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ABSTRACT. We construct infinite time blow-up solution to the following heat equation with Sobolev
critical exponent and drift terms

nt2
ur = Au + Vb(z)-Vu + un=2 in R" X (0, +00),
u(-,0) =ug in R",

where b(z) is a smooth bounded function in R™ with n > 5 and the initial datum wg is positive and
smooth. Let g; € R™,j =1,--- , k, be distinct nondegenerate local minimum points of b(z). Assume
that an eigenvalue condition (1.6) is satisfied. We prove the existence of a positive smooth solution
u(z, t) which blows up at infinite time near those points with the form

. n—2
15 (t) ) :
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Here £;(t) — ¢; and 0 < p;(t) — 0 exponentially as t — +oco.

1. INTRODUCTION AND MAIN RESULTS

In this paper, we consider the following anisotropic heat equation with Sobolev critical exponent

ur = Au+ Vb(x) - Vu + = in R™ x (0, +00), (1.1)
u(+,0) = ug in R, '
where we write b(z) = loga(z) and a(z) is a positive smooth bounded function in R™(n > 5), ug is a
positive smooth function. Anisotropic elliptic and parabolic equations have attracted much attention

in recent years. The anisotropic differential operator of the divergence form is defined by

1

a(x)
For instance, the Green’s function of A, in a smooth bounded domain was investigated in [30].
Anisotropic equations have a wide range of applications in mathematical modeling of physical and
mechanical processes in anisotropic continuous medium. Concentration phenomena have been found
in many anisotropic elliptic problems. The role of the anisotropic coefficient a(z) in elliptic bubbling
phenomena has been known for a long time. Generally speaking, the bubbling location is determined
by the anisotropic coefficient a(x). See for example [24,25,29,55,57-59] and the references therein.
Inspired by these results, we consider the related problem in a parabolic setting, namely the problem
(1.1). We will construct infinite time blow-up solutions to problem (1.1), which rely on the anisotropic
coefficient a(x).

Agu = div(a(z)Vu) = Au+ Vloga(z) - Vu.

For the semilinear parabolic problem with gradient term
ug = Au+uP + g(z,t,u, Vu), in R™ x (0, 400),
u(+,0) = up, in R™,

where p > 1, the asymptotic behavior and the blow-up rate may be influenced by the gradient per-
turbations. Related results can be found in the survey [52] and the book [46]. For a special case
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g(z,t,u, Vu) = a- V(ud), in [1], Aguirre and Escobedo gave conditions which guarantee the existence
of finite time blow-up solutions.

When a(z) is a constant, problem (1.1) becomes a special case of the Fujita equation

us = Au+uP, in R" x (0, +00), (12)

U(,O) = Uo, in Rna .
with p > 1. After Fujita’s seminal work [27], a lot of literatures have been devoted to studying this
problem about the blow-up rates, sets and profiles. See, for example, [8,33,34,36-39, 53] and the

references therein. Solutions with multiple type I blow-up were first built in the real line in [40].
In particular, the values of the exponent p in problem (1.2) have fundamental effect on the blow-up
n+2 n+2

phenomena. The critical case p = 755 is very special in various ways. For the subcritical case p < 255,

in [42] Merle and Zaag found multiple-point, finite time type I blow-up solution and studied its stability.
n+2

For the supercritical case p > =5, Matano and Merle classified the radial blow-up solutions in [39].

Define the Joseph-Lundgren exponent

PJL(”) = {

00 for 3 <n <10,

4
I+t i forn21L
n+2

For ™= < p < pyr, no type II blow-up is present for radial solutions in the case of a ball or in
entire space under additional assumptions [37,38,43]. In [21], del Pino, Musso and Wei constructed

non-radial type II blow-up solutions in the range % < p < pyr. For the critical case p = 242

Collot, Merle and Raphagl proved classification results near the ground state of the energy cri?icgl
heat equation in R™ with n > 7 in [7]. In [51], by using the energy method, Schweyer constructed
the radial, type II finite time blow-up solution to the energy critical heat equation in R*. In [22], del
Pino, Musso and Wei found the existence of finite time type II blow-up solution for the energy critical
heat equation in R®. Concerning infinite time blow-up, in a very interesting paper [26], Fila and King
studied problem (1.2) with p = % and provided insight on the question of infinite time blow-up
in the case of a radially symmetric, positive initial condition with an exact power decay rate. Using
formal matching asymptotic analysis, they demonstrated that the power decay determines the blow-up
rate in a precise manner. Intriguingly enough, their analysis leads them to conjecture that infinite
time blow-up should only happen in low dimensions 3 and 4, see Conjecture 1.1 in [26]. Recently this
is confirmed and rigorously proved in [20]. Bubbling phenomena are present in many other critical
contexts, for example, Keller-Segel chemotaxis system, harmonic map heat flow, Schrodinger map and
various geometric flows. We refer the readers for instance to [10-13,28,31,32,35,11] and the references
therein.

In [9], Cortézar, del Pino and Musso investigated the energy critical heat equation
ut:Aquu%g, in 2 x (0, 400),
u =0, on 99 x (0, +00), (1.3)
u(+,0) = uo, in Q,
where 2 is a smooth bounded domain in R™ with n > 5, and the initial datum wug is positive and

smooth. Cortdzar, del Pino and Musso constructed solutions exhibiting infinite time blow-up at
prescribed points q1, - - - , ¢x such that the matrix

hglh,(h) *G(QL(D) *g(fh,%)

—G(q2, 1 H(g2,q2 o —Glge,

Glg) - (q: a) (q: q2) ) (g qr) a4
G, 1) —G(qr,q2) - H(qr,qr)

is positively definite, where G(x,y) is the Dirichlet Green’s function of —A in Q and H(x,y) is its
regular part. More precisely, they proved the existence of an initial datum ug and smooth parameters
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&) — g5, 0 < pj(t) = 0,ast — +o0, j =1, -, k, such that there exists an infinite time blow-up
solution u, to (1.3) of the following approximate form

”Z ( fjag)—fj() )

with oy, = [n(n — 2)]"7 and wi(t) = ﬁjtfm(l + 0(1)) for certain positive constant 3;. We remark
that, after the pioneering works [4,5], there has been a lot of literature devoted to studying the role of
Green’s function and its regular part in elliptic bubbling phenomena for perturbations of the critical
problem. See [15,45,47,48] and the references therein.

In this paper, we consider the anisotropic heat equation (1.1) in R™ (n > 5). As mentioned before,
in the absence of the vector fields, infinite time blow-up may not exist for dimensions n > 5 ( [26]). The
main aim of this paper is to show that the existence of vector fields can produce infinite time blow-up
in all dimensions n > 5. It turns out that the anisotropic coefficient a(x) will play an important role
in the sense that it basically determines the location of blow-up points and the blow-up rates. More

precisely, the blow-up points ¢y, - - - , g are distinct critical points of a(x) such that the Hessian matrix
V2logal(q;) := A(gy)
is positively definite for j = 1,--- , k. The Hessian matrix A(g;) will play a similar role as G(g) given
n (1.4). We denote P; by the invertible matrix such that
PjA(qj)PjT = diag(agj),aéj), e ,O'r(lj)), for j=1,--- )k, (1.5)
where all the eigenvalues a%j ), e ,USLj ) of the matrix A(qy) are positive. Define
n__(5)
=S =1k
, n
1=1
We shall assume that there exists a small positive number ¢ <« 1, such that eigenvalues O'(J ) and 0j
satisfy the following condition
3
o < (1+0) :ZQ% i=1,-,n, j=1,- k. (1.6)
The above restriction (1.6) is required to guarantee the solvability of our final reduced equations for
parameter functions &;(t), j =1,---,k. See Section 5 for details.
Our main result is stated as follows.
Theorem 1. Assume that n > 5, q1,--- ,q, are distinct critical points of a(x) such that the Hessian

matriz A(q;) is positively definite and the eigenvalues a(j) (¢t =1,---,n, j =1,--- k) satisfy the
condition (1.6). Then there exist smooth functions u;(t), £;(t), j = 1, -,k and an initial datum ug,
such that problem (1.1) has a solution of the form

n—2

lean< j;it)—gj() )2(1+0(1)),

where a,, = [n(n — 2)]%2 and o(1) = 0 as t — 400, uniformly away from the points g;, and
pi(t) = e "' 1+ 0(1), [&(t) =gl = Oe™™ M), as ¢ — foo,

for certain positive constant k; defined in (2.25). Moreover, there exists a codimension-k submanifold

Min X :={ue C'(R"): ‘ llim u(x) =0} containing ug(xz,0) such that, if ug is a small perturbation
xT|—0o0
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of ug(z,0) in M, then the solution u(x,t) of (1.1) still takes the form

n—2

k ~ 2
u(:v,t)zzan<~ 40 ) (1+0(1)),

j=1 5 ()2 + [ = (1)

where the point q; is close to q; forj=1,--- k.

We make several remarks as follows.

Remark 1.1.
w2
(1) A specific example of the anisotropic function a(x) is a(x) = e~ ° . In this case, the infinite
blow-up occurs at the origin O = (0,---,0), which is the local minimum of b(x) = loga(x).

Moreover, the eigenvalue condition (1.6) is satisfied since the Hessian is a diagonal matriz

A(O) = diag(2,---,2) and (1 + a)n?’f2 > 1 forn>5.

(2) In fact, the case in which the anisotropic function a(x,t) depends also on time can be dealt
with similarly. More precisely, the dynamics for po;(t) (c.f. (2.23)) now become

cOMO](t)+Cj(t)M0j(t):Oa j:17"'7k7
where ¢;j(t) is a function depending on a(z,t) and also the blow-up points. Then suitable scaling
parameter po;(t) can be chosen by the above ODE. Another aspect is that the key estimates in

the linear heat equation (Section 4.1) can be obtained similarly due to the work of Aronson [2]
as long as similar reqularity assumptions are imposed on a(x,t).

(3) We believe the infinite time blow-up also exists for the low dimensions n = 3,4. But difficulties
may arise when solving the scaling parameter jo; due to the slow decay of the error. We will
return to this topic in a future work.

The proof of Theorem 1 is mainly based on the inner—outer gluing procedure. The inner—outer
gluing procedure has been a very powerful tool in constructing solutions in various elliptic problems,

see for instance [13,16-18] and the references therein. Also, this method has been successfully applied
to many parabolic equations recently, such as the harmonic map flow from R? to S? [12], the infinite
time blow-up [9,20,22,23] and infinite time bubble towers [19] in energy critical heat equations, type II
finite time blow-up along curve for supercritical heat equation [21], vortex dynamics in Euler flows [11],
and others arsing from geometry and fractional context [10,44,49,50]. We refer the readers to a survey
by del Pino [14] for more results in parabolic settings.

