In the

τ -variable, we define
‖h‖ν,a := sup

τ>τ0

sup
y∈B2R(0)

τν(1 + |y|a) |h(y, τ)|, (5.8)

where ν = 1 + σ
2 , so that we have τ−νj (t) ∼ µ2+σ

0j (t).
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Decompose h(y, τ) into the following spherical harmonic modes

h(y, τ) =

∞∑
j=0

hj(|y|, τ)Θj(y/|y|) with hj(|y|, τ) =

∫
Sn−1

h(y, τ)Θj(θ)dθ,

where θ = y/|y|, and Θj (j ∈ N) are orthogonal basis of L2(Sn−1) made up of spherical harmonics,
namely eigenfunctions of the problem

∆Sn−1Θj + λjΘj = 0 in Sn−1.

We denote h = h0 + h1 + h⊥ with

h0 = h0(|y|, τ), h1 =

n∑
j=1

hj(|y|, τ)Θj and h⊥ =

∞∑
j=n+1

hj(|y|, τ)Θj .

We have the following proposition concerning the estimate of solution φ to the linear problem (5.7),
which can be proved by similar arguments as in [9, Proposition 7.1].

Proposition 5.1. Let ν, a be given positive numbers with ν = 1 + σ
2 and 0 < a < 1. Then, for all

sufficiently large R > 0 and any h = h(y, τ) with ‖h‖ν,n−3+a < +∞ that satisfies∫
B2R(0)

h(y, τ)Z`(y) dy = 0 for all τ ∈ (τ0,+∞), ` = 1, · · · , n+ 1, (5.9)

there exist φ = φ[h] and e0 = e0[h] which solve problem (5.7). Moreover, they define linear operators
of h that satisfy the estimates

(1 + |y|)
∣∣∇φ(y, τ)

∣∣+
∣∣φ(y, τ)

∣∣ . τ−ν
R5−a

1 + |y|n
‖h0‖ν,n−3+a + τ−ν

R6−a

1 + |y|n+1
‖h1‖ν,n−3+a

+
τ−ν

1 + |y|n−5+a
‖h‖ν,n−3+a, (5.10)

and ∣∣e0[h]
∣∣ . ‖h‖ν,n−3+a. (5.11)

5.2. Adjusting the parameter functions. In this Subsection, we first derive the ODE system of λ
and ξ such that the orthogonality conditions (5.6) are satisfied. For convenience, we use the following
notation

λ(t) =

λ1(t)
...

λk(t)

 , λ̇(t) =

λ̇1(t)
...

λ̇k(t)

 , ξ(t) =

ξ1(t)
...

ξk(t)

 , ξ̇(t) =

ξ̇1(t)
...

ξ̇k(t)

 , q =

q1

...
qk

 .

First, we describe (5.6) when ` = n+ 1.

Lemma 5.1. For fixed j ∈ {1, · · · , k}, there exists a positive constant ε > 0 such that (5.6) with
` = n+ 1 is equivalent to

λ̇j(t) + κjλj(t) = Π1,j [λ, ξ, λ̇, ξ̇, φ](t) (5.12)

with

Π1,j [λ, ξ, λ̇, ξ̇, φ](t) = µ1+σ
0j (t)f(t) + e−εt0 Υ

[
λ̇, ξ̇, λ, µ0j(ξ − q), µ1+σ

0j φ
]
(t), (5.13)

where κj (j = 1, · · · , k) is a positive constant as in (2.25), f(t) and Υ
[
λ̇, ξ̇, λ, µ0j(ξ − q), µ1+σ