Before we proceed to the proof, we sketch some of the main ideas used in our analysis. In Section 2,
we shall construct the first approximation of the form (2.3) and compute the error. In order to improve
the approximation, solvability conditions are required for the elliptic linearized operator around the
bubble, which will imply the scaling parameter functions p;(t) at main order. After the correction
has been added, we set up the inner—outer gluing scheme in Section 3, in which we decompose the
small perturbation in the form Z?Zl nj, Rg?)j -+ 1 where n; g is a smooth cut-off function supported
near the concentration point g;. The tuple (g?)j, 1) will satisfy a coupled nonlinear system: the outer
problem for 1 and the inner problem for ¢~>j. Basically, the outer problem is a heat equation with
coupling from the inner solution éj, while the inner problem is the linearized equation around the
bubble. In Section 4, we will use the contraction mapping theorem to solve the outer problem (4.1)
for v. The key ingredient of the proof is to derive a priori estimates for associated linear problem of
the outer problem. In [9] bounded domain case, the a priori estimates are established by a well-chosen
comparison function and the parabolic estimates. Due to the extra gradient term in our case, the a
priori estimates are achieved by the Duhamel’s formula. As a consequence, the a priori estimates we
get appear more in parabolic nature. More precisely, the solution to the linear outer problem behaves
differently inside and outside the self-similar region. From the linear theory developed in [9, Section
7], the inner problem can be solved, provided that certain orthogonality conditions are satisfied, by
means of the contraction mapping theorem. This will be the context of Section 6. The orthogonality
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conditions will be achieved by adjusting higher order terms of the parameter functions p;(¢) and &;(t)
in Section 5.2.

Notation. In the sequel, we shall use the symbol “ < ” to denote “ < C” for a positive constant C
independent of ¢ and ¢y, and C may change from line to line. Here ¢y > 0 is a constant fixed sufficiently
large.

2. CONSTRUCTION OF THE APPROXIMATE SOLUTION AND ERROR ESTIMATES

The aim of this Section is to construct the approximate solution u;, . (see (2.28)) and then evaluate
its error S[u/’;g], where the error operator S is defined as
S[u] : = —u; + Au+ Vlieoga(z) - Vu + u?
with p = Z—fg
It is well known that all positive entire solutions of the equation
AU +U2 =0 in R
are given by the Aubin-Talenti bubbles

n—2

_om2 T8 Iz :
i 20 (59) o ) ™

which are extremals of the Sobolev’s embedding (see [3,54]), where a,, = [n(n — 2)]"7 .
To explain the idea, we sketch the major steps of Section 2 here:

Step 1 (First approximate solution)

Our first approximate solution to problem (1.1) is
k

upe(x,t) = ZUM(t),gj(t)(x)
j=1

with £;(t) — ¢; and 0 < p;(t) — 0 as t — oco. Near each concentration point ¢; for j = 1,--- ,k, the
error of u, ¢ can be computed as

_71;2 . T — é_ t
Slupel(@,t) = p; = Eojluy, f1](y;,1) + hoot., y; = M(;f)()
J

)

with the main error
Eojlgs i3] (Wist) = pjft; Znsr(y;) + 3A(q;)y; - VU (y;). (2.1)
Here Z, 11 = "52U(y) + y - VU(y). We assume that
1 () = bipo; () + A;(8),  1&;(t) — 51 = Olug 7 (1)),

where b; are positive constants (we shall take b; = 1 in the sequel) and the function \;(¢) — 0 as
t — 0o. Then we see that the main order of (2.1) is given by

Eojl1ojs f105] (Y5 1) == b3 pojfto; Znsr (y) + b5ug;A(q;)y; - VU (y;).-
Step 2 (Second approximate solution with correction)

In order to improve the approximate solution, we add a correction
k
> _n=2 xr—&;
O(z,t) = Zuj > P ( 5‘7,75)
= Hj

_n+2
to cancel out the main order of the error p; * &ojlpoy, f10j](yj,t), namely, ®; solves the following
elliptic equation

AD; + pUP™'®; = — Ejlpojs fro;] in R", ®;(y;,t) =0 as [y, — oc. (2.2)
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Problem (2.2) is solvable if and only if the orthogonality conditions

Eojlpogs £0)(W5,1) Znia(y;) dy; = 0, j =1,k
Rn
hold. The scaling parameters p;(t) at main order are derived from the above orthogonality conditions.
So we choose a better approximate solution
uzjg(z,t) = uye(z,t) + i)(x,t).
Step 3 (Estimates of the new error Slu, (])

Near the concentration point g; for fixed j € {1,--- ,k}, we shall evaluate the new error

n+2

T { (k035 + Mo + AAg) Znsa () + (211058 + A2) Algy)ys - VU (y;)

+ i (&5 - VU (y;) + Algy) (&5 — 5) - VU(yj))} + h.o.t.,

while in the region away from each concentration point, the error S[u;é] is of smaller size compared
to the error in the region near g;.

S[“Z,g] =My

2.1. The first approximate solution. Given k distinct points ¢1, - - - , qx € R™, our first approximate
solution of problem (1.1) is

Up g (1) Z (0,612 ZM] T (x_gj(t)) (2.3)

15 (1)

with §;(t) — ¢; and 0 < p;(t) - 0 as t = o0 for each j = 1,---,k. The functions §; and p;
cannot of course be arbitrary. More precisely, we assume that (¢ ) and &;(t) take the following forms
respectively

1 (t) = bjpoj(t) +A;(t), 1&5(t) — q;] = O(ui 7 (1), (2.4)
where b; are positive constants (in the following, we will choose b; to be 1). Moreover, we assume that
A; satisfies |\; ()] + |A; ()] < po;(t) and Aj(t) — 0 as t — oo.

The error of the first approximation upe(x,t) is
k

k
u#f Zat Hj,€5 +Zv 1oga Ve UF‘ﬂfJ (ZU'“J"&J) Z 3:€5°
j=1

=1
We define
Bji= {w € RY, o (O <0}, j =1, .k, (2.5)
where 0 < § < % Hin |g; —g;] is a small fixed number. In the following lemma, we will give a description
i#]
of the error S[u,, ¢].

Lemma 2.1. Let y; = Ifgt()t) and 0 < oo < 1. The error S[uy, ¢](x,t) can be estimated as

n+2

M; 2 {on[ﬂjvﬂj]+51j[uj,§j,éj}+Rj}7 if x € By,

S[uy,,{] = _E-i,-l @ . —%—‘,—2—045 = _g+2_a~

k
Foj Hi95 | HFoj i'9i | Moy Gj
+ + if x ¢ Ub_
jz::l (1 + [y |3+ L+ [y 3% " 14 [y |n 3+ ,ifxd

with
Eojligs 1] = wifts Znsa (y;) + 153A(q;)y; - VU (y;),
Eiluy &5, &) = i€ - VU(y;) + 15A(q:) (& — 47) - VU(y;),
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and
n—2
(Hoitog) = O(lg; — ail*™™) 42 _
Rj = Z — 1+ Iy-|J4 : +Z poittog) * O(lgj — ail~"*+?)
i#j J i#j
nt2 n_o9, _ n_q. — ,uO O( )

+ ) gy (uf (i0(la; — ail*™") + pi & fu) + (2.9)

i#] 1+ [y,

J

+ZMOZ I‘LOJ |q] qill_n)’

i#]

where ﬁl s a smooth and bounded function of (y, ugjl,u,ﬁ,ujyj), 9;, Gj, §; are smooth and bounded
functions of (x, uajlu, §). Here Zn1(y) == 252U (y) +y - VU(y).

Proof. We discuss two different cases.

Case 1: x € Bj for any fixed j € {1,--- ,k}.

Recalling the definition of u, ¢ as in (2.3) and y; = $;§gt()t), we can write u, ¢ as

Upe(w,t) = Zﬂg = Ul(y;)-

We decompose
Slupe] == 81+ 82 + S,

where
_ng2 ) .
Si= p,; ? (NjujZn+1(yj) + 185 - VU(%‘))
_ng2
+> (g )2 (Uzﬂzzn-&-l(yz) + pidi VU(yz))
i#]
Sy =p; * { Valoga(z) - VU (y;) + Z (,ui,u;l)_jvz loga(z) - VU (y:) ¢,
i#]
. P
_n-2 _ni2
> s T U®,) Zuj T UP(yy),
j=1
and
n—2
Zni(y) = —5=Uy) +y-VU(y).
For i # j, we write
N (T&N Yt G
R e e
_ oy
= 2
(17 + gy + & — &7 7
anpl 2 1

n—2 °
2 =
1+ |ijj+§j*€z‘\2)

, we get the following estimates

gy & =&l (

=&
1

Uy:) = 7 ~0(gj — al*™")- (2.10)

Then by direct Taylor expansion and y; =
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Similarly, we can get
yi - VU () = u 2 O(lg; — ail*™™). (2.11)
First, we will give the estimate of the terms in S;. Using (2.10) and (2.11), for i # j, we get

. : . n—2 .
tifti Zns1(yi) + pii - VU (yi) = pifti <2U(y¢) + i - VU(.%)) + pi&i - VU (y5)

= fuani " O(lg; — @l*™") + 1 - fa,
where f; is a smooth function with order |f;;| = O(lg; — ¢;|'™™) and thus

_n+2

Si=p; ° {Mjﬂjznﬂ(yj) + &5 - VU (y))

HTH 52, —-n 5—1; g
+ Z:“o]' (/“Li 1:O0(lg; — @l + i & fil) }
i#]

Next we consider Sy. Using Taylor expansion, we can rewrite V, loga(u;y; + &;) in the following
form

V. loga(usy; + &) =1;A(a;)y; + Alg;) (& — a5) + Fos

where ﬁg is a smooth function with order |f;2| = O(|,ujyj +&—q; |2) and we have used the assumption
that V, loga(g;) = 0 and the Hessian matrix A(g;) is positively definite. Then, the component S, can
be written in the form by using (2.4)

_nt2

Sy = p; ° {N?A(Qj)yj VU (y;) + 1;A(45)(& — a5) - VU (y;)
3

M 1-n

1+ |y |n 3 } ;/u’ | J | )
Finally we estimate S3. We further write

_nt2 _ _nTH
Ss=p; * {[(U(yj) +9;)" — Up(yj)} = (ming ™) Up(yi)}

i#£]
_nt2
=p; ° <831 + 532),

where
= (ujmi T Uy,
i£j

By Taylor expansion, we have

Ss1 = [U(y;) +9,]" = UP(y;)

1
= pUP ! (y;)9; + p(p — 1)19?/ (1—9)[U(y;) + sﬁj]p_st
0
From (2.10) and (2.11), we obtain
'lgj = Z (/’Lj,uz) = (l% - qz|2 n) (2'12)

i#]

Since x € Bj, we notice that [J;] < (uoju()i)%z uniformly in small §, where § is the radius given in
(2.5). Thus the second term in S3; is of smaller order compared with pUP~!(y;)9;. On the other
hand, we have that

_nt2 n+2
S3o = — Z (i)™ 2 UP(ys) = Z (noito;) = O(lg; — @il ~2). (2.13)

i#] i#]
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Therefore, by (2.12) and (2.13), we obtain

_nt2 o ni2
Ss=p; * ZM O(lg; — &™) + > (oiro;) * O(lg; — ail~"+2))
i#j Lyl i#j

Collecting the above estimates for S1, Sy and Ss, we get the estimate of S{u,, ¢] for x € B,.
Case 2: z ¢ U¥_| B
Recall that

_n+t2
pi 2 (u]uanH(yg)Jrﬂjﬁg VU( y]) Zuj 2V, loga(z) - VU(y;)
1 j=1
p

k _n=2 k _nt2
S T UW) | = ny * UPy,).
j=1 j=1

From (2.10) and (2.11), the error estimate of the approximation u, ¢ in the region far away from the
concentration point g; (j =1,---,k) is a direct consequence of Taylor expansion similar to the first
case. Indeed, we take the first term in S[u, ¢] as an example

Mw

Slupel =

<.
I

LTI R
o, 0 J _
Zﬁ‘; * A Znsa(yy) = ZWOW—%V’ ol
1

where we have used Zn+1(y) ~ W The estimates for the rest terms can be carried out in a

similar manner. O

For a solution with the following form
uw(x, t) = upe(x, t) + ¢z, t),

we now derive some useful formulas needed later on. The new error of u(x,t) is
Slupe + ¢] = =0 + A¢ + Vioga(z) - Vi “‘puﬁ,_gl‘:b + Slupe] + Nlhf(()b)v
where N, ¢(¢) = (upue + )P — u, ¢ —puﬁ?gb. We write

k
0= Y T () - Zuj o (1), (214)
j=1

Then, it follows that

_n+t2
Slup,e + ¢l = Slupe] +Z/~LJ T Ay, t) + pUP (i), (5, )] + Algl, (2.15)
j=1

where

n+2

_nt2 . n
Zu] : {—u?atsoj(yj,t)Jrujuj[Q

wi(yjt) +yj - V@j(yj,t)}

k
+ 1€ - Vi(ys,t) } + )y 2 Valoga(z) - Ve (y;,t) (2.16)
j=1

n+2

(“/té*z#g 7 ‘PJ) *u PZH; U )i (s 1)

In order to reduce the size of the error Sfuy, ¢], it is reasonable to assume that the correction term
v (y;,t), 5 =1,--- ,k decays in the y; variable and for large ¢ the terms in A[¢] are comparatively
small.
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2.2. The second approximate solution with correction. In order to improve the approximation,

we should cancel out the main order components of the largest term in the expansion of the error
n+2

f;® Slugyel given in (2.6), i.e., Eozlpy, f1;] defined in (2.7).
Recall that

115 () = by () + A (1), 1€5(t) — q51 = O (g (1)),
where \;(t) is a small perturbation term of p;(t). Then, from (2.7) we obtain that

Eojligy iij] = Eojlog, fro] + (birosAj + biNjfio; + AjAj) Znsa (y5)

) (2.17)
+ (2bj 05 Aj + A7) A(g;)y; - VU(y5),
where Eyj[to;, fo;] is the leading order term of Ey;[u;, f15]
EojlHog: frog] = b3 pojfto; Zn+1(y;) + 03 A(q5)y; - VU (). (2.18)
An improvement of the approximation can be obtained if we solve the elliptic equation
Ap+pUP™ o = —Eojlposy fioj] i R™,  ¢(y,t) =0 as |y| — oo. (2.19)
The decay condition is added in order not to essentially modify the size of the error far away from the
q;’s.
We first consider the associated linear problem of (2.19)
Lo(¢) = Agp+pUP '¢g=h inR", ¢(y,t) >0 as |y — occ. (2.20)
It is well known (see for example [6]) that all bounded solutions to Lo(3)) = 0 in R™ consist of the
linear combinations of the functions Z;,--- , Z, 41 defined by
ou ) n—2
Zi(y) : (), i=1-,n  Zyu(y) = Uly) +y-VU(y), (2.21)

. 8yz 2
and for a function h(y) = O(|y|~™), m > 2, the problem (2.20) is solvable if and only if the following
orthogonality conditions hold

/h(y)Zg(y)dy:O forall ¢=1,---,n+1.

By the definition (2.18), &o;[roj, flo;] is even in y;. Notice from (2.21) that Z1(y),--- , Zn(y) are
odd in y, while Z,,+1(y) is even in y. Thus, the orthogonality conditions

Eojliogs frog] Ze(yj) dy; =0, £=1,--- ,n+1, j=1,---,k (2:22)
Rn
imply
Co MO](t) + Cj /J’OJ(t) = O’ .7 = 17 T vka (223)
where
o= / Zni ()P dy, ¢ = / Alg)y - VUW) Zpa(y)dy,  j=1,-- k. (2.24)
n ]Rn
Note that ¢y < +oo thanks to our assumption n > 5. By direct computations, we have
¢ = [ VUW) - (Ag)y) Znia(y) dy

= N VU (y) - (of)yl, e 707(3) yn)Z’n-‘rl(y) dy

@ (@

- n
K3

5 VU(Y) Yy Zns1(y)dy := Z 1757
where ¢ := [, VU(Y) - y Zns1(y) dy.

%
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Define [} := 0+°O (H_T)p dr with p — ¢ > 1. By using the properties (see for instance [13, Remark
4.1])
p—q—1 1 g+l
1! 71‘1 nd 17, = ——1!
PR W e = e
we obtain ( 2 ( 2 )
_ 3(n—2 n—2)(n+2
_ 20\ a) n/2 _ 2\lvma) v a) n/2
= nd d = nd
& a"Q(n74)w 27 and ¢p = a;, Sn(n — 1) "
where «,, = [n(n — 2)]7%2 and w,, is the area of the sphere S*~1. It then follows that
- 3n
¢ = -
n+2"
Therefore, we obtain that
G _ _3n =1,k (2.25)
PR —1.--- )
j <o nt2 79 J , y Koy
LORE)
where g 1= )" =
i=1
IUOj(t) e Kjta Jj= L k7 (226)

such that the orthogonality conditions (2.22) are satisfied. From the choice of the parameter function
o (t), we have
—Eojl1og, froj) = 1d; (1) [k 03 Znga (y;) — b5 Algy) yj - VU (y;)] = g (t) wj ()
with [o, wj(y;) Ze(y;)dy; =0, £=1,--- ,n+1, j=1,--- k. Here w;(y;) is even in y;.
By (2.18), the orthogonality conditions (2.22) hold for any b; > 0. So we can simply let b; = 1 for
j=1,--- k. Let p;(y;) be a decaying solution to
Ayp;i(y;) +pU(y; )P 'py(y) = wily;)  in R, pily;) =0 as |y;] — oo
From (2.21), we have

1
wi(Yi)l S =z
Wl = e
Then from standard elliptic theory, it holds that
1
(Y| S ———— as |y;| = oo
|pj(yj)| ~1 4 |y]|n_4 |y]|
Therefore
D;(y;,t) = pg;(t) py(y;) (2.27)
is a solution to (2.19) with
2 2
Ho]‘(t) “Oj(t)
1 (y;, ) S T =g and [VE;(y;,¢)| S :
7 1+ [y;[n—* T 1+ [y;[n—2

Thus, to reduce the size of the error S[u, ¢], in (2.14) we can choose ¢; = ®;. More precisely, we
define the corrected approximate solution as

U e(@1) = wye(n,t) + O(,1) with ®(x,1) Zuj o, (I ; gj,t) : (2.28)
j
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2.3. Estimating the new error S[u, .|. By the previous computations (2.15) and (2.16), we obtain
the new error of approximate solution uy, ¢ in the form

" +
S[uu,g] = Sluy¢] — Mj * Eojlrogs fuog] — Z /‘1
i#]

507, ,U/OMMO'L] +A[ ] (2 29)

=A + Ay,
where A[®] is defined in (2.16),

n+

A = S[uu g] M- * &oj [MOJ7NOJ]

and

Zuz

i#]
The expansion for the new error S[uy, | is given by the following lemma.

501 ,U/O“,U/Oz] + A[ ]

Lemma 2.2. Assume p1;(t) = po;(t) + X;(t) with |X;(t)] S ul"’g( t) for some o > 0 small and |€;(t) —
g S ,uéj'”( ). It holds that for t large

Spei+ sg‘g, if ©€B,,

Slup.el = “ (2.30)
S, e if v¢U_B;
with
_n+t2 . ) .
Speg=H; ° {(quAj + Ajftog + AjAj) Zna1(y;) + (200505 + A A(g5)y; - VU (y;)
+ 11 (5;‘ VU (y;) + A(g;)(&; —qj‘)'VU(yj))}7 (2.31)
$) LR Z piif0;0(1)  pdilé101)  pd;0()
! Hi Ly [m= T4y 1+ [y, 0.52)
2.32
"‘Zﬂm (lgj — :l*™™) + Lo,
i#]
and
*ﬁ* — 492 a: 7 —2492 a7
_i 0j ('UOJ)‘ + Ajhioj + A Aj i) M0j2+ & - hy n Hof+ h;
i=1 L [yt L fys[n=3Fe Lo fyy|nm3te
(2.33)

k —5+2. > +2 . -* —2427
not Cighy | ngt Ué Ry pg Uhy
Z n—4 + n—3 + n—=3 |’
— \ 1+ 1yl 1+ |y, 1+ |y
where v = & —|—,ujyj, 0<a<1landLs, R; are deﬁned in (2.37)and (2.9), respectively. Moreover, h;,
h], hj are smooth, bounded functions of (x, /‘og w, &).

Proof. We consider two cases.
Case 1: z € B; for any fixed j € {1,--- ,k}.
We need to estimate S[uy | = A1 + Az. By (2.6), (2.29) and (2.17), one has

n+2 .
Ay =py ? {501‘[%7;1]‘] — &ojlpoy, fro5] + Ejlpg. &5 &5 + Rj}
_nt2

=p; 7 {(uojj\j + Ajh0j + AjA) Znga () + (2u0; 0 + A3)A(g)y; - VU (y5) (2.34)

+ 1 (fj VU (y5) + Alg;) (& — a5) 'VU(yj)> +Rj},
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We then estimate Ay in the region « € B;. By (2.10) and (2.11), we get

Eoilkoi, froi] = pg;Oa; — ai*™™).
According to the expression of A as in (2.16), we express

A[‘i)] = L1 + LQ,

where
Zujn;z{ —Mfatcbj(yj,t)+ujﬂj{nT_2<I>j(yj,t)+y] Vo, (yj, )]
k
+ 1565 - VOi(y;,1) } + Zﬂj_%vm loga(z) - VO;(y;,t)
=1
and j

k
_n=2
Ly = (W@"FZMJ- : ‘I’j) pZMJ = Uly;)P~ ' ®;(y;, 1)
=1

y (2.27), we obtain

k _n+2
L= Z“g‘ ’
j=1

We can rewrite Lo as

k k
_n-—2 P B _n-—2
Ly = (um& + § :“j ’ ‘bj) — ¢ = P(upe)” ' Z“J‘ © P
j=1 j=1

His0,O() | pl€510(1) w001
L fy;|m=t 0 T+ y;n=3 0 1+ Jy;|n3

) ko s ) (2.35)
Pl P S  T pZuj FU(y)re,
j=1
= Loy + Lo
with
ko a2 P o e
Loy = (Uﬂ’g‘f‘ZMj 2 ‘I)j) —uﬁ,E—P(uH,g)p_lej 2 @j
j=1 j=1
9 k _n-2 2
b (Z“a‘ 2 @j) . for n=5,6, (2.36)
j=1
—om{
_n=2 P
(Z“j 2 <I>j) , for n>7,
j=1

_n=2
where we have used the fact that Z?,l 1 > @; Swuye for € By, For Loy, we write