0j φ
]
(t)

are smooth and bounded functions for t ∈ [t0,+∞). Moreover, the following Lipschitz dependence of
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Υ[· · · ](t) on its parameters hold

|Υ[λ̇(1)](t)−Υ[λ̇(2)](t) | . e−εt0 |λ̇(1)(t)− λ̇(2)(t)|, (5.14)

|Υ[ξ̇(1)](t)−Υ[ξ̇(2)](t) | . e−εt0 |ξ̇(1)(t)− ξ̇(2)(t)| (5.15)

|Υ[λ(1)](t)−Υ[λ(2)](t)| . e−εt0 |λ(1)(t)− λ(2)(t)|, (5.16)

|Υ[µ0j(ξ
(1) − q)](t)−Υ[µ0j(ξ

(2) − q)](t)| . e−εt0 |ξ(1)(t)− ξ(2)(t)|, (5.17)

|Υ[µ1+σ
0j φ(1)](t)−Υ[µ1+σ

0j φ(2)](t)| . e−εt0 ‖φ(1) − φ(2)‖2+σ,n−5+a. (5.18)

Proof. Let σ be the positive number fixed sufficiently small as in Proposition 4.1. For φj satisfying
(4.10) and any fixed j ∈ {1, · · · , k}, we want to compute∫

B2R(0)

Hj [λ, ξ, λ̇, ξ̇, ψ, φ](y, t(τ))Zn+1(y) dy,

where Hj is given in (5.3). Recalling the expression of Sµ,ξ,j in (2.31), we can write

µ
n+2

2
0j Sµ,ξ,j(ξj + µ0jy, t) = (µ0jµ

−1
j )

n+2
2

[
µ0jS1(z, t) + λjS2(z, t) + µjS3(z, t)

]
z=ξj+µjy

+ (µ0jµ
−1
j )

n+2
2 µ0j

[
S1(ξj + µ0jy, t)− S1(ξj + µjy, t)

]
+ (µ0jµ

−1
j )

n+2
2 λj

[
S2(ξj + µ0jy, t)− S2(ξj + µjy, t)

]
+ (µ0jµ

−1
j )

n+2
2 µj

[
S3(ξj + µ0jy, t)− S3(ξj + µjy, t)

]
,

where

S1(z, t) =
(
λ̇j − κjλj

)
Zn+1

(z − ξj
µj

)
+ 2λjA(qj)

z − ξj
µj

· ∇U
(z − ξj

µj

)
,

S2(z, t) = λ̇j Zn+1

(z − ξj
µj

)
+ λjA(qj)

z − ξj
µj

· ∇U
(z − ξj

µj

)
,

S3(z, t) = ξ̇j · ∇U
(z − ξj

µj

)
+ A(qj)(ξj − qj) · ∇U

(z − ξj
µj

)
.

It is direct to check that∫
B2R(0)

Z2
n+1(y)dy = c0

(
1 +O(R4−n)

)
,∫

B2R(0)

(
A(qj) y

)
· ∇U(y)Zn+1(y) dy = cj

(
1 +O(R4−n)

)
with c0 and cj defined in (2.24). Therefore, we obtain∫

B2R(0)

S1(ξj + µjy, t)Zn+1(y) dy = c0
(
λ̇j + κjλj

)(
1 +O(R4−n)

)
,∫

B2R(0)

S2(ξj + µjy, t)Zn+1(y) dy = c0λ̇j
(
1 +O(R4−n)

)
+ cjλj

(
1 +O(R4−n)

)
,∫

B2R(0)

S3(ξj + µjy, t)Zn+1(y) dy = 0,

where we have used symmetry for the third integral above. Since
µ0j

µj
=
(

1 +
λj
µ0j

)−1

, we get, for any

` = 1, 2, 3 ∫
B2R(0)

[
S`(ξj + µ0jy, t)− S`(ξj + µjy, t)

]
Zn+1(y) dy

= g
(
t,
λj
µ0j

)
+ g
(
t,
λj
µ0j

)
λj + g

(
t,
λj
µ0j

)
ξ̇j + g

(
t,
λj
µ0j

)
(ξj − qj) + µ1+σ

0j f(t),



30 C. WANG, J. WEI, S. WEI, AND Y. ZHOU

where f, g are smooth and bounded functions, and g(·, s) ∼ s as s→ 0. Thus we conclude that

c−1
0 µ−1

0j

(
µj
µ0j

)n+2
2
∫
B2R(0)

µ
n+2

2
0j Sµ,ξ,j(ξj + µ0jy, t)Zn+1(y) dy

=
(
λ̇j + κjλj

)
+ e−εt0g

(
t,
λj
µ0j

)
(λ̇j + ξ̇j) + e−εt0g

(
t,
λj
µ0j

)
λj + µ1+σ

0j f(t),

where g is smooth and bounded in its argument and g(·, s) ∼ s as s→ 0.
Next we consider the term

pµ
n−2

2
0j

(
1 +

λj
µ0j

)−2
∫
B2R(0)

∣∣U(µ0j

µj
y
)∣∣p−1

ψ(ξj + µ0jy, t)Zn+1(y)dy.