“ufplz% 2‘1’_1’2% E yjplq)

p—1

_n=2 _n=2
—p|u; T U, +Zm Uy TR TR A
i#£] i#]

n+2 +2
—plu T U@, +ZM1 TUyre,
i#]
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which turns out to be small by a similar argument as in Lemma 2.1. By (2.27), (2.35) and (2.36), we
obtain

k 6;71
S M for n=5,6,
1wl
Ly = O(l) & g2y 2(nt2) (2'37)
2 n—2

/j,.
Y oy for n>T.
=1 1—|— |yz‘ n—2

Note that in (2.37) for the case n = 5, we have used the fact that € B; such that all terms in the
summation ¢ # j are essentially of smaller order. Therefore, we conclude that for z € B;

3 - 3 |£ 3
”*2 HojHoj Hoj €51 Hoj
Ay = + +
’ ZMJ <1+|yj|"‘4 L fy; =2 1y "2

+ZM01 ‘q]_ql| ")+ Lo.
i#]

Collecting (2.34) and (2.38), we get the desired estimate.
Case 2: = ¢ U¥_| B

(2.38)

Due to the spatial decay of ®;, the size of b is ,LLO -times smaller than that of u, ¢ in the region far
away from ¢;. A direct consequence of Lemma 2.1 and (2.27) is that, if = ¢ Uk —1Bj, the error S[uy, |
can be described as follows

k -4—a S . N —5+2-—a; P —3t+2—ay
S[u* ] _Z Noj‘2 (ojAj + Ajfog + AjAj) Ry M()j2 & hy n ﬂog‘z h;
e Lt [y;|=ste L[y |3t 14 [y;|n3te

j=1
_n . - _n49~
o, to; &5 by po” Ry
+Z o ity =R =1 B
1+ [y, L+ [y, 1+ [y,
where hj, Hj, l~1j are smooth, bounded functions of (z, ,uajl/i, §). Indeed, for = ¢ U;?:IBJ-, by (2.10)
and (2.11), we have

71+2

S['U/ll«;ﬁ] - Mj 80] 105, /~L0] Z /J'Z 501 MO'M MOz]
i#]
k —n_ : . . o g - _nio as
- Z o 0y o+ Nsfios A A fo;” ¢ hy + Ho;” “h;
j=1 1+ Jy;[n=ste 1+ [y |73+ T 14 Jy;n—3+e |

where 0 < a < 1, and

k —5+2 2+2 —5+2
< :Z Ho;”  Fihy + fJ i to;” hy
o\ Ly 1+|yj|" 5 14 yn3 )

where we have used Lemma 2.1, and h;, ﬁj, h; are smooth and bounded in the expansions.
Collecting all the estimates for the two different cases, we complete the proof. O



INFINITE TIME BLOW-UP FOR AN ANISOTROPIC HEAT EQUATION 15

3. THE INNER—OUTER GLUING PROCEDURE

Let £y > 0. We consider the problem
ur = Au+ Vioga(z) - Vu+uP, in R™ X [tg, +00). (3.1)

In this Section, we shall set up the inner—outer gluing scheme to find a solution u to problem (3.1). Then
u(xz,t — to) is a solution to the original problem (1.1) with suitable initial condition to be determined
later.

We introduce a smooth cut-off function n with n(s) =1 for s < 1 and 7(s) = 0 for s > 2. Define

n,r(z,t) =1 (W) ; (3.2)

where R is sufficiently large and independent of ¢. For convenience, we take R := e, where p > 0 is
small enough and ?j is the initial time.
For a small perturbation w(z,t), the function u(z,t) = uj, ((z,t) + w(z,t) solves problem (3.1) if

ow = Aw + Vioga(z) - Vw + p(uzﬁg)p_lw + N(w) +Sfuy, ] in R™ x [to, 00) (3.3)

where
N(w) = (up ¢ + W) = (uj, )" = pluy, )"~ W, (34)
Sluy, ¢l = — 0wy, ¢ + Auy o + Vioga(z) - Vuy, ¢ + (uy )" (3.5)

According to the expression of the error S[uy | as in Lemma 2.2, for z € Bj, we can decompose
S[uj, ¢] into t
*
S[uu,g] = nj,RS;L,E,j + SZ?E,J” S Bj,
where S, ¢ ; defined in (2.31) is the leading part in S[u;lg], and

ou 2
894 = (1= 1,r)Spej + St © € B;

with Sf)g defined in (2.32). In this way, S encodes the information of the error of S[u, .| regarding
the smaller order terms and the part in the region far away from the concentrating points q;, j =
1,---, k. Note that for z ¢ U¥_, B;, the error S[u, ¢] given in Lemma 2.2 is smaller compared with
S, and it also carries part of the information for the region away from ¢;, 7 = 1,---k. In the
notation of Lemma 2.2, we denote

out .
out __ SM,ﬁ,j’ S BJ’ (3 6)
wE ] s®) ¢ Uk_ B, .
pg T E =100
where Sf’)g is defined in (2.33).
We look for w in the following inner and outer profiles
W(Iv t) = 7#(% t) + ¢zn(m, t)
with i
in 7 7 —nx2 T — 5 t
¢ (l‘,t) = an,R(xut)¢j(x7t)> ¢J(x7t) = M()j 2 (bj (}L()(Jt()),t> . (37)
j

j=1
A main observation we make is that w(z, t) solves problem (3.3) if (¢, QNSJ) solves the following coupled
system:

e 1) solves the so-called outer problem
k

Oy = AV + Vloga(z) - Vi + Vet + > Vloga(x) - Vi re;

j=1

k ~ ~

+ 37 [2Vnin - T+ 65(A = Bmin | + N(w) + 83 in R x [tg, +00),
=1

J
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with
k R _n,gz T — é-j p—1 k R
Vie = pz (}”u,§| - ’Nj U( ' ) ‘ )77j,R -l-p(l - ZWﬂ) ‘uu,§| . (3.9)
j=1 Hi j=1
° gz~5j solves the so-called inner problem for j=1,---  k,
Oid; = Ags + pUP ™ + pUP "4 + Vloga(z) - Voj + Spue. 5 510)
3.10
+p[(uz,f)p71 - Ujp_l]d)_]? in BQRMO]‘ ({7) X [th +OO)7
where U; = ;Lj_"z U(%)
In terms of ¢;(y,t) as in (3.7), the equation (3.10) becomes
nt2
100005 = Dydj +pU (1Y)~ b5 + o7 Spue.i(&5 + 1oy, t)
T N : (3.11)
oo LU 0l6 o, 6+ Bllos] + Bilos) + Bllos)
where
Bj[¢;] = HOJHOJ( ¢J +y- Vy¢3) + 1o - Vyoy, (3.12)
2 _ Hoj et , MOJ _ ‘ foj \|PTE
B0 = o[ o (L2 N -v wo+r(F-) ()] o 6w
B}[¢;] := pug, [(uz,g)pfl — U ¢ + poj Vi loga(é; + HOJ’Z/) “Vyg;. (3.14)

The reason for choosing such scaled spatial variable I,;OEJ(S) is the following. In Section 4 and

Section 5, when we develop the linear theories for the outer and inner problems (see Lemma 4.1 and
Proposition 5.1), the behavior of the scaling parameter p;(t) is needed. At this stage, we only know
the leading order fi;(t) of u1;(t) as we shall solve the remainder \;(t) in Section 5 (see Proposition
5.2). Observe that

T8 T8 o))
2% Hoj

so that the remainder term is essentially of smaller order. It is then reasonable to rescale the spatial

variable as % Moreover, in Proposition 5.2, we shall show that the remainder A;(t) is indeed of

smaller order

Aj(t) ~ u(l);r”(t) for some o > 0.

We next describe precisely our strategy to solve the outer problem (3.8) and inner problems (3.10).
For given parameters A, ¢, A f and functions ¢; fixed in proper range, we first solve for 7 in problem
(3.8), in the form of a nonlocal operator ©» = W(\, ¢, A€, ¢). We will solve it by means of a priori
estimates of the associated linear problem and fixed point arguments. This will be done in full details
in Section 4. After we solve the outer problem, the inner problem is then reduced to a nonlinear
and nonlocal problem. In order to solve the reduced inner problem, a linear theory concerning the
solvability and estimates of the associated linear problem with certain orthogonality conditions is
required. The orthogonality conditions will be achieved by adjusting the parameter functions A and
£. Finally we shall solve the inner problem by the linear theory and the fixed point argument. See
Section 5 and Section 6 for full details.
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4. SOLVING THE OUTER PROBLEM

The aim of this Section is to solve the outer problem (3.8) for given parameters A, &, A\, € satisfying
(4.8) and (4.9), and for small function ¢ satisfies (4.11). We consider the problem

O = Ay + Vioga(x) -V + f(¥,¢,A,§) in R" X [tg, +00), i1
’L/J(-,to) =0 1in Rn7 ( ' )
where
k
f=> [2vnj’3 Vo5 + 6 (A= d)njr + Viega(z) - Vi rd; | + Vi + N(w) + 854, (4.2)
j=1

We will use the contraction mapping theorem to solve the nonlinear equation (4.1). For our purpose,
we first consider a linear model problem in Subsection 4.1.

4.1. The linear heat equation. In this Subsection, we consider the following linear heat equation
Uiz, t) = A(x,t) + Vioga(z) - Vip(z,t) + f(z,t) in R™ X [tg, +00), 13
1/)(‘7t0) =0 in Rn, ( ' )

where function f(z,t) is smooth. We assume that for two real numbers f3, v, the nonhomogeneous term
f(z,t) satisfies
MO] MO] t) T — fj (t)
If(x <M Yy, = ——2-, (4.4)
Z R P ()

The norm ||f||, g2+~ is defined as the least number M > 0 such that (4.4) holds. By the ansatz of
pj(t) in (2.4) we know
= &(t) _x =&

15 (t) 1105 (t)
Then it is reasonable to use the rescaled spatial variable ml;fj(g) since the remainder produced by A;(?)
is essentially of smaller order. In the sequel, if there is no confusion, we write
_ = &(1)
05 (t)
due to the discussion above. Using the heat kernel (see [2]), we know that the solution #(z,t) of
problem (4.3) satisfies

(14 0(1)).

—+oo

W) < 8 (y, 5) dy ds| (4.5)

n (3 — t)"/2

Remark 4.1. Note that the heat kernel bounds given in [2] are global and independent of time T.
More precisely, the upper bound does not depend on time T, while the lower bound dependence on T
can be removed by choosing a constant in the argument. See [2, Section 5]. In our case, we only need
the upper Gaussian bound for the heat kernel.

Then, we have the following estimate of the solution t(x,t) to the linear heat equation (4.3).
Lemma 4.1. Assume that ||f|l. g2+ < 400, 0 < v < n—2 and B+ v > 0. Let (x,t) be the

solution to problem (4.3). Then, for all (x,t) € R™ X [tg,+00), it holds that for y; = w;;,fj(g)

1 (£) . 1
1+0\Jyj\w it [y| < Hoj (t),

k
)
|T/)(1‘,t)| < ||f||*,52+7 J; 2
~ " w2 () ul () . _
; e i [yl > pgp ().
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z— fat)adf7(t) 94 — 4

Proof. Since y; = (1), we have

poj () oj (t)
B
Mo (t) po; (1)
1) < f MY
£z, )] <|If]] 3, 2+’72 1+ ‘y [2+7
k oy (1) o)
Ny |*,ﬁ72+7 2 ’ :
; o) () + & — q;[+
Then, if we define & =« — ¢; and § =y — ¢;, from (4.5) and (4.6), we obtain
k +oo o B+
1 _lz—g|? Lo; (s) -
Wt SElpan Y [ [ e ajds
g *”Z : n (s —t)n/2 gl (s) + |12+
t+1 o B+
1 _Eal>  Hg; (S) i
=||£llx,8,2 {/ / }/ a—t dyds
6, +’YZ N s—t)”/2 N(Q);"Y( )+ [g[2+
(11 + Ip).
First, we consider the case |y;| < ,uajl(t), for all j =1,---,k. In order to estimate the term Iy, we

perform the change of variable p = %, Q(Sit) = f%dp and we get

I <Zk: ety /Hl/ - ! dgds
=t " S—t"” Pl )+ g

k
1 1 Foo 2
< 0 / d~/ n=3emP
NZILLOJ () " ‘j_g‘n 2 2+’Y(t+1)+|g|2+7 Yy ~ p p

j=1 Hoj |£—7]
k 1 1

< B+y ~
SY 0 [ g

j; > re [T = G172 g (4 1) + (g2
B z’“: w7 (t) / 1 1 i

2 n—
= mo; (¢4 1) S gy (t+1)| t+1)| 21+ It t+1)|2
Z pg (bl (t+ 1) / 1 1 i
ol (t+1) e e o [V Eaat)

k
Z NOB;FFY UOJ (t+1) 1 Z .uoj

= et = 1+Iyal”

where & := m, 7= m and we have used the fact that for 0 <y < n—2
1 1 1
/ - ~n—2 MPES dg g 5 :
re [E— 9" 14 [P+ (1+[2[)
See [56, Lemma B.2] for instance.
Next we compute the term Io. If we define Z = (s — t)~2, § = §j(s — t) 2, we then obtain
B+
fo; " (s) _
I, < / / J - dyds
Z n M(Q);”( )+ (Vs — 1) ]g[>H

B-M( )

[ee] o, /’LO
_ ( + / )erte-a s —__dgds
jzl/m /|y|>2|f| lgl<2la] pod Y (s) + (Vs = 1) g2+

=Ip1 + Ip.
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For Iy, we have the following estimate

2

k 400
gl 1
EsY [ e[ e dgds
PRt v |g1>2|z| [P+

k B
<> U < Z“OJ—”

1+|yjh

For I55, we have

1
Iy < / 1 () / — L dgds
; o gl<2lz| [YV/s — 2T

Zk T o lE[P T
< (s ds
~ /+1 :qu ( )| /78 _t‘2+,\/

Jj=1
B+ 1
< 7 - d
0 [
Z i1 (m)n
k B

SY0S Y

- j=1 Ly
Next, we will consider the case |y;| > No_j (t), for all j =1,--- k. We compute

ﬁJr“/( )

k “+o0 1 _Iifﬂ\g /’LOj
(@, )] SElepain D PR
.7 t n

poj | () + [g1*+7

ﬂ+’Y( )

1 _lz—g1? Ho
gl )7 ot J dgd
=/l ﬂ2+vZ/ / +/Bc @/ (s—tn2° pa () + gl

12l [#|
2 2

= Hf” B2+~ (Jl + Jg)

— 1

Denote = = Z(s — t)*’ g =g(s —t)~ 2. Straightforward computations imply that

< - 1 oo B+ 1
LDl RO N e

= 121@) (s—1)2
k 1 +oo P | |
< / m 7(5)/ e TV dyds
~ ~12 0
yeec |Z[2+7 ), ’ 515, (7)
SR Aarn =
< % n—1
< Z |9E\2+7/t 1o, (s)/0 e drds
j=1
kBt k
< Z 0 ’Y t) < MOJ /’[/O] t)
S LR S TR

Y
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where we have used the facts that f0+oo e rnldr < +00, 8+ > 0 and (2.26). Similarly, we have

k 400
rex )
;1 ¢ Baja) (@\B

= J21 + J22.

e—lz=yl* B+
+/ ) Ho 2(+) ———dyds
(i) Bz‘ ‘( ) :LL07 ( ) + (V s = ) ’y|y| v

w‘ 8
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Moreover, one has
B+y

% <Z/+w /300| e Hoy (9) =1 drds
R W2 (s) + (Vs — )22y

oo 1 Bl

oy ) e (e

-2
|z

et 7" ds

ds

k ko —2 B
Hoj Hoj (t) Nog‘(t)
N Z |Z[2+ N Z 14 a2

L+ Ty P

and
k

Feo Mgﬂ( ) |Z—7]2
Jag < / J dS/ e 1*TY dy
; e (Vs=0PP0zP g @)
k B+v

/‘LOj IU‘OJ /J’Oj )
<
IR

Combining all the estimates above, we complete the proof of Lemma 4.1. O

4.2. Solving the outer problem. Let ¢ < 1 be a small positive constant satisfying the constraint
(1.6). For a given function h(t) = (hi(t), -+ , hi(t)) : (to,00) — R* and & > 0, we define the weighted
L*°-norm as

Ol =m0 s (50 @)
In what follows we assume that the parameter functions A(t), £(t), A(t), £(t) satisfy the constraints
A 140 + €@ 140 < C, (4.8)
[A@) 140 + 1€(E) = qllive <C (4.9)
with some positive constant C independent of ¢, ty and R.

Define
[9llz4nmn-50a = max [95ll2+0n-54a:

)

where ||¢;||240,n—5+a is the least number M > 0 such that

2+o’
Ho; 7 (1) .
(L+yDIVe;(y, )] + | (y, )| < Mm, i=1k, (4.10)
holds, where 0 < a < 1.
We assume that ¢ = (@1, - , ¢r) satisfies the constraint
||¢||2+tf,n—5+a < ce—eto’ (4.11)

for some constant € > 0 small enough. Then we have the following result.

Proposition 4.1. Assume that the parameter functions X, &, X, & satisfy (4.8) and (4.9), and the
vector function ¢ = (¢1,--- ,Pr) satisfies (4.11). Then there exists to sufficiently large such that the

outer problem (4.1) has a unique solution 1(z,t) = W\, &\, &, @) (x,t). Moreover, for y; = I;L_(EJ(S)
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and 1/2 < o < a < 1, there exists o € (0,1) sufficiently small such that the solution ¢ satisfies the
following estimates,

- 240
) iyl < g (0,
Waol S8 e (1.12)
P OO s 0,
and p oms2
3t ke O it Jy;| < g, (1),
Vo) S 9 7 e L (4.13)
>t T OO ORIO ) > g 1),

Proof. Recall that Lemma 4.1 defines a linear operator T' such that ¢ = T'(f) is the solution to the
linear problem (4.3). We establish the existence of a solution ¥ to problem (4.1), as a fixed point
problem

v=A«W), AW):=T(f(¥)), (4.14)
where f(v) is defined in (4.2). By the contraction mapping theorem, we will prove that there exists a
fixed point ¢ for A in the following function space

B= {w ol < ce—sto} (4.15)

for some sufficiently large C' > 0. Here ¢ is some positive number. We denote |||« as the least number
M > 0 such that the following inequality holds

k - 2 240
Boj 2 (Dpo; 7 (@) . -
;1 et it |y;| < moj (2),
|’(/J(l’7t)‘ S M j; _nTﬁ 2y (416)
to; 2 (Bl (Buar (t) . -
Zl & 1+|y (l)*gL 3+a ) lf |yj‘ > /’l’Ojl (t)
j:

In order to prove A is a contraction map, we will estimate

k
F=Y {QV%,R “V; + ¢i(A = d)njr + Vioga(z) - V%,R%} + Ve + N(w) + S5
j=1
term by term. . .
We first consider the term Vn; g - V¢;. Using the definition of ¢;(x,¢) in (3.7) and the assumption
z=¢(t)

(4.11), we obtain
- _n=2 7 ( R 10, ( ) |V, ;]
V. Vo, ’t < T2 (¢ J yr
[(Vny - V83) )] S gy ™ () s

P OO0

R(1+ [y;|*—**+9)

[ll2+0,n—5+aX{R<|y;|<2R} (4.17)

N

(t)uoj gt (1)
1 + |y |n 3+a

N

_ No
R* a||¢|‘2+0,n75+a Z 4

Jj=1

e~ ]l 2+0,n—5+a Z

j=1

oy G Doy (D (1)
1+|y]‘n 3+a

N

)
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where we have used the fact that o < a. Now, we consider the term gZ;j(A — O)njr- A direct
computation gives that

|Q;j(A3t)nij|5{ ‘+’n —&; (1) Ruoj (t) — (Scfj(t))Rﬂoj(t)]‘}@ﬂ

’RQMOJ

RQMO]( )
240
o oy ® (gl (B3 (1)
SR ||¢H2+o,n—5+az . T+, j‘n 3+a] (4.18)
j=1
. oy 7 (Dol (B (1)
Se EtOH(b”ZJrU n—5+a ! J ! s
j; 1_|_|y]|n 3+a
where we used the assumption (4.11) and the fact that only in the region R < |y,| < 2R, n’(|%|) # 0.
Similarly, we can get the estimate of Vloga(z) - an,RQNSj
2+U
Vl0ga(a) Vil S 1m0 3 i)[; T
=t (4.19)
_ oy © (g2 (3 (1)
<€ eto o “ ] j ]
~ ||¢H2+ yn—>5+ Jz:; 1_’_|yj‘n 3+a
For the term V), ¢¢ defined in (3.9), we evaluate
k
Ho; ()
Ve S (1= njr)—2— ¥
= 1+ ;]
2+cr
2 /"LOJ ( )1“‘0_7 ( )IU’OJ ( )
S Rl Z 1+\y ara (4.20)
2+o
75150”1)[}” Z MOJ MO] (t)/'l'()j (t)
1 + |y |n 3+a
For the nonlinear term N(w) defined in (3.- ), we get
k -
b (i 2 [0+ 3 i), i n=5.6,
IN(w)| = N<1Z) + Zﬂj,Réf)j) S k R
i=1 [P + Zl 7,097, if n>T7.
j=
First, we consider the case n = 5,6. Direct computation implies
Ly 1) PO
* \P=2(n 02| < 2 Jj Jj j
|(UH7§> (77],R¢J) | ~ ||qi)”2—‘1—0’,”—5—',—(1,j;1 (1+ |y]|2)6;n (1+ |y ln 5+a)2 X{|y3|<2R}
(4.21)

2
e Hoy T (Dl (O (1)
~ € H¢”2+0n 5+a§ : 1+‘ |n 3+a
j=1 Yi

Recall the definition of |||« as in (4.16).
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o If ly;| < uajl (t) for j =1,--- , k, then we have the following estimate

Jug;  (t)

- Z :“0 g 2
* \p—22| < * p 2 ( J J )
|(Uu,§) 71} | ~ ( ”77[}” 1+ |y ‘n 5+a

240 240 n—3+a
< ||7/1|| Z Noj l’LOJ (t>luoj+ (t) Mo;r (t> 1+ |y]| 3+
~ L D e U 7]
Suof 7@
2+a
_ Hoy 7 Oug (O (®)
< ecto I J J ) 4.22
S eyl Z i 4.22)
o If y;| > uajl(t) forj=1,--- ,k, then we have the following estimate
k 240
. \p v \pe Mo ()No (), 7 (1) 2
()] S (a0 2||w||iz( )
= j
n—6 _n=2 _ o
< ”q/)” Z /Jo] IU’O] (t)/igja(t) /J’Oj2 (t) Hoj 2 (t),uojz(t)ﬂgj (t)
Ly [P =50 (14 |y, L Jy;|n=ote
Srof 7T®)
2+o’
< e,gto Z /J‘Oj ( )MOJ ( )NO] ( ) (423)