The principal part is

G :=

∫
B2R(0)

|U(y)|p−1ψ(ξj + µ0jy, t)Zn+1(y)dy.

Since ψ = Ψ[λ, ξ, λ̇, ξ̇, φ](y, t), we can write

G = Ψ[0, q, 0, 0, 0](qj , t)

∫
B2R(0)

|U(y)|p−1 Zn+1(y) dy

+

∫
B2R(0)

|U(y)|p−1 Zn+1(y)
(

Ψ[0, q, 0, 0, 0](ξj + µ0jy, t)−Ψ[0, q, 0, 0, 0](qj , t)
)

dy

+

∫
B2R(0)

|U(y)|p−1 Zn+1(y)
(

Ψ[λ, ξ, λ̇, ξ̇, φ]−Ψ[0, q, 0, 0, 0]
)

(ξj + µ0jy, t) dy

:=G1 +G2 +G3.

By Proposition 4.1, we obtain G1 = e−εt0µ
−n−2

2
0j (t)µ1+σ

0j (t)f(t) with smooth and bounded f. By the
mean value theorem, we get that

G2 = e−εt0µ
−n−2

2
0j (t)µ1+σ

0j (t)g
(
t,
λj
µ0j

, ξj − qj
)

for a smooth function g with g(·, s, ·) ∼ s as s → 0. The mean value theorem gives that, for some
s ∈ (0, 1),

G3 =

∫
B2R(0)

Up−1(y)Zn+1(y)
[
∂λΨ[0, q, 0, 0, 0][sλ](ξj + µ0jy, t)

+ ∂ξΨ[0, q, 0, 0, 0][s(ξj − qj)](ξj + µ0jy, t) + ∂λ̇Ψ[0, q, 0, 0, 0][sλ̇](ξj + µ0jy, t)

+ ∂ξ̇Ψ[0, q, 0, 0, 0][sξ̇]((ξj + µ0jy, t) + ∂φΨ[0, q, 0, 0, 0][sφ]((ξj + µ0jy, t)
]
dy.

By Proposition 4.2, we obtain

G3 = e−εt0µ
−n−2

2
0j (t)µ1+σ

0j (t) f(t)(λ̇j + ξ̇j + λj + ξj)F (λ, ξ, λ̇, ξ̇, φ)(t),

where f is smooth and bounded, and F is a nonlocal, nonlinear smooth operator in its parameters with
F (0, q, 0, 0, 0)(t) bounded.

Now we consider the terms B1
j [φj ], B

2
j [φj ] and B3

j [φj ] defined respectively by (3.12), (3.13) and
(3.14). We obtain that

3∑
`=1

∫
B2R(0)

B`j [φj ](y, t)Zn+1(y) dy

= e−εt0
{
µ1+σ

0j q[φ](t) + ξ̇jq[φ](t) + µ2+σ
0j (t) g

( λj
µ0j

)
q[φ](t) + µ1+σ

0j (t)q[φ](t)
}
,

where q[φ](t) is a smooth and bounded function in t, while the function g(s) is smooth with g(s) ∼ s
as s→ 0. Collecting the above terms, we get the validity of (5.12). �
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Similarly, up to some minor modifications as in Lemma 5.1, we can compute (5.6) for ` = 1, · · · , n.
This is the content of next Lemma. Here we omit the proof.

Lemma 5.2. For fixed j ∈ {1, · · · , k}, there exists a positive constant ε > 0, such that the relation
(5.6) for ` = 1, · · · , n is equivalent to

ξ̇j + A(qj)(ξj − qj) = Π2,j [λ, ξ, λ̇, ξ̇, φ](t), (5.19)

where A(qj) = ∇2 log a(qj) is the Hessian matrix and

Π2,j [λ, ξ, λ̇, ξ̇, φ](t) = µ1+σ
0j (t) ~fj(t) + e−εt0 Υ

[
λ̇, ξ̇, λ, µ0j(ξ − q), µ1+σ

0j φ
]
(t). (5.20)

Here the function ~fj = ~fj(t) is an explicit n dimensional vector function, and it is smooth and bounded
for t ∈ [t0,+∞). Moreover, Υ[· · · ](t) has the same Lipschitz properties as described in Lemma 5.1.

In summary, from Lemma 5.1 and Lemma 5.2, we have proved that solving (5.6) is equivalent to
solving the system of ODEs of λ and ξ{

λ̇j + κjλj = Π1,j [λ, ξ, λ̇, ξ̇, φ](t),

ξ̇j + A(qj)(ξj − qj) = Π2,j [λ, ξ, λ̇, ξ̇, φ](t).
(5.21)

We next show that, for any given φ satisfying (4.11), the system (5.21) is solvable and admits
solution λ = λ[φ](t), ξ = ξ[φ](t) satisfying the restrictions (4.8)–(4.9). Moreover, we show the Lipschitz
dependence of λ = λ[φ], ξ = ξ[φ] on φ, which is a crucial property to ensure the existence of the solution
φ to problem (5.5).

Proposition 5.2. Assume that φ satisfies (4.11). Then there exists a solution in the form λ =
λ[φ](t), ξ = ξ[φ](t) to the nonlinear system of ODEs (5.21), which satisfies the bounds (4.8)–(4.9).
Furthermore, for t ∈ [t0,+∞), it holds that

µ
−(1+σ)
0j (t)

∣∣λ[φ(1)](t)− λ[φ(2)](t)
∣∣ . e−εt0 ‖φ(1) − φ(2)‖2+σ,n−5+a, (5.22)

µ
−(1+σ)
0j (t)

∣∣ ξ[φ(1)](t)− ξ[φ(2)](t)
∣∣ . e−εt0 ‖φ(1) − φ(2)‖2+σ,n−5+a. (5.23)

Proof. Let h = (h1, · · · , hk) : [t0,+∞) → Rk be a vector function with the bounded norm ‖h‖1+σ,
where the norm ‖ · ‖1+σ is defined in (4.7). By the variation of parameters formula, the solution of

λ̇j(t) + κj λj(t) = hj(t), j = 1, · · · , k (5.24)

can be expressed as

λj(t) = e−κjt
[
dj +

∫ t

t0

eκjs hj(s) ds

]
,

where dj (j = 1, · · · , k) are arbitrary constants. In order to ensure that λj decays to 0 as t→ +∞, we
choose

dj = eκjt0λj(t0) = −
∫ +∞

t0

eκjs hj(s) ds,

then ∣∣∣e(1+σ)κjtλj(t)
∣∣∣ =

∣∣∣∣−eσκjt ∫ +∞

t

eκjshj(s)ds

∣∣∣∣
≤eσκjt‖hj‖1+σ

∫ +∞

t

e−(1+σ)κjseκjsds . ‖hj‖1+σ.

Therefore we have
‖λj‖1+σ . ‖hj‖1+σ.

Letting Λ(t) = λ̇(t) and K = diag(κ1, · · · , κk), equation (5.24) becomes

Λ(t) + K

∫ ∞
t

Λ(s) ds = h(t). (5.25)
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Then equation (5.25) defines a linear operator L1 : h → Λ, which associates to any h with ‖h‖1+σ-
bounded a solution to equation (5.24). This operator L1 is continuous in the Banach spaces

(L∞[t0,+∞))
k

equipped with the ‖ · ‖1+σ-topology.
Similarly, for vector function h = (h1, · · · , hk) with hj : [t0,+∞) → Rn and ‖hj‖1+σ-bounded, we

now consider the linear system of ODEs associated to (5.19)

d

dt
(ξj(t)− qj) + A(qj)(ξj(t)− qj) = hj(t), j = 1, · · · , k. (5.26)