= 14+ |yj‘n 3+

Then we consider the case n > 7. Due to the cut-off function n; r, we get

T (g OuE (@)

p MO]
|77] R¢J| S H¢||2+on 5+az (1 + |y; =5+ X{ly;1<2R}
Jj=1
—252 N 20 240 n—3+ay, (2+0)(p—1)
< W)”p Hoj : (ﬂﬂoj (t)luo;L ()(1+|yj| 3+ )NOJ P (t) (4.24)
S Pl 40n—54a 1+|y,|n 3ta (1 [y; > 5t X{ly;|<2R}

S S s 0 00170
~ 2+0,n—5 n—3+a :
+o,n— +a] - 1_’_|yj‘ 3+

Indeed, if we choose o € (3, 1) in the case n > 7, then we have n — 3+ a < (n — 5+ a)p and

n—3+a«a (2+0)( 1)
(1+ Jy " —2F )HOJ - () (2+40)(p—1)
(rirp > M

(t)
since o < a.
Next, we shall estimate the term |1|”. We discuss two cases.

o If y;] < Majl(t) for j=1,---,k, then we get

o (2+0)(p—1) n—3+ao
oy © () gt (0 (1) 1 () (1 + [yl )
o 5 toip Yt DU OO v 3

= L [yy[n=3+e (14 [y;["=ore)

Sug @) (4.25)

2+a’
o—cto ||¢H€Z Mo; ( )No; (t )NOJ (t )

= 1+ |y]|n 34«
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o If [y;| > ,uajl(t) for j =1,--- , k, then similarly we obtain
o —2 (2+0)(p—1)
o 5 i 2 o O 0 o Ol
o 1+ |yJ|n 3+ (1 + |y]|n 3+a)p—1
Ske; "7 () (4.26)
240
ey ROl
1 +| |n 3+a !
=1 Yi
In conclusion, we get from (4.21)—(4.26) that
Mo (t),uo (t)ﬂg+a(t) .
(H¢”§+G,n75+a + H¢Hz> Z ! 1 n |y j|n 3+aj s if n= 5,6,
IN(w)| < e~to = (4.27)
2+<7
.Uo ()No()#o t) .
608+ ) 30 P01 O OO
=1 1+ ‘yj|
To estimate Sfj‘g, we first consider the case x € B; for fixed j € {1,--- , k}, namely |y,| < 5#{7]'1(73)-

In this case, we recall from (3.6) that
ou 2
894 = (1 1,r)Spei + SCL

with SLZ)E and S, ¢ ; defined in (2.32) and (2.31) respectively. For Sf%, using (2.9) and the fact that
ly;| < 5/‘5]'1 (t), we have

‘,uj n+2R ‘ < omcto Z ,uoj ( )NOJ (t )/Lo;ra( ) 1—afo(t)

e 1+ |y |n 3+a 07
(4.28)
k 240
e—cto Z NOJ No; ( )Noj (t)
= 14+ |y |n 3+

for small o such that ¢ < 1 — . Moreover, according to the estimate of Ly as in (2.37), we have in
the case n = 5,6,

ILo| < Z MOJ ( ),“0] (t )Mojg( ) Q_U(t)

Hos
= 1+‘yg|n 3+a 0y

p  —ns2 ) 2o, (4.29)
= _
< o—cto Z o (t)uoj (t)ﬂoj (t)
~ K
= L+ [y;[n—3+e
while in the case n > 7,
n— -0 f—
uoj (t)uo] QIS ONTT 0+ ly; [ 24)
|L2| S Z 1_~_‘ |n 3+a (n+2)(n—4)
=1 Yi I
Suo"j%_a(t) (4.30)
2
< o—cto Z Ho (t)uoj QN0

= 1+|yj|n 3+a
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for o < 5. Therefore, from (4.28)-(4.30) we obtain
zk: { uogﬂoJO(l) Ho6510(1) ;01 }

L+ Jyin=t 14 yn=3 0 14 y;(n—3

’8(2 (z, t

(4.31)

+Zuoz (lgj — al*™™) + Lo
i#j

< e—¢to Z MOJ <t)M0J (t)/‘g;ra(t)

~ e 1_|_|y]‘n 3+ta

From the definition of the cut-off function 7, g in (3.2), we know that 1 —n; g # 0 only for |z — &;| >
poj (t)R, namely |y;| > R. Therefore, in the region x € Bj, using assumptions (4.8) and (4.9), we have

T (g 22 (8)
1 + |y |n 3+a

a— Hoj
‘(1 1i.R) #f]‘<R 12 .
(4.32)

< e—ato

~

Z oy (t)qu (t)uﬁf”(t).

2 Tyl

For the case z ¢ Ug?:lBj, namely |y;| > 5/‘53'1 (t), we can get the estimate of S7 by Lemma 2.2
similarly

240
_ .Uo (t)ﬂo (t)o, 7 (t)
‘Szuft(x y)’ 5 € EtOZ ’ 1 Jn 3+o¢j (433)
= + ly;l
By Lemma 4.1, for function f with [|f][, .- 2 94om-3-a < T00, we have
k —T 240
Hoj (t)ﬂoj (t) lf -1

L n— a y </,L : t
(e, 0)| = |ITE)] < |IE| , jgl Tty " 5te |y;] 0j (t),

R ~ Tt bRt ta kg, " (Mg, Mpafo® . —1
> Ty, |7JL T S O Hoj (t).

j=1
Here the norm || - ||*’7n772+2+07n73+a is defined in (4.4) by replacing 8 by —252 4+ 2+ ¢ and 7y by
n — 5 + a. Therefore, by the estimates (4.17), (4.18), (4.19), (4.20), (4.27), (4.31), (4.32), (4.33) and

Lemma 4.1, it follows that the mapping 4 maps the set B to itself.
Then it suffices to show that A is a contraction mapping. We claim that for any 1, ¥y € B,

A1) — A(W)ll+ < clltr — s,
where 0 < ¢ < 1. Indeed, we observe that
A1) = Az) = T (N +6™) = Nz + 6™) + Vgt = 1))
(see (4.14)). Recalling the definition of N as in (3.4), we get

(uf, P72 1@ [ — o], if n = 5,6,

IN(¢1 +¢™) — N (2 + ¢™)| < _
¢ P~ by — el if n>7.

In the case n = 5,6, we get

(t)uog (g7 (1)
1+ |y ‘n 34«

IN(t1 + 6™) = N(¥ + 6™)| S e |lla0n-5alltrr — 2]l Z” 0
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while in the case n > 7, we have

C(OugORE (1)

IN(¢1 + ¢™) = N(¢2 + ¢™)| < 76t0||¢”2+an s1allr — Yol Z MOJ

1 + |y |n 3+a
For the term V), ¢4 defined in (3.9), it is easy to derive that
k _n;2 2+0‘
_ t)o; 2t gy 7 (¢)
|Vu7€(¢1 - ¢2)| S € stOle Z 1 + |y ]|n 3+a] .

Hence

A1) = A2)ll« < cllthr — .
holds with 0 < ¢ < 1 when tq is sufficiently large. Therefore, if t( is sufficiently large, the operator A
is a contraction mapping in B. By the contraction mapping theorem, we get the existence of desired
solution in B. Estimate (4.13) follows similarly as (4.12) by standard parabolic theory. The proof is
completed. O

4.3. Lipschitz dependence of ¥ on ), &, ), € and ¢. The function Y = T(NE, A€, @) is a solution of
problem (4.1), which also depends on the parameter functions A, &, A, f , and ¢. Next we want to clarify
this dependence, which is done by estimating for example 8¢\I!()\,§,)\,§,¢)[¢>] = 85\11[)\,{,)\,§,¢ +

50| o

can be carried out after some minor modifications as in [9, Proposition 4.2]. We omit the details.

as a linear operator between Banach spaces. We have the following proposition, whose proof
0

Proposition 4.2. Assume the validity of the hypotheses in Proposition 4.1. Then, ¥ depends smoothly
on A & A, & @, and we have

1AL EAE 8] = U, & A E Gl S e A = Aallito, (4.34)
1WA €1, 4 €, ¢ — N &2, A €, ¢l S e &1 — Eall1tor (4.35)
1WA & A, 0] = UIN € A9, €, 8llle S e Ay = Aalligo, (4.36)
1A€A &1, 6] — U E A&, 0]l S e 16 — Gl (4.37)
1A &0 6 0] = BN EAE P S e 161 = 6P l240,n—5 4, (4.38)

where the above norms are defined in (4.7), (4.10) and (4.16), respectively.

5. LINEAR THEORY AND CHOICES OF PARAMETER FUNCTIONS A(t), £(¢)

After we get the outer solution ¢ = @[A,g,)\,é,@ as in Proposition 4.1 and Proposition 4.2, we
substitute the function ¢ into the inner problem (3.11) and get a nonlinear and nonlocal equation of
¢j. We perform a further change of variable in equation (3.11)

dt 9 .
t=t(7;), dT_j:NOj(t), J=1,k

namely
7j(t) = (2k) et = (265) " g (1), (5.1)
For simplicity, we write 7; as 7 in the following if there is no confusion. By the above change of
variable, equation (3.11) becomes

Ordj = Nybj +pU ()P 5 + Hi[NENE Y, ¢l(y,7)  in Bag(0) x [70,+00) (5.2)
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with t(’l’o) = to and
HiENE 0, 0)(y,m) = o7 Spe (& + 1oy, (1)) + Bjlos] + B l¢;] + B[]

n2 i po; \ P71
+ ppof ﬁ‘U(ny Y (& + pojy, t(7)).
¥ Hj

Next, let us explain formally how we solve problem (5.2). The linear operator L. (¢) := —¢, + A¢+
pUP~1¢ is certainly not invertible since all 7-independent elements of the kernel of Lo(¢) := A¢ +
pUP~1¢ are also the elements of the kernel of L,. Thus, for solvability, we expect some orthogonality
conditions to hold. Moreover, the solution ¢; we look for cannot grow exponentially in time. Recall
that the operator Lg as in (2.20) has a positive radially symmetric bounded eigenfunction Z, associated
to the only negative eigenvalue \g to the problem

Lo(¢) + A6 =0, ¢ € Lo(R"). (5.4)

(5.3)

Furthermore, Ag is simple and Zj has the asymptotic behavior Zy(y) ~ |y|_n7726_\/m|y‘ as |y| — oc.
To avoid exponential growth in time due to the instability, we construct a solution to problem in the
class of functions that are parallel to Zj in the initial time 7.