Recall from (1.5) that PjA(qj)Pj
T = diag(σ

(j)
1 , σ

(j)
2 , · · · , σ(j)

n ) for some orthogonal matrix Pj . If we
denote that

ξj(t)− qj = Pj
T v(t), v(t) = (v1(t), · · · , vn(t))T,

then (5.26) becomes

v′(t) + diag(σ
(j)
1 , σ

(j)
2 , · · · , σ(j)

n ) v(t) = Pj hj(t),

and each component of the solution v(t) can be expressed as

vi(t) = e−σ
(j)
i t
[
d̃i +

∫ t

t0

eσ
(j)
i s (Pj hj)i(s) ds

]
, (5.27)

where d̃i (i = 1, · · · , k) are arbitrary constants. In order to ensure that vi(t) decays as t → +∞, we
choose the initial value vi(t0) as

d̃i = eσ
(j)
i t0vi(t0) = −

∫ +∞

t0

eσ
(j)
i s (Pj hj)i(s) ds.

Therefore, we get

|e(1+σ)κjt vi(t)| =

∣∣∣∣− e(1+σ)κjte−σ
(j)
i t

∫ +∞

t

eσ
(j)
i s (Pj hj)i(s) ds

∣∣∣∣
≤ e(1+σ)κjte−σ

(j)
i t‖hj‖1+σ

∫ +∞

t

e−(1+σ)κjs eσ
(j)
i s ds

≤ ‖hj‖1+σ,

where the following condition

− (1 + σ)κj + σ
(j)
i < 0 (5.28)

is needed to avoid the exponential growth while integrating. By the relation (2.25), we see that (5.28)
is equivalent to

σ
(j)
i < (1 + σ)

3n

n+ 2
σ̄j ,

where σ
(j)
i is the i-th eigenvalue of the matrix A(qj), σ is a small positive number and σ̄j :=

n∑
i=1

σ
(j)
i

n .

Observe that ‖e(1+σ)κjt vi(t)‖L∞(t0,+∞) . ‖hj‖1+σ. Then we have ‖ξ̇j‖1+σ . ‖hj‖1+σ.

Let Ξ(t) = ξ̇(t), which is a n× k-dimensional vector function. Thus (5.26) defines a linear operator
L2 : hj → Ξ, which associates to any n × k-dimensional vector function hj with ‖hj‖1+σ-bounded a
solution (5.27) to equation (5.26). This operator is continuous in the Banach space equipped with
‖ · ‖1+σ-topology.

After introducing the linear operators Li, i = 1, 2, we observe that (λ(t), ξ(t)) is a solution to (5.21)

if
(
Λ(t),Ξ(t)

)
:=
(
λ̇(t), ξ̇(t)

)
is a fixed point for the problem

(Λ,Ξ) = A4 (Λ,Ξ) , (5.29)

where

A4 (Λ,Ξ) :=
(
L1

(
Π̂1[Λ,Ξ, φ]

)
, L2

(
Π̂2[Λ,Ξ, φ]

))
=
(
Ā1(Λ,Ξ), Ā2(Λ,Ξ)

)
,

Π̂l(Λ,Ξ, φ) = Πl

[ ∫ ∞
t

Λ, q +

∫ ∞
t

Ξ,Λ,Ξ, φ
]
, l = 1, 2,
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and Π1, Π2 are defined respectively in (5.13) and (5.20). Let

K := max
j=1,··· ,k

{
‖f‖1+σ, ‖~fj‖1+σ

}
,

where the functions f, ~fj , j = 1, · · · , k are given in (5.13) and (5.20) respectively. We show that the
problem (5.29) has a fixed point (Λ,Ξ) in the following space

C =
{

(Λ,Ξ) ∈ L∞(t0,+∞)× L∞(t0,+∞) : ‖Λ‖1+σ + ‖Ξ‖1+σ ≤ cK
}

for some large constant c > 0.
Indeed, we observe directly from (5.13) and (5.20) that

|µ−(1+σ)
0j (t)Āl(Λ,Ξ)| . ‖φ‖2+σ,n−5+a +K + e−εt0‖Λ‖1+σ + e−εt0‖Ξ‖1+σ, l = 1, 2.

Thus, we have that A4 (C) ⊂ C.
For the Lipschitz condition for A4, we have

e(1+σ)κjt
∣∣Ā1(Λ1,Ξ)− Ā1(Λ2,Ξ)

∣∣
= e(1+σ)κjt

∣∣∣L1

(
Π̂1[Λ1,Ξ, φ]− Π̂1[Λ2,Ξ, φ]

)∣∣∣
. e(1+σ)κjte−εt0

∣∣∣∣L1

(
Υ
(

Λ1,Ξ,

∫ ∞
t

Λ1

)
−Υ

(
Λ2,Ξ,

∫ ∞
t

Λ2

))∣∣∣∣
. e−εt0‖Λ1 − Λ2‖1+σ,

as a direct consequence of (5.14) and (5.16). By the same argument, one can get a similar estimate
for |Ā2(Λ1,Ξ)− Ā2(Λ2,Ξ)|. Thus, we have

‖A4(Λ1,Ξ1)−A4(Λ2,Ξ2)‖1+σ . e−εt0 ‖Λ1 − Λ2‖1+σ + e−εt0 ‖Ξ1 − Ξ2‖1+σ.

Since e−εt0 is small when t0 is large enough, by the contraction mapping theorem, there exists a
solution (λ(t), ξ(t)) to the system of ODEs (5.21) with λ and ξ satisfying (4.8) and (4.9).

Next, we want to prove (5.22) and (5.23). Let φ(1) and φ(2) satisfy (4.11). The functions λ̄ =
λ[φ(1)]− λ[φ(2)] and ξ̄ = ξ[φ(1)]− ξ[φ(2)] solve the system of ODEs for j = 1, · · · , k

˙̄λj + κj λ̄j =
(
Π̄1(t)

)
j
, ˙̄ξj + A(qj)ξ̄j =

(
Π̄2(t)

)
j
,

where(
Π̄1(t)

)
j

= c−1
0 p µ

n−2
2

j µ−1
0j

∫
B2R(0)

∣∣∣U(µ0j

µj
y
)∣∣∣p−1(

ψ[φ(1)]− ψ[φ(2)]
)
(ξj + µ0jy, t)Zn+1(y) dy

+ c−1
0

(
µj
µ0j

)n+2
2

µ−1
0j

∫
B2R(0)

3∑
`=1

(
B`j [(φ

(1))j ]−B`j [(φ(2))j ]
)
Zn+1(y) dy

and
(
Π̄2(t)

)
j

has the similar form as
(
Π̄1(t)

)
j
. Thus, the validity of (5.22) and (5.23) follows from

(5.18). This completes the proof. �

6. Solving the inner problem

After we get the outer solution ψ as in Proposition 4.1 and Proposition 4.2 and the parameters
λ = λ(φ) and ξ = ξ(φ) as in Proposition 5.2, the last step in the proof of our result is to solve the
inner problem (5.2).

Proposition 5.1 concludes the existence of a linear operator T which associates a solution to the
linear problem (5.7) for any function h(y, t) with ‖h‖ν,n−3+a-bounded and satisfying orthogonality
condition (5.9), where the norm ‖·‖ν,n−3+a is defined in (5.8). Moreover, it states that T is continuous
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between Banach spaces equipped with the topologies described by (5.10)–(5.11). Thus, the existence
and properties of solutions φ and e0 to problem (5.2) are reduced to the fixed point problem

φ = (φ1, · · · , φk) = A5(φ) :=
(
T (H1[λ, ξ, λ̇, ξ̇, ψ, φ]), · · · , T (Hk[λ, ξ, λ̇, ξ̇, ψ, φ])

)
in a proper set of functions. We recall that Hj (j = 1, · · · , k) is defined in (5.3).

Next, we shall prove that A5 is a contraction mapping from D to D, where

D := {φ : ‖φ‖ν,n−5+a ≤ Λe−εt0}
with Λ > 0 fixed sufficiently large, where

‖φ‖ν,n−5+a := sup
τ>τ0

sup
y∈B2R(0)

τν(1 + |y|n−5+a) (|φ(y, τ)|+ (1 + |y|)|∇φ(y, τ)|) .