The above formal argument leads us to construct a solution ¢ = (¢1,- -+ , ¢x) of the system

Ord; = Nybj + pU(y)P 5 + Hj[N, &N, €4, ¢](y, 7). in Bagr(0) x [ro, +00),
¢i(y,170) = e0Zo(y), y € Bar(0),

H][)Hga)‘ag)d))(z)](yaT)Zf(y)dy207 vT>7—07 ]: 1a 7ka = 17 7n+17
Bar

(5.5)

for some constant eg. For £ = 1,--- ' n+ 1, Zy(y) are the only bounded elements in the kernel of the
operator Lo . Moreover, the parameters A and £ (as functions of the given ¢) will be chosen such that
the orthogonality conditions

/ HJ[)‘afaAaf7¢7¢](ya’r)Zl(y)dy:07 VT>7_0a j:]-a"'aka 5:177n+1 (56)
BQR(O)

are satisfied. The above k x (n + 1) orthogonality conditions imply a nonlinear nonlocal system of
k x (n+ 1) ODEs. In Section 5.2, we will prove that the ODE system is solvable. After we solve
the ODEs of parameters A, £, we will prove that problem (5.5) is solvable in the class of functions
¢; satisfying (4.11). A central point of the construction is a linear theory developed in [9, Section 7],
which allows us to solve system (5.5) by means of the contraction mapping theorem. This will be the
context of Section 6.

5.1. The linear theory of inner problem. The key ingredient to solve the inner problem for
function ¢ satisfying (4.11) is the resolution of the linear problem: For a large number R > 0, we shall
construct a solution to an initial value problem of the form

d)‘r = A¢ +pU(y)P*1¢ + h(y7 T) in BQR(O) X (7_07 +OO)7
Py, 10) = eo Zo(y) in B2r(0),
provided that h satisfies certain space-time decay and certain orthogonality conditions. Here Zj is the
positive radially symmetric bounded eigenfunction associated to the only negative eigenvalue to the
eigenvalue problem (5.4).
We recall that 7; = 7;(t) is given in (5.1), namely 7;(t) = ﬁjuajz(t) for j = 1,--- k. In the
T-variable, we define

(5.7)

[hllv,a == sup  sup (1 +|y|") [h(y, 7)], (5.8)
T>To y€Bar(0)

where v = 1+ §, so that we have 7, " (t) ~ ugt(t).
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Decompose h(y, ) into the following spherical harmonic modes

) = 3 s (ol P05 (/) wieh hy(lr) = [ (w7056,
j=0

S§n—1

where 0 = y/|y|, and ©; (j € N) are orthogonal basis of L?(S"~!) made up of spherical harmonics,
namely eigenfunctions of the problem

ASn—l@j + )\j@j = 0 n Sn_l.
We denote h = kO + ! + ht with

n o0

O = ho(lyl,7), h' = hi(lyl,7)©; and ht = >~ hi(|yl,7)e;.
J=1 j=n+1

We have the following proposition concerning the estimate of solution ¢ to the linear problem (5.7),
which can be proved by similar arguments as in [9, Proposition 7.1].

Proposition 5.1. Let v,a be given positive numbers with v =1+ Z and 0 < a < 1. Then, for all
sufficiently large R > 0 and any h = h(y, 7) with ||h||yn—3+e < +00 that satisfies

/ hy,7) Ze(y)dy =0 forall 7€ (19,+00), £=1,--- ,n+1, (5.9)
B2r(0)

there exist ¢ = ¢[h] and eg = eg[h] which solve problem (5.7). Moreover, they define linear operators
of h that satisfy the estimates

—y R5*a 0 . 6—a L
(1 + |y|)|V¢(y,7)| + ’¢(y77—)’ S T W ||h ||u,n—3+a +7 W”h Hu,n—3+a
TV
+ h v,n—34+a> 5.10
1+ |y|n—5+a 1Pl n—s3+ ( )
and
leolh]| S 1hllvn-s+a- (5.11)

5.2. Adjusting the parameter functions. In this Subsection, we first derive the ODE system of A
and & such that the orthogonality conditions (5.6) are satisfied. For convenience, we use the following
notation

A1(t) Ai(t) &u(t) &i(t) ¢
M =1 A= 2 ew=|  [Lem=]  |a=];
Ae(t) Ae() & (1) &k (t) G
First, we describe (5.6) when £ =n + 1.
Lemma 5.1. For fixed j € {1,--- ,k}, there exists a positive constant € > 0 such that (5.6) with
{=n+1 is equivalent to
A () + riAg (1) = T[N € A €, 6)(t) (5.12)
with
I 506 A € l() = mf 7 (BF () + ™ T[X € X, 10 (§ — a), 1o} 70 (2), (5.13)

where k; (j =1,---,k) is a positive constant as in (2.25), §(t) and T[)\, £\, wo;i (€ — q), ué}"ﬁé] (t)
are smooth and bounded functions for t € [tg,+00). Moreover, the following Lipschitz dependence of
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Y[ -](t) on its parameters hold

YA = TAP) @) | S e AL (@) = AP (1)), (5.14)

| TED)E) = TEP]@) | S e |gM (1) — ()] (5.15)
YA = TP S e AD (1) = AP (1)), (5.16)

| Yo (67 = @)](8) = Tluo; (62 — @l(B)] < e =0 €M (1) — P 8)), (5.17)
Y[ 7o) = Tl o0 S e 18 = 6P |las0m-s1a- (5.18)

Proof. Let o be the positive number fixed sufficiently small as in Proposition 4.1. For ¢; satisfying
(4.10) and any fixed j € {1,--- , k}, we want to compute

/ Hy A €0, 8]y, 7)) Zosa () dy,
B3r(0)

where Hj is given in (5.3). Recalling the expression of S, ¢ ; in (2.31), we can write

n+2

Hof Sue (& + Hogys £) = (o )T [1o0sS1(2: ) + X;S2(z,6) + 15Sa(20) ] e
+ (ot ) E 0y [ S1(&5 + pogy,t) — S1(& + gy, 1)]
+ (hoj i) T N[ S2(&) + pogy, t) — Sa(&j + sy, t) ]
+ (:uOJ':uj_l)nT“uj [ S5(&5 + pojys t) — Sa(&5 + iy, t) ],

where

S1(2,6) = (A = 15A) Znia (2 M€J)+2/\ Algy) ugj U ;jﬁj)

J
— & -VU( M'fj)’
J

Ky

5 4 2 AGg)°

Ky

Sa(z2,t) = }\j Znpt1 (Z

_ ¢ vu(EDS Ve g vy (FS
Sa(1) = & VU (20 ) + M) (& —07) - VU ().
It is direct to check that
[ z2aay = e+ o),
BzR(O)

/ (A(g))y) VU W) Znsa(y) dy = ¢; (1+ O(R*™))
BQR(O)
with ¢y and ¢; defined in (2.24). Therefore, we obtain

/B (0 Sl(fﬁ"_/u‘jyat)zn+1( )dy—CO()\ +H] )(1+O(R4 n))
/B ©) Sa(&5 + 139, 1) Znsa () dy = codj (14 O(R*™™)) + ¢;A;(1+ O(R*™)),

/ Sa(&) + 3y t) Zusr (y) dy = 0,
B>r(0

-1
where we have used symmetry for the third integral above. Since #,TO; = (1 + ﬁ) , we get, for any

Hoj
(=1,2,3

/ [Se(&5 + pojy, t) — Se(&G + iy, t)] Znsa(y) dy
B3r(0)

= g(m/jfj) +g<t,:0jj>/\j +g(t,:gj)£'j +9(t, ;\Ojj)(ﬁ- — a3) + o; 7F(1),

07
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where f, g are smooth and bounded functions, and g(-,s) ~ s as s — 0. Thus we conclude that
nt2

1 _ Wi 2 n42
co oy (j> / to; Spei (& + 1oy, 1) Znia(y) dy
Hoj B2r(0)

. . SV . i
= (A +5j0) +e tOg(t,M—;)(/\jJrgj)Jre tog(t u—)A + bR,

where g is smooth and bounded in its argument and g(-,s) ~ s as s — 0.
Next we consider the term

— )\ _
po (1 20) 7 [ U Pl ) Znaa ().
Hoj Byr(0) Hj

The principal part is
G = / U )P~ 1(&5 + 10y, 1) Zn41 (y)dy.
B2r(0)

Since ¥ = W[\, &, A€, #](y,t), we can write

G = 0[0,4,0,0,0](q.1) / TP Zoar () dy
B2r(0)

+/ o UW)P~ Znia(y) (‘If{O,q, 0,0,0](& + pojy,t) — ¥[0,q,0, 0,0](qj,t)> dy
Bar(0

+L ©) |U(y)‘p71 Zn-‘rl(y) (W[Aa§7ka§7¢] - \IJ[O7q’O,O7O]) ({] + Uijvt) dy
2r (0
=G1 + Ga + Gs.

_n-=2
By Proposition 4.1, we obtain Gy = e *"opy * (t ),uéj'"( )f(t) with smooth and bounded §. By the
mean value theorem, we get that

_ _n=2 . )\
Gy =e Eto#oj T (t )uéf (t )g(t, J}vfj - Qj)
Hoj

for a smooth function g with g(-,s,-) ~ s as s — 0. The mean value theorem gives that, for some
€ (0,1),

GS = / © Upil(y) Zn-i-l(y) 8)\\1’[07 q, Oa 07 O] [SA](EJ + Ho5Y, t)
Bar(0

+ ag\Il[Oa q, Oa Oa 0] [55}((£] + HojY, t) + a¢\11[03 q, 07 03 O] [Sd)]((fj + Ho5Y, t) dy

By Proposition 4.2, we obtain

Gz = 6’“"#@7( Yo (8 F(E) (N + & + X + &N E A, 9)(D),
where f is smooth and bounded, and F' is a nonlocal, nonlinear smooth operator in its parameters with
F(0,q,0,0,0)(t) bounded.
Now we consider the terms Bj[¢;], Bj[¢;] and B$[¢;] defined respectively by (3.12), (3.13) and
(3.14). We obtain that

Z/Bm ) Bj[6,1(y,t) Zny1(y) dy

= e { s alol(0) + &alellt) + " (0 a( 22 alol(t) + it alol(0)}

07
where q[¢](t) is a smooth and bounded function in ¢, while the function g(s) is smooth with g(s) ~ s
as s — 0. Collecting the above terms, we get the validity of (5.12). O
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Similarly, up to some minor modifications as in Lemma 5.1, we can compute (5.6) for £ =1,--- ,n
This is the content of next Lemma. Here we omit the proof.

Lemma 5.2. For fivred j € {1,--- ,k}, there exists a positive constant € > 0, such that the relation
(5.6) for £ =1,--- ,n is equivalent to
&+ Ag) (& — a5) = Ta 5N 6 A€, 9](8), (5.19)
where A(q;) = V?logal(q;) is the Hessian matriz and
H27j [Aa 57 )"7 é’ (b}( ) Mé;’_a( ) f](t) + e—€t0 T [ A’ év A7 Hoj (f ) Méjo(b] (t) (520)

Here the function f; = f;(t) is an explicit n dimensional vector function, and it is smooth and bounded
fort € [tg, +00). Moreover, Y[---](t) has the same Lipschitz properties as described in Lemma 5.1.

In summary, from Lemma 5.1 and Lemma 5.2, we have proved that solving (5.6) is equivalent to
solving the system of ODEs of A and &

{ N+ Ry =T E A€ ) (1),

&+ A(g) (& — q5) = T j[N, €0, €, ) (1)
We next show that, for any given ¢ satisfying (4.11), the system (5.21) is solvable and admits

solution A = A[@](t), & = &[¢](t) satistying the restrictions (4.8)—(4.9). Moreover, we show the Lipschitz

dependence of A = A[¢], £ = &[] on ¢, which is a crucial property to ensure the existence of the solution
¢ to problem (5.5).

(5.21)

Proposition 5.2. Assume that ¢ satisfies (4.11). Then there exists a solution in the form A =
AP(t), & = £[P](t) to the nonlinear system of ODEs (5.21), which satisfies the bounds (4.8)—(4.9).
Furthermore, for t € [tg,+00), it holds that

o @ NBVN0) = NS0 | £ e N1 — 6 2510, (5.22)

o O] DN — 6PN | £ e 16V — 6P asonsra- (5.23)

Proof. Let h = (hy,--- ,hg) : [to, +00) — R¥ be a vector function with the bounded norm ||h||;4o,
where the norm || - |14 is defined in (4.7). By the variation of parameters formula, the solution of

() + 15 0i() = hy(t), j=1,-,k (5.24)

can be expressed as

() = et [d +/te“fshj(s)ds},

to
where d; (j = 1,--- , k) are arbitrary constants. In order to ensure that \; decays to 0 as t — +o00, we
choose
+oo
dj = enjto)\j(to) = —/ 6'%5 hj(8> dS,
to
then

+oo
€(1+a)njt)\j(t)‘ _ ‘etmjt/ enjshj(g)ds
t

“+o00
Se‘m"tthHlJra/ e Holriserisds < b1
t

Therefore we have
1A ||1+<7 S hjllito-
Letting A(t) = A(t) and 8 = diag(ky,-- - ), equation (5.24) becomes

+ﬁ/ s)ds = h(t). (5.25)
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Then equation (5.25) defines a linear operator £y : h — A, which associates to any h with ||A|140-
bounded a solution to equation (5.24). This operator £; is continuous in the Banach spaces

(L>®[to, +00))* equipped with the || - ||11o-topology.

Similarly, for vector function h = (h1,--- ,bhg) with b;: [to, +00) — R™ and ||h;]|14,-bounded, we
now consider the linear system of ODEs associated to (5.19)
d )
7 &0 = a) + Alg))(&(1) — ¢5) =b;(t), 7 =1, k. (5.26)

Recall from (1.5) that P;A(q;)P;7 = dlang(o'1 2 (]), e ,Ur(lj)) for some orthogonal matrix P;. If we
denote that
&) —a; =P o(t), v(t) = (i (1), va (1),
then (5.26) becomes
(1) + diag(o”, 05,0 ult) = Py b (1),
and each component of the solution v(t) can be expressed as

vilt) = e~ d; + / 7 (P )is) ds] (5.27)

where d; (i = 1,--- , k) are arbitrary constants. In order to ensure that v;(t) decays as t — o0, we
choose the initial value v;(tg) as

~ j Foo J
di:evwom(to):_/ o (P} ;):(s) ds.

to

Therefore, we get

(140)k;t (1+o)kt —a )t oo o s
le Toit)] = |—e e *(Pjb;)i(s)ds
(1+0)k;t —o@y e —(1+o)k;s oW s
< eOtmite=ol by, [ et o s g
t
< bjll+0
where the following condition
— (14 0)k; —|—a(]) <0 (5.28)

is needed to avoid the exponential growth while integrating. By the relation (2.25), we see that (5.28)
is equivalent to

() 3n__
O'ij < (1+U)m0']7
n_ G
where O'(] ) is the i-th eigenvalue of the matrix A(g;), o is a small positive number and 7; := ) g;: .

i=1

Observe that || 7% ;(t)]| oo 10, 100) S [IBjll11o- Then we have [|€j[14e S [105]140-
Let E(t) = 13 (t), which is a n x k-dimensional vector function. Thus (5.26) defines a linear operator
Ly : h; — E, which associates to any n x k-dimensional vector function h; with ||h;/14+-bounded a
solution (5.27) to equation (5.26). This operator is continuous in the Banach space equipped with

I ll14o-topology.
After introducing the linear operators £;,7 = 1,2, we observe that (A(t),£(t)) is a solution to (5.21)

if (A(t),E(t)) == ()\(t),f(t)) is a fixed point for the problem
(Aa E) = A (A7 E) ) (529)

where

Ay (A7E) = (£1 (ﬁl[A’EH(b]), £2(ﬁ2[AaEa¢])) = (Al(Ava)a AQ(AaE))7

aze) 1| [ Aq+ [ 2aze] 1-12
t t
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and IIj, II are defined respectively in (5.13) and (5.20). Let
K = max {Ilfllie, 1o},
=1,k

=4 )

where the functions f, f_;-, j=1,--- k are given in (5.13) and (5.20) respectively. We show that the
problem (5.29) has a fixed point (A, Z) in the following space

¢ = { (A,2) € L®(to, +00) x L(t0, +00) : Al + [Elhso < K}

for some large constant ¢ > 0.
Indeed, we observe directly from (5.13) and (5.20) that

o, T OAMNED)] S (laron-sta+ K +e A 1ro + e E 11, 1=1,2.

Thus, we have that A, (C) C C.
For the Lipschitz condition for A4, we have

e(1to)s;t |[11 AL E) — 1‘11(/\2’ E)’
eI talst |\ o (Hl[/\l,uaéﬁ] ﬂl[A?’E’¢])’

El(T(Aha/too A1> - T(AQ,E,/:O AQ))‘

S e A1 — Asll14o,

~

g e(l+o’)f~ijte—8to

as a direct consequence of (5.14) and (5.16). By the same argument, one can get a similar estimate
for |A2(Aq1,E) — Az(Ag, E)|. Thus, we have
[ As(A1, 1) = Aa(A2, Bo)ll14e S €50 A1 = Aofl1go + €770 |21 — Eal14o-
Since e~ ¢! is small when t; is large enough, by the contraction mapping theorem, there exists a
solution (A(t),£(t)) to the system of ODEs (5.21) with A and & satisfying (4.8) and (4.9). B
Next, we want to prove (5.22) and (5.23). Let ¢ and ¢ satisfy (4.11). The functions A =
MoM] = A[¢?)] and € = £[p(M] — £[¢?)] solve the system of ODEs for j =1,--- , k

Notmid = (M), &+ Al = (M),

where

(L), = ca'puy” i, /B (O)\U(’jj’?’y)\p1(w[¢“>]—W”])(sj+u0jy,t>zn+1<y>dy
2R J

rat (4 ) ot [ o Z B6D);] - BUGP),) Zua(v) dy

and (l:[g(t))j has the similar form as (II; (¢ ))j Thus, the validity of (5.22) and (5.23) follows from
(5.18). This completes the proof. O

6. SOLVING THE INNER PROBLEM

After we get the outer solution 1 as in Proposition 4.1 and Proposition 4.2 and the parameters
A = A(¢) and & = £(¢) as in Proposition 5.2, the last step in the proof of our result is to solve the
inner problem (5.2).

Proposition 5.1 concludes the existence of a linear operator 7 which associates a solution to the
linear problem (5.7) for any function h(y,t) with |||, n—3+e-bounded and satisfying orthogonality
condition (5.9), where the norm || - ||, n—3+ is defined in (5.8). Moreover, it states that 7 is continuous
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between Banach spaces equipped with the topologies described by (5.10)—(5.11). Thus, the existence
and properties of solutions ¢ and ey to problem (5.2) are reduced to the fixed point problem

0= (01, 0n) = As(9) = (TUHLNEAE v o)), T(HNE A v, 0))
in a proper set of functions. We recall that H; (j =1,--- ,k) is defined in (5.3).
Next, we shall prove that Ay is a contraction mapping from D to D, where
D:={¢:[[¢lvn-s+a < Ae™}
with A > 0 fixed sufficiently large, where

[@llvn—sta = sup sup 7/(1+ |y[*=>F) (|o(y, )|+ (1 + [y)[V(y, 7))
T>T0 yEBar(0)

To this end, our strategies are the linear theory given in Proposition 5.1 and the contraction mapping
theorem. Note that here the || - ||, n—5+q-norm is defined in (y, 7) variables, and in the (y,t) variables,
it is the same as (4.10) since we choose v = 1+ .

We claim that, for each j =1,--- |k,

por 7 ()

0 e 6.1
1+ |y|n73+a ( )

|H; N E N E 0, 8] (y,t)] < e st

for some a € (0,1), and for (1), $(2) € D

HHj [¢(1)] — H; [¢(2)]||V7n73+a < C||¢(1) - ¢(2)||V,n75+a (6.2)
with 0 < ¢ < 1 when ¢ is sufficiently large. We recall the definition of S, ¢ ;(x,t) as in (2.31). Then
we can easily get

240
nt2 _ Ho (t)
to; Spei(&+ Moﬂ'yat)’ Se Et°H|Jy|m~ (6.3)
Since the outer solution ¢ € B with B defined in (4.15), we obtain that
2 2+o
n=2 [, Hoj \|P~! e Mo ()
piog | (B[ e + mosy, )] S et U (6.4)
O T\ 0 (& + pogw, D) 14 [y[n—s+e
According to the definitions of Bj[¢;], Bf[¢;], B}[¢;] as in (3.12)~(3.14), we can get
240
- po; ° (¢)
|Bj[65]1 S e “°Wll¢llm_5w for all £=1,2,3. (6.5)

Combining (6.3), (6.4) and (6.5), we conclude the validity of (6.1) for A > 0 fixed large.
We next prove that the map Aj is a contraction mapping. We should emphasize the fact that
depends on ¢ in a nonlinear and nonlocal way, recalling that

¥ = U[A(9),£(9), A(9),£(6), 4.
We claim that there exists ¢ € (0, 1) such that, for any ¢, ¢?) € D

||A5(¢(1)) - ~A5(¢(2))Hu,n75+a < C||¢(1) - ¢(2)|

nt2
From the definition of p? S, ¢; in (2.31) and the Lipschitz dependence of A and £ on ¢ as in (5.22)
and (5.23), we have

v,n—5+a-

n+2
2

107 (Sueald™] = Suesls®1)]||

with 0 < ¢ < 1 when ¢y is sufficiently large.
Next, we consider the term

aea Sels® =, s (6.6)

2
222 UG |, Hoj )P
tho; /sz U(*jy)‘ V(&5 + Hojys t)
J

2%}
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and we compute

n42 1 .
pro; | U () vl N 0] + sy 1)

201 \le™M]
LSS Y G L @)1(¢, o ‘ .
,u? [¢(2)] ur (Nj [¢(2)] y)¢[¢ 2)](§J [¢ 2)] + 1ojYs t) (6 7)

240
ety Moj ()
~ € o 1 _|_(|);|n—3+a H¢(1) - ¢(2)||u,n—5+a'

Finally, it follows from the definitions (3.12), (3.13) and (3.14) respectively that
2+o0
MU 6™ — 6|
1 + |y|n73+a
Therefore, by estimates (6.6)—(6.8) and Proposition 5.1, we obtain (6.2).
By (6.1), (6.2) and the contraction mapping theorem, we conclude that As has a fixed point ¢

satisfying ||¢||vn—5+a < ce”c'. The proof is complete. O
The stability part in Theorem 1 is similar to that of [9]. Here we omit it.

Bj[oW] - Bilo®]| S e 1=1,2,3. (6.8)

v,n—5+a’
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