To this end, our strategies are the linear theory given in Proposition 5.1 and the contraction mapping
theorem. Note that here the ‖ · ‖ν,n−5+a-norm is defined in (y, τ) variables, and in the (y, t) variables,
it is the same as (4.10) since we choose ν = 1 + σ

2 .
We claim that, for each j = 1, · · · , k,

|Hj [λ, ξ, λ̇, ξ̇, ψ, φ](y, t)| ≤ e−εt0
µ2+σ

0j (t)

1 + |y|n−3+a
, (6.1)

for some a ∈ (0, 1), and for φ(1), φ(2) ∈ D

‖Hj [φ
(1)]−Hj [φ

(2)]‖ν,n−3+a ≤ c‖φ(1) − φ(2)‖ν,n−5+a (6.2)

with 0 < c < 1 when t0 is sufficiently large. We recall the definition of Sµ,ξ,j(x, t) as in (2.31). Then
we can easily get ∣∣∣µn+2

2
0j Sµ,ξ,j(ξj + µ0jy, t)

∣∣∣ . e−εt0 µ2+σ
0j (t)

1 + |y|n−3+a
. (6.3)

Since the outer solution ψ ∈ B with B defined in (4.15), we obtain that

p µ
n−2

2
0j

µ2
0j

µ2
j

∣∣∣U(µ0j

µj
y
)∣∣∣p−1

|ψ(ξj + µ0jy, t)| . e−εt0
µ2+σ

0j (t)

1 + |y|n−3+a
. (6.4)

According to the definitions of B1
j [φj ], B

2
j [φj ], B

3
j [φj ] as in (3.12)–(3.14), we can get

|B`j [φj ]| . e−εt0
µ2+σ

0j (t)

1 + |y|n−3+a
‖φ‖ν,n−5+a, for all ` = 1, 2, 3. (6.5)

Combining (6.3), (6.4) and (6.5), we conclude the validity of (6.1) for Λ > 0 fixed large.
We next prove that the map A5 is a contraction mapping. We should emphasize the fact that ψ

depends on φ in a nonlinear and nonlocal way, recalling that

ψ = Ψ[λ(φ), ξ(φ), λ̇(φ), ξ̇(φ), φ].

We claim that there exists c ∈ (0, 1) such that, for any φ(1), φ(2) ∈ D

‖A5(φ(1))−A5(φ(2))‖ν,n−5+a ≤ c‖φ(1) − φ(2)‖ν,n−5+a.

From the definition of µ
n+2

2
0j Sµ,ξ,j in (2.31) and the Lipschitz dependence of λ and ξ on φ as in (5.22)

and (5.23), we have∥∥∥µn+2
2

0j

(
Sµ,ξ,j [φ

(1)]− Sµ,ξ,j [φ
(2)]
)∥∥∥
ν,n−3+a

≤ c
∥∥φ(1) − φ(2)

∥∥
ν,n−5+a

(6.6)

with 0 < c < 1 when t0 is sufficiently large.
Next, we consider the term

pµ
n−2

2
0j

µ2
0j

µ2
j

∣∣∣U(µ0j

µj
y
)∣∣∣p−1

ψ(ξj + µ0jy, t)
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and we compute

pµ
n+2

2
0j

∣∣∣∣∣ 1

µ2
j [φ

(1)]
Up−1

( µ0j

µj [φ(1)]
y
)
ψ[φ(1)](ξj [φ

(1)] + µ0jy, t)

− 1

µ2
j [φ

(2)]
Up−1

( µ0j

µj [φ(2)]
y
)
ψ[φ(2)](ξj [φ

(2)] + µ0jy, t)

∣∣∣∣∣
. e−εt0

µ2+σ
0j (t)

1 + |y|n−3+a

∥∥φ(1) − φ(2)
∥∥
ν,n−5+a

.

(6.7)

Finally, it follows from the definitions (3.12), (3.13) and (3.14) respectively that∣∣∣B`j [φ(1)]−B`j [φ(2)]
∣∣∣ . e−εt0

µ2+σ
0j (t)

1 + |y|n−3+a

∥∥φ(1) − φ(2)
∥∥
ν,n−5+a

, ` = 1, 2, 3. (6.8)

Therefore, by estimates (6.6)–(6.8) and Proposition 5.1, we obtain (6.2).
By (6.1), (6.2) and the contraction mapping theorem, we conclude that A5 has a fixed point φ

satisfying ‖φ‖ν,n−5+a < ce−εt0 . The proof is complete. �
The stability part in Theorem 1 is similar to that of [9]. Here we omit it.
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[30] S. Khenissy, Y. Rébäı, D. Ye, Expansion of the Green’s function for divergence form operators, C. R. Math. Acad.

Sci. Paris 348 (2010), no. 15-16, 891–896.
[31] C.E. Kenig, F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave

equation, Acta Math. 201, (2008), 147–212.
[32] J. Krieger, W. Schlag, D. Tataru, Slow blow-up solutions for the H1(R3) critical focusing semilinear wave equation,

Duke Math. J. 147 (2009), 1–53.

[33] Y. Giga, A bound for global solutions of semilinear heat equations, Comm. Math. Phys. 103 (1986), 415–421.
[34] Y. Giga, R.V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math.

38 (3) (1985), 297–319.

[35] Y. Giga, R.V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J. 36:1 (1987), 1–40.
[36] Y. Giga, S. Matsui, S. Sasayama, Blow up rate for semilinear heat equations with subcritical nonlinearity, Indiana

Univ. Math. J. 53:2 (2004), 483–514.

[37] H. Matano, F. Merle, Classification of type I and type II behaviors for a supercritical nonlinear heat equation, J.
Funct. Anal. 256 (2009), no. 4, 992–1064.

[38] H. Matano, F. Merle, On nonexistence of type II blowup for a supercritical nonlinear heat equation, Comm. Pure

Appl. Math. 57 (2004), 1494–1541.
[39] H. Matano, F. Merle, Threshold and generic type I behaviors for a supercritical nonlinear heat equation, J. Funct.

Anal. 261 (2011), 716–748.
[40] F. Merle, Solution of a nonlinear heat equation with arbitrarily given blow-up points, Comm. Pure Appl. Math. 45

(1992), no. 3, 263–300.
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Advanced Texts. Birkhäuser, Basel, 2007.
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Inst. H. Poincaré Anal. Non Linéaire 25 (2008), no. 3, 425–447.

[58] J. Wei, D. Ye, F. Zhou, Bubbling solutions for an anisotropic Emden-Fowler equation, Calc. Var. Partial Differential

Equations 28 (2007), no. 2, 217–247.
[59] D. Ye, F. Zhou, A generalized two dimensional Emden-Fowler equation with exponential nonlinearity, Calc. Var.

Partial Differential Equations 13 (2001), no. 2, 141–158.

School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China

Normal University, Wuhan, 430079, PR China
E-mail address: chunhuawang@mail.ccnu.edu.cn

Department of Mathematics, University of British Columbia, Vancouver, B.C., Canada, V6T 1Z2
E-mail address: jcwei@math.ubc.ca

School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China
Normal University, Wuhan, 430079, PR China

E-mail address: stwei@mails.ccnu.edu.cn

Department of Mathematics, University of British Columbia, Vancouver, B.C., Canada, V6T 1Z2

E-mail address: yfzhou@math.ubc.ca


	1. Introduction and main results
	2. Construction of the approximate solution and error estimates
	2.1. The first approximate solution
	2.2. The second approximate solution with correction
	2.3. Estimating the new error 

	3. The inner–outer gluing procedure
	4. Solving the outer problem 
	4.1. The linear heat equation
	4.2. Solving the outer problem
	4.3. Lipschitz dependence of  on  and 

	5. Linear theory and choices of parameter functions 
	5.1. The linear theory of inner problem
	5.2. Adjusting the parameter functions

	6. Solving the inner problem
	Acknowledgements
	References

